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Abstract 1 

There is currently no effective treatment for dementia, of which Alzheimer’s disease (AD) is the 2 

most common form. It is, therefore, imperative to focus on evidence-based preventive strategies to 3 

combat this extremely debilitating chronic disease. Nitric oxide (NO) is a key signalling molecule in 4 

the cardiovascular, cerebrovascular, and central nervous systems. Vegetables rich in nitrate, such as 5 

spinach and beetroot, are an important source of NO, with beneficial effects on validated markers of 6 

cardiovascular health and an association with a lower risk of cardiovascular disease. Given the link 7 

between cardiovascular disease risk factors and dementia, together with the important role of NO in 8 

vascular health and cognition, it is important to determine whether dietary nitrate could also improve 9 

cognitive function, markers of brain health, and lower risk of dementia. This review presents an 10 

overview of NO’s role in the cardiovascular, cerebrovascular, and central nervous systems; an 11 

overview of the available evidence that nitrate, through effects on NO, improves cardiovascular 12 

health; and evaluates the current evidence regarding dietary nitrate’s potential role in cerebrovascular 13 

health, cognitive function, and brain health assessed via biomarkers.   14 

Keywords: Dietary nitrate, Cognition, Alzheimer’s Disease, Dementia, Nitric Oxide 15 

Statement of Significance: Evidence is accumulating for improved cardiovascular health with 16 

dietary nitrate intake. This review identifies and discusses the potential for dietary nitrate to improve 17 

cognitive function and markers of brain health, and to reduce risk of dementia. 18 
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Introduction 19 

Dementia is a progressively debilitating condition, the incidence of which is growing at an alarming 20 

rate across the globe. Currently, there are over 50 million people living with dementia and this 21 

number is expected to rise to 152 million by 2050 1. In the current absence of any effective treatment 22 

or cure, reducing or preventing the development of risk factors for dementia is the only viable 23 

approach to lower the prevalence of this disease 2. Risk factors for dementia, including hypertension 24 

and hypercholesteremia 3,4, 5 are shaped by both genetic factors and lifestyle factors, with the latter 25 

having by far the greatest impact. Alzheimer’s disease (AD) is the most common form of dementia, 26 

accounting for around 70% of cases. The preclinical phase of dementia due to AD is lengthy 6. 27 

Abnormal deposits of beta-amyloid (Aβ) and tau tangles within the brain, and the subsequent 28 

neuronal damage, are believed to commence 15-20 years before objective cognitive decline is 29 

evident 7. The majority of therapeutic trials to date have involved the initiation of treatments late in 30 

the course of AD development, when significant symptoms are apparent 8. As these trials have failed, 31 

there has been a shift towards targeting the preclinical phase of the disease, before overt symptoms 32 

manifest, and towards understanding modifiable risk factors and the subsequent development of 33 

preventive strategies. Highlighting the importance of this notion is a message from the Lancet 34 

Commission for “Dementia Prevention, Intervention, and Care” 4 to “be ambitious about 35 

prevention”. 36 

Cognitive health is greatly impacted by vascular health and cerebrovascular blood flow 9. The 37 

importance of vascular contributions to cognitive impairment and dementia has been highlighted in 38 

the scientific statement from the American Heart Association and American Stroke Association 10. 39 

Randomized clinical trials and longitudinal studies show a clear link between vascular risk factors 40 

and a higher risk of dementia, particularly dementia due to AD and vascular dementia 9, 11. Vascular 41 

health is preserved in part by nitric oxide (NO), a key vascular signalling molecule that also 42 

functions as a potent vasodilator 12, 13. A deficiency in NO can lead to vascular dysfunction and 43 
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alterations in cerebral blood flow 14-16. NO also functions as a neurotransmitter, participates in 44 

several synaptic signalling events, and plays an important role in memory and learning 17. 45 

Additionally, NO has been shown to prevent tau phosphorylation, a pathological hallmark of AD, in 46 

animal studies 18.  47 

NO is synthesised via two pathways: The L-arginine-NOS pathway and the nitrate-nitrite-NO 48 

pathway 19-21. There is strong evidence from randomized clinical trials that endogenous NO levels 49 

can be increased through the consumption of nitrate-rich vegetables 22. Nitrate enhances endogenous 50 

NO through the nitrate-nitrite-NO pathway; this is associated with concomitant improvements in 51 

validated measures of vascular health 23. Whether this increase in NO is associated with better 52 

cognitive function has been investigated in small clinical trials, but no prospective cohort studies 53 

have yet investigated associations with cognitive decline and dementia later in life. Increasing intake 54 

of nitrate-rich vegetables could potentially be a preventative approach to reduce risk factors for 55 

cognitive impairment and dementia onset.  56 

This review presents an overview of NO and its role in cardiovascular and cerebrovascular health. 57 

Furthermore, this review discusses nitrate as an alternate source of NO, presents the current evidence 58 

of nitrate’s role in cardiovascular health, and for the first time evaluates the potential role of nitrate in 59 

improving cognitive health and reducing the risk of cognitive decline and dementia.  60 

1. Nitric Oxide  61 

Nitric oxide (NO) is a key signalling molecule in the cardiovascular system, central nervous system 62 

(CNS), and immune system 24. NO is considered a bio-essential molecule at the cellular level to 63 

maintain homeostasis across many physiological processes. It is a highly reactive soluble gas with 64 

lipophilic properties and a half-life of less than 2 seconds 25. 65 

1.1 Pathways to NO 66 

1.1.1 L-arginine Nitric Oxide Synthase Pathway 67 
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The L-arginine-NOS pathway (Figure 1 is the primary source of NO, yielding approximately 70%, 68 

and has been reviewed extensively 26-28. NO is produced during the conversion of the semi-essential 69 

amino acid L-arginine to L-citrulline by the group of enzymes known as nitric oxide synthases 70 

(NOS) 24. There are three isoforms of NOS: NOS1 widely referred to as neuronal NOS (nNOS), 71 

NOS2 referred to as inducible NOS (iNOS), and NOS3 referred to as endothelial NOS (eNOS) 29. 72 

All three isoforms are encoded by different genes and are regulated by distinct signalling pathways30, 73 

possess varied functions, and are structurally different 31. The L-arginine and NOS reaction is a 74 

synchronized catalytic reaction where NOS co-ordinates the binding of several substrates and co-75 

factors to produce NO 32, 33. Nitrate and nitrite are formed as end-products of NO synthesis and are 76 

recycled back to NO through the nitrate-nitrite-NO pathway 27.  77 

1.1.2 Nitrate-Nitrite-NO Pathway 78 

Dietary nitrate has been identified as an alternative source of NO, through the nitrate-nitrite-NO 79 

pathway 21, 34 (Figure 2). After intake of dietary nitrate, nitrate is absorbed in the small intestine and 80 

enters the circulation. Approximately 75% of nitrate is excreted through the kidneys and 81 

approximately 25% of plasma nitrate is taken up by salivary glands and secreted into the saliva 35. 82 

The oral facultative anaerobic bacteria present in deep clefts on the dorsum of the tongue reduce 83 

nitrate to nitrite through a range of bacterial nitrate reductase enzymes 36-39. Once swallowed, the low 84 

pH of the stomach and enteric bacterial nitrite reductases reduce nitrite to NO, with localised anti-85 

inflammatory and anti-microbial effects 39. The remaining nitrite is absorbed in the small intestine 86 

and enters the circulation. In the circulation, nitrite can be reduced to NO 34. 87 

1.2 Role of NO in Vascular Health 88 

NO, was first identified as an endothelium-derived vasorelaxing factor that acts as a physiologic 89 

vasodilator 40. It is now known that endothelial derived NO performs other protective and regulatory 90 

roles in the vascular system, detailed in Table 1. These include maintaining vasomotor tone 41, 91 
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coronary tone 42, and inhibiting platelet aggregation 43, thereby regulating blood pressure 44, 92 

modulating myocardial contraction 42, and preventing thrombosis 45. Reduced NO bioavailability has 93 

been associated with detrimental vascular effects such as atherosclerosis 46. Impaired function of 94 

endothelium and diminished NO has been observed in several pathophysiological conditions 95 

including systemic hypertension, diabetes, congestive heart failure, hypercholesterolemia, pulmonary 96 

hypertension, estrogen deficiency, and the ageing process itself 15, 47. 97 

1.3 Role of NO in Cognition, Brain Function, and Cerebrovascular Blood Flow 98 

NO is a key regulatory molecule in maintaining brain homeostasis as it plays an important role in 99 

cerebrovascular blood flow thereby contributing to preservation of cognitive function. NO maintains 100 

this homeostasis by activating NO-sensitive guanylyl cyclase, controlling gene transcriptase and 101 

mRNA translation, and importantly, NO also acts as a neurotransmitter 57, 58.  102 

1.3.1 Role of NO in Cerebrovascular Blood Flow 103 

Cerebrovascular blood flow (CBF) modulates the preservation of brain function and cognition48. 104 

Inadequate blood flow to the brain can cause irreversible damage to brain parenchyma thereby 105 

negatively impacting cognition and brain function. Approximately 15% of cardiac output is supplied 106 

to the brain, which itself makes up only 2% of total bodyweight 48. There is a body of evidence 107 

which supports the idea that NO is essential in the regulation of CBF during hypercapnia 59, focal 108 

brain ischemia 60, 61, and global brain ischemia 62, 63. Constitutive NOS (eNOS and iNOS) plays a 109 

major role in regulating basal CBF and is essential throughout the hypercapnic CBF response to 110 

improve perfusion of the brain parenchyma and to avoid prolonged ischemia of the brain (Figure 3) 111 

64. Thus, any variation in NO synthesis could interfere with brain homeostasis, potentially leading to 112 

hypoperfusion of brain parenchyma and formation of brain lesions and pathological hallmarks such 113 

as those which manifest in age-related dementias such as AD.  114 

1.3.2 Role of NO in Cognition and Social behaviour 115 
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Experimental studies have shown that NO plays a significant role in cognitive function and social 116 

behaviour. de La Torre and Aliev 65 investigated the effect of NOS isoforms on spatial memory 117 

function in an ageing rat model with chronic brain hypoperfusion, to mimic human mild cognitive 118 

impairment. Inhibition of eNOS significantly decreased the performance in the Morris water-maze, 119 

which reflects spatial memory impairment. Their results suggested that eNOS may be essential in 120 

spatial memory function during chronic brain hypoperfusion, potentially by maintaining 121 

cerebrovascular tone and optimum blood flow to the brain. This implies that alteration in the activity 122 

of eNOS may result in spatial memory dysfunction and other neurological impairments. Moreover, it 123 

has been shown that a decrease in vascular NO in the brain parenchyma may lead to pathogenesis of 124 

AD in late middle-aged mice 66. Compared to wild type mice, loss of eNOS in late middle-aged mice 125 

was associated with higher levels of Aβ in the brain, elevated mean systolic blood pressure (115 ± 8 126 

Vs 149 ± 14 mmHg), cholesterol (87 ± 20 Vs 117 ± 25 mg/dL), triglyceride levels (59 ± 21 Vs 101 ± 127 

39 mg/dL), and glucose levels (154 ± 46 Vs 237 ± 43 mg/dL) 66. Additionally, animal studies have 128 

illustrated NO’s role as a behaviour modulator 67 and findings indicate that nNOS plays a role in 129 

social behaviour, anxiety, and empathy in a rat model 68, 69 (Figure 3).  130 

NO is proposed to modulate these processes through its role in synaptic signalling, and via 131 

participation in a novel form of inter-neuronal communication, i.e., non-synaptic communication 132 

without receptors 70. Indeed, the strength of excitatory output may be conveyed to the surrounding 133 

neurons by means of this NO-mediated non-synaptic communication. Numerous experimental 134 

studies have acknowledged NO’s role in the pre-synaptic terminal 71, post-synaptic 72, 73, long-term 135 

potentiation 57, and synaptic plasticity 74, 75, which are required for learning and memory 76. 136 

2. Dietary Nitrate 137 

2.1 Sources of Dietary Nitrate 138 



9 
 

 
 

Vegetables are the primary source of dietary nitrate accounting for ~70-80% of intake 77. Particular 139 

groups of vegetables, such as green leafy vegetables and root vegetables such as beetroot, are rich in 140 

nitrate whereas other vegetables such as potatoes, onion, and peas, contain a low level of nitrate 78. A 141 

list of dietary sources categorised according to their nitrate content is presented in Table 2. Factors 142 

which determine the level of nitrate in vegetables include soil type, nitrate content in fertilizers and 143 

water, the intensity of sunlight, transport methods, storage conditions, and cooking procedures 79-82. 144 

For these reasons, nitrate intake differs between individuals and geographical regions; an individual’s 145 

nitrate intake may range from less than 20 mg to more than 400 mg per day 79, 80. 146 

Another source of nitrate is drinking water 27. The level of nitrate in drinking water is regulated in 147 

multiple countries due to health concerns 83. Nitrate content in water is influenced by bacterial 148 

nitrogen fixation, as well as manure from livestock production, and fertilizer usage 84. Meat is an 149 

additional dietary source of nitrate. Nitrate and nitrite are used as additives by the meat industry to 150 

enhance food quality and impede microbial contamination and chemical changes 85. 151 

2.2 Guidelines and Acceptable Daily Intakes 152 

A concern about nitrate and health has persisted since 1970 when the potential for nitrate to form 153 

carcinogenic N-nitrosamines was discovered. The International Agency for Research on Cancer has 154 

supported the hypothesis that ingested nitrate increases risk of cancer based on the results of early 155 

studies 89-91. On the contrary, recent studies did not support the results of earlier studies, reporting 156 

null association between dietary nitrate and cancer risk 92. Furthermore, a recent meta-analysis has 157 

evidenced that the nitrate reduces the risk of gastric cancer 93. It is still debatable if the different 158 

sources of nitrate could offer similar benefit or harm. For example, plant-derived foods are packed 159 

with antioxidants like polyphenols and vitamin C which impede the formation of carcinogens 94, 160 

unlike meat and water. However, due to ongoing health concerns, the WHO has established the 161 

Acceptable Daily Intake of nitrate as 0-3.7 mg/kg body weight 95 and this was reviewed and accepted 162 

by The European Food Safety Authority 96.   163 
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3. Nitrate and Cardiovascular Disease 164 

There is now robust evidence from clinical trials and observational studies that dietary nitrate has 165 

beneficial effects on cardiovascular disease (CVD) 97. There is an established link between vascular 166 

risk factors and dementia 10, 11. The beneficial effects of NO on vascular risk factors and CVD risk 167 

could potentially decrease the risk of dementia.  168 

3.1 Overview of Cardiovascular Disease-burden of disease and impact 169 

CVD is the leading cause of global mortality and morbidity, impacting quality of life 98, 99, and 170 

economic burden. Globally, around 17.9 million deaths in the year 2019 were reportedly due to 171 

CVD, accounting for 32 % of all global deaths 100. On average, an individual dies of CVD every 36 172 

seconds in the US, totalling approximately 2,400 deaths every day 101. In 2014-2015, USD 351.3 173 

billion was spent on treatment of people with CVD in the US alone, and the total cost of treating 174 

CVD is expected to reach USD 1.1 trillion by 2035 102. Treatment for CVD often includes extensive 175 

surgical intervention, a prolonged recovery period, loss of independence, and loss of income, thereby 176 

imparting significant personal and economic burden 103.  177 

3.2 Beneficial Effects of Nitrate on Vascular Health and Risk of CVD – Evidence from Clinical 178 

Trials 179 

There is a growing body of evidence that dietary nitrate may play a significant role in improving 180 

cardiovascular risk factors with beneficial effects observed on endothelial function (as measured by 181 

flow mediated dilatation) 21, 23, 104-107 and a reduction in systolic blood pressure 21, 104, 105, 108-113, 182 

diastolic blood pressure 104, 105, 107, 109, 111, 112, 114, and arterial stiffness 105, 115, as well as platelet 183 

reactivity and reduced platelet aggregation 21, 105, 116. These clinical trials were conducted in healthy 184 

individuals as well as participants with pre-existing CVD risk factors such as hypertension and 185 

obesity and were inclusive of all adult age groups. Intake of dietary nitrate was in the form of 186 

spinach, spinach juice, beetroot juice, arugula juice, beetroot breads and nitrate salts over 2 hrs to 42 187 

days. Dose of dietary nitrate ranged from as low as 68 mg/day to 1395 mg/day in the reported 188 
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clinical trials. While not all clinical studies have reported consistent findings 105, 117-120, a meta-189 

analysis examining all CVD risk factors reported a significant reduction in systolic blood pressure (-190 

4.8 mmHg), diastolic blood pressure (-1.7 mmHg), endothelial function (as measured by flow 191 

mediated dilatation, 0.6%), arterial stiffness (as measured by pulse wave velocity, -0.23 m/s) and 192 

platelet aggregation (-19%) 121. The results described above are encouraging as a 2 mmHg lower 193 

systolic blood pressure is associated with reductions in coronary heart disease events of 17.9 per 194 

100,000 person-years, stroke events by 9.6 per 100,000 person-years, and heart failure events by 26.6 195 

per 100,000 person-years, as reported in the Atherosclerosis Risk in Communities Study 122. 196 

Moreover, a 2-mmHg reduction in diastolic blood pressure has been shown to decrease risk of 197 

coronary heart disease by 6% and stroke by 15% in both male and females aged 35-64 years, as 198 

observed by Framingham Heart Study investigators 123. Presley et al.,124 observed a significant 199 

improvement in regional cerebral perfusion one hour after consumption of a high nitrate meal (769 200 

mg) in older adults with a mean age of 75 ± 7 years. Therefore, it can be hypothesized that the 201 

beneficial effects of dietary nitrate on vascular health may lead to improvement in regional cerebral 202 

perfusion.  203 

3.3 Beneficial Effects of Nitrate on Risk of CVD – Evidence from Observational Studies 204 

To date, five observational studies have investigated the association between vegetable nitrate intake 205 

and long-term effects on cardiovascular health. The Perth Longitudinal Study of Aging in Women, 206 

reported a 21% lower risk of atherosclerotic vascular disease mortality [Hazard Ratio (HR): 0.79 207 

(95% CI: 0.68, 0.93)] per standard deviation (SD) (~ 30 mg/day) higher intake of nitrate rich 208 

vegetable, and a 17% lower risk of an ischemic cerebrovascular episode [HR: 0.83 (95% CI: 0.70, 209 

0.97)] per SD (~ 29 mg/day) higher intake of vegetable nitrate 44, 125. The Australian Blue Mountains 210 

Eye Study reported a 27% lower hazard for CVD mortality [HR: 0.63 (95% CI: 0.41, 0.95)] among 211 

participants in quartile 4 whose dietary nitrate intake was > 137.8 mg/day, as compared to 212 

participants in quartile 1 (< 69.5 mg/day) 126. Moreover, the Australian Longitudinal Study on 213 
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Women’s Health described a 27% lower risk of self-reported incidents of CVD-related health 214 

complications [Odds Ratio: 0.73 (95% CI: 0.61, 0.88)] in women in the highest quartile of vegetable 215 

nitrate intake (> 64.4 mg/day) compared to women in the lowest quartile (< 34.8 mg/day) 127. 216 

Outside of Australia, in the American Nurses’ Health cohort study, risk of coronary heart disease in 217 

women in the highest quintile of vegetable nitrate intake was 9% lower, compared to those in the 218 

lowest intake quintile [Risk Ratio: 0.91 (95% CI: 0.80, 1.04)]. However, this association was no 219 

longer evident following adjustment for age, smoking, physical activity, body mass index and race 220 

128. Most recently, the Danish Diet, Cancer and Health (DDCH) study with 23 years of follow-up 221 

reported that moderate vegetable nitrate intake (~60 mg/day = 1 cup of green leafy vegetables) was 222 

linked with 12%, 15%, 17% and 26% lower risk of ischemic heart disease, heart failure, ischemic 223 

stroke, and peripheral artery disease hospitalizations, respectively 129. The disparate results of the 224 

American Nurses’ Health cohort study compared to the other three Australian cohort studies and the 225 

Danish cohort study could potentially be explained by the nitrate databases used to quantify intakes. 226 

Specifically, the nitrate database used by the American Nurses’ Health cohort study was less 227 

comprehensive 128 than the newer version utilised by the other four studies 86. However, all such 228 

measures come with a number of inherent limitations such as the variability of the nitrate content of 229 

food, which is dependent on a number of environmental factors, the tool used to measure intakes in 230 

these studies (food frequency questionnaire) as well as physiological and lifestyle factors that 231 

influence the bioavailability of nitrate. 232 

Nevertheless, most evidence comes from clinical trials which are supported by findings from recent 233 

observational studies. Future research should focus on longer-term randomized controlled trials to 234 

establish causality of habitual intake of vegetable nitrate and reduction of CVD risk factors. Given 235 

the link between, cardiovascular system and cognition, the role of nitrate in cognition and dementia 236 

warrants investigation.  237 
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4. Nitrate and Dementia 238 

4.1 Overview of Dementia - Burden of Disease and Impact 239 

Over 50 million people are currently living with dementia globally, with this number expected rise to 240 

152 million by 2050 95. Every 3 seconds an individual is diagnosed with dementia and the present 241 

annual cost of dementia is about USD 1 trillion worldwide and expected to increase twofold by 2030 242 

1.  243 

Dementia is a progressive neurological disorder that affects cognition 130. Dementia is primarily 244 

classified into four types namely, dementia due to AD, vascular dementia, frontotemporal dementia, 245 

and dementia with Lewy bodies 130. AD is the most common form of dementia accounting for 60-246 

70% of cases 131. AD is characterized by initial memory loss and subsequent cognitive dysfunction 247 

which ultimately impairs speech, motor system function, and visuospatial orientation 131, making 248 

day-to-day life challenging for patients, families, and caregivers. Mild cognitive impairment (MCI) is 249 

a symptomatic predementia stage which often precedes AD 132. Carriage of an ε4 allele of the 250 

Apolipoprotein E (APOE) gene is the strongest genetic risk factor for AD 133-135. There is currently 251 

no cure for AD, although a disease-modifying drug for AD has recently been approved for use in the 252 

United States of America 136. AD is currently recognised by the World Health Organisation as a 253 

global health priority 137. Consequently, research focussed on AD prevention is gaining momentum. 254 

Thus far, three multidomain lifestyle-based intervention trials to prevent cognitive decline in the 255 

older population have been conducted: the Finnish Geriatric Intervention Study to Prevent Cognitive 256 

Impairment and Disability (FINGER) 138, the Dutch Prevention of Dementia by Intensive Vascular 257 

Care (PreDIVA) 139 and the French Multidomain Alzheimer Preventive Trial (MAPT) 140. Whilst the 258 

results of these studies have been encouraging, there is a need to further understand the role of 259 

specific protective components of a healthy diet, such as nitrate, in relation to cognitive decline in 260 

different populations.  261 
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4.2 Nitrate, CVD, and Dementia  262 

There is a well-established multifaceted link between the cardiovascular system and all-cause 263 

dementia. As detailed above, cerebrovascular blood flow is crucial to maintain normal brain function 264 

and cognition 141, 142. Blood flow is a function of the cardiovascular system; therefore, brain function 265 

and cognition are dependent on the cardiovascular system. Cerebral blood flow is regulated primarily 266 

by functional hyperaemia 143, cerebral autoregulation 144, endothelial cell regulation 145, 146, and the 267 

blood-brain barrier 147. A multifactorial data-driven analysis conducted on the Alzheimer’s Disease 268 

Neuroimaging Initiative (ADNI) cohort suggested that vascular dysregulation in the brain is first to 269 

manifest before other hallmarks of AD pathology such as Aβ deposits and hyperphosphorylated tau 270 

accumulation 148. Reflecting this finding, a hypothetical model of in vivo AD dynamic biomarker 271 

manifestation has been suggested to include the role of vascular changes in the brain and cerebral 272 

blood flow (Figure 4) 149. Consistent with this model, a growing body of evidence shows that there is 273 

a reduction in cerebral blood flow, as revealed by arterial spin labelling, in non-demented patients 150-274 

156, indicating vascular dysregulation manifests before other disease biomarkers including Aβ 275 

changes in cerebrospinal fluid, cerebral Aβ deposits, hyperphosphorylated tau tangles, and brain 276 

atrophy; all of which appear before objective cognitive impairment. In 2018, Kapasi et al., 157 277 

presented an inverse association between multiple microinfarcts in cortical watershed regions, global 278 

cognition, and cognitive function in specific domains of working memory and visuospatial abilities. 279 

Furthermore, Lane et al.,11 showed a strong association between mid-life vascular risk factors and 280 

late-life brain health, and such risk factors have been cited in the recent Lancet Commission into 281 

‘Dementia prevention, intervention, and care’ as requiring action for reduction of dementia risk. 282 

Consistent with this message, most cases of AD have mixed pathology with both vascular pathology 283 

and phosphorylated tau evident 158, 159. There is additionally strong evidence that the vascular 284 

endothelium plays a vital role in functional neurovascular coupling 160. Endothelial cells regulate 285 

vascular resistance by releasing NO to maintain vascular homeostasis and brain health. Apart from 286 
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vascular regulation, as stated earlier, endothelial-derived NO plays a significant role in the 287 

prevention of tau phosphorylation – hyperphosphorylation of which is a hallmark of AD pathology. 288 

Indeed, deficiency of NO decreases nitrosylation of neuronal caplain which activates enzyme cyclin 289 

dependent kinase 5 responsible for tau phosphorylation 18.  290 

4.3 Nitrate and Cognitive Function 291 

Despite the well-established beneficial effects of nitrate on cardiovascular health, evidence of a 292 

beneficial effect of nitrate intake on cognitive function from clinical trials is inconsistent (Table 3). 293 

Seven out of twelve clinical trials have shown that intake of dietary nitrate is associated with an 294 

improvement in cognitive function and cerebral blood flow 162-166. On the contrary, findings from 295 

other clinical trials have shown no effect on cognitive function following the intake of dietary nitrate 296 

111, 167-170. The nitrate dose ranged from 310 mg to 775 mg in acute studies and 397 mg to 800 mg in 297 

chronic studies. The intervention length was just a single occasion in acute studies and ranged from 298 

two days to thirteen weeks in chronic studies. The sample size ranged from 10 to 24 participants 299 

(mean age below 30 years) in acute studies and from 12 to 62 participants in chronic studies with 300 

mean age above 60 years in three studies out of five. Possible reasons for the observed differences in 301 

the effect of nitrate on cognitive function measurements include dose of nitrate, cognitive status, and 302 

age of the participants (only five studies were in older adults), background diet, number of 303 

participants in the study (all studies had a relatively small sample number), as well as the timing and 304 

sensitivity of the cognitive function measures used. To date, no comprehensive cognitive battery has 305 

been used to assess a range of cognitive domains in clinical trials of nitrate intake.  306 

Notably, a meta-analysis of randomized clinical trials conducted before 2017 evaluated the effect of 307 

inorganic nitrate and nitrite on cerebral blood flow and cognitive function. The authors reported that 308 

due to the small sample sizes and short duration of the studies they were unable to draw any 309 

conclusions and highlighted the need for larger, adequately powered studies 171. A cross-sectional 310 
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evaluation in 1,015 older adults observed no association between urinary nitrate concentration and 311 

cognition 172, however urinary nitrate is a poor biomarker of habitual dietary nitrate intake 173. A 312 

further cross-sectional study in 989 older adults also reported no association between cognitive 313 

function and nitrate (urinary nitrate and nitrate intake assessed using a food frequency questionnaire) 314 

174. To date, no prospective observational studies have investigated a long-term relationship between 315 

habitual intake of dietary nitrate and cognitive function. The long-term association of habitual dietary 316 

nitrate and cognition can only be examined by such prospective observational studies due to the long 317 

pre-clinical phase of AD. Hence, this is an area that warrants further investigation to characterise the 318 

long-term relationship between habitual dietary nitrate and cognition, cognitive decline, and AD.  319 

5. Biomarkers of Dementia 320 

The disease course leading to dementia is protracted, with a long preclinical phase which precedes 321 

the prodromal and clinical stages, where cognitive dysfunction is evident. Given that the hallmarks 322 

of dementia begin to accumulate in the brain during the preclinical phase, to investigate the potential 323 

role of habitual intake of dietary nitrate in relation to cognition, cognitive decline, and AD, we need 324 

longitudinal data on habitual dietary intake, biomarker profiles, and incident dementia. As mentioned 325 

earlier, AD is characterized by histopathological changes in the brain along with progressive atrophy 326 

of brain parenchyma. The neuropathological hallmarks of AD are deposition of plaques formed of 327 

Aβ protein and neurofibrillary tangles of hyperphosphorylated tau, a filamentous protein. As shown 328 

in Figure 4, cerebral Aβ deposition and tau aggregates accumulate before other structural and 329 

functional changes such as loss of hippocampal volume (brain region associated with memory), 330 

white matter hyperintensities, reduced grey matter integrity, cerebral atrophy, and reduced glucose 331 

metabolism 175, 176. In addition, neuropil threads, reactive astrocytes, eosinophilic Hirano Bodies, 332 

granulovacuolar degeneration and cerebral amyloid angiopathy are also present 177, 178 . These lesions 333 

result in loss of synapses and neurons leading to the symptoms generally associated with AD. The 334 

histopathological diagnosis of AD mandates both Aβ plaques and neurofibrillary tangles.  335 



17 
 

 
 

In animal studies it has been demonstrated that NO appears to confer some protection against the 336 

development of AD associated with Aβ accumulation 179. Previously, Austin at al., found that loss of 337 

eNOS in a murine model of AD is linked with an increase in cyclin dependent kinase 5 enzyme 338 

required for tau phosphorylation in neuronal tissue 180. Furthermore, a recent study by Faraco et al., 339 

reported that NO deficiency can lead to tau-hyperphosphorylation in mice 18. The authors showed 340 

that the NO deficiency decreased neuronal caplain nitrosylation, which activates enzyme cyclin-341 

dependent kinase 5 responsible for tau phosphorylation. Moreover, other animal studies have shown 342 

that inhibition of NO results in impaired synaptic plasticity, memory formation, and cognitive 343 

performance 181-183. Thus, we hypothesize that dietary nitrate, by augmenting NO, may have a 344 

potential role in reducing risk of dementia by positively modulating the formation of pathological 345 

hallmarks responsible for the decline in cognition that occurs downstream. 346 

Future directions 347 

To date, no clinical trials have examined the long-term effects of habitual intake of dietary nitrate, of 348 

minimum one-year duration, on cognitive function, cognitive decline, risk of dementia, and 349 

biomarkers of AD. Observational studies are also required to understand the association of mid-life 350 

dietary habits such as intake of dietary nitrate on late-life cognition. Such investigation requires 351 

prospective observational studies with comprehensive data on diet, cognitive function, and AD 352 

biomarkers. These studies should evaluate different sources of nitrate (i.e., plant-derived nitrate, 353 

animal source-derived nitrate and water-derived nitrate), dose of nitrate, and other synergistic 354 

compounds (such as vitamin C and polyphenols) on late-life cognition. The results of such studies 355 

will enhance our understanding of NO’s role in the pathogenesis of AD and dementia and could form 356 

an important part of a multi-domain lifestyle prevention approach (diet, physical exercise, sleep, 357 

cognitive training etc.) aimed at reducing risk of cognitive decline and dementia. 358 

Conclusion 359 
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NO has a crucial role in maintaining cardiovascular health. Animal studies have demonstrated that 360 

NO plays a role in behaviour, and spatial memory, and that NO deficiency has been linked with 361 

pathogenesis of AD. There is strong evidence that habitual intake of dietary nitrate, through effects 362 

on NO, can have beneficial effects on cardiovascular biomarkers such as blood pressure, endothelial 363 

function, arterial stiffness, and platelet function. Several studies have demonstrated a strong 364 

association between cardiovascular disease risk factors and a decline in cognitive function and 365 

increased risk of dementia. There are inconsistent results from clinical trials investigating nitrate 366 

intake and cognitive function, a significant knowledge gap. The long-term role of dietary nitrate in 367 

brain and cognitive health still needs to be investigated. Due to the prolonged pre-clinical phase of 368 

AD and other forms of dementia, studies in cohorts with longitudinal data are essential to investigate 369 

whether dietary nitrate could be an effective strategy to boost cognitive health and in doing so 370 

prevent dementia. 371 
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Figure 1. L-arginine-Nitric Oxide Synthase pathway in vasculature (Created with 

BioRender.com). 

O2, oxygen; NADPH, nicotinamide adenine dinucleotide phosphate; eNOS, endothelial nitric oxide 

synthase; FAD, flavin adenine dinucleotide; FMN, flavin mononucleotide; BH4, (6R-)5,6,7,8-

tetrahydroL-biopterin; NAD; nicotinamide adenine dinucleotide; NO, nitric oxide. Image created 

with BioRender.com.  

Figure 2. Nitrate-nitrite-nitric oxide pathway (Created with BioRender.com) 

The nitrate–nitrite–nitric oxide (NO) pathway. (1) Ingested dietary nitrate is absorbed through small 

intestine and approximately 75% of nitrate is excreted via the kidneys (2) Nitrate enters circulation 

after absorption of nitrate through small intestine (3) Nitrate in the circulation from food and NO 

metabolism  (4) Active uptake of the nitrate from blood by the salivary glands (5) The nitrate 

reducing bacteria found on the dorsum of tongue converts nitrate to nitrite (6) Salivary nitrite is 

swallowed (7)  Salivary nitrite is converted to NO in the acidic environment of the stomach (8) The 

remaining salivary nitrite is absorbed in the small intestine (9) Nitrite enters the circulation (10) 

Circulating nitrite is a source of NO (11) Nitrate and nitrite are end products of  systemic NO 

metabolism (12) Nitrate thus formed could enter the cycle together with ingested nitrate  

Figure 3. Possible role of nitric oxide in neuronal function and behavioural outcomes (Created 

with BioRender.com). 

Figure 4. Updated hypothetical model of Alzheimer’s disease biomarker manifestation. Figure 

adapted from Sweeney MD et al., 2018 161.    

Hypothetical model of AD biomarker changes illustrating that initial vascular dysregulation in 

cerebral blood flow and the blood brain barrier may contribute to the early stages of AD 

pathophysiological progression from no cognitive impairment to mild cognitive impairment to AD. 

The initial vascular dysregulation is later followed by beta-amyloid and abnormal tau biomarkers in 
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cerebrospinal fluid and brain. All the biomarkers converge at the top right-hand corner of the plot, 

that is the point of maximum abnormality. The cognitive response is illustrated as the blue zone with 

low and high-risk borders. Subjects with high-risk of cognitive impairment due to genetic 

predisposition, AD pathology, and low cognitive reserve are shown with a cognitive response curve 

shifted to the left. Conversely, the cognitive response curve for the low-risk subjects with protective 

genetic profile, high cognitive reserve, and the absence of comorbid brain pathologies is shifted to 

the right.  

Abbreviations: Aβ, beta-amyloid in cerebrospinal fluid; amyloid, brain amyloid plaques; CBF, 

cerebral blood flow; BBB, blood brain barrier; NCI, no cognitive impairment; MCI, mild 

cognitive impairment; AD, Alzheimer’s disease.  

Table 1. Roles of nitric oxide in the cardiovascular system 
 

Abbreviations: LDL, low density lipoprotein; VEGF, vascular endothelial growth factor 

 

Table 2. Classification of dietary sources based on their nitrate content  

 
 
Source 

 
Nitrate content  

 
Items 

Regulatory Functions Protective Functions 

Endothelium-dependent vasodilation 40, 

41 
Free radical scavenger 48, 49  

Reduces oxidation of LDL 50 Inhibits variety of immunomodulatory cytokines 51  

Reduces platelet aggregation and 
adhesion 52  

Pro-angiogenic effects of VEGF and thereby affects 
healing processes and tumour growth53  

Reduces stickiness of monocytes54   

Regulates mast cell reactivity 55  

Regulates both basal epicardial and 
arteriolar dilator tone 56  
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Vegetables 86 Very high 
> 2000 mg / kg fw 

Chinese flat cabbage, Mustard 
greens, Sea beet, Chinese 
broccoli, Swiss Chard 

 High 
1000 to < 2000 mg / kg fw 

Lettuce, Kale, Spinach, Beet, 
New Zealand Spinach, 
Celery, Kohlrabi 

 Medium 
500  to 1000 mg / kg fw 
 
 

Endive, Fenugreek, Turnip 

 Low 
 ≤ 500 mg/ kg fw 

Pumpkin, Okra, Onion, Pea, 
Sweet potato 

Meat 87  Very low 
< 20 mg / 100 g 

Meat, Processed Meat 

Water 88  Very low 
5 mg/100 g 

 

Abbreviations: fw, fresh weight; kg, kilogram; mg, milligram; g, gram. 

 

 

 

 

 

 

 

 

 

 

Table 3. Clinical trials of nitrate and cognitive function 

First author, year [Ref] Nitrate 
source 

Nitrate 
dose 

Duration Participants 
(mean ± SD age 
years) 

Cognitive tests 
/ CBF 

Results 

Acute 
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Shannon et al., 2017 168 Beetroot 
Juice 

775 mg, 
once 

120 minutes 10 M (23 ± 3), 
healthy 

Attention 
Switching task 

No effect 

     RVIP No effect 
     Spatial span task No effect 
Lefferts et al., 2015 169 Nitrate 

Bolus 
400–450 
mg, once 

120 minutes 24 M (23 ± 3), 
healthy, active 

Sensorimotor 
 

No effect 

     Memory No effect 
     Social cognitive 

domains 
No effect 

     Attention No effect 
     Executive 

Function 
No effect 

Bond et al., 2013 108  Beetroot 
Juice 

750 mg, 
once 

120 minutes 12 F (20.7 ± 0.3) Transcranial 
Doppler 
Ultrasonography 

Improved systemic 
and cerebral 
haemodynamics 

Thompson et al., 2014 167 Organic 
Beetroot 
Juice 

310 mg, 
once 

100 minutes 16 M (24 ± 4), 
healthy, active 

RVIP 
 

No effect 

     Stroop test No effect 
Wightman et al., 2015 164 Beetroot 

Juice 
341 mg, 
once 

90 minutes 12 M, 28 F (21 
yrs), healthy 

A 9-minute 
battery 
consisting of 4 
min serial 
subtractions 

Improved CBF and 
performed better on 
serial 3 subtractions. 
 
 

     5 min RVIP No effect 
     A mental fatigue 

analogue scale, 
the three Bond-
Lader mood 
factors 

No effect 

Chronic 
Thompson et al., 2015 162 Organic 

Beetroot 
Juice 

794 
mg/day 

7 days, 150 
minutes 
before the 
test 

16 M (24 ± 5), 
team-sport 
players 

Stroop test 
 

Significant 
improvement in 
reaction time of 
response to the 
cognitive tests 

     Decision 
reaction task 

No effect 

Kelly et al., 2013 111 Beetroot 
Juice 

595 
mg/day 

2.5 days 
before the 
tests 

6 M (64 ± 4), 6 F 
(63 ± 2), healthy 

Serial 
Subtraction 
 

No effect 

     RVIP No effect 
     Number Recall No effect 
Gilchrest et al., 2014 163 Beetroot 

Juice 
465 
mg/day 

Two weeks 18 M, 9 F (67.2 
±4 .9), Type 2 
Diabetes Mellitus 

Reaction time 
 

Improved reaction 
time 

     Decision 
reaction time 

No effect 

     Rapid 
processing 

No effect 

     Shape memory No effect 
     Spatial memory No effect 
Thompson et al., 2016 165 Beetroot 

Juice 
397 
mg/day 

5 days, 2.5 
hours before 
the test 

36 M (24 ± 4), 
team-sport 
players 

Stroop test Improved RT 

Presley et al., 2011 124 High 
Nitrate 
Diet 

769 
mg/day 

2 days, 1 
hour before 
the test 

14 M (74.7 ± 
6.9) 

Arterial spin 
labelling 
magnetic 
resonance 
images to assess 
CBF 

Improved perfusion 
in frontal lobe 
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Vahatalo et al., 2021 166 Nitrate 
Rich 
Beetroot 
Juice 

750 
mg/day 

10 days 13 M, 17 F (73 ± 
3) 

RVIP, Stroop 
test, choice 
reaction time 

Improved sustained 
attention (RVIP), no 
effect on Stroop and 
choice reaction time 

Babateen et al., 2022 170 High 
Nitrate, 
Medium 
Nitrate, 
Low 
Nitrate 

400 mg 
twice 
daily, 400 
mg/day, 
400 mg 
every 
other day 

13 weeks 24 M, 38 F (66 ± 
3), overweight 
and obese 
participants  

Near infrared 
spectroscopy to 
assess CBF, 
COMPASS 
software to 
assess cognitive 
domains 

No effect 

Abbreviations: M, male; Mg, milligram; F, female; RT, reaction time; RVIP, rapid visual information processing; CBF, 

cerebral blood flow; SD, Standard Deviation; COMPASS, computerised mental performance assessment system. 
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