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Using EEG Data to Predict Engagement in Face-to-Face Conversations. 

Abstract 

To date engagement in face-to-face conversation has been studied almost exclusively through 
the post event measurement of self-reporting surveys or questionnaires. 
Electroencephalography (EEG) has been used for decades to examine brain activity for both 
research and diagnostic purposes. Medical grade EEG equipment is both costly and confined to 
being used within laboratory settings. With the recent advent of off-the-shelf consumer grade 
portable EEG-devices, novel psychological research on cognitive computations that have 
traditionally been confined to self-report, is now a reality. Although it is well documented that 
people use their cognitive abilities during conversations, an extensive literature search found no 
studies on the use of EEG data to obtain a neurological engagement score during conversation. 
Consequently, the present study sought to remedy a gap in the literature, and capitalised on the 
readily available consumer-grade portable EEG equipment. A within-participants quantitative 
study with 42 participants examined whether EEG predicted engagement during face-to-face 
getting acquainted conversations. Participants’ alpha and beta brain activity were examined 
from EEG data collected during two separate conversations, and participants also completed a 
post-hoc self-report on their engagement and attention. The results of the study found a 
significant difference for participants’ alpha brain activity and engagement, but not for the beta 
activity and engagement. There was also no significant difference found for participants 
attention and their alpha or beta activity. A surprising additional finding in the present study 
was a within-participant consistency for both alpha and beta activity across the two 
conversations, which is consistent with individual differences stability found in other 
psychophysiological studies. Overall, the present study has found that alpha activity is 
necessary for neurological engagement during face-to-face getting acquainted conversations. 
Therefore, future research is warranted on the use of EEG as an additional tool in face-to-face 
communication to compliment self-report and measure engagement.  

Author: Brooke Maddestra 
Supervisors: Doctor Shane Rogers and Doctor Craig Speelman 
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Using EEG Data to Predict Engagement in Face-to-Face Conversations  

Introduction  

Interpersonal Communication 

An ability to communicate effectively is widely held to be a valuable interpersonal 

skill (Bolton, 1991; Hargie, 2011). There are a variety of complex brain computations 

required during social interaction involved with attention, working memory, and cognitive 

control (Amodio & Firth, 2006; Shallice, 1988; Smith & Jonides, 1999; Ybarra et al., 2008). 

Studies in neuroscience have shown that understanding of others’ beliefs and desires during 

interpersonal communication is associated with heightened activity in the pre-frontal cortex, 

specifically, the medial and orbitofrontal cortex (Amodio & Firth, 2006; Firth & Firth, 1999; 

Kuhlen, Bogler, Brennan & Haynes, 2017). These brain regions are also associated with 

executive functions such as working memory and attention (Firth & Firth, 1999; Royall et al., 

2002; Ybarra et al., 2010).  

Executive functions have been investigated for decades using electroencephalography 

(EEG) and event related potentials (ERPs) (Astolfi et al., 2007; Babiloni et al., 2001; 2008; 

Kuhlen et al., 2017; Nunez, 1995). More recently, advances in technology and the digitisation 

of EEG equipment have enabled the manufacture and availability of consumer level EEG 

devices, such as the Emotiv EPOC (Duvinage et al., 2013). Researchers have started to use 

these devices, and there are several published papers that have examined the effectiveness of 

the devices, and found them to be viable research tools (Badcock et al., 2013; Duvinage et al., 

2013; Fakhruzzaman, Riksakomara, & Suryotrisongko, 2015). This thesis represents an 

attempt to use the new consumer grade and user-friendly EEG technology in communication 

research where the implementation of EEG recording has historically been too difficult, and 

specifically, to examine if EEG measures can be used to predict self-reported engagement in 

conversation. 
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Potential Use of a Neurological Engagement Measure in Communication 

The discovery of a neurological engagement measure during communication would 

build on the current knowledge regarding executive functions during communication, and 

provide benefit in both clinical and non-clinical settings. In a clinical setting the application 

of a neurological engagement measure could build on current neurofeedback training for 

psychopathologies such as ADHD (Arns, de Ridder, Strehl, Breteler & Coenen, 2009; 

Escolano, Navarro-Gil, Garcia-Campayo, Congedo, & Minguez, 2014; Friel, 2007). In a 

therapeutic counselling context, interpersonal communication between intimate partners 

could also be measured. This could enable an awareness of a person’s engagement during 

interpersonal communication with their partner (Myers & Young, 2012). A neurological 

engagement measure within an educational setting could increase students’ engagement when 

communicating, as well as providing an awareness of their own variability of engagement 

(Myers & Young, 2012; Rukavishnikova, 2016). This could also enable the refinement of 

interpersonal communication between teacher and student, and between students themselves, 

maximising social and educational outcomes (Pennings et al., in press). Implementing a 

neurological engagement measure within the primary and secondary school setting has the 

potential to address communication deficits at a young age, when social skills are being 

developed and refined (Sharp, 1981). 

Social skills training could also benefit from a neurological engagement measure. 

Individuals or helping professions, such as nursing, that rely on effective interpersonal skills, 

could implement a neurological engagement measure into their professional social skills 

training framework (MacLean, Kelly, Geddes & Della, 2016; Schneider, 1992). Further 

adoptions of a neurological engagement measure could be within the modern dating scene, as 

an adaption of face-to-face speed dating (Janz, Pepping & Halford, 2015). This could enable 

another layer of assessment, by monitoring levels of an individual’s own engagement during 
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interpersonal interactions when selecting potential partners (Pepping, Taylor, Koh, & 

Halford, 2017). The application of a neurological engagement measure during interpersonal 

communication, whether within a clinical or non-clinical setting, has the potential to allow 

for more effective and meaningful communication experiences.  

Using Psychophysiological Measures to Complement Self-Report 

To date, engagement in conversation has been studied almost exclusively through the 

post event measurement of self-reporting surveys or questionnaires (Campbell & Atas 

Akdemir, 2016; Dekeyser, Raes, Leijssen, Leysen, & Dewulf, 2008; McCroskey & 

McCroskey, 1988; McEwan & Guerrero, 2010). Self-reports can be unreliable when used in 

isolation due to a participant misinterpreting rating scales and/or questions (McCroskey & 

McCroskey, 1988; Schwarz, 1999). Although self-reports are subjective and contain 

assumptions regarding participant understanding of the questions, they are still widely used in 

psychological research (Schwarz, 1999). 

Psychophysiological measurements have been argued to be an effective form of data 

to complement self-report (McMahan, Parberry & Parsons, 2015). Psychophysiological 

signals are continuously available from research participants, and can in certain 

circumstances be collected without the participant’s conscious awareness (Freeman, Mikulka, 

Prinzel, & Scerbo, 1999; McMahan et al., 2015a; Pope, Bogart & Bartolome, 1995). 

Psychophysiology is defined by Andreassi (1995) as the study of relations between 

psychological manipulations and resulting physiological responses, to promote understanding 

of the relation between mental and bodily processes. Measures that are taken by 

psychophysiologists include: electroencephalogram (EEG), the event related brain potential 

(ERP), the electromyogram (EMG) to measure muscle activity, pupillometry to measure 

pupil dilation, electrooculography (EOG), which is a measure of eye movement, 

electrodermal activity (EDA) for electrical activity at skin surface, heart responses, blood 
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volume and pressure, respiration, oxygen consumption, salivation and gastric motility 

(Andreassi, 1995; Cacioppo & Tassinary, 1990).  

Over the last 30 years there has been an increase in psychophysiological research 

studies, particularly psychophysiological studies that relate to brain activity (EEG and ERPs) 

and human behaviour. The reason for the increase in the research on psychophysiological 

brain activity is that the brain is central to our behaviour (Cacioppo & Tassinary, 1990). 

Another reason is the digitisation and advancement of technology through the availability of 

computerised equipment and processing programs (Andreassi, 1995; Cerquera, Arns, 

Buitrago, Guiterrez & Freund, 2012; Vincent & Lledo, 2014).  

Brain signals and Electroencephalography (EEG)  

EEG is a well-recognised and widely used technique that measures cortical activity by 

recording electrical signals from the scalp (Figure 1) (Aissani, Martinerie, Yahia-Cherif, 

Paradis & Lorenceau, 2014; Engel & Fries, 2010; Freeman et al., 1999; Ivanovski & Malhi, 

2007; McMahon, Parberry & Parsons, 2015; Stern, Ray & Quigley, 2001). These electrical 

signals are derived from the synchronised activity of large neuronal assemblies, with some 

patterns appearing random and others periodic (Sanei, 2013; Stern et al., 2001). Electrical 

activity from the neuronal assemblies is measured in microvolts (Sanei, 2013; Stern et al, 

2001). EEG is described by Stern et al. (2001) as being comprised of two parameters; 

amplitude (size of the signal) and frequency (the speed of the signal cycles). The five most 

common and easily defined brain wave frequency bands found in EEG data, from low to high 

frequency are, delta (δ) (0.5-4 Hz), theta (θ) (4-8 Hz), alpha (α) (8-12 Hz), beta (β) (12-30 

Hz) and gamma (γ) (30-70 Hz) (Aissani et al., 2014; Avanza et al., 2009; Cohen, 2014; Sanei, 

2013; Stern et al., 2001). The characteristics of these identified brain wave frequency bands 

change during wakefulness and sleep in healthy humans and are also affected by age (Sanei, 

2013). 
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Figure 1. The EEG signal and the four typical and dominant brain normal rhythms, from high 
to low frequencies, delta, theta, alpha and beta. Adapted from Adaptive Processing of Brian 
Signals (p. 44) by S. Sanei, 2013, Chichester, United Kingdom: John Wiley & Sons. 
Copyright 2013 by John Wiley & Sons. **Adapted with permission. 

The delta band frequency is primarily associated with deep sleep in healthy humans, 

as well as pathological conditions such as tumours (Lagopoulos et al., 2009; Sanei, 2013; 

Stern et al., 2001). Delta is also predominant throughout the first two years of life, and is 

associated with learning, motivational processes and the brain reward system (Engel & Fries, 

2010; Stern et al., 2001). The theta band frequency has two distinct psychological states. One 

state is associated with working memory functions, emotional arousal, problem solving, 

attention, and fear conditioning (Engel & Fries, 2010; Ivanovski & Malhi, 2007; Stern et al., 

2001). The second state is associated with lower levels of alertness or drowsiness, REM 

(rapid eye movement) sleep, and hypnosis (Ivanovski & Malhi, 2007; Sanei, 2013; Stern et 

al., 2001; Walter, 1953).  

The alpha band frequency is associated with being awake and alert and has two types 

of characteristic responses. The first is a decrease of the signal, in the occipital brain region, 

during cognitive processes and sensory input (Ivanovski & Malhi, 2007; Sanei, 2013; Stern et 
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al., 2001). This has led to alpha interpreted traditionally as a ‘cortical idling state’, that 

decreases upon the engagement of cognitive processes and sensory input from the external 

world. This decrease and/or cessation of the alpha signal is referred to as alpha 

desynchronisation or alpha blocking (Cahn & Polich, 2006; Jensen & Mazaheri, 2010; 

Klimesch, Doppelmayr, Russegger, Pachinger & Schwaiger, 1998; Sanei, 2013; Stern et al., 

2001; Tuladhar et al., 2007). Secondly, more recently, an increase in the alpha signal, found 

in the frontal brain region, known as alpha synchronisation, is seen to indicate internal 

attention, such as, working memory (Cooper, Burgess, Croft & Gruzelier, 2006; Engles & 

Fries, 2010; Ivanovski & Malhi, 2007; Shaw, 1996).  

Effortful cognitive activity in humans is more often characterised in recent EEG 

literature by higher frequency waves known as the beta band frequency (13-25Hz) and the 

gamma band frequency (30-70Hz). The beta band frequency occurs when an individual is 

alert, and is the usual waking rhythm of the brain associated with active thinking, attention, 

focus on the external environment (responsive to somatic, motor, sensory input) and problem 

solving (Ivanovski & Malhi, 2007; Sanei, 2013; Stern et al., 2001). Beta is also seen to 

develop overtime and maintains a “status quo” providing stability to the cognition of decision 

making and consequent actions (Aissani et al., 2014). Higher levels of beta are associated 

with excitement (Lubar, 1991). 

The gamma band frequency occurs rarely. Assessment of these rhythms is used to detect 

and confirm certain brain diseases (Sanei, 2013). However, there is also increasing evidence in 

recent studies that the gamma frequency band is also involved in the brain’s ability to integrate 

a variety of stimuli into a coherent whole, during completion of tasks requiring visual 

representation and attention. Although these findings are still considered controversial 

(Berkovich-Ohana, 2017; Rieder, Rahm, Williams & Kaiser, 2010; Rouhinen, Panula, Palva & 

Palva, 2013).   
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The alpha and beta band frequencies are both reported to have distinct responses to 

cognitive processes involving internal and external attention, which are associated with 

neurological engagement (Anderson et al., 2011; Pope et al., 1995). The theta band frequency 

and the gamma frequency are also associated with various cognitive processes. However, these 

signals were not pursued as part of the investigation in this thesis. This is due to the slower 

wave oscillation of the theta band frequency, as well as its association with drowsiness (Lubar, 

1991), and the gamma band frequency requiring further research to consolidate the emerging 

cognitive hypothesis (Rouhinen et al., 2013). 

EEG, Neurological Engagement and Meditation Research  

The technological advancement and availability of EEG devices for research 

purposes, has resulted in an increase in research into new areas (Ahani et al., 2014; Amodio 

& Firth, 2006; McMahon et al., 2015), such as the neurophysiological processes of 

individuals during and after meditation (Ivanovski & Malhi, 2007). Research using EEG in 

experiments on meditation are largely based on two types of meditation, concentrative and 

mindful. Both types of meditation are seen to draw parallels with psychological domains such 

as concentration, and sustained attention, and have been used in therapeutic settings for stress 

reduction (Cahn & Polich, 2006; Chiesa & Serretti, 2010; Lo, Huang & Chang, 2003; Lutz, 

Slagter, Dunne & Davidson, 2008; Vago & Silbersweig, 2012).  

Increases in the alpha signal during mindfulness meditation was one of the main 

findings of a recent literature review of 56 papers on mindfulness meditation practice (Lomas, 

Ivtzan & Fu, 2017). Alpha has been consistently observed in meditation, with 67% of the 

papers reporting this outcome involving healthy participants, including novice and experienced 

meditators. The literature on alpha and meditation overall supports the finding that the intention 

of mental activity, or an ‘inner-directed’ attention, such as working memory or attending to 
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evoked activities is associated with increased alpha power (Cooper et al., 2006; Jensen, 

Gelfand, Kounios & Lisman, 2002; Lomas et al., 2017; Shaw, 1996).  

In contrast, the research on the beta signal in meditation is more limited in comparison 

to alpha. Traditionally the beta signal has been found to increase when individuals are exposed 

to auditory, visual and multisensory stimuli (Engel & Fries, 2010; Guntekin et al., 2013; 

Leventhal et al., 2012). Beta is considered, in the neuroscience literature, to be the signal for 

alert response and attentiveness, and most of the studies on meditation show a loss or reduction 

in the beta signal during meditation (Lomas et al., 2017). While the majority of the studies on 

meditation and beta have found a decrease or no change of the signal, there have been a handful 

of studies that report an increase during meditation, when the form of meditation is 

mindfulness, not relaxation (Ahani et al., 2014; Dunn, Hartigan & Milulas, 1999; Lo et al., 

2003).  

EEG and the Development of Neurological Engagement Indices  

EEG has also been used in other areas of research to investigate neurological 

engagement, and produce objective indices of measurement (Kuhlen et al., 2017; McMahan et 

al., 2015a). Researchers in the aviation industry have used EEG to study neurological 

engagement for airline pilots in relation to areas such as fatigue (Caldwell, Hall & Erikson, 

2002; Howitt, Hay, Shergold & Ferres, 1978; Hunn, 1993), cognitive behavioural control 

(Borghini, Astolfi, Vecchiato, Mattia, & Babiloni, 2014), and in automated tasks (Freeman et 

al., 1999; Pope et al., 1995). Pope et al.’s study is one specific example of the use of EEG on 

neurological engagement in the aviation industry. Pope et al. investigated if participants could 

maintain sustained attention and engagement while supervising an automated flight deck 

system. The study involved the use of an EEG-based index of engagement, that was calculated 

based on the participant’s alpha, theta and beta brain signals, when completing the task. The 

brain signals were collected via a medical grade EEG device. The study used a closed loop 



EEG DATA TO PREDICT ENGAGEMENT IN CONVERSATION   9 

 

feedback model that responded to the participant’s level of engagement. That is, as the 

participant’s engagement was reduced, the program activated a more mentally demanding task 

to increase engagement, and vice versa. Pope et al. reported that beta / (alpha + theta) reflected 

task engagement best in the closed loop feedback model.  

In a follow-up to Pope et al.’s (1995) study, Freeman et al. (1999) also used EEG to test 

participants’ responses to visual stimuli in an adaptive automation system (closed loop 

feedback model). Freeman et al. (1999) used the beta / (alpha + theta) index as well as two 

further indices, beta / alpha and 1 / alpha ratio. They found that the beta / (alpha + theta) and 

the beta / alpha engagement indices produce more switching from automated to manual mode 

under negative feedback, and participants performed well in manual mode. This was not found 

for the 1 / alpha ratio index. This result suggested that beta activity is necessary to be included 

when measuring neurological engagement (Freeman et al., 1999). 

The study of Neurological Engagement with Commercially Available EEG Devices 

Commercially available neuroheadsets, such as the Emotiv EPOC (Emotiv), are 

marketed and sold with associated EEG data software packages for ease of data analysis. The 

software calculates EEG algorithms, and produces outputs of levels of cognitive and emotional 

metrics, such as ‘engagement’, ‘interest’, and ‘excitement’, herein referred to as Emotiv 

engagement indices (Emotiv, 2013). This presents a limitation for study replication, unless the 

exact device and software is available for use. This limitation is acknowledged by most of the 

researchers using these devices, that they cannot provide specific information on the specific 

mathematical formulas and specific brain signals used to calculate neurological engagement in 

their studies. The following research studies reflect this limitation, as only the Emotiv 

engagement indices were reported. However, the offset to this limitation is that the 

commercially available and user-friendly EEG technology has allowed a wider range of 
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scientists, with a diverse range of projects in naturalistic settings, to investigate neurological 

engagement (Stopczynski, Stahlhut, Larsen, Petersen & Hansen, 2013).  

Roe, Asponall, Mavros and Coyne (2013) investigated neurological engagement for 

participants viewing a natural (landscape) scene versus an urban scene. Using the Emotiv, 

EEG data was collected when participants looked at natural landscape photographs and urban 

scene photographs in a laboratory setting, and when walking within an urban environment. 

Natural scenes were found to be associated with strong Emotiv engagement indices. 

Although stronger Emotiv engagement indices were found for natural scenes in a laboratory 

setting, lower Emotiv engagement indices were presented by participants in a walking study, 

when green spaces were encountered in an urban setting (Roe et al., 2013). Participants were 

also asked to complete self-surveys, and rated natural landscapes more positively than urban 

scenes. The EEG data also indicated that the Emotiv’s engagement index was higher for 

landscape scenes in comparison to the urban scenes. Roe et al.’s (2013) study concluded the 

Emotiv could be used to detect emotional change in people to different environmental 

settings. 

A study by Sena, D’Amore, Brandimonte, Squitieri, & Fiorentino (2016) on driver 

distraction, incorporated the use of the Emotiv to capture participant’s neurofeedback (EEG) 

in a virtual reality adaptive stimulation (a closed loop feedback system). Participants used 

computer driver simulators, to drive at a safe braking distance behind a lead vehicle, whilst 

wearing the Emotiv. The neurofeedback from the Emotiv’s EEG signals was used to 

periodically modify the virtual task of driving. The Emotiv engagement indices of ‘boredom 

and engagement’ and ‘long-term excitement’ were used. If a participant’s ‘boredom and 

engagement’ level was over 70% or under 20% or ‘long-term excitement’ level was over 

80% or under 20% the lead car would brake. Only three participants were involved in the 

experiment, two males and one female (aged 23-26 years), however the study confirmed that 
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the Emotiv could measure engagement, boredom, high excitement and low excitement. The 

study found that with the four neurofeedback measures taken by the Emotiv, all three 

participants responded to the prescribed activity of braking in response to the lead car braking 

in the simulation (Sena et al., 2016). The study also confirmed that the Emotiv could be used 

in conjunction with a virtual reality adaptive simulation to measure neurological engagement.  

Neurological engagement was investigated by Wrzesien et al. (2015) in the 

examination of the effectiveness of avatars used in mental health training for youth in the 

promotion of emotion regulation strategies. A small sample of twenty-two participants of 

Spanish nationality (11 boys) took part in the research (M = 13.27 years, SD = 0.47). 

Participants wore the Emotiv and viewed a scenario in a virtual environment in which an 

avatar encounters a computer problem that is at first easily resolved, and then is unresolvable, 

leading to frustration for the avatar who then punches the computer. Finally, the avatar moves 

away from the computer and begins to breath slowly (Wrzesien et al., 2015). The 

experimental group viewed the scenario that had an avatar that was a virtual representation of 

themselves, using specialised 3D modelling software. The control group viewed the same 

scenario that had an avatar that was a virtual representation with a neutral face. A series of 

self-report questionnaires was also used to capture data. The results showed a significant 

increase in negative valence in self-modelled avatar participants, in comparison to the neutral 

avatar participants. The negative valence was reflected in the EEG data with greater activity 

in the areas of the brain related to emotion regulation, the limbic and frontal regions, and in 

the self-report data (Wrzesien et al., 2015). The information from the Emotiv indicated that, 

in this study, the use of avatars can influence human behaviour, particularly in the context of 

emotion regulation (Wrzesien et al., 2015). 

The Emotiv has also been used to investigate neurological engagement indices, 

independent of the Emotiv software, in studies of video game experience. Building on the 
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research of Pope et al. (1995) and Freeman et al. (1999) on an engagement index, McMahan 

et al. (2015a) measured participants’ video game experience in real time. The research aim 

was to see if differing levels of player neurological engagement would be evident when 

comparing death scenes versus general play. McMahan et al. (2015a) investigated three 

different neurological engagement indices: beta / (alpha + theta); frontal theta / parietal alpha; 

and frontal theta.  

McMahan et al. (2015a) found that there was a significant difference between general 

game play and death events, with higher levels of theta and beta recorded during the death 

event when using beta / (alpha + theta) and frontal theta. There were no significant findings 

for frontal theta / parietal alpha. However, the research found that the Emotiv can be used to 

assess engagement, and that the beta / (alpha + theta) index, was the preferred calculation. 

This was consistent with other research that has reported increased beta signal when playing 

video games (Salminen & Ravaja, 2007). McMahan et al. (2015a) noted that further research 

was needed as their sample size was small and the results were preliminary.  

In a second study using the Emotiv, McMahan et al. (2015b) investigated participant 

brain signals when exposed to various stimulus modalities. The three different stimulus 

modalities were; a two-picture cognitive task, and as in their previous study, general game 

play and death events in a video game. The delta and theta bands were not included in the 

analysis, because of low reliability. The study only examined the beta and gamma signals. 

The rationale for the focus on beta and gamma was that gamma is associated with cognitive 

processes such as arousal and top-down modulation of sensory processes, and beta is 

associated with attention and motor processing (see Sanei, 2013). McMahan et al. reported an 

increase in both beta and gamma signals in the death scenes compared to the two-picture 

cognitive task. This signifies a difference in brain signals for the participants when they 

change their engagement from a low-level impact event (i.e., two-picture cognitive task), to a 
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high intensity or threat event (i.e., exposed to death scenes in video game play). No 

statistically significant difference was found between the two-picture cognitive task and the 

general play. Overall, the study concluded that although the sample size was small (N= 30), 

and more extensive research is needed, the Emotiv was successful in assessing differences in 

brain signals when participants experienced various stimulus modalities (McMahan et al., 

2015b). 

EEG, Neurological Engagement and Communication 

The study of neurological engagement and interpersonal communication using EEG, 

to date, is centred largely on language production (Kuhlen, Allefeld & Haynes, 2012). 

Studies in psycholinguistics using EEG have concentrated on unidirectional communication 

such as during a speaking task (e.g., giving a monologue), and when engaged in a listening 

task, and so has not included face-to-face interactions in natural conversation (De Jaegher, Di 

Paolo, & Gallagher, 2010; Hari & Kujala, 2009; Kuhlen et al., 2012; Pickering & Garrod, 

2004; Wilms et al., 2010). However, neurological engagement and communication has been 

investigated, by Goldberg, Brawner and Holden (2012), using the Emotiv, between people 

and a sophisticated interactive computer program with virtual characters.  

Goldberg et al. (2012) examined whether computer based tutoring systems (the 

Intelligent Tutoring Systems) can distinguish varying states (high or low) of engagement in 

students, in real-time using EEG. Goldberg et al. also compared the Emotiv data with self-

reported levels of engagement provided by the participants. In the study, participants 

conversed with a virtual character that was part of a computer based training platform whilst 

wearing the Emotiv. The participants (79 cadets at the U.S. Military Academy) were to act as 

a squad leader and converse with hospital staff following an attack under three different 

scenarios. Each scenario varied in difficulty with the aim of assessing engagement and 



EEG DATA TO PREDICT ENGAGEMENT IN CONVERSATION   14 

 

attention when in an interactive conversation, and participants’ EEG data for resting states 

and task execution states were examined (Goldberg et al., 2012).  

Goldberg et al. (2012) obtained metrics from the Emotiv Affective Suite that reported 

participant short-term excitement (STE), long-term excitement (LTE) and engagement during 

the experiment. It was found that the change from a resting state to a task execution state 

produced significant increases in engagement levels for the participants, and then stabilised 

and remained at a consistent level during the remainder of the task execution to completion. 

When the tasks increased in difficulty participants showed significant differences in both STE 

and LTE, between the easier and more difficult tasks. Results from the study confirmed the 

Emotiv can be used to monitor engagement with students in desktop training applications 

with virtual training characters. Although there are obvious limitations to Goldberg et al.’s 

(2012) research, such as, the use of virtual agents and reliance on the Emotiv engagement 

indices, their study has provided preliminary evidence for the use of the Emotiv device to 

further investigate neurological engagement in a communication context. 

The Present Research 

As described in the previous section neurological engagement with the Emotiv has 

been used in research where people interact with a virtual character, but no studies, at the 

time of writing this thesis, have been published investigating EEG and face-to-face human 

interaction. The present study seeks to extend upon prior research utilising the Emotiv to 

obtain neurological engagement indices by examining neurological engagement during 

natural face-to-face conversations. Understanding how people adapt and coordinate to each 

other, through an objective neurological engagement index derived from EEG data, would be 

a valuable addition to the field of psychology (Kuhlen et al., 2012). This research project 

specifically investigated two research hypotheses: 1) The participants’ neurological 

engagement measures will correspond to the self-reported engagement during face-to-face 



EEG DATA TO PREDICT ENGAGEMENT IN CONVERSATION   15 

 

conversation; and, 2) participant’s that report experiencing more variable attention during 

face-to-face conversations will have a higher standard deviation for the neurological 

engagement measure. 

Method  

Participants 

Upon receiving Edith Cowan Human Research Ethics Committee approval 

recruitment of participants commenced via advertising through the university student portal 

(Appendix A). Fifty-five Edith Cowan University (ECU) students were recruited and 

participated in the study. EEG data files for 13 participants did not record properly and could 

not be used, leaving a final total of 42 participants (Mage = 27.74, SDage = 9.07). Seventy three 

percent of the participants were female. All participants received a Coles/Myer gift voucher 

for $20, or, if eligible, a credit point towards an undergraduate ECU psychology statistics 

unit. 

The sample size is consistent with the literature on neurological engagement using 

EEG, the exception being Goldberg et al.’s study (2012) that had 79 participants. The present 

study has a larger sample size in comparison to studies by McMahan et al. (2015a, 2015b), 

Sena et al. (2016), Wrzesien et al. (2015), and Roe et al. (2013) who all used samples of no 

more than 30 participants.  

Materials 

The Emotiv EPOC. The Emotiv EPOC is an inexpensive wireless and compact 

consumer-grade EEG headset, and has previously been used to measure neurological 

engagement successfully (Goldberg et al., 2012; McMahon et al., 2015a; Roe et al., 2013; 

Sena et al., 2016; Wrzesien et al., 2015). Three Emotiv wireless headsets were used for this 



EEG DATA TO PREDICT ENGAGEMENT IN CONVERSATION   16 

 

research to capture participants’ raw EEG data during face-to-face conversations (see Figure 

2). The Emotiv has 14 electrodes (saline sensors), located at scalp positions AF3, AF4, F3, 

F4, F7, F8, FC5, FC6, P7, T7, T8, O1, O2 (see Figure 3a). Two additional sensors serve as 

reference channels for the left and right hemispheres, CMS/DRL (Emotiv, 2013; McMahan et 

al., 2015a). The 14 electrodes are data collection channels, and are organised in accordance 

with the International 10-20 system (see Figure 3b). The sampling rate is 128Hz, with a 

bandwidth of 0.2-45Hz and digital notch filters at 50Hz and 60Hz. The Emotiv is a ‘dry 

EEG’ device as it does not require the lubrication of gels needed for the traditional ‘wet EEG’ 

medical devices (Stopczynski et al., 2014). However, saline solution is required and was used 

to keep the 14 electrode sensors moist for optimal collection of data during the data collection 

sessions.  

 
Figure 2. Emotiv EPOC headset. 

 
Figure 3. Figure 3a is the 14-electrode placement and two reference sites for the Emotiv 
EPOC. Figure 3b is the International 10-20 locations for electrode placement when using 
EEG devices. 

Laptops. Three DELL laptops were used to connect to the Emotiv headsets and 

collect the continuous raw EEG data through the Emotiv Testbench© software. The Emotiv 

a b 
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Testbench© captures the raw EEG data generated by the participant’s electrical neural brain 

activity when wearing the Emotiv (see Figure 4).  

 

Figure 4. Emotiv EEG Testbench© interface that shows the progress of the raw EEG data 
being collected wirelessly from the Emotiv’s 14 electrode sensors. 

Self-report Questionnaires. After the completion of both conversations, participants 

answered two questions that compared the two conversations: 1. “I found the conversation 

more interesting with: person 1 or person 2” and 2. “My engagement in conversation was 

more variable with: person 1 or person 2”  

Procedure 

An information sheet explaining the experimental procedure was provided to 

participants to explain the details of the research (Appendix B). Participants were also 

provided with and completed a written consent form prior to participating in the study 

(Appendix C). Participants were informed that their involvement was voluntary and that they 

could withdraw their involvement at any time with no consequences. All participants were 

given a subject ID that rendered their data unidentifiable. Participants were recruited to attend 

the ECU Cognition Group laboratory in groups of three. The participants in each group were 

previously unacquainted with each other. Data collection sessions ran for 60 minutes.  
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The Emotiv devices were fitted to the participants’ heads, with all 14 electrodes 

individually checked to ensure scalp contact. The Emotiv Testbench© software was also used 

to ensure that all 14 electrodes were signalling green for optimum EEG data collection. 

Participants were asked to remove all metal hair accessories and for long hair it was gathered 

into an elastic hair band, and positioned on top of the participant’s head, to allow greater 

access to the scalp to place the electrodes evenly for optimum results.  

All EEG recording took place within the ECU Cognition Group laboratory, 

specifically in the communication laboratory room (see Figure 5), with participants sitting at 

a desk across from each other (at a distance approximately 1 metre). Participants then 

engaged in a series of 4-minute conversations, wearing the Emotiv headsets, with a sample 

rate of 128Hz (~30,000 sample points per conversation). The four-minute time allocation is 

consistent with prior research investigating getting acquainted communication, where 

interactions are generally kept to a time duration of three to six minutes (Berrios, Totterdell & 

Niven, 2014; Carney, Colvin, & Hall, 2007; Dunbar, Duncan & Marriot, 1997; Eaton & 

Funder, 2003; Korobov, 2011). A repeated measures design was used as each participant had 

two conversations by rotating in a round robin fashion. Audio and vision of the conversations 

were recorded as part of a broader research project. As part of this broader project, the laptop 

that was connected to the participants’ Emotiv headset was placed beside the participant to 

appear in the video recording to allow syncing of the audio/visual recording and the EEG 

data at a later date (see Figure 5). When not having a conversation, a participant was seated in 

an adjoining room unable to hear the conversation occurring between the other two 

participants.  
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Figure 5. The experimental set up with two participants wearing the Emotiv headsets 
engaged in 4-minute getting-acquainted conversation. Participants were seated across from 
each other in the communication laboratory next to the corresponding laptops collecting EEG 
data from their Emotiv headsets. Apart from the laptops, no other visual or audible stimulus 
was available to the participants, apart from each other (participants consented to the use of 
their photographs for use in this research). 

On completion of each conversation an EEG raw data file was saved for each 

individual in Emotiv Testbench©, equating to six EEG data files obtained per session for this 

research (i.e., two per conversation as each individual across all three conversations had a file 

recorded). When both conversations were completed, participants answered the two 

comparison questions on the self-report questionnaire. For more information on the 

experimental procedure used in this study please see Appendix D. 

Results 

Data Analysis 

Pre-processing Raw EEG Data and Artefact removal. EEG data was captured by 

the Emotiv devices with Emotiv Testbench©, for each of the forty-two participants’ 

conversation one (C1) and conversation two (C2). The EEG data was pre-processed in the 

software MATLAB® with two EEG data analytical processing components, the EEGLAB 

toolbox and EEGLAB’s BioSig plugin. EEGLAB is an interactive MATLAB® toolbox, for 

processing continuous and event related EEG data. The BioSig plugin is an open source 

software library for biomedical signal processing, for analysis of biosignals such as EEG.  
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All pre-processing in EEGLAB used a preconfigured file template that enabled the 

data processing to be set at 14 channels, which is congruent to the Emotiv wireless headset’s 

14 electrodes. A Basic FIR Filter was used in the pre-processing of all EEG data (Cohen, 

2014). The Basic FIR filter was set at the lower edge of the frequency pass band (high-pass 

filter) at 1Hz as recommended by Widmann, Schroger and Maess (2014) to remove linear 

trends. This setting allows for a very generous transition region that is a linear phase, which 

does not distort the signal and removes electrogalvanic signals, that may, for example, be 

related to sweating (Cohen, 2014). Digital notch filters are automatically applied by the 

Emotiv EPOC device to remove any electrical interference from mains power sources 

(Ferdjallah & Barr, 1994). 

Pre-processing of EEG data is traditionally used to remove unnecessary artefacts such 

as muscular movements from eyebrow, forehead and jaw movement, as well as eyeblinks, in 

research that involves trials lasting milliseconds to seconds in length (Berkovich-Ohana, 

2017). However, although these artefacts are seen to impede traditional EEG studies, they are 

not necessarily a detrimental issue when analysing engagement over longer time periods 

(McMahan et al., 2015b). In the present research, neurological engagement was investigated 

in face-to-face conversation that lasts for minutes, and additionally any artefacts produced by 

muscle contractions are generally outside the frequency range of interest (Salenius, Portin, 

Kajola, Salmelin & Hari, 1997). For more information on the methodological procedure used 

in this study for pre-processing the EEG data, please see Appendix E. 

EEG Data Processing. The raw processed EEG data was converted into the wave 

bands of Alpha (8-13Hz) and Beta (15-30Hz) via a fast Fourier transform (FFT), using the 

MATLAB® Neurophysiological Biomarker Toolbox (NBT). The NBT was created by 

developers to facilitate integration of multiple biomarkers and to support large scale research 

in MATLAB® (Hardstone et al., 2012). Research by Pope et al. (1995), Freeman et al. 
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(1999) and McMahan et al. (2015a, 2015b) all suggest that beta activity should be included to 

fully measure engagement. Alpha activity was also found extensively in the meditation 

literature to be associated with neurological engagement via both internal and external 

attention (Cooper et al., 2006; Ivanovski & Malhi, 2007; Jensen et al., 2002; Lomas et al., 

2017; Shaw, 1996). For more information on the methodological procedure used in this study 

for processing the EEG data, please see Appendix E. 

In prior studies of neurological engagement both alpha and beta signals have been 

found to be active in the frontal region of the brain (Grant, Courtermanche, Duerden, Duncan, 

& Rainville, 2010; Lazar et al., 2005; Holzel et al., 2011, McMahan et al., 2015a & 2015b). 

The average and standard deviation of participants’ alpha and beta activity was calculated 

across the eight electrodes, that were located over the participants frontal brain region, AF3, 

F7, F3, FC5, FC6, F4, F8, and AF4. Muscle artefacts can add noise to the EEG data. In ERP 

research where the trials are on a small timescale, trials are excluded that are contaminated 

with muscle artefacts (Cohen, 2014). However, the present study involves the examination of 

an entire flow of 4-minutes of continuous EEG signal at 128Hz (approx. 30,000 data points).  

Therefore, the alpha and beta values were obtained across the whole interaction, 

creating a larger timescale than ERP research. A further exploratory data analysis was 

conducted to ensure that outliers, such as possible muscle artefacts, did not affect the means 

and standard deviations of the participants’ alpha and beta values. Therefore, calculations of 

the final mean and standard deviation values, for alpha and beta, involved removing any 

outliers in the data, through the use of an outlier labelling rule (Hoaglin & Iglewicz, 1987). 

The outlier labelling rule involved using the interquartile range (IQR), IQR = Q4-Q1, 

with a multiplier of 2.2 (see Hoaglin & Iglewicz, 1987). An exploratory analysis found that 

due to the very large dataset per conversation for each individual (i.e., ~30,000 data points) 

the outliers did not affect the means, and only marginally affected the standard deviations for 
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the sample. All statistical analysis was completed on the filtered and outlier removed data, 

using IBM SPSS version 24.  

Statistical analysis of neurological engagement measurement via EEG and post-

hoc self-reported engagement for face-to-face conversations. The participants’ individual 

overall alpha activity and beta activity means that were collected for conversation 1 and 

conversation 2, constituted the participants’ neural engagement during face-to-face 

communication. Participants’ post-hoc self-report on their engagement during the 

conversations, involved choosing one conversation as the one in which they were more 

engaged, rendering the other conversation as the less engaged. Thus, the participants’ self-

report effectively decided on the allocation of the alpha and beta activity means, to either a 

“most engaged EEG score” or a “least engaged EEG score”. For example, for the alpha 

activity, if a participant marked on their self-report that they found the conversation more 

interesting with person 1, then the corresponding alpha mean values for conversation 1 were 

designated the “most engaged EEG score”. Conversely, in this example the participant’s 

“least engaged EEG score” would then be derived from the alpha mean values from 

conversation 2, with person 2. This allocation process was completed for both the alpha 

means and the beta mean values separately, so that each participant obtained four engagement 

scores for the two conversations they completed. Two engagement scores were for the alpha 

signal; a “most engaged EEG alpha score” and a “least engaged EEG alpha score”, and two 

engagement scores were for the beta signal; the “most engaged EEG beta score” and the 

“least engaged EEG beta score”.  

A two tailed, paired sample t-test with an alpha level of 0.05 was used to compare 

the alpha most engaged EEG alpha scores (M = 9.50, SD = 4.84) with the least engaged EEG 

alpha scores (M = 8.33, SD = 4.45) for all the participants (Figure 6a). The difference was 

statistically significant, t(41) = 2.28, p = .03, and small to medium, d = .35 . A two tailed, 
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paired sample t-test with an alpha level of 0.05 was also used to compare the beta most 

engaged EEG alpha scores (M = 11.05, SD = 4.86) with the least engaged EEG beta scores 

(M = 10.37, SD = 4.13) for all the participants (Figure 6b). No statistical difference was 

found, t(41) = 1.26, p = .22, and small, d = 0.19. The assumptions of normality and normality 

of difference scores were not violated.  

 
Figure 6. Means of alpha more engaged and less engaged with 95% confidence interval error 
bars (6a) and means of beta more engaged and less engaged with 95% confidence interval 
error bars (6b). 

Statistical analysis of participants’ variability of attention via EEG and post-

hoc self-reported variability of attention for face-to-face conversations. The participants’ 

individual overall alpha activity and beta activity means of the standard deviation values, that 

were collected for conversation 1 and conversation 2, constituted the participants’ neural 

variability of attention during face-to-face communication. Participants’ post-hoc self-report 

on their variability of attention during the conversations, involved choosing one conversation 

as more variable, rendering the other conversation as less variable. Thus, the participants’ 

self-reports effectively decided on the allocation of the alpha and beta activity standard 

deviation means to either a “more variable attention EEG score” or a “less variable attention 

EEG score”. For example, for the alpha activity, if a participant marked on their self-report 

that they found their attention in the conversation was more variable with person 1, then the 

a b 
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participant’s corresponding alpha standard deviation mean value for conversation 1 was 

designated the “more variable attention EEG score”. Conversely, in this example, the 

participant’s “less variable attention EEG score” would then be derived from the participant’s 

alpha standard deviation mean value from conversation 2, with person 2. This allocation 

process was completed for both the alpha and beta standard deviation mean values separately, 

so that each participant obtained four variability of attention scores for the two conversations 

they completed. Two scores were for the alpha signal; a “more variable attention EEG alpha 

score” and a “less variable attention EEG alpha score”, and two engagement scores were for 

the beta signal; the “more variable attention EEG beta score” and the “less variable attention 

EEG beta score”.  

A two tailed, paired sample t-test with an alpha level of 0.05 was used to compare 

the alpha more variable attention EEG alpha scores (M = 5.12, SD = 4.26) with the less 

variable attention EEG alpha scores (M = 5.28, SD = 4.54) for all the participants (Figure 7a). 

There was no statistical significance found, t(41) = .31, p = .76, and small, d = .05. A two 

tailed, paired sample t-test with an alpha level of 0.05 was also used to compare the beta 

more variable attention EEG beta scores (M = 5.17, SD = 2.65) with the less variable 

attention EEG beta scores (M = 5.85, SD = 3.53) for all the participants (Figure 7b). No 

statistical difference was found, t(41) = 1.88, p = .07, and small, d = 0.29. The assumptions of 

normality and normality of difference scores were not violated. 
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Figure 7. SD-means of alpha more and less variable attention with 95% confidence interval 
error bars (7a). SD-means of beta more and less variable attention with 95% confidence 
interval error bars (7b). 

Additional findings. On closer inspection of the data a surprising uniformity was 

found between the separate conversations for both the dependent variables of alpha and beta 

activity for individual participants. Evidence for within-participant consistency was found 

across both alpha and beta activity mean scores. The alpha and beta activity SD-means also 

were consistent across both conversations. 

To assess the size and direction of the linear relationship between participants’ alpha 

conversation 1 mean scores, and alpha conversation 2 mean scores (Figure 8), a bi-variate 

Pearson’s product-moment correlation co-efficient (r) was calculated. The bivariate 

correlation between these two variables was positive and strong, r(40) = .71, p < .001. 

Similarly, a bivariate Pearson’s product-moment correlation coefficient (r) was calculated for 

participants’ beta conversation 1 mean scores, and beta conversation 2 mean scores (Figure 

9). The bivariate correlation between these two variables was also positive and strong, r(40) = 

.70, p < .001.  

b a 
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Figure 8. Alpha activity means for participants’ conversation one and conversation two.  

  
Figure 9. Beta activity means for participants’ conversation one and conversation two. 

To assess the size and direction of the linear relationship between participants’ alpha 

conversation 1 SD-means scores, and alpha conversation 2 SD-means scores (Figure 10), a 

bi-variate Pearson’s product-moment correlation co-efficient (r) was calculated. The bivariate 

correlation between these two variables was positive and strong, r(40) = .69, p < .001. 

Similarly, a bivariate Pearson’s product-moment correlation coefficient (r) was calculated for 

participants’ beta conversation 1 SD-means scores, and beta conversation 2 SD-means scores 

(Figure 11). The bivariate correlation between these two variables was also positive and 

strong, r(40) = .72, p < .001.  
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Figure 10. Alpha activity SD-means for participants’ conversation one and conversation two.  

Figure 11. Beta activity SD-means for participants’ conversation one and conversation two.  

Discussion 

The aim of this study was to examine the relationship between objective 

neurophysiological data (i.e., EEG) and subjective self-reported engagement obtained during 

and after face-to-face conversations. Participants engaged in two face-to-face conversations 

while wearing an Emotiv device. As expected, for the conversation that the participant rated 

as more engaging, their average alpha activity during that conversation was found to be 

higher in comparison to the conversation rated as less engaging, with a small to medium 

effect size. There was no significant difference found between the beta signal for participants 

when involved in more engaged versus less engaged conversations in this study. There was 

no significant difference found between the variability of attention for both the alpha and beta 

signal for participants and their self-reported variability of attention during their 
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conversations in this study. A surprising additional finding in this study was the uniformity in 

neurological measurements of alpha and beta activity for both conversations across the 

participants. The within-participants consistency was found for both the neurological measure 

of engagement and the neurological measure of variability of attention.  

Neurological and Self-Reported Engagement During Interpersonal Communication 

Previous research has found that neurological measures can be used when exploring 

engagement in a variety of contexts. Examples of the types of studies that have investigated 

neurological engagement include during video game play (McMahan et al., 2015a, 2015b), 

viewing natural versus urban scenes (Roe et al., 2013), when driving a car (Sena et al., 2016), 

when listening to music (Adamos, Dimitriadis, &Laskaris, 2016), during psychological 

therapy (Wrzesien et al., 2015), and when communicating (Goldberg et al., 2012). 

In the current study the alpha and beta signal were recorded during face-to-face 

communication, as both signals are reported to have distinct responses to cognitive processes 

involving internal and external attention, which are associated with neurological engagement 

(Anderson et al., 2011; Pope et al., 1995). Studies have also used alpha and beta signal 

activity to measure neurological engagement successfully, such as, during task automation on 

a simulated flight deck for pilots (Freeman et al., 1999; Pope et al., 1995), and during video 

game play (McMahan et al., 2015a, 2015b). 

Alpha. There are conflicting findings in the literature regarding the role of alpha 

activity as a marker of engagement. Some studies have reported a decrease in the activity of 

alpha during cognitive processes and sensory input (Ivanovski & Malhi, 2007; Sanei, 2013; 

Stern et al., 2001). This has led to alpha interpreted traditionally as a ‘cortical idling state’, 

that decreases upon the engagement of cognitive processes and sensory input from the 

external world (Cahn & Polich, 2006; Jensen & Mazaheri, 2010; Klimesch et al., 1998; 
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Sanei, 2013; Stern et al., 2001; Tuladhar et al., 2007). Other studies have found higher alpha 

activity during ‘inner directed’ activities such as during mindfulness meditation (Lomas et al., 

2017). Also, higher activity has been shown to occur in athletes prior to executing a physical 

motor action (Shaw, 1996), and when using working memory to complete a modified 

Sternberg task (Jensen et al., 2002).  

In the present study, alpha activity was found to be higher for conversations rated by 

the participants as more engaging. This finding is consistent with research using alpha as an 

indicator of task engagement (Cooper et al., 2006; Jensen et al., 2002; Shaw, 1996). When 

the participants in the present study reported being more engaged in a face-to-face 

conversation alpha activity was found to be higher. Face-to-face conversation draws upon 

attentional resources during listening when deciphering what the other person is saying, and 

during speaking when formulating utterances (Brennan, Galati and Kuhlen, 2010; Kuhlen et 

al., 2012). The employment of these attentional resources could be a factor behind the 

increase in alpha activity, signifying internal attention and demand. However, the precise 

reasons why alpha activity is associated with engagement is not entirely clear, and future 

research is needed. 

Beta. Higher levels of beta activity have been reported in the literature as a marker of 

engagement. An increase in beta activity is associated with active thinking, attention and 

focus on the external environment (Caccioppo & Tassinary, 1990; Ivanovski & Malhi, 2007; 

Sanei, 2013; Stern 1991). Beta activity has been examined in studies on engagement, such as 

when using an automated flight deck system (Pope et al., 1995), when responding to visual 

stimuli in an adaptive automation system (Freeman et al., 1999), and during video game play 

(McMahan et al., 2015b).  

In this study there was no significance found between the participants’ subjective self-

report of engagement and their beta activity, during face-to-face conversation. This suggests 
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that when the participants were subjectively more engaged with a conversation, this did not 

require more mental activity compared to a conversation that participants felt they were less 

engaged in. This is inconsistent with previous research that suggests beta activity is necessary 

to be considered in order to fully measure engagement (Freeman et al., Pope et al., 1995; 

1999; McMahan et al., 2015b).  

Neurological and Self-Reported Variability of Attention During Interpersonal 

Communication 

Prior research has used neurological engagement indices to measure the extent of 

participant engagement. However, in the present research I also took the opportunity to 

examine if the variability of brain activity corresponds to self-reported variability of 

attention. Pickering and Garrod’s (2004) Interactive Alignment Model states that attention is 

a crucial component of interpersonal communication. There was no significant relationship 

between participants’ neural activity (alpha and beta) and their self-report of variability of 

attention, during the conversations. Therefore, the variability of both alpha and beta activity 

did not correspond with participant self-reported difference in variability of attention across 

the two conversations. 

Within-Participant Consistency of Alpha and Beta Activity 

In this study, an assumption was that participant EEG would vary substantially 

between conversations. This was predicted as brain activity was expected to vary, as a 

consequence of, the overall level of engagement of the participant during the different 

conversations. Therefore, an unexpected finding in the present study was a high level of 

within-participant consistency for EEG activity across conversations. That is, there was a 

strong correlation found between both conversations for all EEG measures: alpha activity, 

beta activity, alpha variability, and beta variability.  
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Previous psychophysiological studies using measures such as heart rate and skin 

conductance responses have also found a similar pattern of within-participant consistency. 

The stability of individual differences for heart rate response scores to psychological stressors 

are well documented (Matthews, Rakaczky, Stoney & Manuck, 1987). A study by Manuck 

and Garland (1980) examined a 13-month stability of heart rate responses and systolic blood 

pressure associated with completing a frustrating mental task (i.e., a difficult mental 

arithmetic test). They found a stability of heart rate responses for subjects between sessions, 

as well as a significant correlation between heart rate response and the accuracy level of the 

difficult mental arithmetic task. Turner, Carrol, Sims, Hewitt and Kelly (1986) also found 

stability within individuals when comparing heart rate responses to a video game over a 20-

month interval in twins. Another study by Llabre et al. (1993) also reported a stability of 

individual differences with subjects’ responses for heart rate response and a psychological 

stress response, when completing speech tasks. 

Another physiological measure reported to exhibit consistency within-participants is 

skin conductance (Crider et al., 2004). For example, in a study by O’Gorman and Horneman 

(1979), subjects’ skin conductance response was assessed during relaxation, vigilance and a 

mental arithmetic task. They found a large main effect size for individual differences. A 

similar study was completed by Crider et al. (2004) involving; middle-aged male twins, a rest 

period, a trial period consisting of a series of 1000Hz tones and a digit transformation task. 

Crider et al.’s study also found a within-participant consistency for both retest stability and 

cross-task consistency, as reported by O’Gorman and Horneman (1979). 

The present study uncovered a within-participant consistency that is comparable with 

research studies that report a uniformity of psychophysiological measures and individual 

differences (Crider et al., 2004; Matthews et al., 1987; O’Gorman & Horneman, 1979; 
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Turner, 1989). The present study is also the first study to have shown within-participant 

consistency of neurological brain activity across face-to-face conversations. 

Limitations  

The findings of this study are based on a comparatively larger sample size (n = 42) 

compared to other similar studies using EEG to investigate neurological engagement. For 

example, McMahan et al. (2015a, 2015b), Sena et al. (2016), Wrzesien et al (2015), and Roe 

et al.’s (2013) research all used samples of between 3 and 30 participants. The present study 

also used a within-subjects design, which has the advantage over a between subject design in 

terms of increased power due to a reduction in error variance associated with individual 

differences (Charness, Gneezy & Kuhn, 2012; Rescorla, 2008). However, a limitation in the 

present study is that only two conversations were held for each participant, which may be the 

reason why the results reflected similarities for participants’ self-reported engagement and 

beta activity, as well as, their self-reported variability of attention and both alpha and beta 

activity. Future studies could include more conversations to see if the similarity found in the 

present study remains or a difference occurs when participants have multiple conversations. 

A further limitation of the present study is the use of subjective self-report 

(McCroskey & McCroskey, 1988; Schwarz, 1999). An aim of the present study was to 

address the current subjective limitations of self-report, by examining whether EEG could be 

a complimentary and objective measure of participants’ engagement and variability of 

attention during face-to-face communication. Self-report relies on information from 

participants that cannot be independently verified and must be taken at face value (Campbell 

& Atas Akdemir, 2016; Dekeyser et al., 2008). Self-report can also contain participants’ 

personal biases, such as, exaggeration, and or interpretation and understanding of the 

questions, which may lower the reliability of the data collected (McEwan & Guerrero, 2010). 

Although self-report is widely used in psychological research, it is important to understand 
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the limitations, in the present study (Schwarz, 1999). For example, although all possible 

precautions have been taken, participants’ may still misinterpret or misunderstand, the 

question in the self-report questionnaire regarding their variability of engagement with person 

1 or person 2. Therefore, participants could select the wrong person by marking person 1 as 

the conversation where they experienced more variability of engagement, when in fact they 

meant to select person 2 (McCroskey & McCroskey, 1988). Another example of how self-

report could affect the data in the present study is simply that the wrong person and 

conversation is selected due to carelessness. Although it is expected to only be a small 

percentage of participants that would misinterpret the questions or mistakenly chose the 

incorrect conversation, it is important to know the limitations of self-report regarding 

participants’ potential personal biases when using this form of data collection (Schwarz, 

1999). 

Future research  

The present study involved the collection of EEG data continuously over two, 4-

minute face-to-face conversations. Many EEG research studies use time-locked activity or 

event-related potentials (ERPs) that capture neural activity associated with both sensory and 

cognitive processes (Astolfi et al., 2007; Babiloni et al., 2001; 2008; Kuhlen et al., 2017; 

Nunez, 1995; Sur & Sinha, 2009). A more structured design would be to use ERPs that evoke 

neurological responses during face-to-face conversations with confederates. Confederates 

have been used successfully to evoke responses in ERP studies on deception (Carrión, 

Keenan, & Sebanz, 2010) and social conformity (Chen, Wu, Tong, Guan, & Zhou, 2012). 

Confederates could be used to further examine neurological engagement and variability of 

attention by acting bored or extremely interested during face-to-face conversations. 

Confederates could also ask specific questions at designated times to evoke specific 

responses or emotions from participants. The evoked responses could produce a difference in 
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alpha and beta activity, when participants talk about different conversational topics, such as 

good and bad experiences. These conversational topics may also evoke changes in 

participants’ levels of engagement, such as in Goldberg et al.’s study (2012).  

An additional finding of the present research was the within-participant consistency 

for both alpha and beta activity across two conversations. Future research involving a 

replication of this study that increases the number of conversations and conversational 

partners (i.e., more data collection points) is recommended, to see if the within-participant 

consistency found in this study remains constant over several conversations. This would also 

aid in addressing any potential discrepancy between conversations, as the self-reported 

engagement and beta activity was similar across the conversations, as was the self-reported 

variability of attention and both alpha and beta activity for participants. Having more 

conversations would increase the chances that the participants would have a ‘more’ or ‘less’ 

engaged conversation that could be compared. 

An extension of the present study could be to include conversations with close friends 

to compare against the getting acquainted data. Research by Savitsky, Keysar, Epley, Carter 

and Swanson, (2011) found that people overestimate their success when communicating with 

close friends in comparison to strangers, and this is seen as “letting their guard down”. In 

contrast they found that communication with strangers requires active monitoring of 

strangers’ divergent perspectives. Examining Savistsky et al.’s (2011) findings on people’s 

processing of information whilst communicating with strangers and with close friends, could 

see a difference in the amount of alpha and beta activity for engagement in face-to-face 

communication for participants. The findings of the present study warrant future research, 

through an extension or replication, towards a neurological engagement measure during face-

to-face communication. 
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Conclusion 

The current study has investigated whether EEG can be used to predict engagement 

during face-to-face conversations. An examination using self-report and EEG was undertaken 

on the communication components of engagement and attention, which are both seen to be 

crucial during interpersonal communication (Pickering & Garrod, 2004). The findings from 

this study were that the overall alpha activity of participants was higher when they reported 

more engagement in the conversations, and decreased when reporting less engagement in the 

conversations. However, there was no significant relationship between beta activity and 

engagement. There were also no significant relationships found between the participants’ 

variability of attention in their self-reported engagement, and their EEG data across the two 

conversations. A surprise additional finding of within-participant consistency for both alpha 

and beta activity across both conversations, is suggestive of a relatively stable level of 

neurological activity within individuals, during a complex activity such as face-to-face 

conversation. The within-participant consistency found in this study is consistent with 

findings of psychophysiological studies involving heart-rate response (Tuner et al., 1986, 

Llabre et al. 1992, Manuck & Gardner, 1980) and skin conductance response (Crider et al., 

2004; O’Gorman & Horneman, 1979). Further investigation into the consistency of neural 

activity during communication is warranted.  

The present study also builds on previous research that EEG is a tool that can be used 

alongside other tools such as self-report to gather information on the complexities of 

interpersonal interactions. Understanding an individual’s brain signal pattern that occurs 

when in various states of engagement during interpersonal interactions, as well as, the 

individual’s awareness of their varying states of engagement, has the potential to be of use for 

both clinical (Arns et al., 2009; Friel, 2007; Myers & Young, 2012) and non-clinical 

application (Janz et al., 2015; MacLean et al., 2016; Pepping et al., 2017; Schneider, 1992). 
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Appendix A 

Recruitment Advertisement 

Volunteers sought for EEG conversation study 

April 2017 

 

 Downloads 
 Information Letter  

PDF, (45.3 KB) 

This study seeks to better understand what elements contribute to an enjoyable conversation. 
Participants will be reimbursed with a $20 Coles/Myer voucher to compensate their 
time/travel. Volunteers are sought to come to the ECU Cognition lab (located at Joondalup 
campus, building 8) to engage in some conversation with each other. 

Participants will wear the Emotiv EPOC a wireless EEG device, that captures electrical 
neural activity (brain wave patterns of thought) from a person’s scalp non-invasively. If you 
are interested in meeting some other ECU students, and learning about some new research 
technology, then please email Brooke Maddestra (Psychology Honours Student) for more 
information. Please put 'EEG conversation study' in the subject heading of the email. 

Study participation should take approximately 1 hour. You will be free to ask questions at 
any time throughout the study, and you are also free to withdraw your participation at any 
time. The research project has been approved by the ECU Human Research Ethics 
Committee. 

Research Contact: brookemaddestra@our.ecu.edu.au 

 

Research Supervisors 

Dr Shane Rogers (lecturer in ECU psychology department)  

Email: shane.rogers@ecu.edu.au 

Professor Craig Speelman (Professor of Psychology)  

Email: c.speelman@ecu.edu.au 
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Appendix B 

Information Letter 

EEG conversation study 

Dear Participant, 

This study is to examine whether EEG data can be used to predict engagement during face-to-
face communication. As a participant you will be fitted with an Emotiv EPOC EEG headset. The 
non-invasive lightweight wireless device will be placed on your head and 16 points of contact 
will be placed on your scalp (14 data collection electrodes with saline dampened foam and two 
rubber reference points) for the duration of the experiment. How the device works will be fully 
explained by the experimenter, if you have any questions during this explanation, please do not 
hesitate to ask. 

Then you will engage in a series of 4 minute getting acquainted conversations with other 
participants. On completion of your conversations you will answer two questions to rate your 
experience. Note, these ratings will be completely confidential and will not be revealed to the 
other participants at any time. During the conversations a recording will be made via video 
camera. The audio-visual recordings will only be examined for compiling statistics to be analysed 
for research reports and be presented as statistics in charts. 

The session should take approximately 45 mins. Participation in this study is entirely voluntary, 
with no pressure to participate and no consequences for electing not to participate. You are free to 
ask questions at any time throughout the study and you are also free to withdraw your 
participation at any time. 

All data collected will be stored securely and confidentiality will be maintained. There is also 
potential that collected data will be used for publication purposes, and reanalysed as part of 4th 
year or Masters level student research projects. The research project has been approved by the 
ECU Human Research Ethics Committee. If you have any concerns or complaints regarding the 
research project and would like to speak to an independent person, please contact the Research 
Ethics Officer on 6304 2170 or via email research.ethics@ecu.edu.au 

Sincerely yours, 

Researcher: Brooke Maddestra 
ECU Psychology Honours Student 
bmaddest@our.ecu.edu.au 
 

Principle Research Supervisor: Dr Shane Rogers 
Lecturer @ School of Psychology, Arts and Humanities 
Edith Cowan University, Joondalup Campus 
Email: shane.rogers@ecu.edu.au | P: +61 8 63045728 
 

 Research Co-Supervisor: Professor Craig Speelman 
Associate Dean Research 
Professor of Psychology 
Director of the Cognition Research Group School of Arts 
and Humanities 
Email: c.speelman@ecu.edu.au | P: +61 8 6304 5724 
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Appendix C 

Consent Form 
 

EEG conversation study 

 

I, ______________________________, have read the information provided in the 

information letter and I’m satisfied that any questions I have asked have been answered 

adequately. 

I understand that I can choose to withdraw my participation at any time throughout the study. 

I agree that the data collected will be used for the current study and potentially published in a 

research article. I also understand that the recordings will be securely stored and may be 

further analysed at a later date. I understand that my questionnaire responses will be stored 

with no identifying information and therefore my responses are anonymous. I also understand 

that the audio/visual recordings will not be used for any other purpose than for compiling 

statistics to be analysed for research reports. The statistics will be presented in charts instead 

of the videos being presented in the write up of the research. Any footage of me will NOT be 

viewed by anyone outside of the ECU Cognition research group, and will NOT be publicly 

posted or presented anywhere without my express permission (see below). 

I consent to participating in this research. 

Signed___________________________ Date____________________ 

Additionally, I consent and give permission that video or images of myself obtained during 
participation can be used to assist in communication of the research via journal article 
publications, University lectures, media articles, or social media posts. 

Please tick: 

Yes, I give permission 

No, I only consent to recordings and images to be viewed for research purposes only.
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Appendix D 

EEG Experiment and Data Capture Using the Emotiv EPOC Procedure 

 

Introduction 

The following procedure outlines the initial set-up, EEG data collection and pack-up processes, in 

numerical order, for the research on EEG predicting engagement during natural conversations. This 

all EEG data collection from participants engaged in 4-minute face-to-face getting acquainted 

conversations. All EEG data was captured using the Emotiv EPOC EEG wireless and portable 

headsets. All the necessary hardware and software for data set-up and capture was available and 

owned by the Communication Research Laboratory, which is part of the broader Cognition Research 

Laboratory at Edith Cowan University, for this experiment.  

Initial Set-up (Duration is approximately 30 minutes to set-up experiment) 

1. Ensure that all foam inserts for the Emotiv EPOC headset are adequately wet with saline 
solution. 

2. Place foam inserts into the electrodes of all of the Emotiv EPOC headsets.  

3. Turn on video recorders 

4. Turn on laptops and open ‘clocks’ by using the Wi-Fi, then turn off Wi-Fi. 

5. Open Emotiv Testbench onto the lap top screen. 

6. Have headsets ready and dongles inserted into USB on laptops prior to participants arriving. 

7. Participants then must complete the following forms prior to any involvement in the 
experiment:  

a. Consent forms 
b.  Initial conversation questionnaires. 

8. Be familiar and ensure all the points in the introductory instructions to participants are 
delivered as below: 

Thank you for volunteering in this lab experiment on communication. You will 
undergo two conversations each in a round robin fashion. Conversations will last 
four minutes. When you are waiting your turn, you will wait in the common area. On 
completion of your conversations a self-report survey will be completed.  

So, that we can get the most out of your valuable time we ask that you help with the 
following: 

Please leave mobile phones in bags outside of research room prior to entering and 
to turn off wi-fi to limit equipment interference. 

We ask that you do not touch the headsets when they have been set up on your heads. 
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If you have your hair up in clips or with items that could stop the Emotiv EPOC 
device from sitting easily on your head can you, please remove for the duration of 
the experiment. 

Thank you. 

Conversation EEG data capture (Duration is approximately 1 hour to run the 
experiment) 

9. When placing headsets on all the participants ensure that all electrodes are touching the scalp, 
move hair out of the away if needed. Participants with long hair are to tie it up into a high 
‘pony tail’ on top of their head out of the way of all the electrodes to make it easier to get 
electrode-to-scalp contact. Hair ties are supplied by the researchers. 

10. Place headsets on all two participants in the designated research room (see Figure 1.) and turn 
on the headsets. 

 

Figure C1. Designated research room where getting-to-know-you acquaintance conversations EEG 
data is collected for the experiment between two participants at a time. 

11. Place a headset on the third participant in the common area and turn on the headsets. 

12. Check headsets are all showing green for the nodes on the required laptops that are situated 
next to them. See Figure 2 for correct position of nodes. 
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Figure C2. Position of Emotiv EPOC headset on participant and checking all nodes are green on the 
Emotiv Testbench software. 

13. Check that the video cameras are in correct position to capture the laptop and the participant 
(make sure that the clock is in the frame with the time visible). 

14. Remind participants to stay in the same spot once seated at the table so they remain in the 
video camera frame. 

15. Open ‘Marker’ window in Emotiv Testbench: 

a. Go to  icon located top left-hand corner and select ‘Marker’  

b. Then select ‘Send Manually Marker’ 

c. Input 1 into Name and then input 1 into Value (this only needs to be done once for 
duration of experiment) 

d. Place this box on top of the Emotiv Testbench Box and leave it open for the duration 
of the experiment (see Figure 3). 

 

Figure C3. Laptop screen set up for conversation EEG data capture 

  

Clock  Send Manually Marker box 

Emotiv Testbench box 
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16. Initial Set-up Record in Emotiv Testbench screen: 

a. Select Record  

b. Press Select (see Figure 4) 

 

Figure C4. Recording configuration in Emotiv Testbench into EDF format 

c. Open Folder named (Session #_DD.MM.YYYY, e.g. Session 1_08.10.2017) 

d. Then select Subject ID and enter the following: 

i. Participants first letter of first name and numerical value starting with one, 
e.g. Shane would be s1, subsequent participants with the same first name 
letter would be s2 and so on. 

ii.  Once allocated this does not change for the duration of the experiment. 

e. Select Record ID and enter the following for conversation one and two: 

i. C1  

ii. C2  

17. Press record on video cameras 

18. Press ‘start’ on record in Emotiv Testbench (see Figure 4) 

19. Press Send in ‘Marker’ screen (see Figure 5) 

20. CLAPBOARD and instruct participants to start 4-minute conversation. 

21. Begin 4-min stop watch. 

22. After 4-min use CLAPBOARD to end conversation 

23. Press ‘stop’ on record in Emotiv Testbench 

24. Stop video camera record 

25. Participant 3 to swap out with either participant 1 or 2 and commence round robin of 4-min 
conversations. 

26. Participants self-report to be collected and checked for proper completion. 

27. Vouchers or credit points to be allocated to volunteers. All necessary forms to be completed 
and signed. 
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END OF DATA COLLECTION 

 

Figure C5. Function areas in Emotiv Testbench 

Experiment Equipment Pack-up (Duration is approximately 30 minutes to pack-up 
experiment) 

28. All equipment to be kept in the locked Communication Laboratory located at the Cognition 
Research Laboratory. 

29. All EEG EDF files to be checked that they have been saved to correct session and participant 
folders. 

30. All foam inserts to be removed from headsets and placed in saline solution. 

31. All electrodes to be unscrewed from headsets and placed in designated containers. Ensure 
they are dry to stop corrosion. 

32. Headsets and associated dongle to be placed together and the headsets to be charged after each 
session. 

33. Laptops to be powered down and closed and then placed in the locked filing cabinet. 

 

END OF PROCEDURE

Emotiv Testbench box Record button 

Send Marker Manually Send button 

Options Icon  
Marker box  
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Appendix E 

EEG Data Pre-Processing and Signal Processing Procedure  

 

Introduction 

The following procedure outlines the pre-processing and processing steps, in numerical order, of the raw 

EEG data captured during research between participants engaged in 4-minute face-to-face getting 

acquainted conversations. All EEG data was captured using the Emotiv EPOC EEG wireless and 

portable headsets. All the necessary software for pre-processing and processing was available on the 

Communication Research Laboratory’s computer.  

Please note: this procedure can be used in conjunction with three instructional videos that are available 

on request from Dr Shane Rogers from the Cognition Research Laboratory at Edith Cowan University. 

Software List 

 Emotiv Testbench Software 
 Matlab Software: 

o EEGLAB Toolbox 
o BIOSIG Tool 
o Neurophysiological Biomarker Toolbox (NBT) Pre-processing the data 

 Microsoft Excel  

Pre-Processing the data 

Converting Raw EEG Data from EDF to CSV using Emotiv Testbench Software 

1. All the EEG data is recorded automatically into EDF format. To convert it into CSV format, use 
the EDF to CSV converter tool in Testbench. Emotiv>Tools>Convert EDF to CSV (see 
screenshot below). 
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2. Then select the EDF file from the participants folder (see screenshot below) (see companion 
document the Communication Research Laboratory – EEG Experimental Procedure). 

 

3. Save the CSV files in the same folder as the EDF files using the same naming protocol of 
session #_ participant first initial_ C1 or C2_DD.MM.YYYY e.g. S1_B_C1_01.10.2017. Note: 
C1 is conversation 1 and C2 is conversation 2. 

Pre-processing: Cleaning Data using Matlab’s EEGLAB Toolbox and Biosig Tool  

4. Open Matlab. 

5. Open Matlab’s EEGLAB Toolbox by choosing ‘eeg14_1_1b’ 

6. Choose ‘add to path’ and then choose ‘selected folders’ 

7. eeglab into the Command Window should look like this >> eeglab 

8. No Current dataset window will appear (see screenshot below). 
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9. Select File>Using EEGLAB functions and plugins>From EDF/EDF + AGDF files (BIOSIG 
toolbox) (see screenshot below). 

 

10. Then go to the participant folder and select the correct EDF file for C1 and press ‘open’ 

11. ‘Load data using BIOSIG window’ will appear, place 3:16 for the Channel list (default all), then 
click OK (see screenshot below). 

 

12. Click OK for the ‘What do you want to do with the new dataset’ window (see screenshot below). 
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13. On the ‘EDF File window’ select Edit>channel locations (see screenshot below). 

 

14. In the ‘Look up channel locations?’ window select the blank tab (see screenshot below). 

 

15. Then go into the folder view and select the ‘emotiv.ced’ file and press open (see screenshot 
below). 
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16. Then press OK (see screenshot below). 

 

17. Edit channel info will appear, scroll through the channels to number ‘12’ of the 14 channels 
called ‘T8’ and remove the negative symbol against the number for the Cartesian Y (“Y”) field. It 
will look like the screen below once moved (see screenshot below). 

 

18. Then click OK to exit the Edit channel info window. 
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19. Then go to Tools>filter the data>Basic FIR Filter (new, default) (see screenshot below). 

 

20. Place a 1 in the Filter the data – pop_eegfiltnew() window and then press OK (see screenshot 
below). 

 

21. Select save it as file and press Browse in the Dataset info – pop_newset() window (see screenshot 
below). 
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22. Place the new file into ‘Documents’ with the following file naming protocol Session 
#_Participant initial_C1 then press save button (see screenshot below). 

 

23. Then select OK (see screenshot below). 
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24. .SET documents are created from the .EDF files for the participant. Remove the saved .SET files 
for the participant from the ‘Documents’ folder and save to the original participant folder. So far 
there should be EDF, CSV, & SET & FDT files for the participants’ conversation 1 and 
conversation 2 (see screenshot below). 

 

25. Then repeat for the rest of the EDF files for all of the participants, following steps 4-24 of this 
procedure.  

Processing the Data 

Converting .SET & .FDT files to .MAT files using Matlab’s Neurophysiological Biomarker 
Toolbox (NBT)  

26. Open Matlab (close if already using with EEGLAB, and then re-open) and select NBTpublioc-
NBTv0 5.5 – public>Add to path>Selected Folders and Subfolders (see screenshot below). 
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27. Type NBT into the Command Window 

28. Go into the participants file and cut the .SET file and .FDT file for conversation 1 and paste them 
into the ‘Documents’ folder (NBT will only allow you to access the .SET files from this 
location). You can copy until you feel confident with this step to cut and paste. You should only 
have the participants .SET  and .FDT files in the ‘Documents’ folder that you are working on (see 
screenshot below). 

 

29. In the NBT v0.5.5 public window select File>Import File into NBT Format (see screenshot 
below). 
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30. It will take you to the Local Disc (C:) on your computer. Click on Documents then press select 
folder twice. You will not see the files in the ‘select directory with files to be imported’ window 
(don’t panic) it will look like the screen shot below. 

 

31. The command window will then appear and there will be a series of questions that need to be 
answered (see screenshot below). 
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32. Complete the information on the screen with the highlighted answers below. 

Does the source folder contain different types of files (y/n) y 

Please specify target file extention (e.g., raw) .set 

File names in NBT should be <ProjectID>.S<SubjectID>.<DateOfRecording 
[yymmdd]>.<Condition>, for example NBT.S0099.090212.EOR1 

Is the filename already according to the NBT convention (y/n) n 

Generating filename (note use nbt_Rename for automatic renaming: 

Please write ProjectID: S1_J_C1 

Do you want to downsample the signal (y/n) n 

What is the sample frequency? 128 

Do you want to read a special channel location file (answer n to use standard channel location 
file) (y/n) y 

Channel location filename: 14 

File: S1_J_C1  

Subject ID? 1 

Date of recording? YYYYMMDD 

Condition? q 

Notes? 

Converting S1_J_C1.set 

Pop_loadset (): loading file C:\Users\tower7810\Documents\S1_J_C1.set 

Reading float file ‘C:\ Users\tower7810\Documents\S1_J_C1.fdt’… 

Creating Info object 

ans = 

‘S1_J_C1.S1.20170309.q’ 

  

Session#_Participa
nt initial_C# for 
example S1_J_C1. 
Hint: it is the same 
as the .SET file 
name. 

This field is 
automatically 
generated. 

Can’t use letters 
here only 
numbers, just 
place ‘1’ if there 
are no subject 
numbers given.  

Need to complete 
this space place the 
letter ‘q’ in as a 
default for all files 
unless you want to 
specify a condition 

Just press enter no 
need for any 
information here. 
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33. Two Matlab files are created and saved to Documents. A .q.mat and .q_info.mat file (see 
screenshot below). 

 

34. Cut and paste the >SET , .FDT and the new matlab files (4 files in total) out of documents folder 
and into the original participant’s folder. 

35. Repeat steps 28 to 33 for C2. 

36. Repeat Steps 28 to 34 for all the participants’ .SET and .FDT files to covert to .MAT files. 

Processing the Data using Matlab’s Neurophysiological Biomarker Toolbox (NBT) .MAT files to 
filter the data for the alpha and beta signals 

37. Open the NBT window by clicking on the MATLAB icon on the taskbar and select File>Load 
NBT signal (see screenshot below). 

 

  

Two Matlab files are created and 
saved to Documents. A .q.mat and 
.q_info.mat file 
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38. Go to the participants original folder where the .MAT files are saved you will only be able to see 
the .MAT files (see screenshot below). 

 

39. Select the file with in the format ending with .q.mat and press open. You will then see the NBT 
window with the file name and file information as in the screen shot below. 
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40. The ‘NBT signal and Info Object loaded’ is visible in the command window, (see screenshot 
below). 

 

41. Cut and paste the below code into the command window to process the Alpha signal for the 
loaded participants .mat file for the specific conversation. Press enter. 

nbt_GetAmplitudeEnvelope (Signal, SignalInfo, 8, 13, 2/8); 
 

42. Double click on the value for ‘ans’ that is the alpha processed data (see screenshot below). 
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43. Highlight the columns 1-14 and then highlight and capture all of the data and right click copy the 
data (see screenshot below). This may take some time as the files are large with ~30,000 data 
points. 

 

44. Then open excel. Open a new document and paste the copied data from Matlab onto the second 
row (see screenshot below). 

 

45. Insert a line at the top of the CSV file and copy and paste paste the Emotiv Electrode template 
into the file (see screenshot below). 

 

46. Save the file as an excel spreadsheet. Rename the file as session#_participants first 
intial_C1_ALPHA.  
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47. You can then use the same loaded file for processing the beta signal. Cut and paste the below 
code into the command window (see screenshot below), to process the beta signal for the loaded 
participants .mat file for the specific conversation. Press enter. 

nbt_GetAmplitudeEnvelope (Signal, SignalInfo, 13, 30, 2/8); 
 

 
 

48. The already highlighted values will change to beta values. So you can just copy the data, it may 
take some time to copy due to the large file size. 

49. Then open excel. Open a new document and paste the copied data from Matlab onto the second 
row (see screenshot below). 
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50. Paste the Emotiv Electrode template into the file (see screenshot below). 

 

51. Save the file as an excel spreadsheet. Rename the file as session#_participants first 
intial_C1_BETA. 

52. Go back to Matlab after saving the excel spreadsheet and clear the command window by typing 
in ‘clear’. The workspace should now be cleared for you to work on a new file (see screenshot 
below). 

  

53. Repeat steps 36 to 52 for all of the participants C1 and C2. 

Constructing Data Sheets for the Alpha and Beta Signals for Participants 

54. Open the participant’s CSV file for C1. Copy the data in the columns Q-X  

55. Open the participant’s Alpha C1 excel file and paste the data from columns Q-X into the columns 
O-V. Ensure that all of the data is copied across. Then close the .CSV file (see screenshot below). 

 

56. Copy the entire first sheet of data into a second sheet and name it ‘alpha chop’  

57. Look for the markers ‘1’ (start) and ‘2’ (end) in the ‘R’ column in the excel spreadsheet on the 
‘alpha chop’ sheet. Delete the data prior to the marker 1 and then delete the data after marker 2. 

58. Repeat the process for steps 53 to 56 for C1 but for the beta in the beta C1 excel file. Replace all 
reference of alpha with beta e.g. ‘beta chop’. 

59. Ensure you save the worksheets as you go. 

60. Working only in the ‘chop’ worksheets add a new column named Frontal (column X). 

61. To calculate the means of the Frontal use the function tool in excel and enter the formula 
=AVERAGE(A2:D2,K2:N2). You can double check that you have selected in row 1 data in 

Workspace is cleared 



EEG DATA TO PREDICT ENGAGEMENT IN CONVERSATION 68 

 

columns named AF3, F7, F3, FC5, FC6, F4, F8, AF4). Then filter the formula down for all of the 
rows.  

62. Calculate the total mean then apply =AVERAGE and highlight the X column for all the data 
points to calculate the total mean.  

63. Then calculate the median =MEDIAN and highlight the X column for all the data points to 
calculate the total median.  

64. Then calculate the standard deviation of the means =STDEV.S and highlight the X column for all 
the data points to calculate the total standard deviation of the means. 

65. This is to be repeated for the beta signal and for C2 alpha and beta means. 

66. All means and SD-means were then loaded into a master data EEG spreadsheet and then exported 
into SPSS for statistical analysis. 

67. Each participant should have a folder containing the following files (see screen shot below). 

 

 

END OF PROCEDURE 
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