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ABSTRACT 

Current environmental challenges such as increasing dry land salinity, waterlogging, 

eutrophication and high nutrient runoff in south western regions of Western Australia 

may have both cultural and environmental implications in the near future. Advances 

in computer science disciplines, more specifically, data mining techniques and 

geographic information services provide the means to be able to conduct longitudinal 

climate studies to predict changes in the Water catchment areas of Western 

Australia. 

 

The research proposes to utilise existing spatial data mining techniques in 

conjunction of modern open-source geospatial tools to interpret trends in Western 

Australian water catchment land use. This will be achieved through the development 

of a innovative data mining interrogation tool that measures and validates the 

effectiveness of data mining methods on a sample water catchment data set from 

the Peel Harvey region of WA. In doing so, the current and future statistical 

evaluation on potential dry land salinity trends can be eluded. The interrogation tool 

will incorporate different modern geospatial data mining techniques to discover 

meaningful and useful patterns specific to current agricultural problem domain of dry 

land salinity. 

 

Large GIS data sets of the water catchments on Peel-Harvey region have been 

collected by the state government Shared Land Information Platform in conjunction 

with the LandGate agency. The proposed tool will provide an interface for data 

analysis of water catchment data sets by benchmarking measures using the chosen 

data mining techniques, such as: classical statistical methods, cluster analysis and 

principal component analysis.  

 

The outcome of research will be to establish an innovative data mining instrument 

tool for interrogating salinity issues in water catchment in Western Australia, which 

provides a user friendly interface for use by government agencies, such as 

Department of Agriculture and Food of Western Australia researchers and other 

agricultural industry stakeholders.   
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1. INTRODUCTION 

 

The confluxes of innovative computer science disciplines, especially in data mining, 

as Johan (2009) states, can be regarded as a gift economy, compromised of values 

that contribute to knowledge and impact of thinking of others.  Data mining has also 

contributed to the effective and robust modelling of business problems and along 

with advances in software development has lead to a number of  modelling tools 

capable of examining large volumes of data, revealing hard to find patterns 

(Kowalski, 2000, p.1). 

 

One of the factors contributing to the rise of popularity in data mining can be 

associated with the significance of knowledge discovery from databases (Kamber, 

2006, p.5). Since the collection of data has grown over time, the management of 

data using knowledge in discovery databases (KDD) has become imperative in 

pattern discovery.  

 

Before the development of spatial visualisation techniques, data mining was a 

difficult task to conduct in regard to interpretation and visualisation of geo-statistical 

data. The collaboration of various commercial and open source communities has 

resulted in establishment of specific spatial data mining methodologies which has 

improved the understanding of spatial type data. For example, a study  by 

Kravchenko & Bullock (2002, p.804) of agricultural data sets found that geospatial 

topographic field analysis in conjunction with geo-statistical analysis could  improve 

the crop ecology and agronomic management of soybean. 

 

The following proposed research addresses the current industry problem of dryland 

salinity in Western Australia (WA). The government of Western Australia has 

expressed a need to find better predictive models to evaluate trends in land use 

amongst the states water catchments during the coming decade. The research will 

investigate and determine the most feasible spatial data mining techniques for 

conducting an analysis of water catchment data sets. Equally important, the results 

extracted during the analysis stage will help in assessing whether any significant 

spatial patterns are present and allow predictions to be made in relation to potential 

changes in climate and land use. This will be achieved through the use of an 

interrogative data mining tool that will be able to determine most appropriate data 

mining techniques for the proposed case study of the Peel Harvey water catchment 

area.  
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1.1. BACKGROUND TO THE STUDY 

 

The proposed study is focused on water catchment issues in Western Australia, 

through an examination of the Peel Harvey region. The Peel Harvey region is 

approximately 70km south of Perth and covers an area of 3072 square kilometres 

(Rivers, 20002, p.1). Due to the vast land size and intensive agricultural practice, the 

region has a number of environmental sustainability problems, including increasing 

salinity.  A national land and water resources audit assessment (ANRA, 2000) has 

forecasted that salinity will increase over the coming decades. It is estimated that 

approximately 8.8 million hectares (33%) by 2050 in the South West of WA will be at 

high risk of salinity damage. Furthermore, findings from  (ANRA, 2000) indicate that 

approximately 81% agricultural land is at risk from dryland salinity. Consequently, this 

could lead to an estimated 1500 plant species being affected, with possibly 450 

subject to extinction. As a result, the extent of increasing dry land salinity will greatly 

affect a large portion of Peel-Harvey inlet.  

 

The Peel-Harvey catchment region is compromised of 27 large sub-catchments with 

21 identified as residing in the coastal plain portion of the statutory boundaries, (Tom 

Rose 2003, p.7). To illustrate, Figure-1 shows the large physical size of the region, 

with gazetted plain portions outlined in purple. In this case, the region is coupled with 

rivers that feed directly into the Peel Harvey catchment.  

 



A. Sehovic Page 9 

 

Figure 1: Total catchment and streamlines (Department of Environment and Conservation of WA, 

2003, p7). 

 

Mark Rivers (2000, p. 6-7) summarised the dominant conditions leading to the 

current problems experienced in the Peel Harvey catchment, these being: 

 

 Loss of Biodiversity: as a result of historical agricultural development, native 

vegetation is lost and replaced by pasture or crops. 

 

 Water logging: known to be common issue across Peel-Harvey catchment region, in 

particular across winter and spring due to high rainfalls and low evaporation. 

 

 Eutrophication: caused by an enrichment of a water body with organic and 

inorganic plant nutrients which can increase biological activity in water, leading to 

algal growth. Also, eutrophication is a consequence of nutrient loss from the farming 

and urban areas; 

 

 Soil acidity: a natural process that is enhanced by the use of fertilisers, leguminous 

crops and pastures, and  

 

 Irrigation salinity:  a predominant issue, increasing in occurrence across the 

southern portion of Peel Harvey catchment regions. Caused by an irrigating mixture 

of saline with water and chemical salts, it is believed that irrigation salinity has led to 

an increase of soil sodicity and ultimately promoted a decline in soil structure. 
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According to Ross, (2003, p. 10)  these “issues have been exacerbated by rapid 

population growth, which has increased pressures for multiple uses of the land and 

waters in a sandy low relief high groundwater table and poorly flushed estuarine 

system”. An illustration (see Figure-2), a case study conducted by an Australian 

National Resource Atlas on Kamarooka catchment illustrates how salinity discharge 

may cause rises in water table salinity. Salinity discharge is compromised of two 

primary causes; first is the result of naturally occurring decomposition of oceanic 

salts produced from either rain or wind. Second, is related to land use, caused by 

people during irrigation or dryland management (“ANRA: Kamarooka Case Study 

Catchment”, n.d”). In short, this can be represented as a streamline discharge which 

may originate from the top of a hill, resulting in a flow of salinity that naturally 

descends through ground rocks and soil. The resulting discharge will eventually 

travel down the hill causing rises in water table salinity and ultimately impacting the 

agricultural land area (see Figure-2),.   

 

 

Figure 2: Salinity discharge caused in Kamarooka water catchment (ANRAa, 2000). 

A comparative assessment has found the condition in Peel Harvey’s Murray River as 

extensively modified due to the salinity drainage (“Estuary Assessment”, 2000). With 

attention to salinity drainage concerning the Peel Harvey, Peel Inlet estuary, Figure-

3, represents boundaries outlined in red as heavy discharge of salinity that flow to 

neighbouring sub-catchments. 
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Figure 3: Peel inlet salinity discharge (Department of Environment and Conversations, 2003, p7). 

 

The Natural Assessment Resource Group (NARG) has carried out an agricultural 

mapping of soil landscape data for the south west region of Western Australia. The 

mapped data is represented as a set of geographic spatial units or better known as 

datasets. The data is composed of hierarchies and stored in a GIS environment to 

allow spatial interrogation (ANRA, 2000, p. 17-18).  The large proportion of the 

hierarchy is represented by different level of units, such as, regions, provinces, 

zones and systems. Importantly, each spatial unit is represented as a scaled map, 

for example, a zone displayed as a map consisting of hydrological characteristics. 

The hydrological attributes contain information, such as depth to water tables, trends 

and risk categories (Department of Environment and Conversations, 2000, p. 17). In 

addition, an Ag Bores database is used in conjunction with the soil-landscape system 

mapping to provide a spatial bore analysis (2000, p. 19). 

 

 

1.2. SIGNIFICANCE OF THE STUDY 

 

The climate of Western Australia is undergoing a period of change; with the current 

predicted climate trends and the impact of salinity indicating that south west Western 
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Australian water catchments are at great risk, posing critical economic impacts to 

infrastructure, biodiversity and agriculture (ANRA, 2000, p. 52).  

 

The proposed research aims to determine the most appropriate data mining 

techniques for conducting an automated analysis on water catchment data sets.  In 

doing so, this may help to establish grounds for carrying out the most effective 

decision-making process for changes in climate and land use in Western Australia. In 

fact, the proposed study, adheres to the current industry methodology, as outlined by 

the National Land and Water Resources Audit (2000, p.7).  

 

1. Use existing spatial datasets for southwest WA 

2. Identify and define areas at risk from dry land salinity 

3. Predict current and future impacts of shallow water tables 

4. Evaluate the effectiveness of predictions  

 

The data mining techniques will enable the proposed methodology to provide the 

means of evaluation into the predictions of effects and risks of dry land salinity. This 

will consist of an innovative decision making platform that will contribute to solving 

and evaluating the effectiveness of the environmental problems and sustainability of 

productivity losses caused by dry land salinity in water catchment regions of Peel 

Harvey. 

  

1.3.  PURPOSE OF THE STUDY/STATEMENT OF THE PROBLEM 

 

The primary purpose of the study is to determine how certain data mining techniques 

can be used to interpret trends in Western Australian water catchment land use. To 

that end, a study with contributions from various scientific disciplines and software 

engineering practices must be carried out on Peel Harvey data sets. The proposed 

study will use relevant information including spatial information on, boundaries, 

cadastre, geodetic, imagery, tenure, topography, roads and other relevant 

agricultural information on Peel-Harvey water catchment region.  

 

The mining of large data sets is a difficult and time consuming task; this is certainly 

true when dealing with large volumes of spatial information. Therefore, it is 

imperative that custom software application is developed, which comprises the most 

appropriate data mining approaches, specific to the Peel Harvey water catchment 

case study. In order to justify the effectiveness of the data mining techniques, a 
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benchmark will be set against a simple statistical method. Any justification made 

from this investigation will contribute to evaluating the risk factors of water catchment 

attributes, for example, rainfall, crop yields, salinity nutrient and so forth. In addition, 

the ultimate goal is to conduct an interpretation of discovered patterns that will form 

as a basis of understanding various climate trends related to Peel Harvey water 

catchments. 

 

Above all, as stated by Kargupta et al (2006), in view of the fact that data mining has 

undergone rapid development over the past decade it has become apparent just how 

important a multidisciplinary and application driven approach can be for a projects 

success. For this reason, the current research problem will see this study create an 

innovative rich user based application, to conduct spatial scientific investigation into 

climate factors on Peel Harvey water catchment land use. 

 

1.4. THE RESEARCH QUESTIONS RELATED TO THE STUDY 

 

Primary research question: “Can data mining techniques be used to interpret 

trends in Western Australian water catchment land use?” 

 

i. Sub set questions one: “Which data mining techniques are the most 

appropriate for analysis of water catchment data sets” 

 

ii. Sub set questions two: “How can data mining techniques be used to make 

informative predictions in relation to changes in land use and climate”  

 

 

1.5. DEFINITIONS OF TERMS  

 
Term Description Source 

Algorithm A set of instructions that aim to perform an 

action. It can consist of finite number of steps 

required to form an action. 

(Howe, 2010a) 

Architecture Representations of a complex system design, 

including a set of components that make up the 

design.  

(Howe,2010b) 

Attribute A value or a relationship based on an associated 

entity. 

(Howe, 2010c) 
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Classification rules Carries out a search on a dataset for a small 

number of rules which serve as classifiers for 

predicting results. 

(Hui, et. el, 2008) 

Cluster Analysis Represents an overview of a region including 

clusters residing in the give region of space. It is 

used for classification purposes which illustrates 

a grouping of regions as a homogenous cluster.  

(Stillwell & Scholten, 

2001, p.160). 

DAFWA Depart of Agriculture and Food of Western 

Australia 

 

Data collection A set of data gathered from either, surveys, or 

networked locations via data capture, data entry, 

or data logging. 

(BusinessDictionary, 

2010a) 

Data Mining A set of complex algorithms and techniques 

used for searching through large amounts of 

data. 

(BusinessDictionary, 

2010b) 

ECU Edith Cowan University  

Geospatial A concept or illustration that represents a 

geographic location and characteristics of a 

natural or constructed feature, including 

boundaries on, above, or below the earth's 

surface.   

(Dictionary, 2010a) 

GIS Geographic Information Systems is a technology 

which translates data into visual map that can 

make up geographical representations. 

(Dees, 2002) 

Hydrology Distribution of geological matters that comprise 

the, distribution and effect of ground water. 

(Answers, 2010a) 

IDE Integrated development environment are 

general user interface programming 

environments which are optimised for platforms 

that they support for creating applications and 

tools. For example, Java Eclipse or Microsoft 

Visual Studio.  

(Wong, 2003) 

Machine Learning A computer machine which has an ability to 

improve its own performance through the use of 

software comprised of artificial intelligence 

(BusinessDictionar, 

2010c) 

http://www.businessdictionary.com/definition/data.html
http://www.businessdictionary.com/definition/survey.html
http://www.businessdictionary.com/definition/location.html
http://www.businessdictionary.com/definition/via.html
http://www.businessdictionary.com/definition/data-capture.html
http://www.businessdictionary.com/definition/data-entry.html
http://www.businessdictionary.com/definition/data-logging.html
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techniques. 

Method A procedure or a set of procedures comprised of 

techniques of a particular discipline or a 

systematic way of accomplishing a task. 

(Answers, 2010b) 

Methodology A system or an approach that is composed of 

various rules and disciplines that aim to 

understand or study the given problem. 

(BusinessDictionary, 

2010d) 

Model A set of steps or schematics that describes a 

system, a theory. 

(Answers, 2010c) 

OGC Open GIS Consortium (OGC) is an organisation 

for improve the interoperability process of spatial 

geographic standards.  

(Gould & Hecht, 2001) 

PCA Principal Component Analysis is an algorithm 

used for reducing the dimensionality of a data 

set from a large number of related variables.  

(Jolliffe, 2002) 

Precision agriculture A composition of applications and technologies 

aimed at managing spatial and farming practices 

with a purpose of improving farming crop 

production. 

(Answers, 2010d) 

R Environment R environment or R Project is an advanced 

statistical computing application which provides 

high level of graphics quality and it is freely 

available as an open source platform. 

(Ripley, 2001) 

SLIP  Shared Land Information Platform is a 

government data custodian portal. 

(SLIP, 2008, p.11) 

Topology Representation of a physical space, unlike 

geometry, it is not related to dimensions and 

angles but with the properties of a geographic 

surface. Such as, contiguity, order, and relative 

position. 

(BusinessDictionary, 

2010e) 

WEKA Waikato environment for knowledge analysis is 

an application workbench for conducting 

machine learning and data mining on data sets.  

(Garner, 1995) 

WA Western Australia  
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2.  REVIEW OF THE LITERATURE 

 

2.1. DATA MINING AND KNOWLEDGE DISCOVERY 

 

 

Data mining is defined as an interdisciplinary approach, which comprises a number 

of paradigms including information science, statistics, artificial intelligence and 

database technologies (Kamber & Han, 2006, p.29).  As stated by Abbas et al, 

(2002), the fundamental focus in data mining involves a heuristic approach that 

extracts greater value from the data than simple query and analysis approach 

(Hussein et. el, 2002, p 262 – 263).  It provides a way of extracting useful and 

implicit knowledge from large sums of data, thereby supporting businesses in their 

decision making processes (Williams. 2006, p28).  For example, Williams (2006) has 

reported the benefits of using data mining to improve  customer segmentation and  

retention, credit scoring, product recommendation, marketing campaigns, cross 

selling and fraud detection.  

 

Obtaining valuable information from large data sets using data mining is an essential 

step in process of knowledge discovery.  Norton (1999), defines Knowledge 

Discovery in Databases (KDD) as the investigation and creation of knowledge, 

processes, algorithms, and the mechanisms for retrieving potential knowledge from 

data collections (Norton, 1999, p.1).  Problems with handling large sums of data 

have resulted in unifying both the data mining with the KDD approach. In doing so, 

this has lead to an effective management of the data (Wojciech & Yao, 2001, p. 1 – 

2).  

 

Norton (1999, p.2) claims that KDD architecture was necessary since, an enormous 

increase in databases of all sizes and designs has created the necessity for more 

efficient grounds in data mining methods to access and analyse data. A data 

warehouse architecture or model allows the data to sit in a centralised repository 

(Inmon, 1995, p. 201).  Inmon (1995) confers that although data warehouses are not 

essential they may greatly improve the effectiveness of the data mining process 

through the:  

 

Integration of data: allows the miner to easily and quickly look across vistas of data 

reduces the amount of time cleansing and conditioning. 
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Detailing and summarisation of data: necessary when the miner wishes to 

examine data in its most granular; 

 

Historical data management: is important to the miner because important nuggets 

of information are hidden there; and 

 

Metadata: serves as a road map to the miner, who uses metadata to describe not the 

content but the context of information. 

 

Another benefit of data integration is that it allows the data mining analyst to 

concentrate on mining of data as opposed to the process of cleansing and 

integrating the data which as reported by Tamraparni (2003, p. 99), requires a 

considerable time to perform.    

 

2.2 STAGES OF DATA MINING 

 

General data mining process is comprised of several cyclic stages, these are 

outlined by Han and Kamber (2006, p.7): as data cleaning, data integration or 

selection, data transformation, data mining, pattern evaluation and knowledge 

presentation (see Figure-4).  

 

Similarly, Ponce & Karahoca (2009, p.32) further narrows the process emphasising 

on the knowledge discovery, such as:  

 

a. Data cleaning, pre-processing and transformation: involves preparing the 

data set for the data mining process. This includes, noise removal, missing data 

management and data sampling.  

 

b. Data mining: carries out a basic data set analysis, such as, tasking, 

classification, association and cluster analysis of data. 

 

c. Knowledge extraction and interpretation: used to describe the results from the 

analysis stage in a human-readable form. For example, an evaluation and 

understanding any patterns discovered.  

 

2.1.1 DATA CLEANING 

 

To begin with, cleaning of data, for the most part is an essential step that is used to 

carry out various maintenance procedures on data sets. Data maintenance is 
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compromised of filtering unwanted information, for example, modifying a set of 

records or attributes to achieve easy interaction during the pre-processing stage 

(Fayyad et. el, 2006, p. 301). This can include the mapping of data to achieve a 

single naming convention, for instance, the treatment of missing or noisy data 

(Fayyad et al., 2006, p. 40).  

 

According to Tamraparni (2003, p. 99) data cleaning is time consuming, since 

between 30%, to 80% of the data analysis task is spent on cleaning and 

understanding the data. 

 

2.1.2 DATA INTEGRATION AND TRANSFORMATION 

 

Data integration is used to combine data from multiple sources into one coherent 

repository, for example, a database or data warehouse. Consequently, the next 

logical step involves carrying out transformation on data which can be comprised of 

several sub steps, like, smoothing, aggregation or generalisation of data (Soman et. 

al, 2006, p. 113). Fayyad et al. (2006, p.64) explains that data smoothing is used for 

performing data reduction, similarly, Ponce & Karahoca  describe data reduction as 

the means of minimising the complexity in data (2009, p.50). 

 

2.1.3 DATA MINING 

 

The data mining stage, normally performed after pre-processing of data involves 

searching for hidden patterns; through the use of various algorithms. The data 

mining techniques, include, classification rules, decision trees, regression or 

clustering (Fayyad et al, 2006, B, p. 40). 

 

2.1.4 PATTERN EVALUATION AND KNOWLEDGE PRESENTATION 

 

Pattern evaluation and knowledge presentation is one of the final stages in the data 

mining, with the intention to interpreting and visualising the extracted patterns.  In 

conjunction with data visualisation, it is essential to interpretation of the data mined 

knowledge. For example, this may consist of documenting; reporting or verifying 

previously believed or extracted knowledge (Fayyad et., 2006, B, p. 40). 
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Figure 4: An overview of steps in data mining KDD process (Fayyad et. el, 2006). 

 

2.2 DATA MINING TECHNIQUES 

 

This section will examine the data mining techniques that could be considered the 

most appropriate for interrogation of the data sets. This review will concentrate on 

studies with an environmental or agricultural relevance.   

 

 

2.2.1 OVERVIEW 

 

Data mining techniques have been shown to aid in the description of data and 

prediction of future trends or variations in food grains (Mai, Krishna & Venugopal, 

2006). For example, with the help of the technique rules described below, decision 

makers may suggest methods for improving agricultural productivity (Mai, Krishna & 

Venugopal, 2006). Technical approaches such as: clustering, learning classification 

rules, anomaly detection are some of the key techniques used for improving seed or 

crop varieties and converting an utilised land for use in agriculture (Mai, Krishna & 

Venugopal, 2006, p. 3).To ensure the correct techniques are chosen for a particular 

dataset, Aruns suggests that the analyst must determine whether the dataset used 

for analysis will serve the purpose in the prediction or description of the data (Arun, 

2001, p.28). 

 

Prediction:  Makes use of existing variables in the database in order to predict 

unknown or future values of interest 

 

Description: Focuses on finding patterns describing the data and the subsequent 

presentation for user interpretation 
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2.4.2 DISCOVERY AND PREDICTION RULES 

 

Discovering and predicting rules have previously been used to represent demand in: 

water, fertilisation and pesticides. The effect of using the following rules on the 

chosen dataset assists in discovering new varieties of food grains (Mai, Krishna & 

Venugopal, 2006). An example of such rules is described below. 

 

WATER DEMAND RULE 

 

if( "Supplyof_water(in%)" >= "Demand_of_water(in%)" ,~1 ,~0 )  

 

The water demand rule acts as an attribute in a dataset to verify if supply of water is 

greater than the demand of water (Mai, Krishna & Venugopal, 2006). 

 

FERTILISER DEMAND RULE 

 

if( "Supplyof_Fertiliser(in%)" >= "Demandof_Fertilisers(in%)" ,~1 ,~0 ) 

 

The fertiliser demand rule acts as an attribute in world dataset to verify if supply of 

fertilizer is greater than the demand of (Mai, Krishna & Venugopal, 2006). 

 

PESTICIDES DEMAND RULE 

 

if (“Supplyof_pesticides(in%)” >= “Demandof_pesticides(in%)”, ~1, ~0) 

 

The pesticides rule acts as an attribute in world dataset to verify whether supply of 

pesticides is greater than the demand of pesticides (Mai, Krishna & Venugopal, 

2006). 

 

2.4. CLUSTER ANALYSIS 

 

Cluster analysis technique can be used for presenting a general overview of the 

dataset. It is also used for classification purposes which can illustrate a grouping of 

regions into homogenous cluster. The clustered information can be visually 

illustrated with data mining tools (Stillwell & Scholten, 2001, p.160). There are a 

number of cluster analysis algorithms which can be applied for aggregation and 
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presentation of clustered data, for example, expectation-maximisation (EM), 

FartherFirst and k-means.  

 

2.4.3.1 K-MEANS ALGORITHM 

 

The k-means algorithm is widely used in the field of agriculture. According to 

Mucherino, there are several areas that k-means algorithm can be applied (A. 

Mucherino, Papajorgji, & Pardalos, 2009, p.68). 

 

a. Atmospheric pollution forecast 

 

b. Soil classification  

 

c. Classification of plant, soil and residue in farming regions 

 

d. Marking for apples using grades 

 

e. Monitoring of water quality   

 

f. Weed detection  

 

 

 

2.4.3.2 EM AND FARTHERFIRST ALGORITHM 

 

Researchers at the School of Computer Science and DAFWA have used large 

collection of data sets to carry out a cluster analysis with an open source WEKA tool. 

The analysis was conducted using the expectation-maximisation (EM) algorithm and 

FartherFirst algorithm on five soil data profiles to determine the accuracy of real 

values involved (Armstrong, Diepeveen & Maddern, 2007, p. 89 - 93). 

 

2.4.3.3. PRINCIPAL COMPONENT ANALYSIS 

 

“The central idea of principal component analysis (PCA) is to reduce the 

dimensionality of a data set consisting of a large number of interrelated variables, 

while retaining as much as possible of the variation present in the data set" (Jolliffe, 

2002, p. 1). 

 



A. Sehovic Page 22 

Mucherino claims that even though the PCA component can be used as a data 

mining technique itself, it may however be more effective if used in conjunction with 

the k-means algorithm for studying the wine fermentation in agriculture (Mucherino, 

Papajorgji, & Pardalos, 2009, p.68). 

 

 

2.5 GEOSPATIAL DATA MINING 

 

2.5.1 OVERVIEW 

 

Data mining can be compromised of several disciplines include, information science, 

geographic information and visualisation. For that reason, Han & Kamber state that 

geo spatial data mining is the most efficient means of discovering and interpreting 

patterns (Han & Kamber, 2006).  

 

Spatial data mining uses geographic information. A large proportion of the data 

mining activities carried out can be attributed to exploring high volumes of data sets 

comprised of geographic attributes and relations (Gahegan, p. 244). There are 

several important issues which must be addressed so that the analysis process can 

produce effective analysis of the large volumes of data sets. These include spatial 

data infrastructure standards and GIS interoperability. 

 

2.5.2 THE SCIENCE OF SPATIAL DATA MINING  

Geographic Information Services (GIS) is considered as the primary means of 

communicating geographic information or media (Sui & Goodchild, 2001, p.116). 

However, this process is a complex interaction that involves interfacing of large 

volumes of data from different scientific domain. Consequently, the rapid increase in 

geospatial data mining has created two fundamental problems that must be 

addressed to ensure consistency and efficiency among data sets. First, is the lack of 

interoperability applied in spatial data sets when you consider the large volumes of 

data sets that may be represented in different spatial formats and located in various 

geographical locations (Sun, et al., 2006, p.50). Second, there is a substantial lack of 

meaningful information available for describing the complexity and characteristics of 

the data set (Lee & Percivall, 2008, p.58).  
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2.5.3 GIS INTEROPERABILITY 

 

The report conducted by Mark Reichardt represents a narrative into a potential 

havoc if interoperability to spatial data sets and general geographic information is not 

considered. Reichardt asserts that our world is going through a revolution of 

communication standards, and for this matter, many technologies are frequently the 

cause of confusion in the corporate standard decision making process (Reichardt, 

2004, p.1). He further conveys his argument in conjunction to the Delphi study 

conducted by more than 800 users by concluding that “there is a clear and sudden 

shift in attitude towards software standards” (Delphi study, 2003, p.1). 

 

However, to tackle the current issues trends of geographic information services, the 

Open GIS Consortium (OGC) was introduced over a decade ago with a goal to 

improve the interoperability process of spatial geographic standards. The open 

consortium has contributed to rapid improvement of interoperability among various 

geo-processing systems by introducing practical test beds and continuously 

conducting reviews on various consensus specifications (Gould & Hecht, 2001, p. 2). 

 

2.5.3.1 SPATIAL DATA INFRASTRUCTURE STANDARD 

 

Due to the evolution of geographic information in spatial data, a spatial data 

infrastructure (SDI) was introduced. The SDI is a subset process of the OGC which 

defines standard on interoperability across the climate sciences. (Woolf, et al., 2005, 

p. 9).The SDI contains developments which are compromised of several factors, for 

example, policies, data standards and human resources which are all necessary to 

achieve one unique goal. The goal is an infrastructure process consisting of 

achieving the following: process of spatial data, storage, distribution and utilisation of 

geospatial data (Woolf, et al., 2005, p. 9).  

 

Woolf concludes an application that is diverse and vastly compatible with various 

interoperability standards will enable different GIS technologies and methods to use 

and represent data in the same manner (Woolf, et al., 2005, p. 9). 

 

2.5.3.2 SPATIAL DATA INFRASTRUCTURE COMPONENTS AND LEVELS  

 

 Armenakis (2008, p. 328) describes the main components of the SDI, first, the ability 

to find relevant services and applications across virtual internet based SDIs. Second, 
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utilisation of tools and information that is independent of the supporting platform. And 

third, is the autonomous single vendor processing environment.  

 

Amernakis (2008, p. 328) summarises the four levels which can be applied to 

achieve spatial interoperability. 

 

1. Data interoperability: ensure that spatial data sets are shared independently 

despite the original format used;  

 

2. Semantic interoperability: match data from different applications by sharing a 

common description that describes the properties of the data sets; 

 

3. Network interoperability: provide communication between various services over 

the network; and  

 

4. Interface interoperability: enable client applications to execute procedures on 

remote systems. 

 

2.5.3.3 INTEROPERABILITY OF DATA IN CLIMATE SCIENCE 

 

Various governments across the world have embraced the significance of spatial 

data standard by applying interoperable GIS applications. The United States, 

National Spatial Data Infrastructure (NSDI) Initiative was one of the first groups to 

embrace the spatial infrastructure. Additionally, this has led to interest from other 

countries to invest in interoperability of spatial standards, this includes, Canada, 

Australia, South Africa and the European Union countries (Woolf, et al., 2005, p. 9). 

 

For example, the United Kingdom’s, NERC Data grid project was developed to carry 

out scientific climate research on water salinity. To illustrate the interoperability 

process of this project, the project has conformed to standards of International 

Standard Organisation (ISO) by using compliant data model to measuring various 

salinity profiles across different marine locations. Furthermore, the information 

identified and collected in the process was collected and stored in data sets that 

abide by interoperable meta-data parameters (Woolf, et al., 2005, p. 12 - 14).   

 

2.5.4 SPATIAL IDENTIFIER OBJECTS  

Spatial data mining involves manipulation of attributes that are normally found in 

organizational databases, for instance, the database address table which may link to 



A. Sehovic Page 25 

other geographical information. This includes, namely qualitative data, which is 

identified using an indirect positioning system. Also, the spatial objects are normally 

represented by a location that is identified using a geographic Identifier (Santos & 

Amaral, 2004, p.374). Spatial identifier object is generally represented by a terrestrial 

position using two set of angles, the latitude and longitude (Ordance Survey, 2008).  

 

2.5.5 QUALITATIVE SPATIAL REASONING 

Qualitative reasoning is composed of various spatial algorithms which can establish 

relationship characteristics among various geospatial data. For example, these may 

be classified into the following three relations, namely, directional relation, distance 

relation and topological relation (Santos & Amaral, 2004, 376). 

 

2.5.5.1 DIRECTIONAL RELATIONS 

 

To estimate the orientation of objects, triangular model can be used to determine the 

relative orientation of corresponding centroids. Also, the triangular model is an 

effective approximation for handling objects which are far away from each other 

(Hernadez, 1994). 

 

 Hernadez (1994, p. 46-47) illustrates in the Figure-5 that if a centroid P2 object was 

to fall within the boundary of a triangular area in P1 than adjoining areas are 

assumed to have 50% overlap.  

 

 

Figure 5: Triangular model (Henradez, 1994, p. 47). 

 

2.5.5.2 DISTANCE RELATIONS 

 

According to Renz (2002), distance relation is one of the most important aspects of 

spatial space which enables computation of distance between objects. The absolute 
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distance relation is calculated by dividing the real line into several sectors, known as: 

very close, close, commensurate, far and very far (Renz, 2002, p.39).  

 

There are two main models which can be used to calculate the distance 

relationships, such as:  absolute distance model and a relative distance model, as 

illustrated in Figure-6. 

 

 

Figure 6: Illustration of distance relation models: (a) absolute distance, (b) relative distance (Renz, 

2002, p. 40). 

 

 

2.5.5.3 TOPOLOGICAL RELATIONS 

 

Topological relation is used to represent a qualitative relationship between one or 

more regions and provide a way for distinguishing a regional representation (see 

Figure-7). For example, topological relation can determine whether or not two 

regions are disjointed, touched or inside each other boundaries (Forbus et el, 2004, 

p.65). In addition, such measures can determine when to compute and recognise 

different relationship types and provide a conceptual interpretations of regions (2004, 

p. 65-66) 

 

 

Figure 7: Topological regions (Santos & Amaral, 2004, p.376). 
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2.6 SPATIAL DATA MINING TECHNIQUES 

 

2.6.1 OVERVIEW 

 

Spatial data mining techniques can comprise various data mining techniques, 

generally speaking, these may include, classification, associations, clustering and 

principal component analysis.  The following section outlines a set of useful case 

studies that examine different approaches in how, when, where, and what spatial 

data mining techniques could be used to when conducting analysis of various 

agricultural data mining, such as, soil mapping, land use, climate prediction and 

remote image sensing.  

 

Large numbers of spatial techniques already exist; aside from a singular use of these 

techniques, it is not unusual to incorporate multiple techniques in the data mining 

process. That being said, integrating techniques such as: association, clustering and 

principal component analysis all form the basis in achieving a comprehensive and 

robust evaluation of spatial data sets. 

 

 

2.6.2 SPATIAL INDUCTIVE CLASSIFICATION TECHNIQUES 

 

There are various methods which can be applied to spatial data mining; according to 

Deren, Kaichang & Deyi (2000, p.31). Inductive learning is considered to be one of 

the most common methods. However various consequence may arise if inductive 

learning is not directly incorporated during classification of data. For example, a 

study by Deren, Kaichang & Deyi carried out spatial classification of land use on 

remote sensing images with a Bayes method (Deren, et el, 2000, p. 34). The first 

phase of the study was based without implicitly using an inductive approach. The 

classification was carried on various water based regions, such as: lakes, reservoir 

and ponds.Other non-water regions were also classified, including, vegetable fields, 

gardens and forests (Deren, et el, 2000, p. 32-34). 

 

The study has found that Bayes method would yield a classification of 77.619% 

accuracy. Furthermore, it was found that an additional classification studied on dry 

land, garden and forests would result in reduced accuracy of 63.58%, 48.913% and 

59.754% respectively. (Deren, et el, 2000, p. 32-34). However, despite an 
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inadequate accuracy of results, it was discovered when Inductive learning is 

integrated into the Bayes method, an increased accuracy of 88.857% can be 

achieved (Deren, et el, 2000, p. 34-35).  

 

 

2.6.3 SPATIAL ASSOCIATION TECHNIQUES 

 

“A spatial association rule is a rule which describes the implication of one or a set of 

features by another set of features in spatial databases. For example rules like most 

big cities in Canada are close to the Canada, US border is a spatial association rule” 

(Koperski & Han, 1995, p. 48).  

 

In the study conducted by Ding and Perrizo (2008, p. 1513), applying a P-tree based 

Association Rule Mining (PARM) algorithm to spatial Remote Sensed Image (RMI) 

based dataset was found to be an effective method for identifying the following: crop 

yields, insect or weed infestations, nutrient requirements and flooding damage. 

 

The structure of a P-tree algorithm is “a quadrant wise, Peano-order-run-length 

compressed representation of each (bit Sequential) bSQ file. The idea is to 

recursively divide the entire image into quadrants and records the count of 1 bits for 

each quadrant, thus forming a quadrant count tree” (Ding and Perrizo, 2008, 1514 – 

1515). Figure 8 illustrates the benchmark associations of P-tree algorithm in 

comparison to a similar Peano Mask Tree (PM-tree) algorithm. 

 

 

Figure 8: Benchmark comparison between PARM, P-tree and PM-tree (2008, p. 1515). 

 

It is claimed that a P-trees is a major contributing factor in performance. For an 

example, a benchmark experiment conducted against other algorithms like, Apiori 

and FP-growth has found that PARM is more scalable with large spatial data sets. In 

summary, it is evident that the PARM algorithm, as illustrated in Figure 9, proves to 

be vastly superior in scalable performance when compared to other contending 

algorithms (Ding and Perrizo, 2008, p. 1520 – 1522). 
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Figure 9: Scalable performance benchmark comparison between Apiori, FP-growth and P-Arm (2008, 

p. 1521). 

 

2.6.4 SPATIAL CLUSTERING TECHNIQUES 

 

Spatial cluster analysis is an important data mining technique with an essential role 

in quantifying geographic variation patterns (Jacqueez, 2008). Jacqueez (2008, p. 

395) explains the spatial cluster analysis is  “commonly used in disease surveillance, 

spatial epidemiology, population genetics, landscape ecology, crime analysis and 

many other fields, but the underlying principles are the same”. 

 

The study by Ng and Han, (1994) conducted a research in a development of a 

unique Clustering Large Applications based upon Randomised Search (CLARANS) 

algorithm which is based on various spatial cluster analysis techniques. Since 

CLARANS technique was specifically suited for analysing large sample of spatial 

and non-spatial attributes (2008, 144), for that purpose, it was utilised to study the 

distribution of 2500 luxurious housing units in Vancouver, Canada. However, the Ng 

& Han, (1994, p. 145) argue that in the past cluster analysis has been applied 

unsuccessfully to general data mining and machine learning problems. For this 

reason Ng and Han state that this can be linked to a lack of a natural notion in 

similarities among the clustered objects.. In fact, the CLARANS method has taken a 

direct approach in challenging this issue by successfully establishing natural notions 

of similarities between objects. By the same token, such similarities can be 

compared to the Euclidean or Manhattan relation concepts, as discussed in research 

methodology section. 



A. Sehovic Page 30 

 

In order to justify the effectiveness of CLARAN, other cluster algorithms, like, 

Partioning Around Medoids (PAM) and Clustering Large Applications (CLARA) were 

tested. Ng & Han outline (1994, p. 144 – 149) some of the characteristics found in 

the following algorithms, during an experimental stage:  

 

1. PAM cluster analysis: was used to establish a location of a medoid object in each 

cluster node. Medoid objects are specifically processed by being centrally allocated to 

each clustered region. An experiment has found that PAM would perform satisfactorily 

on small datasets, however, PAM would not perform effectively enough on medium or 

large data sets (Ng & Han, 1994, p. 144). 

 

2.  CLARA cluster analysis: is primarily used for analysing large data sets by searching 

for representative objects in conjunction with the PAM algorithm. Findings prove that a 

lack of distance accuracy was present during an analysis of 5 clustered regions. As a 

result, the clustered regions would yield a displacement gap of 30% during an 

association of 1000 objects.  Furthermore, when number of objects was increased to 

2000, an association of unsatisfactory 20% improvement were found. (Ng & Han, 

1994, p. 146). 

 

The experiment as illustrated in Figure-10 was based on evaluating the efficiency in 

number of objects during a runtime and relative distance benchmarks between 

CLARAM, PAM and CLARA spatial clustering techniques. 

 

 

Figure 10: Experiment result of CLARAM vs. PAM and CLARA (Ng & Han, 1994, p. 152). 
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In conclusion, satisfactory results have been achieved when the CLARANS 

technique was applied to a real estate dataset with a set of filtered rules to discover 

spatial distribution of various luxury houses in city of Vancouver, Canada. The results 

have discovered realistic outcomes, in particular when representing clustered tuples 

or condo regions (Ng & Han, 1994, 153). Ng & Han in support of Figure-11, outline 

the results for the distribution of four universally different spatial regions (1994. 152). 

 

Top right rectangular region: represents 1200 condos uniformly distributed.  

Bottom left hand region: represents 320 mansions and 80 single houses. 

Bottom right polygonal region: represents 800 single houses. 

Middle scattered region: represents 100 single uniformly distributed houses. 

 

 

Figure 11: Spatial distribution of the 2500 luxurious houses (Ng & Han, 994, p. 152). 

 

2.6.5 SPATIAL PRINCIPAL COMPONENT ANALYSIS TECHNIQUE 

 

Principal Component Analysis (PCA) normally used for multivariate statistical 

purposes, can also be applied spatially. For example, it was proven that PCA 

techniques can be used to identify parameters of maximum variations by monitoring 

spatial and temporal changes of water quality, elevation of the water and land use 

(Zeilhofer, Lima & Lima, 2006). Similarly a recent study by Asanobu Kitamoto (2002) 

into spatio temporal data mining study has successfully demonstrated that PCA 

technique can be an effective method for extracting spatial attributes, such as, 

latitude, structures and spiral bands from a large collection of satellite images of 

typhoons.  
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2.6.5.1 SPATIO TEMPORAL DATA MINING USING PCA 

 

According to Andrienko et al., (2006) spatio temporal data mining is an emerging 

research area which undertakes development of novel data mining applications. The 

fundamental aspect of this research is subdivided into two areas, spatial data and 

temporal data. Spatial data is normally obtained by GIS and robotic or mobile 

applications, while the temporal data is obtained by registered events, such as, 

telecommunication or network traffic data (Andrienko, 2006, p.187). 

 

Also, the spatio-temporal data mining can be used to study the dynamics and 

patterns in spatial analysis (Kitamoto, 2002). For example,  research by Kitamoto 

(2002, p.31-35) has effectively applied the Principal Component Analysis for studying 

the patterns of typhoon clouds of northern and southern earth hemisphere. Similarly, 

it was demonstrated that geographic visualisation (GeoVIS) methods such as, 

cluster analysis in conjunction with knowledge discovery in databases can provide 

an effective means for extraction, correlation analysis, anomaly detection, pattern 

recognition and filtering of spatio temporal patterns in environmental data 

(Wachowicz, 2002, p.483).  

 

2.7 DATA MINING TOOLS 

 

2.7.1 OVERVIEW 

 

There are a number of data mining tools that have been developed by different 

communities (Schneiderman, 2000, p.9). The following section describes the data 

mining applications and tools which are used for machine learning, data mining and 

statistics and geospatial paradigms.  The popularity of data mining has lead to both 

the public and consumer market in developing various open source and commercial 

platforms, these include, WEKA, Project R,   commercial SPLUS tools, and more 

described in the following section  

 

Current modern data mining applications are compromised of rich user interfaces 

with an emphasis on problem solving via graphical means, such as simulations. 

Although, the extra complexity may be an additional overhead, however according to 

Schneiderman (2002, p. 8), it is an essential process if the user is directly involved 

with the graphical user interface. The visualisation of problems in modern data 

mining applications can therefore provide the best means of pattern discovery. They 
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may assist in effective decision making for highly inhomogeneous and noisy data 

(Keim, 2002, p. 100). 

 

By the same token, Schneiderman (2002, p 10 – 12) has outlined three fundamental 

recommendations in developing graphical data mining applications: 

Recommendation 1: deeper understanding of the data sets may be achieved by 

creating various graphical charts, like, scattergrams; in doing so this may contribute 

in creating an innovative data mining tool; 

 Recommendation 2: provide the user with an opportunity to specify what patterns 

they are looking for in the data set. Also, ensure the user is given the ability to 

perform an interesting evaluation of the results; and 

Recommendation 3: create an atmosphere of social interaction between the 

researchers and practitioners by sharing data from multiple sources. Create a social 

application domain that is focused on allowing the user to present their findings with 

other domain experts. 

2.7.2 WEKA  

 

The Waikato environment for knowledge analysis (WEKA) as described by Garner 

(1995) is an application workbench capable of carrying out machine learning on real 

world data sets. In addition, Garner adds, the WEKA analysis was designed to bring 

a range of machine learning techniques and schemes under one unified repository 

(Garner, 1995, p.1). Equally important, the WEKA’s primary interface known as an 

Explorer is comprised of user interface panels that allow the data analyst to conduct 

various data mining operations. For example, these may include, conducting the pre-

processing of data set which resides on an SQL server, in either remote or local 

mode (Frank et. el, 2004). However, Frank et. el, (2004, p. 2479) argues that 

WEKA’s memory  is not effectively maintained. As a result, Frank suggests that this 

may cause unwanted high memory usage and potential performance reduction 

during the sampling of large data sets.  

 

2.7.3 PROJECT R  

 

Project R originally developed by Ross Ihaka and Robert Gentlemen at the 

University of Auckland, is an advanced statistical computing application which 

provides high level of graphics quality and it is freely available as an open source 

platform (Ripley, 2001, p.1-p.2). Ripley claims (2001, p.2), one of the key benefits of 
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Project R is related to high public support of various packages which harvest 

different data mining  and scientific algorithms. The packages also known as 

extensions can be obtained free of charge from the Comprehensive R Archive 

Network (CRAN).  

 

However, Ripley (2001, p.2) has compared several differences to another similar 

commercial statistical platform, named S or S-PLUS. One of the benefits of Project R 

when compared to S environment is the application size and notable performance 

speeds on less powerful computer machines. However, Ripley suggested that 

project R performs unsatisfactorily during three dimensional graphical processing. 

Nevertheless, both platforms provide rich two dimensional graphical analyses. In 

particular, for an open source platform, the Project R is proven to be far more 

superior in computing complex mathematical annotations.  

 

2.7.4 S ENVIRONMENT  

 

Unlike the project R, Bates (1999, p.266) claims that S environment was established 

to be one of the principal computing applications for statisticians and serious data 

analysts. Bates argues that S is greatly as a result of being able to provide user 

extensibility and flexibility of graphical user interfaces to users.   

 

2.7.5 MATLAB 

 

Matlab is considered as one of the predominant commercial software language tools 

in technical computing. Likewise, Matlab provides strong support of expressive 

language, specific to running rich data analysis, simulation and mathematical 

modelling inclusive of many mathematical algorithms (Travinin Bliss & Kepner, 2007, 

p.336).  

 

The users of matlab are primarily said to be engineers and scientists, for this 

purpose, the users are given resourceful design features. Travinin Bliss & Kepner 

clarify that Matlab software is valuable in so that is allows the user to concentrate on 

the core scientific tasks while less time is being spent during an implementation 

phase (2007, p.336). Furthermore, Matlab contains powerful functionalities that 

enable complex data processing, specifically cantered for large data sets (Travinin  

et. al, 2007, p.336-337). 
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2.7.6 GRASS GIS 

 

Geographical Resource Analysis Support System (GRASS) is a powerful open 

source software environment that focuses on geospatial data mining and other 

scientific studies. Neteler & Mitasova (2008, p.3) argue that Grass software provides 

vast support of raster and vector data formats which are capable of carrying out 

powerful image processing and data mining tasks. Additionally, designed in mind to 

support GIS interoperability features, specifically compliant with OGC industry 

standards.. Consequently, GRASS provides approximately 350 mathematical 

modules, in particular catered for analyses on geo-referenced analytical features, 

such as: data management, data processing, spatial analysis and spatial 

visualisation (Neteler  et al, 2000, p.3).  

 

Neteler & Mitasova claim that GRASS, originally developed to run under a UNIX 

operating system (OS), though it is said that existing knowledge of UNIX system is 

an essential requirement in order to make the most of application capabilities. 

Nevertheless, gradual support for other operating systems have been incorporated, 

including Sun Solarix and MacOS X.  In addition, it was proven that GRASS can 

surprisingly run on constrained limited devices such as portable data assistant  

(PDA) devices (Neteler et al, 2000, p.7).  

 

In a study by Woolf, A., et al., (2004, p. 14) they showed that geological algorithms 

can effectively be used with Grass software to aid in the process of constructing and 

visualising three-dimensional land surface boundaries. For example, using raster 

data sets from Honjyo, Akita regions in Japan, GRASS was able to visualise various 

three-dimensional boundaries that represent various detail of surface elevations.  

 

2.7.7 DATA BIONIC ESOM  

 

According to Ultsch & Morchen (2005, p.5) the Data Bionic Emergent Self-

Organising Maps (BIONIC ESOM) is an open source tool that is specifically 

developed to conduct common data mining tasks in support of classification and 

other cluster analysis techniques.  Moreover, ESOM tool is reported to comprise of a 

rich graphical user interface for carrying out various algorithms that deliver visual 

interpretation of data sets through, clustering, outlier removals and construction of 

non-redundant map views (Ultsch et al, 2005, p.6). 
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2.7.8 SHARP MAP 

 

SharpMap is a spatial development library tool that assists software developers to 

query geo-spatial functions and render geographic information to maps. The 

rendering engine is based on two common GIS data formats, vector data and raster 

data. Furthermore, some of the examples of vector data types supported by 

SharpMap, include, ESRI Shape files, PostGIS, Oracle and CSV. Likewise, the 

support of raster data types, includes, Grass raster format, JPEG, Arc and many 

other common formats  and many other common industry formats.  

 

 A research by Lamas et al. (n.d, p.722), has demonstrated how Microsoft Visual 

Studio 2005 in conjunction with Sharp Map library can aid the process of 

constructing a rich geospatial PDA application by generating spatial map attributes 

and carry out a request of geometrical information in real time. For example, Lamas 

et al (n.d, p. 722-723), explains that Sharp Map was used effectively to query 

geometrical spatial data through the PostgressSQL database provider and notify the 

user of their location of interest.  

 

2.7.9 POST GIS  

 

The significance of centralised data mining storage and management of geospatial 

data is a crucial task, in particular when dealing with large sums of data in an online 

web application. An investigation into the use of spatial database tools by Brovelli & 

Magni (2003) has demonstrated various capabilities of Post GIS tool. It was 

established that Post GIS can be configured to run an online data analyses of 

cultural heritage data sets and illustrate the analysed outcomes in a digital format. 

The results could then be used to render various topographic properties, such as: 

pathways, highlights, and hydrology and land use characteristics. Brovelli & Magni 

(2003, p.93) concluded that Post GIS, originally being an extension to Postgresql 

SQL database is an indispensable system from which an online geospatial data can 

be used to render and evaluate digital maps in an online application using the Map 

Server, the component of a Post GIS tool. 
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2.7.10 SUMMARY 

 

The current research will revolve around several dominant and inclusively 

appropriate data mining tools for current study, such as: Project R and Post GIS. For 

this purpose the Project R will serve for carrying out data analysis on selective data 

sets, including pre-processing and a Post GIS tool will provide storage and relational 

management of spatial data sets. However, in order for such tools to interface and 

communicate effectively, the proposed methodology as explained in section 4 will 

employ a collaboration of several other equally significant spatial data mining and 

data visualisation tools. Refer to section 4.3 for an in depth explanation into the 

apparatus and conceptual context of the research tools involved. 
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2.8 CASE STUDIES SIMILAR TO THE CURRENT RESEARCH 

 

2.8.1 OVERVIEW 

 

The following section introduces case studies related to the proposed data mining 

research. These include research studies into various decision support system 

(DSS) and current best management practices for developing software applications 

which may assist various geo-spatial data mining research groups. Equally 

important, the following section examines the concept of precision agriculture and 

how it may contribute in discovering useful patterns, in particular, in farming fields 

which could reduce farmer’s costs and therefore keep many struggling farms viable 

(Luntz, 1998). 

 

2.8.2 SELECTING AREAS FOR LAND USE IN WATER CATCHMENTS 

 

Dunstan, Armstrong & Diepeveen (2009) emphasise on current impacts of dry land, 

in particular, the effects that pose threats to land use and water catchments of 

Australia. Therefore, It is concluded that salinity is a,   

 

“... major problem in arable areas of Australia where past farming practices have led 

to rises in the ground water table that result in stored salt being transported to the 

surface. High levels of salinity at or near the soil surface diminish crop yield and 

result in runoff into creeks and streams with high salt content”. 

 

For this purpose, a research into the study of Land Use Cover Change (LUCC) was 

established to illuminate the effects of human activities on the landscape and 

environment, as well as to predict the trends in environmental impacts. Furthermore, 

the LUCC model was created for carrying future trends simulations of dry land 

salinity by a set of hydrology inputs. For example, inputs included in the process are, 

rainfall, land use and soil type which all serve the purpose of discovering useful 

patterns (Dunstan, Armstrong & Diepeveen, 2009, p.1-3).  

 

One of the unique aspects of LUCC is the application use, which has the ability to 

calculate a rate increase in the ground of water table rises using an aggregation 

measure model, namely, Depth of Water Table (DWT). Dunstan, Armstrong & 

Diepeveen (2009) outline an aggregation of measures which comprise an evaluation 

of a DWT model: 
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a. A minimum DWT. 

b. A maximum DWT. 

c. An average DWT. 

d. Percentage of blocks with Depth Water Table at the surface. 

e. An average decrease in the DWT. 

f. Percent of blocks with rapid decrease in DWT. 

g. Total amount of count of blocks or dimensional area of a water catchment region. 

 

In conclusion, it was determined that an application was a viable simulation 

environment, with capabilities in providing meaningful and informative data mining 

predictions in DWT rate scenarios. As a result, this has lead to establishing a better 

understanding of the consequences for an overall water catchment planning 

(Dunstan et al, 2009, p.8). 

 

2.8.3 SIMULATING CROP DECISIONS FOR WATER RESOURCE 

MANAGEMENT 

 

A study conducted by Ekasingh et al. (2005) has demonstrated the benefits of using 

decision trees with the WEKA, a data mining tool which may assist in more efficient 

management of water resources. The approach was comprised of data collections 

carried out on three catchment areas (Ekasingh et al, 2005, p. 317), including a 

comprehensive crop study of house hold characteristics surrounding the water 

catchment areas. The study has concluded that decision trees have made a great 

impact to the classification of various crop-types and categories of crops. Ultimately, 

it was discovered, when a decision tree technique is employed to analyse 

socioeconomic and biophysical variables, for example, income, subsistence 

production, erosion and water yield characteristics (Ekasingh et al, 2005, p.325) can 

simulate effective agricultural socio economic land decisions.  

 

2.8.4 PRECISION FARMING FOR AGRICULTURE 

 

In October 2001, Wilcox (p. 1) described precision farming as coupled with many 

challenges especially since, 

 

“...the goal of precision agriculture is to manage your farm land better. The challenge 

is to find the best way. If you talk to 10 different people, you may get 10 different 

tasks. It’s cause for much debate”. 
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Wilcox (2000, p.1) reported on an agricultural study undertaken by farmers into 

precision farming at Nebraska Agricultural Technologies Association (NeATA). One of 

the unique aspects of precision farming, in particular to the NeATA study context, is 

how best farming practices can be incorporated with modern software applications. 

For example, Wilcox (2001, p.1 – 2) provides some useful insights into how the 

Trimble AGIS system has inherited various GIS and data analysis software packages 

to normalise dataset of yield data. Furthermore, the AGIS system was used to 

compare: soil images, soil conductivity and topography in order to produce an 

evaluation for profit and loss scenarios in conjunction with topographic GIS layers. In 

particular, the precision farming was also used as a long term plan in determining 

future instability of areas that may suffer from an ongoing dryland.  

 

Wilcox (2001, p.2) outlines various characteristics of the AGIS system and other 

software tools contained into Trimble AGIS system.  

 

AgLeader SMS Basic software: was used for organising the yield data, also, it was 

used to import Arc View shape files and TIFF images for creating custom map layers;  

 

Farm YES software: obtained from Red Hen Systems for conducting yield data 

analysis; 

 

Arc View GIS ESRI software: commonly used since it is regarded as preferable 

software among government agencies; 

 

Arni Hinksons software: commercial used primarily since it was well priced, and 

above all, it provided high end geographic information (GIS) by quickly handling data 

at any resolution without an over head of re-sampling of data sets;  

 

Micro Excel and Red Hen’s MapCalc Learner: for statistical analysis of data sets; 

and  

 

S-plus Math Soft and GS+ design software:  for carrying out more complex data 

analysis. 

 

A similar study by Zhang et al., (2009) has proven that precision farming is for online 

decision making. ZoneMap was developed as a web based decision support tool that 

allows end users, farmers, ranchers or extension specialists to conduct precision 

agriculture of crop management (Zhang et al., 2009, p. 105). In addition, Zhang et 
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al., (2009, p. 105-108) suggest that ZoneMap is capable of gathering multiple source 

of data from any part of the world for carrying out remote sensing observation which 

was proven to be extremely effective in capturing field variability.  

 

2.8.5 BEST MANAGEMENT CRITERIA FOR PEEL-HARVEY WATER 

CATCHMENT  

 

Australian government coastal catchment initiative (CCI) of Western Australia has 

committed an investigation into the best management practices (BMP) for Peel-

Harvey water catchment in order to evaluate and improve water quality of various 

estuary ecosystems. The importance of the study was to evaluate the effects of 

various BMP criteria’s that could serve as a model for future decision support 

systems (DSS) and for spatial optimisation of Peel-Harvey catchment data sets.  

 

The study suggests that integration of best management practices into decision 

making tools is an essential process which may result in the reduction of excessive 

loads of nutrients reaching the receiving waters (Keipert et. al, 2008, p. 1749). For 

example, the current plan suggest that DSS framework described by Weaver et al 

(2005) may assist in examining possible nutrient scenarios, for example, a decision 

tool that studies the adoption of P indicators (2008, p.1752). For this purpose, the P 

indicator, an original approach introduced by Heathwaite et al (2003) outlines three 

types of contributing factors, as follows: 

 

Source factors: nutrient input characteristics including mineralisation inputs; 

Transfer factors: rainfall and erosion risks; 

 Delivery factor: land drainage factors including hydrological connectivity. 

 

The following Sanken diagram (see Figure-12) illustrates a model for estimation of 

relevant nutrient flows and stores for the Peel-Harvey water catchment. Generally, 

the diagram illustrates each bar which represents a relative contribution from each 

land use sector. For the most part, the applicability of a Sankey model may provide 

many benefits in better understanding the impacts of nutrient flows and stores for 

various land use sectors (Keipert et. al., 2008, p.4 - 5). 
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Figure 12: Sankey’s diagram of P flows and stores in Peel Harvey water catchment  

(Keipert et. el, 2008, p.5). 

 

In conclusion, Keipert et al., (2008, p. 1754) outlines various guidelines of water 

catchment criteria’s that can be implemented, for instance a DSS, to provide a guide 

priority setting and investment planning to achieve the following: 

 

a. Establishing water quality with a statistical approach using median values for each P 

concentrations factor; 

b. Incorporation of a cost benefit for different types of BMP’s; 

c. Provide effectiveness by reducing nutrient loads to all estuaries; or 

d. Merge all the following criteria’s as a, one unified BMP criteria. 

 

2.8.6 HYDROLOGICAL MODELLING WITH JGRASS SOFTWARE 

 

An application that inhibits various Decision Support System (DSS)features has 

been developed in conjunction with other system to study topographic data and 

represent visualisation of hydro-geographic scenarios (Sengonul & Yilma, 2001). For 

example, a scenario depicting large stream of waters was developed with an open 
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source; JGRASS software. According to Sengonul and Yilma (2001), JGrass, being 

hydrological modelling software, was proven to be successful in carrying out 

effective management and modelling of river basins, For instance, the following 

diagram (see Figure-13) illustrates a composition of other applications used for 

collaborative and centralised communication with the Grass or JGRASS system.  

 

In addition, Sengonul & Yilma (2001, p. 249 – 250) justify that digital elevation model 

(DEM) can be directly applied to the JGRASS for representing geospatial 

information. For this purpose, a range of DEM rules when incorporated into the 

GRASS environment, can govern the implementation for the following: basic 

analysis, network measurements, hill slope analysis and visualisation of hydro 

geomorphic index (2001, p. 249).  

 

In summary, according to the figure 16, it is conceptually clear, that a direct 

integration of a database management system and other equally important data 

mining tools could be constructed to achieve a unified environment. Comparatively, 

the current research poses some similarities as proposed in the section 4. For 

example, an integration of external GIS data, generally used for data analysis can be 

directly interfaced with an R environment, as shown in the figure below (see Figure-

13). 

 

 

Figure 13: GRASS (JGRASS) and integrated applications (Sengonul & Yilma, 2001, p.248). 
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3 MATERIALS AND METHODS 

This section describes the proposed research methodology with a focus on the 

industry problem. In addition, this section includes a description of relevant 

equipment required to create a proposed data mining application.  The section will 

also include an examination of how the data sample was obtained with the proposed 

research strategy and application process to conduct data analysis.   

 

3.1   INDUSTRY PROBLEM  

The primary focus of this research is to find ways to solve the dryland salinity 

problems facing the Western Australia, in particular, the south west region of Peel-

Harvey.  For this purpose, the WA government has conducted surveys to discover 

the extent and impacts of dryland salinity trends and establish how ground water 

table salinity may cause dramatic effects on our climate and agriculture over the next 

decade (ANRA, 2000). As a result, government and industry has proposed a 

methodological approach to combat the effects and risks of dryland salinity 

(Australian National Resource Australian, 2000, p.7). 

 

3.2   RESEARCH METHODOLOGY 

 

The methodology employed in the proposed research will investigate an appropriate 

data mining techniques using a software instrument comprised of various data 

mining tools. The instrument will be created using a general software engineering 

process. Though, software engineering processes is said to have gained little 

knowledge into its appropriateness of use (Basili, 1992, p.1-2). For this reason, it 

was determined that scientific method, originally introduced by Basili (1992, p.2) and 

quasi-experiment research will be the most applicable methodology to be undertaken 

for the current research.  

 

There is a lack of effective data mining frameworks available which to create an 

effective research instrument software for validation of data mining methods. As a 

result, the quasi research approach was deemed a feasible approach which will 

involve a manipulation of quantitative data from the Peel Harvey water catchment, 

spatial data sets. The research will perform a benchmark comparison followed by a 

detailed data analysis and validation into the effectiveness of data mining 

techniques, such as: cluster analysis, PCA and classic statistical methods. 

Furthermore, the software, an instrument tool, will assist in an inductive process by 

interpreting the results using various open source geospatial tools. Therefore, the 
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instrument tool aims to integrate various proven data mining tools capable of 

interpreting the salinity trends on water catchment data sets. Consequently, this will 

determine whether any useful patterns or correlations in climate trends exist across 

longitudinal data collection.   

 

In conclusion, to ensure an effective creation of an instrument tool is carried out to 

validate current research activities, the following measures will be applied, as follows 

(Basili, 1992): 

 

a. Observe the research on dryland salinity using Peel-Harvey water catchment data 

sets. And, evaluate the effectiveness of current data mining techniques used to 

discover meaningful patterns;  

 

b. Propose a model by developing an integrated geospatial data mining application 

domain in conjunction with latest, industry standard GIS tools;  

 
c. Measure and analyse the data sets using statistical tools and geospatial frameworks; 

 
d. Validate hypotheses by carrying out a benchmark evaluation and interpretation of 

analysed results; and 

 
e. Repeat the procedure in a software engineer manner until reasonable justification is 

made to establish a meaningful conclusion to an overall industry problem. 

 

3.3   DESIGN 

The following section is comprised of required software and hardware which will 

assist in development of a proposed data mining application. Also, this section 

contains a conceptual context diagram which aims to support the current software 

engineering process, this includes, a visual design illustrating an overall application 

domain of tools. 

 

3.3.1 DESCRIPTION OF INSTRUMENTS EMPLOYED 

 

The following section includes relevant instrument types which are required to 

support the development of a proposed data mining application. The following 

section is divided into five sections. The first section will describe the required 

computer programming tools, including, integrated development environment (IDE) 

tools and various software development kits required for integrating with other tools, 

as illustrated in section 4.3. The second section will describe the database 

management tools used for storage and manipulation of the spatial data sets. This 
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will be followed by a section that details public and third-party proprietary 

components, normally considered as plug-ins to the IDE for geospatial and 

computational processing of data. The following section will describe the simulated 

environment that will aid the process of visualising the data mined results in 3D 

space. Finally the last section will outline the physical hardware components and 

platforms required for carrying out the primary software development for conducting 

data mining analysis by chosen research methods, as explained in section 4.5. 

 

 

3.3.2 REQUIRED SOFTWARE INSTRUMENTS  

 

Sections, 1, 2, 3 and 4 describe various non-commercial tools which can be obtained 

without any charge and used for development purposes under an open source 

license. Refer to Appendix 1 for a list of website links to the following open source 

files.  

 

3.3.3 Computer development tools  

 

Java SE Development Kit (JDK) Bundle, version 6: Java SE (JDK) is a pre-

requisite and as is the java computer programming language that will serve as a 

development platform to the Eclipse IDE and any subset components required by 

the IDE. Generally speaking, the JDK consists of various Application 

Programming Interface standards that will aid the process of programming the 

proposed application. In addition, Java was chosen as a primary language since 

it is predominantly an open-source platform and capable of interoperability on 

multiple operating systems. Interoperability may be useful to the end product, 

especially, during future OS changes proposed by DAFWA or ECU stakeholders.  

 

Tool 1, Eclipse, Jee Galileo, version SR2: Eclipse is an integrated development 

environment comprising various tools for java developers to create enterprise and 

online applications;  

 

Tool 2, Project R, version 2.1.1.0: Project R will serve as a primary statistical 

and data mining analysis tool. Several extension or library packages for carrying 

out the proposed data mining techniques will be installed within the Project R 

environment. The extensions outlined below, are composed of predefined 
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algorithms and mathematical formulas for running data analysis operations on the 

Peel-Harvey spatial data sets;  

  

R extensions for Cluster Analysis method: k-means, pvclust, mclust and fpc. 

R extensions for PCA method: psych, nFactor, and FactorMiner; 

 

Tool 3, rJava, version 0.8-3: The rJava tool is a Project R, interface bridge and 

is based on Java Native Interface (JNI) technology. Using rJava will assist the 

development process by exposing native Project R operations within the java 

application.  

 

 

 

 

3.3.4 Spatial database management systems 

 

Tool 4, PostgresSQL, version 8.2: PostgresSQL SQL is an Open source object-

relational database system which has a proven architecture and a record of 

reliability in, data integrity, and correctness.  It is capable to run on all major 

operating systems, including Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS 

X, Solaris, Tru64), and Windows; 

 

Tool 5, PostGIS, add on to the PostgresSQL: The PostGIS tool, exists as an 

installation add on, as part of the PostgresSQL installer package, and provides 

additional support for spatial geographic object manipulation of the PostgresSQL 

object-relational database.  

 

 

 

3.3.5 Graphical GIS framework tools  

 

For development purposes, both of the outlined tools, uDIG and jGRASS, are based 

on Eclipse, Rich Client Platform (RCP) technology. The RCP is an architecture that 

allows various open tool platforms, described as plug-in components which are 

capable of integrating into one unified client application. 

 

Tool 6, uDIG, version 1.2 – RC2 software development kit: UDIG, 

abbreviated which stands for User friendly, Desktop located, Internet oriented 

http://www.postgresql.com/
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and Geographic information system. It is comprised of complex analytical 

functionalities with a flexible graphical user environment. UDIG is composed 

of various installer packages, for example, stand-alone Windows OS and 

Linux OS files and many others, it is important that the latest and most stable 

version is obtained from the public subversion repository.  

 

Tool 7, jGRASS, version 2.0.20060730: JGRASS is an free open source GIS 

tool based on the uDIG framework, built and maintained by HydroloGIS in 

collaboration with CUDAM. The jGrass tool consists of various visual and built 

in algorithms for that navigating spatial data specifically related to hydrology. 

 

3.3.6 Visual simulation of an interpreted data 

 

Tool 8, Processing expert, version 1.0.9: Processing is an open source 

programming language and environment that allows individuals to developer 

artistic images, construct computer simulated animations and allow user 

interactions. Generally processing is used by students, artists, designers, 

researchers, and hobbyists for learning and teaching fundamentals of computer 

graphic programming and data visualisation within a creative context. 

 

3.3.7 REQUIRED HARDWARE INSTRUMENTS  

 

The following hardware specifications will be required for the development 

environment used in this research. The platforms used will be windows platforms, 

such as: Windows XP, Windows Server 2003 and Windows Vista. The requirements 

include the following:-  

 

Central Processing Unit (CPU): Intel Quad Core, 2.67 Gigahertz 

Random Access Memory: 3.00 GB/s   

Hard drive storage: 500 Gigabytes  

Hard drive speed: 5400 RPM  

Input and output components: Generic mouse, keyboard and an external USB port.  

Internet Connection Speed: 12Mbit ADSL connection. 

 

For software development purposes, the outlined hardware is deemed adequate. 

However, for any testing, design and run time development,  the hardware will only 

meet the minimum required specification. For this reason, section 4.6.1 has outlined 

a hardware limitation and recommendations to mitigate this problem. 

http://www.jgrass.org/
http://www.hydrologis.com/
http://www.unitn.it/dipartimenti/cudam/eng/
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3.3.8 CONCEPTUAL CONTEXT 

 

According to Victor Basili (1992, p.1), one of the important issues in software 

engineering is related to a complex to engineering process; that being, complex to 

develop and complex understand. Likewise, this may lead to complexities in 

development, resulting in errors and development estimation turning into a difficult 

task, since there is a lack of understanding of the implications of the changes. To 

prepare for prevention of any unforseen complexities in the current proposed 

development phase, a careful strategy must be employed to ensure a planned 

integration of chosen software instruments is required. For this purpose, the current 

application will follow the chosen software paradigm in conjunction with a conceptual 

context diagram.  

 

The conceptual diagram (see Figure-14) is comprised of five different contextual 

regions which are designed to provide a visual design overview describing various 

applications [see section 4.2] involved that make up an overall application domain. 

 

Context 1: Data set 

The data set context illustrates how the spatial data sets are consumed and 

collected for storage using a centralised database system. 

 

Context 2: Visual 

Representation of a main application that will allow the user to interact with 

spatial data sets in a visual spatial manner in conjunction with existing 

functions from uDig and jGrass geospatial frameworks.  Also, the existing 

geospatial functions will enable interaction and manipulation of: spatial map 

layers and water catchment catalogues. In addition, the utilisation of a 

processing component will provide animated simulation of the water 

catchments. For example, the effects and impacts of future trends 

surrounding the salinity issues, such as streamline of salinity chemical 

streamlines. However, the simulation may only be performed upon a 

completed data mining analysis of data sets.  

 

Context 3: Data mining 

The representation of a primary data mining process for conducting proposed 

data mining methods, as explained in detail in section [4.6]. 
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Shared context 1: Data set, visual and data mining 

The shared context 1:  illustrates a shared functionality of database 

management between context 3 and context 2. For example, the visual 

functionalities of an application may require non-data mining database 

functionalities for performing query or transactional operations such as: add, 

delete, view and update of records. 

 

Shared context 2: Visual and data mining 

Represents the functionality shared between visual, context 2 and data 

mining, context 3. Aside from the data mining tasks carried out in the following 

context, the user need may request the Project R environment to create 

various graphical outputs, for example, graphical charts, sequence of GIF 

images and other graphical functions supported by Project R. 

 

Figure 14: Conceptual context of an application domain. 
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3.4   DATA COLLECTION PROCEDURE 

 

The collection of the Peel-Harvey water catchment data was previously conducted 

by various Western Australian government data custodian groups, such as DAFWA  

(www.agric.wa.gov.au) and the Landgate agency (www.landgate.wa.gov.au).  The 

Landgate agency, being responsible for maintaining the geo-scientific land and 

property data and their services provides an online services using: Shared Land 

Information Platform (SLIP) portal (https://www2.landgate.wa.gov.au/web/guest). In 

addition, the SLIP (2008, p.11) is a service comprised of centralised sharing facilities 

which provide the following services to data consumers or users.  

 

 Service for consumption by a web browser, such as: GIS applications or Business 

Solution Applications;  

 

 Data Service that allows various data consumers to view and interrogate different 

land and geospatial information, however, this may depend on the given access 

roles; and 

 

 Supports compliant OGC standards for services which feature both Web Map 

Service (WMS) and Web Feature Service (WFS).  

 

The SLIP agency in collaboration with DAFWA’s spatial requirements is a primary 

data custodian capable of data conversions of Peel Harvey water catchment data. 

For example, this requires the existing water catchment data samples to be 

converted into an electronic spatial data set file formats; this enables various GIS 

and data mining tools to perform data analysis. In detail, this conversion process 

involves, geographic data being represents topographic layers and regions as 

compliant geospatial format. Further detail is explained on the GIS file formats in 

section 4.4.2. 

 

Consequently, an access to SLIP portal must be established using an authorised 

agreement to establish authorised data downloaded between involved researcher of 

ECU and DAFWA. In doing so, this will provide a sufficient online service to the user 

for downloading an electronic version of spatial file formats or better known as data 

sets. 

 

http://www.agric.wa.gov.au/
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Figure 15: Multiple data services available to data consumers (Shared Land Information Platform, 
2008, p11). 

 

 

 

3.4.1 SPATIAL META-DATA FEATURES 

 

SLIP service holds a repository with over 350 data sets, stretching over thousand of 

megabytes in spatial information. Each data set is categorically allocated, depending 

on the spatial format and region. Some of the categories may include spatial meta-

data information on the following areas: cadastre, geodetic, imagery, tenure, 

topography, roads and fire affected areas (SLIPc, 2010). For the purpose of this 

project, it is essential that topographic category is obtained, especially since, the 

current study will emphasise the complex cultural and agricultural matters of Peel-

Harvey water catchment regions. For example this will be achieved by ensuring that 

specific Hydrographical (SLIPa, 2010) and ground surface (SLIPb, 2010) meta-data 

features are extracted from a data set, as outlined below.  

 

Hydrographical meta-data features: The hydrographical features include measurement 

and description of waters such as, water resources that are useful or potentially useful to 

humans (SLIPa, 2010). 

 

Coastal flat: Water features which describe water areas along the coast, such as: 

saline coastal areas, mangroves and intertidal areas;  
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Framework: Topographic features that specific to the Western Australian land and 

sea boundaries; 

 

Fuzzy water: Image features that represent a spatial extent on hydrographical 

features in, water lines, water points, swamps, water polygon, rivers, seas and many 

more; 

 

Inland flat: Water features that relate to low lying areas in the interior of a country, 

for example, areas subject to flooding and inundation; and 

 

Inland water: Water features that represent the interior features of the country, such 

as: water course, rivers, channels, drains. Also, water points feature that represent 

water bodies such as: clay pans, earth dam, estuaries, lakes, pools, reservoir, water 

course and wash, waterfalls and water point structure.  

 

Ground surface meta-data features: ground surface features represent characteristics of 

land surface areas of Earth, both which may be exposed and underwater (SLIPb, 2010). 

 

Elevation: a topographic feature which describes the elevation, such as: land 

surface contours, bathymetric contours, spot heights and sounding elevation points; 

 

Fuzzy land: Imaginary features which represent spatial landforms, such as: bank 

lines, beaches, capes likes, cape likes, depression likes and many more; and   

 

Morphology: a set of topographic features which describe various landform 

characteristics, such as: breakaways, cliffs, ledges, san ridges, reefs, rocks, craters 

and many more. 

 

 

3.4.2 VECTOR GIS FILE FORMATS 

 

Current SLIP portal service integrates various data sets file formats which follow an 

Open Geospatial Consortium (OGC) standards, for this purpose, SLIP services are 

strictly conformed in compliance to the OGIS document 01-068r3 Web Map Service 

(SLIP, 2008, p.15).  One of benefits of this relates to integrating existing spatial GIS 

standards features, specifically the ability that provides a unification of disparate data 

sets to represent a complete picture of an overall situation (ESRI, 2003, p.3). 
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The required GIS file formats for the current research are dominantly based on 

Vector data formats. For example, using the SLIP data custodian portal, the following 

GIS file formats will be obtained:  

 

General Mark-up File (GML):  an open and already published GIS format that is 

used by various vendors and is considered a logical choice for encoding common 

spatial data exchanges.  The GML file format consists of XML schema packages that 

can be used to encode geometry and its properties attributes independent of a data 

or content model (OGC, 2003, p.3).  

 

 

Figure 16: GML XML schema file content of Geological Map of WA (SLIPd, 2010). 

 

Shapefile (SHP): The shapefile (SHP) is composed of non-topological geometry and 

meta-data information for the spatial feature characteristics in a data set. In addition, 

the shapefile is compromised of various vector coordinates. For example, the 

Cartesian coordinates (ESRIa, 1998, p.32), generally recognised by x and y 

identifiers which assist the shapefile in representing geographic features using 

vertices. Likewise, the shapefile requires less disk space and therefore is considered 

easier to work with. For instance, shape files are a preferred file format for carrying 

out complex manipulation of spatial data using computer programming tools (ESRIa, 

1998, p.3) 

 

 

 

3.5 DATA ANALYSIS 

 

The following section introduces sequential steps for conducting the various data 

mining approaches. The proposed methods will be developed and packaged as a 

component in order for the proposed application to utilise its software engineering 
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plug-in features. Likewise, the proposed application will utilise the proposed data 

mining techniques in conjunction with the research strategy, as described below. In 

doing so, the following research activities are envisioned to form a general guide of 

steps for carrying out a data mining data analysis in relation to research hypothesis. 

 

Primary question: “How can the use of data mining techniques be used to interpret trends 

in Western Australian water catchment land use?” 

  

3.5.1.1.1 Subset question one: “Which data mining techniques are the most appropriate 

for analysis of water catchment data sets” 

 

Subset question one will be answered by research activity 1 and 2. 

 

3.5.1.1.2 Subset question two: “How can data mining techniques be used to make 

informative predictions in relation to changes in land use and climate”  

 

Subset question two will be answered by research activity 2 and 3. 

 

3.5.2 RESEARCH METHOD STRATEGY 

 

The following matrix diagram illustrates a strategy of methods employed in the 

current study in order to interpret future trends of salinity impacts across a 

longitudinal time periods. The methods chosen will feature the following techniques: 

classical statistics, cluster analysis and principal component analysis. The matrix 

diagram illustrates a cross selection of benchmarks. Furthermore, the benchmark will 

extract the result conducted during the data analyses in order to establish validation 

of results and evaluate the effectiveness of impacts in relation to a topographic 

category, such as: rainfall meta-data, crop yield meta-data, nutrient run-off meta-data 

and many more features, as describes in section 4.4. 
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Figure 17: Research method strategy employed for data set analysis. 

 

3.5.3 PRELIMINARY STEPS 

 

The following section defines the preliminary steps that must be performed to the 

water catchment data sets. Steps 1 to 3 are a mandatory process; however the data 

cleaning step 4 is an optional pre-processing data mining task, since, it is assumed 

that not all data is required for a cleanup process. This may be true, in the case of a 

data set been already pre-processed by the data custodian or the current application 

user. 

 

Step 1: Spatial data set retrieval 

All the data sets, related to the Peel-Harvey water catchment will be retrieved using 

the SLIP portal (see section 4.5) and then stored in either a PostgresSQL server or 

stored locally in a computer file system directory. Using locally stored data may be a 

quicker process; however this will result in double-handling and during the course of 

these actions, may becoming corrupted, in particular during preliminary data 

manipulation. Therefore, it is recommended that data is stored directly to a database. 

Consequently, Project R environment will assist in the initialisation and cleaning of 

data sets, as explained in step 3 and step 4 

 

Step 2: Data set file integrity check 

Binary size of each spatial file will be verified against an original consumed file. 

Generally, this will be carried out using existing java file utility packages.  
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Step 3: Initialisation of GIS data sets 

The initialisation will be performed in conjunction with the existing geospatial tools 

found in uDIG and jGRASS framework by an automated process on data set 

content. For example, a data structure process will be programmed to parse all the 

relevant topographic attributes located inside of GML and SHP files. 

 

Step 4: Data set cleaning 

The next step will involve an invocation of a Project R interface environment through 

the rJava component. In doing so, common data mining pre-processing processes of 

data cleaning, as outlined in section 2.3 will be carried out. This will evolve, invoking 

various Project R functions, such as, R scripts comprised of command for performing 

a removal of empty longitude and latitude attributes. Furthermore, default empty 

fields will be replaced with default predefined complaint values or, in this case, 

depending on the complexity of a data set, the entire data set row may be removed.  

 

3.5.4 RESEARCH ACTIVITY 1: CLASSIC STATISTICAL APPROACH 

 

Since the majority of pre-processing and data analysis tasks in relation to data 

mining process, will be utilised, using Project R environment through an invocation of 

an rJava component.  In doing so, this will provide complete environment of Project 

R functions required for conducting a classic statistical data analysis. For example, 

the following R functions describe specific steps that will be incorporated into an 

application and performed autonomously. This involves:  

 

sapply() function: will be used to return a vector or matrix of data (R, 2009, 

p.225), depending on the statistical functions used. For example, sapply will 

call the following functions: mean standard deviation, variance, minimum, 

maximum, median and range.  

 

table(),ftable and xtab functions: will aid in establishing a frequency of a 

data set, for example, this includes creating a variance in two or three 

dimensional space of data. Using the xtab function the chi-squared test will be 

run to establish the independence of factors found in the data set (R, 2009, p. 

458).   

 

rchisq() function: will be used to establish a chi-squared distribution for 

statistical tests of categorical quantitative data, for instance, various 
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topographic features, as explained in section 4.4.1. However, depending on 

the spatial data length, the n distribution may be set to run in 1000 sample 

records per test. 

 

 

Figure 18: Chi square distribution test formula (Weisstein, E. W, 2003, p.995). 

 

 

   
3.5.5 RESEARCH ACTIVITY 2: CHOSEN DATA MINING TECHNIQUES 

APPROACH 

In addition to the classical statistical functions, as explained earlier, the research 

hypothesis will perform further validation of effectiveness using Cluster Analysis and 

PCA methods. This will help in validating whether any useful patterns can be 

established, specific to dryland salinity in water catchment of Peel Harvey region. 

 

3.5.5.1 APPLYING CLUSTER ANALYSIS 

It is optional for the preliminary data cleaning steps to be carried out; especially since 

data pre-processing may share some similarities.  Cluster analysis will be broken up 

into five steps, in order, as follows: 

 

Cluster analysis, step 1: (Data preparation): before a benchmark is conducted, 

the data is required to undertake a data standardisation process (see Figure-19). 

This involves an invocation of the following R functions on geospatial data set file 

formats, as explained in section 4.4. 

 

Run a na.omit function to handle the missing values from any attribute objects found 

in the data set, In this case, the data set is chosen as being a GML and a SHP file (R, 

2009, p.1208). 

 

Run a scale function to perform data unique data standardisation by cantering or 

scaling the data set columns as a numeric matrix representation (R, 2009, p.375). 

Figure 19: Cluster analysis, data preparation step. 
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Cluster analysis, step 2: (Partitioning): using the previously transformed matrix 

data, the next step will perform a k-mean clustering on the data matrix (R, 2009, p. 

1152). For this purpose following steps must be performed in order (see Figure-20). 

 

Partitioning, step 1: aggregate regions of clusters in a data set. 

Partitioning, step 2: run the k-means function for each clustered region. 

Partitioning, step 3: run a mean variation on each cluster region 

Figure 20: Cluster analysis, partitioning step. 

 

 

Cluster analysis, step 3: (Hierarchical agglomeration clustering): will create an 

agglomeration of clusters using hierarchical representations to classify dissimilarities 

of objects. This will involve a twofold invocation process as displayed in Figure 21. 

 

Run a dist function on the data set and pass a Euclidean distance measure to compute the 

distance between the clusters in each matrix dimension (R, 2009, p. 1078).  

 

Usage: dist(PeelHarveyDataSet, method = "euclidean")  

 

Run a hclust function and provide a relational distance parameter and an agglomeration 

centroid parameter type (R, 2009, p. 1127). 

 

Usage: hclust(d, method = " centroid ", members=NULL) 

 

Parameter d: is a dissimilarity structure as produced by dist in step a. 

Parameter method: is a set of agglomeration types, it can also support other relational 

distance types, such as: ward, single, complete and average. 

Figure 21: Cluster analysis hierarchical agglomeration clustering step. 

 

Cluster analysis, step 4: (Model clustering): will utilise a mclust function to 

produce clustered regions and pass an expectation maximisation (EM) for final 

cluster analysis computation (see Figure-22).  

 

Run a mclust function to create a Gaussian mixture model according to the EM initialisation 

(Ra, 2010).  

  

Usage: mclust(PeelHarveyDataSet) 

Figure 22: Cluster analysis, model clustering 

 



A. Sehovic Page 60 

Cluster analysis, step 5: (plotting of clusters): will use the clusplot function from 

a cluster package to construct a bivariate plot for visualising specified clustered 

regions of a data set (see Figure-23). Each representation will be represented as a 

set of points in the graph against each found principal component (Project R, 2010b). 

 

 

 

Run a clusplot function on an entire summarised data sets, this includes, analysed data set 

summary of data from steps 1 to 4.  

 

Usage: clusplot(PeelHarveyDataSet) 

Figure 23: Cluster analysis, plotting of clusters. 

 

 

3.5.5.1.1 APPLYING PRINCIPAL COMPONENT ANALYSIS  

 
The final step will involve applying the PCA method that aims to establish a variance 

amount of principal components found in a data set. This section is broken up into 

two steps, in order as follows: 

 

PCA, step 1: (Produce Principal Components): will utilise a princomp function to 

determine possible principal components from a given data matrix (R, 2009, 1287). 

Consequently, this will invoke a biplot function to visualise the principal 

components as plots on a graph (see Figure-24).  

 

Principal component, step 1: run princomp function on an entire aggregated data set in 

conjunction to previously performed steps, as explained in cluster analysis section: 4.5.4.1.  

 

Usage: princomp(PeelHarveyDataSet, cor=TRUE) 

 

Principal component step 2: Invoke the biplot function on an aggregated data set. 

 

Usage: biplot(PeelHarveyDataSet) 

Figure 24: PCA, produce principal components. 

 

PCA, step 2: (Factor Analysis): will utilise a factanal function (see Figure-25) to 

produce a maximum-likelihood in factor analysis on a covariance matrix data set (R, 

2009, 1091). 
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Run the factanal function on an “n” entire data set collection by specifying the amount of 

factors required for factor analysis. By default the varimax option will be used for the analysis 

for rotation of factored data. 

Usage: factanal(PeelHarveyDataSet, factors, rotation="varimax") 

 

Parameter factors: number of factors to be analysed. 

Parameter rotation: function to be used to rotate the factors. 

Figure 25: PCA, factor analysis. 

 

3.5.6 RESEARCH ACTIVITY 3: VISUAL GIS FILTERING 

 

Different geographic regions of a data set may need to be re-sampled to ensure that 

only specified map regions are used for effective data analysis. This will enable the 

user to choose a specific water catchment region for data analysis. Such 

functionality will be inherited from an existing uDig and jGrass GIS framework tools. 

Generally, the selection process will be carried out using the “pan” selection 

functions on a visual map area of south west, as illustrated in Figure 27 which 

represents topographic series map, with map dimensions of 1:25 000. 

 

The following visual interaction steps will take place, as follows, in order: 

 

Visual GIS Filtering, step 1: allow the user to select specific region located in the Peel-

Harvey water catchment and selected corresponding boundaries by predefined topographic 

region ID’s, as provided by the SLIP data custodian service.  

 

Visual GIS Filtering, step 2: the data mining application will compute and aggregate only the 

filtered regions in a series of automated steps. 

 

Visual GIS Filtering, step 3: notify the user that selected regions are filtered with an option 

to commence data analysis steps, as explained in earlier research activity sections, 4.5.3 and 

4.5.4. 

 

Figure 26: Visual GIS filtering process steps. 
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Figure 27: Dola topographic series 1:25 000 map dimension (SLIPf, 2009). 
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3.5.7 TIMELINE OF RESEARCH ACTIVITIES 

 

 

 

Figure 28: Timeline of research activities 
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3.6 LIMITATIONS 

 

3.6.1 HARDWARE LIMITATIONS 

 

It is assumed that higher hard drive speed may be required, for instance, it is 

assumed that anything above an aging 5400RPM specification is preferred to 

achieve robust performance of data computation. For example, a 7000RPM or 

10000 RPM is preferred. This will ensure that larger amounts of traffic are analysed 

more quickly and robustly, especially during an analysis stage. 

 

In addition, the random access memory (RAM) may also be a limited factor to an 

overall application performance. Especially, since the application may be set up to 

run data analysis on a local machine. Similarly, it would be preferred for the pre-

processing and data mining process to be scheduled remotely using the rJava 

remote method invocation requests. In doing so, this will prevent the local client 

system from being exposed to stressful situation in prioritising hardware resources. 

 

3.6.2 SIMULATION OF GIS DATA 

 

Due to the current project limited time line, it is envisaged that visual simulation of 

spatial data may not be carried as originally planned for interpreting the simulated 

salinity current and future trends. Originally it was established that processing expert 

tool would provide this experience to the user, thus, this functionality may not be 

fulfilled during the current time frame. However, due to the integration of an existing 

spatial framework tools, uDig and jGRASS and conformance to object-oriented (OO) 

standards, therefore it is believed that current implementation process will enable 

future work to be continued incrementally (see Figure 28). 
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4 RESEARCH ANALYSIS 

 

The contents of this chapter is based on the peer reviewed special paper presented 

at the data mining conference for the 14th Pacific-Asia conference on Knowledge 

Discovery and Data Mining for interrogation of water catchment data sets using data 

mining techniques (Sehovic, Armstrong and Diepeveen, 2010,  Appendix B).    

 

A component based software tool has been designed and prototyped which 

integrates the tools described above (as shown in Fig. 2). This tool will integrate a 

data set component, visualization component, data set, visual and data mining 

components.  

 

Data set context: The data set context illustrates how the spatial data sets are 

consumed and collected and used for storage using a centralised database system. 

 

Visual Context: Representation of a main application will allow the user to interact 

with spatial data sets in a visual spatial manner in conjunction with existing functions 

in uDig and jGrass geospatial frameworks.  Also, the existing geospatial functions 

will enable interaction and manipulation of: spatial map layers and water catchment 

catalogues. In addition, the utilisation of a processing component will provide 

animated simulation of the water catchments, for example, the effects and impacts of 

future trends surrounding the salinity issues, such as streamline of salinity chemical 

streamlines. However, the simulation may only be performed upon a completed data 

mining analysis of data sets.  

 

 Data mining context: The representation of a primary data mining process for 

conducting proposed data mining methods. 

 

Data set, visual and data mining: The shared context 1:  illustrates (see Figure 29) a 

shared functionality of database management between context 3 and context 2. For 

example, the visual functionalities of an application may require non-data mining 

database functionalities for performing query or transactional operations such as: 

add, delete, view and update of records. 

 

 Visual data mining: Figure 29 represents a functionality shared between visual, 

context 2 and data mining, context 3. Aside from the data mining tasks carried out in 
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the following context, the user may request the Project R environment to create 

various graphical outputs such as: graphical charts, sequence of GIF images and 

other graphical functions supported by Project R. 

 

 

4.1.1 APPROACH ON KEY ACTIVITIES 

 

The key activities in carrying out the interrogation of the Peel Harvey catchment 

datasets was undertaken primarily with the assistance of uDig software and 

PostgreSQL database. For this purpose, the processed activities involved a pre-

process of a large geospatial shapefile of Peel-Harvey region and transporting the 

data into the postgresql database for post-process data mining tasks which involve 

utilising Project R and running various R packages for visualising with cluster 

analyses. Figure-29 demonstrates this conceptual approach, followed by the step-

by-step process as illustrated and explained in the proceeding section of this paper. 

 

 

Figure 29: Overview of the data mining context 
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The Peel Harvey data set was prepared for two regions, Collie and Pinjarra sub 

region of the Peel Harvey catchment. This data set was composed of SHP files with 

2:250 000 resolution.  The files were imported and catalogued using the uDIG 

software. This import process can inter-connect multiple layers with the parent layer. 

The parent layer was collie2 which is represented in green colour (see Figure 30). 

While the Pinjara2 layer is placed on top of the parent layer and represented in the 

yellow colour (see Figure 30). Shapefiles are imported into the uDig software.   

 

4.1.2 SELECTING BOUNDED BOX REGIONS FOR PINJARA LANDSCAPES 

 

A specific subregion can be selected using the uDig software. For example, using 

Collie 2m 250K - Shape file meta-data, it is possible to select specific regions using 

the “Info” function and selecting a region on the map. Alternatively, using the “border 

region” selection function from a toolbar section, we can select a boundary (see 

Figure-31 and Figure-32). Also, note reach time the region is selected; the 

corresponding meta-data is also selected and highlighted in yellow. Once the table 

section is accessed, all the data being selected is temporarily aggregated for further 

manipulation, for example, data extraction.   

 

 

Figure 30: Map information identifier feature using uDIG software 
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Figure 31: Border selection tool 

 

Figure 32: Data extraction using uDIG 

The data set was exported using uDIG as a resource shape file. Other data 

extraction formats are also possible included image files.   Data export will result in 

the production of  prj file, wld files and shp files  for each layer file. 

 

4.1.3 ANALYSIS OF WATER CATCHMENT DATA 

 

To demonstrate the possible data analysis that can be used to interrogate the water 

catchment data as a series of cluster analyses were carried out using the R scripting 

package.  Project R Packages required for carrying out cluster analysis , Hclust, 

mclust, stats, pfc, shapefiles, cluster R packages.  The following section details the 
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processes used to perform sample data analysis manipulation on the selected region 

of a Collie data set:  

 

4.1.4 Parsing the shape-file using Project R 

 

We first parse the shape file and assign the collie dataset to an object for further 

manipulation (see Figure-33). It is important that the correct location of the shape file 

is provided, also, the process may take several second or at most half several 

minutes, depending on the size of a shape file. For this purpose the shape file is 

reasonably small, less than a megabyte. In addition, there is no need to provide the 

extension of a shape file, especially since the shapefile package has distinct features 

to recognise the file format.  

 

#read the shape file and assign it to a an collieDS object  

collieDS<-read.shapefile("Contours_2m_250K_Collie2") 

Figure 33:  R-script 

 

4.1.5 Setup a variable table list 

 

Return an actual list that the shape file package has processed. Note that shape file 

automatically processes the corresponding dbf files. For this purpose, the following 

list will display a set of dbf objects that correspond with the shapefile (see Figure-34).  

 

#returns the list dbf content list of header information. ElementZ, ID1, Elevation_, ID2 

list(collieDS$dbf) 

Figure 34: R-script 

 

4.1.6 Assign variables of interest for clustering the data on 

 

We proceed to create two variables as unique list of data objects. This is required in 

order for the data frame to be constructed. In addition, assign the graph values as, 

ID and Elevation.  Note, appending the dbf%ID2 or Elevation_ keywords to the 

collieDS string will implicitly access the meta-data attributes (see Figure-35). 

 

# variable list  

varID   <- list(collieDS$dbf$dbf$ID2) 

varElev <- list(collieDS$dbf$dbf$Elevation_) 
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# aggregated data into a frame object consisting of (ID and Elevation)  

collieDSFrame <- data.frame( a=varID, b=varElev, c=c('ID','Elevation')) 

Figure 35: R-script 

 

Using the hclust and stat package, a hierarchical agglomerative graph was created 

using the Euclidean distance matrix representation (see Figure-36).  

 

#Create HIERARCHICAL AGGLOMERATIVE 

distanceMatrix <- dist(collieDSFrame, method = "euclidean") # distance matrix 

fit <- hclust(distanceMatrix, method="ward")  

Figure 36: R-script 

 

4.1.7 Running MClustering Data Mining  

 

A model based clustering was created using the mclust R package library as 

described following (see Figure-37).   

 

# Model Based Clustering 

library(mclust) 

fit <- Mclust(collieDSFrame[-3]) 

plot(fit, collieDSFrame[-3]) # plot results 

Figure 37: R-script 

 

As a result of this, the following four diagrams are displayed (see Figure-38, Figure-

39, Figure-40), mclust, Bayesian Information Criterion (BIC) classification, direct 

classification plot, uncertainty classification and density contour plot. These plot 

provide an example of the clustering techniques that can be used to interrogate the 

spatial data sets.  
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Figure 38: Example of  BIC cluster plot produced from Rscript 

 

 

Figure 39: Example of  MClust cluster classification produced from Rscript. 
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Figure 40: Example of MClust cluster uncertainty plot produced from Rscript and an example of a 

MClust density contour plot produced from Rscript. 

 

Using the cluster and fpc package, a k-means cluster with 5 clusters from a set of 

existing collie data source data was created (see Figure-41). A clustered plot against 

first and 2nd principal components was also created. For this purpose, the elevation 

and ID are taken into context of computation of clusters.  

 

# K-Means Clustering with 5 clusters 

fit <- kmeans(collieDSFrame[-3], 5) 

# plot against two principal components  

library(cluster)  

clusplot(collieDSFrame[-3], fit$cluster, color=TRUE, shade=TRUE, labels=2, lines=0) 

Figure 41: R-script 

 

A centroid cluster plot (see Figure 43) against the first and second discriminatory 

functions was created by using the following Rscript (see Figure-42).  

 

# Create a centroid plot against the fisrt and second discriminate functions 

library(fpc) 

plotcluster(collieDSFrame[-3], fit$cluster) 

Figure 42: R-script 

 



A. Sehovic Page 73 

 

Figure 43: Example of a Clustplot comprised of five clusters produced from an Rscript. 

 

4.2  Transforming the shapefile datasets into relational database tables  

 

At first, the data context currently held under large shapefile datasets under regions 

of central and and south areas of Western Australia are held in the PostgreSQL 

database using the Shapefile to PostGIS importer utility. 

 

Name of the raw shape file datasets that were used during the import process: 

a. Subsystems_south.shp: 80.0 MB in size 

b. Subsystems_centra.shp: 104.4 MB in size 

 

PostGIS ships a free utility for importing geospatial datasets directly into PostgreSQL 

and creating database indexes and geographical coordinate polygon references (ie 

shp2psql). This tool, as illustrates in Figure-44 and Figure-45 necessitates the 

necessary database credentials, such as the username and a password including 

the PostGIS extension.  

 



A. Sehovic Page 74 

 

Figure 44: Importing shapefile datasets into PostgreSQL database 

 

 

Figure 45: Creating spatial indexes automatically and using COPY function 
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The transfer of raster shapefiles is processed into a block of tables per dataset. 

Generally this is achieved by generating table name with the same name as the 

shapefile. In this instance, subsystems-south.shx and subsystems-north.shx are 

generated into table names (see Figure-45, Figure-46 and Figure-47). 

 

shp2psql datasource  

names 

Shapefile name PostgresSQL table name 

 subsystems_south.shp public.subsystems_south 

 subsystems_south.shp public.subsystems_south 

Figure 46: Table names using by shp2psql function 

 

 

Figure 47: Shapefile Import process 

 

Connecting: host=localhost port=5432 user=postgres dbname=template_postgis 

password='*****'   

Connection succeeded. 

Connection: host=localhost port=5432 user=postgres dbname=template_postgis 

password='*****'  

Destination: public.subsystems_south 

Source File: C:\Users\Aiden\Desktop\DAFWA datasets\soils\subsystems_south 

Shapefile type: Polygon 

Postgis type: MULTIPOLYGON[2] 

Importing shapefile (30811 records)... 

Creating spatial index... 

 

Shapefile import completed. 
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Connection: host=localhost port=5432 user=postgres dbname=template_postgis 

password='*****'  

Destination: public.subsystems_central 

Source File: C:\Users\Aiden\Desktop\DAFWA datasets\soils\subsystems_central 

Shapefile type: Polygon 

Postgis type: MULTIPOLYGON[2] 

Importing shapefile (42850 records)... 

Creating spatial index... 

 

Shapefile import completed. 

Figure 48: Output from shp2psql 

 

4.3   Interfacing with Project R and PostgresSQL database 

 

Applying RPostgresSQL package to the Projcet R package repositories enables R to 

interface to the PostgresSQL database system. And as such, this enables the user to 

construct a database question on the existing already imported shapefile dataset 

tables named “subsystems_south” and “subsystems_central” (see Figure-49). 

 

con <- dbConnect(PostgreSQL(), user= "postgres", password="admin", 

dbname="template_postgis") 

rs <- dbSendQuery(con,"select *, AsGML(the_geom) from subsystems_south 

WHERE the_geom IS NOT NULL LIMIT 1000 OFFSET 1001") 

out <- dbApply(rs, INDEX = "the_geom", 

FUN = function(x, grp) quantile(x$DATA, names=FALSE)) 

Figure 49: R-script 

 

Using the postgresql database, the results from the import can be seen in the 

following outputs (see Figure-50, Figure-51 and Figure-52) 

 

 

Figure 50: Output from Postgresql (1) 
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Figure 51:  Output from Postgresql (2) 

 

 

 

 

Figure 52:  Output from Postgresql (3) 

 

We had to reduced the database query to 10,000 records in order to achieve a 

reasonable database response. This being, due to the complexity and high load of 

data currently stored in the datawarehouse comprising of 30811 thousand of records 

it has taken approximately 2 minutes to fetch 10,000 records from the 

subsystems_south table with the following query: 

 

select *, AsGML(the_geom) from "subsystems_south" WHERE the_geom IS NOT 

NULL LIMIT 10000 OFFSET 10001; 

Figure 53: SQL query with R-script (see Figure-49) 

 

Similarly, the same query conducted against the "subsystems_central" database was 

4.5 times quicker, although the magnitude of the data being so large had to be 

exported into .dat and .csv files in order for the effective data mining analysis to be 

carried out, especially since the data that was exported was substantially large.  For 
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example, the subsystems_central.dat file measured 43,285KB in size while 

subsystems_south.dat measured 4.5 times more, 176,174KB in size. 

 

4.4 Creating raster shapefile data-layers and interface with PostgreSQL 

database using uDIG 

 

A set of shape files and database connectable dataset stores was established using 

uDIG tool (see Figure-54, Figure-55, and Figure-56). In doing so, we were able to 

dissect a bounding box region of our interest and project visual analysis and access 

to metadata for further Project R data analysis.  

 

 The data set was exported as a resource shape file. Other data extraction formats 

are also possible included image files.   The data export will result in the production 

of  prj file, wld files and shp files  for each layer file. 

 

The data set was exported as a resource shape file. Other data extraction formats 

are also possible included image files.   Data export will result in the production of a  

prj file, wld files and shp files  for each layer file. 
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Figure 54: Creating a fresh uDig project for wa_climate_datasets 

 

 

 

Figure 55: Adding contour shapefile resouces into map layers 
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Figure 56: WA uDIG caption 

 

 

Figure 57: WA Climate Datasets uDig project 
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In order to correctly establish spatial references on to our spatial maps of Australian 

nature we need to select the “Zone 50”, also known as AGD66 coordinate system 

(see Figure-57). 

 

4.4.1 Pre-processing the WA Climate Rainfall data into PostgreSQL  

 

In order to study the climate water catchment datasets we will need to de-associate 

a batch of four years of longitudinal CSV datasets. To commence the process of 

visualising the problem of WA climate data and proceeding with the Project R Cluster 

Analysis, we will need to firstly import all the climate data into PostgreSQL database 

using automated COPY scripts. These being said, a partition of four different csv 

dataset folders as illustrated in the Figure-59, represent 12 months of for the the 

given years, such as 1990, 1980, 2009 and year 2000.  

 

 

Figure 58: WA Climate Dataset View 

 

It is necessary to create a single database view; in this instance we will call this view 

“VW_WA_CLIMATE_DATASETS” (see Figure-58). The view in its own form will 

facilitate this study by providing a tabular representation for all 48 CSV files; in a 

denormalised manner (see Figure-59) 
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Figure 59: Overview of aggregated CSV files 

 

 

In the same manner, as running analysis on water catchments we can also augment 

the same process and apply it to the geospatially referenced WA Climate shape files 

for a total of four years, grouped into its own year, such as: 00, 90, 80 99.  For this 

purpose, in order to aggregate the data into a singular tabular form we need to 

create a flat table schema definition in order for the parse CSV files (see Figure-59). 

The WA_Climate_Data postgresql table holds the same columns as the CSV files, 

except that we had to create an additional two columns and populate each CSV file. 

These beings the year_id and month_id. The reason for creating a year_id and 

month_id and prefixing these columns to the CSV files was so that we could 

establish a longitudinal and yearly association between various months and years. 

 

4.4.2 Creating a denormilized WA_Climate_Data table for CSV datasets 

 

This script (see Figure-60) creates the WA_Climate_Data table into the postgresql 

database for us which we than use to perform the analysis in the same manner as 

demonstrated with the Project R. We also, create a transform a geospatial longitude 

and latitude columns into a geometrical “the_geom” column type as part of PostGIS 

which we can use for converting and manipulating data with the GML data format. 

And finally, we assign a geographical coordinate referenced to an ESRI ID of 4326. 

Although, we can assign any other reference id, however for this purpose we have 

used the 4326 reference. 

 

-- DROP TABLE wa_climate_data; 
 
CREATE TABLE wa_climate_data 
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( 
  id serial NOT NULL, 
  year_id character varying(50), 
  month_id character varying(50), 
  site_id character varying(50), 
  longitude character varying(50), 
  latitude character varying(50), 
  monthly_rainfall character varying(50), 
  avge_daily_max_temp character varying(50), 
  avge_daily_min_temp character varying(50), 
  avge_daily_evap character varying(50), 
  avge_daily_rad character varying(50), 
  the_geom geometry, 
  CONSTRAINT enforce_dims_the_geom CHECK (st_ndims(the_geom) = 2), 
  CONSTRAINT enforce_geotype_the_geom CHECK (geometrytype(the_geom) = 'POINT'::text OR 
the_geom IS NULL), 
  CONSTRAINT enforce_srid_the_geom CHECK (st_srid(the_geom) = 4326) 
) 
WITH ( 
  OIDS=FALSE 
); 
ALTER TABLE wa_climate_data 
  OWNER TO postgres; 

Figure 60: SQL script 

 

The import process will be carried over with the PostgreSQL COPY function. The 

COPY function is an internal database import low-level function which is comprised 

with various parameters inputs that instructs the PostgreSQL server to directly read 

from a designed CSV file and parse the data into database repository by creating a 

designed table name in a performance efficient manner. In our instance, we will 

instruct the PostgreSQL to read from the CSV file. . 

 

“The file must be accessible to the server and the name must be specified from the 

viewpoint of the server. When STDIN or STDOUT is specified, data is transmitted via 

the connection between the client and the server as explained under PostgresSQL 

documentations (PostgreSQL, 2011). 

 

After creating the table, we create a safe ground executing the postgresql COPY 

functionality. Similarly, this function is performed in the same manner using shp2psql 

tool. However, in this instance we demonstrate this process by hand (see Figure-61, 

Figure-62, Figure-63, Figure-64). 

 

-- COPY function for all the months in 80  
-- parses all the csv comma deliminated csv meta-data and creates a geospatial referential dataset 
 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_jan_80.csv' delimiters ','; 
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copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_feb_80.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_mar_80.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_apr_80.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_may_80.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_jun_80.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_jul_80.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_aug_80.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_sep_80.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_oct_80.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_nov_80.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_dec_80.csv' delimiters ','; 

 

Figure 61: SQL script for years "80" 

 
 
 

-- copy function for all the months in 90 
-- parses all the csv comma deliminated csv meta-data and creates a geospatial referential dataset 
 

copy wa_climate_data 
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(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_jan_90.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_feb_90.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_mar_90.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_apr_90.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_may_90.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_jun_90.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_jul_90.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_aug_90.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_sep_90.csv' delimiters ','; 
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copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_oct_90.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_nov_90.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_dec_90.csv' delimiters ','; 

Figure 62: SQL script for year "90" 

 

-- copy function for all the months in 00 

-- parses all the csv comma deliminated csv meta-data and creates a 

geospatial referential dataset 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_jan_00.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_feb_00.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_mar_00.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_apr_00.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 
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'c:/climate_data/wa_climate_may_00.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_jun_00.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_jul_00.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_aug_00.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_sep_00.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_oct_00.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_nov_00.csv' delimiters ','; 

 

copy wa_climate_data 

(year_id,month_id,site_id,longitude,latitude,monthly_rainfall,avge_daily_ma

x_temp,avge_daily_min_temp,avge_daily_evap,avge_daily_rad) from 

'c:/climate_data/wa_climate_dec_00.csv' delimiters ','; 

Figure 63: SQL script for year "00" 

 

-- COPY function for all the months in 09 

-- Parses all the CSV comma deliminated csv meta-data and creates a 

geospatial referential dataset 

 

COPY WA_CLIMATE_DATA 
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(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_Jan_09.csv' DELIMITERS ','; 

 

COPY WA_CLIMATE_DATA 

(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_Feb_09.csv' DELIMITERS ','; 

 

COPY WA_CLIMATE_DATA 

(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_Mar_09.csv' DELIMITERS ','; 

 

COPY WA_CLIMATE_DATA 

(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_Apr_09.csv' DELIMITERS ','; 

 

COPY WA_CLIMATE_DATA 

(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_May_09.csv' DELIMITERS ','; 

 

COPY WA_CLIMATE_DATA 

(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_Jun_09.csv' DELIMITERS ','; 

 

COPY WA_CLIMATE_DATA 

(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_Jul_09.csv' DELIMITERS ','; 

 

COPY WA_CLIMATE_DATA 

(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_Aug_09.csv' DELIMITERS ','; 

 

COPY WA_CLIMATE_DATA 

(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_Sep_09.csv' DELIMITERS ','; 
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COPY WA_CLIMATE_DATA 

(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_Oct_09.csv' DELIMITERS ','; 

 

COPY WA_CLIMATE_DATA 

(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_Nov_09.csv' DELIMITERS ','; 

 

COPY WA_CLIMATE_DATA 

(YEAR_ID,MONTH_ID,SITE_ID,LONGITUDE,LATITUDE,MONTHLY_RAINFALL,AVGE_DAILY_MA

X_TEMP,AVGE_DAILY_MIN_TEMP,AVGE_DAILY_EVAP,AVGE_DAILY_RAD) FROM 

'C:/climate_data/WA_Climate_Dec_09.csv' DELIMITERS ','; 

Figure 64: SQl script for year "09" 

 

 

After the copy process has been finalised (see Figure-65), we can clearly see that 

over 40,000 files have been ported across into a single table name. With this in 

mind, this enables us to run some data mining techniques as illustrates with the 

Pinjara datasets, except that we no longer read directly from shapefile but instead 

we parse the data directly into tabular Project R tables and perform data mining 

techniques. This paper has demonstrates various way of how the pre-processing can 

be carried out, both using the shapefile and csv file and augmenting the geospatial 

longitude and latitude columns into geometrical polygon areas for later visual 

representation.  
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Figure 65: Aggregated table query 
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5 DISCUSSION AND CONCLUSIONS 

 

There is a need to find better approaches to predict possible land use changes in the 

South Western Australia agricultural areas.  The increasing degradation of 

agricultural lands from soil salinity, waterlogging, nutrient runoff and eutrophication 

could have devastating consequences for future food production in Western 

Australia. The use of data mining provides a means to interrogate the geospatial 

data sets of land use and soils in this region. A number of data mining techniques 

could be used to achieve this interrogation. This research has demonstrated the 

techniques that could be used to preprocess and analyze the data sets. The 

research has used opensource software tools to demonstrate the process of 

importing processing and displaying spatial datasets. The study has focused on the 

Peel Harvey region of Western Australia which is a representative region of the 

agricultural production areas of South West of Western Australia.   

 

This study has also outlined the design of a proof of concept component based 

software tool. The techniques described in this paper can be used to integrate into 

the data mining context of the software tool. It is proposed that this software tool will 

be used by stakeholders, such as land planners and agricultural scientists to 

interrogate individual catchment areas or regional areas for land usage. The 

software tool may provide a means to work through climate and land use scenarios 

to make predictions of land use with changes in climate and other agricultural 

factors.  

 

Though, several limitations have been experienced during this project, these being 

loading of shapefile data larger than 30,000 megabytes renders it impossible on the 

current desktop system specifications to process data without some form of high-

cluster networking infrastructure. As a result the project experienced the need of 

high-powered computing to facilitate in processing geographically spatial datasets 

which can proceed in gigabytes worth of geographical data once exported into 

postgreSQL database. Likewise, the Project R is confined only to limited amount of 

desktop power using 32-bit infrastructures due to current computer specification. 

Although, this project has the potential to expand into a vast framework software 

platform that requires much more dedicated and reasonable timeframes in order to 

establish effective data mining techniques on spatial data. 
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6 APPENDICES 

 

6.1 APPENDIX A. WEBSITE LINKS OF OPEN SOURCE TOOLS EMPLOYED 

 Name Source 

Eclipse, Jee Galileo, version SR2 http://www.eclipse.org/downloads/ 

Project R, version 2.1.1.0 http://cran.ms.unimelb.edu.au/bin/windows/ 

PostgresSQL, version 8.2 http://www.postgresql.org/download/ 

PostGIS, version 8.2 http://postgis.refractions.net/download/windows/ 

uDIG, version 1.2 http://udig.refractions.net/download/ 

jGRASS, version 2.0.20060730 http://sourceforge.net/projects/jgrass/ 

Processing, version 1.0.9 http://processing.org/download/processing-1.1-expert.zip 
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