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Abstract:  Beam deflection methods such as rotary mirrors and motorized 
turning optical heads suffer from a variety of electro-mechanical related 
problems which affect laser scanning performance.  These include wobble, 
jitter, wear, windage and synchronization issues. A novel optical structure 
consisting of two concentric and cylindrical interfaces with unique optical 
coating properties for the static projection of a laser spot array over a wide 
angle is demonstrated. The resulting ray trajectory through the waveguide is 
modeled using linear equations. Spot size growth is modeled using 
previously defined ray transfer matrices for tilted optical elements. The 
model is validated by comparison with experimental spot size 
measurements for 20 transmitted beams. This novel form of spot projection 
can be used as the projection unit in optical sensing devices which range to 
multiple laser footprints. 
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1. Introduction 

Active, optical ranging devices can employ several broad techniques to derive depth 
information for a single point of interest on the object’s surface. Generally, laser radar 
(LaDAR) uses pulsed time-of-flight or continuous-wave frequency or amplitude modulation 
to measure distance. Modes of triangulation use trigonometry, taking into account the baseline 
distance between the sensor and emitter, the projection angle, the focal length and the sub-
pixel position of the spot’s peak intensity [1,2]. 

In order to extend to a 2D profile, or 3D area measurement, one must project a pattern of 
structured light or a sequence of laser beams onto the object covering many points of interest. 
The stability and accuracy of the light projection unit is one of the crucial factors for scanner 
performance. Conventional LaDAR scanners rotate or oscillate the scanner unit at very high 
speeds or by employing a system of rotating mirrors that deflect a single incident beam in 
many directions to cover a wide angle.  
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The problems encountered in polygonal-mirror and servo-motor-based scanners are 
mainly caused by moving parts, which can attain rotation speeds in the order of 1000 rpm. 
Angular deviation from the desired optical path and jitter are caused by mounting errors, 
random ball bearing wobble, motor cogging and torque variations. Motor stability and 
durability is also an issue. There is an upper limit to the rotation speed due to tensile strength 
of the mirror material which must not disintegrate at the maximum rotation speed. 
Synchronization with other time-dependent elements in the system can also be difficult. 
Furthermore, warm up time can be an issue [3, 4]. 

This paper proposes a novel approach that eliminates these common electro-mechanical 
related scanning problems. This approach is based on the use of a cylindrical quasi-cavity that 
generates a laser spot pattern over a wide angle through multiple beam reflections and partial 
transmission. A quasi optical cavity formed by two coated curved dielectric interfaces 
enclosing a transparent solid medium is modeled and experimentally demonstrated for wide 
angle spot generation. Ray trajectory both within the cavity and transmitted rays from the 
outer interface is analytically simulated using ray optics, and spot size growth is theoretically 
predicted using ray transfer matrix methods for off-axis optical systems [5]. Measured beam 
trajectory and spot size results show excellent agreement with the theoretical prediction. 

2. Methods and materials 

2.1 Quasi-cavity properties 

The behavior of rays within resonators, resonator configurations and their modes are well 
known [6, 7]. In the case of this research, the presented optical component is cylindrical, does 
not substitute a paraxial optical system and does not contain resonant modes. Also, since it is 
not being used in the context of laser gain and a novel application is being researched, from 
hereafter it will be referred to as a quasi-cavity. 

The custom fabricated concentric concave-convex cavity structure is shown in Fig. 1. It 
comprises an inner interface and outer interface of radii R1 and R2, respectively, separated by a 
BK-7 glass medium of thickness d = R2-R1, and entrance and exit windows.  Light 
transmission is achieved by depositing nano-layered thin film coatings on both interfaces. The 
rear side is deposited with a highly reflective coating (R≥99%) and the front side with a 
partial transmission coating (T≤13%), both effective over the 600 – 900nm waveband. Hence, 
at every reflection with the outer interface, a fraction of the light is transmitted through the 
cavity thus generating a laser spot. The reflected power undergoes further reflections within 
the cavity to generate subsequent laser spots as described in the next subsection.  

 

R 2

R1

Non-Coated 
Entrance Window

HR coating 
(>99% reflective

Beam splitting surface with 
highly reflective coating
Eg %85 - %95 reflection

n

θ

Non reflective end

d

  

Entrance/Exit
Windows

Rear Side

Front Side

 
(a) (b) 

Fig. 1. The novel optical quasi-cavity. (a) shows a top view schematic where θc = 90° and  (b) 
is a photo of the fabricated product where  θc = 45°. 
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2.2 Ray tracing 

Figures 2 and 3 illustrate the ray propagation within and outside the cavity. It is noted that the 
rays propagating between the quasi-cavity interfaces are not paraxial and do not share a 
common optical axis. Therefore, the use of ray transfer matrices based on periodic optical 
systems is not a feasible method in terms of determining a new distance from the optical axis 
and new inclination at the output plane after every reflection.  

To trace the path of the reflected and transmitted rays, optical geometry is used with no 
approximation. Given the radii of curvature of the two interfaces, the slope and ray intercept 
with the inner interface, the two surfaces and rays are modeled using a system of basic linear 
equations. Rays are plotted as straight lines, given by 

 
       ,bmzy +=                     (1) 

where m is the gradient and b is the y-intercept. The two interfaces are plotted as arcs where 
 

                                                  ,22 zRy n −=                                                 (2) 

where R is the interface radius and n corresponds to interface 1 or 2. 
Intersections between rays and the surfaces are represented by algebraic solutions to Eqs. 

(1) and (2). Internal interfaces are modeled as cylindrical mirrors, hence the incidence and 
reflection angles of a ray are equal. Plots in the z-y coordinate plane illustrating the ray trace 
for a 90°-cavity are shown in Figs. 2 and 3 for R1=0.25m and R2=0.263m. 
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Fig. 2. Modeling of the ray trajectory showing a close up of the incident ray and the resulting 
refracted, transmitted and reflected rays. 
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Fig. 3. Modeling of the ray trajectory showing the generated fan of rays from a  quasi-cavity of 
90° curvature.  

 

2.3 Gaussian modeling 

The effect of multiple internal reflections and refractions is analyzed using the Gaussian 
complex radius of curvature, q, in conjunction with ABCD transfer matrices [6]. Both the 
curvature of the wave front, R, and the spot radius of the beam, W, are functions of the 
propagation distance z and the Rayleigh range zR. These distances are described by the 
complex variable q, given by 

 

    Rizzq +=       (3) 
 

If the laser source is included as part of the optical system, q must be derived at the laser 
aperture, at the rear interface entrance window and after refraction through the entrance 
window. The output beam radius Wout, divergence angle θ0 and wavelength λ of the laser 
producing the incident beam is used to calculate the propagation distance at the laser output 
aperture, zR. First we obtain the waist radius W0 using λ and θ0. 

 

.
0

0 πθ
λ=W      (4) 

 

Secondly, we obtain the Rayleigh range,  zR, using the previously derived W0. 
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The position of the beam at the laser aperture relative to its waist can be calculated as follows 
[6] 
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Next, the standard paraxial ray–transfer ABCD [6] matrices for free space propagation and 
refraction at a spherical boundary can be applied to derive q at the entrance window and after 
refraction through it, respectively.  

Once q values at the laser output aperture, at the cavity window and after refraction 
through the cavity window are derived, calculation of qn after n reflections is carried out 
through an iterative two-step process. Firstly, the transfer matrix for a beam propagating 
through a uniform medium length is used to evaluate the q value at an interface. Secondly, 
either the matrix for reflection or refraction is used to calculate the q values for the transmitted 
or reflected rays, respectively. This iterative process is described in Fig. 4. 
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Fig. 4. Data flow diagram for determining q at various stages in the optical system, from the 
laser aperture to a projected range from the front interface. 

 
To simulate the ray propagation in a cylindrical cavity, a new optical axis must be defined for 
each intersecting ray. Hence, ABCD matrices which incorporate coordinate transformation for 
reflection and refraction of a Gaussian laser beams at an off-axis ellipsoidal surface have been 
used as reported in [5].  

Figure 5 shows simulated spot sizes upon reflections at the front and rear interfaces, as 
well as refraction at the front interface which negatively offsets the spot size. Figure 6 shows 
plots for the evolution of the spot diameter for 20 transmitted beams from the front interface 
of the quasi-cavity over a distance of 0.5m. At 0.5m, there is an increase in beam width from 
1.22mm at the first spot to 2.81mm at the 20th beam.  

By increasing the interface radii while maintaining a constant cavity thickness of 13mm, 
the spot size growth becomes smaller as shown in Fig. 7. When the cavity radii increase to R1 
= 1.053m and R2= 1.063m, only an increase from 1.21mm to 1.64mm is seen over the 20 
spots. This drop in spot size growth is the direct result of larger cavity radii. 
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Fig. 5. Modeled spot sizes at reflections from the front and rear interfaces, and refraction at the 
front interface using non-paraxial ABCD matrices. 

 
 

0
5

10
15

20

0
0.1

0.2
0.3

0.4

0.5

1

1.5

2

2.5

3

Beam NumberProjcetion Range (m)

S
po

t 
S

iz
e 

(m
m

)

 
Fig. 6. Spot size evolution of transmitted beams over a half meter range using non-paraxial 
ABCD matrices, where R1 = 0.25mm and R2 = 0.263mm 
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Fig. 7. Spot size growth rate decline with respect to an increase in interface radii. Spot sizes are 
modeled at a half meter range using non-paraxial ABCD matrices. 
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2.4. Experimental setup for spot size measurements 

A HeNe laser of 0.48mm output diameter and 1.7mrad divergence was used to produce a 
beam at an incident angle of 29° relative to the z-axis. The cavity radii were R1 = 0.25m and 
R2 = 0.263m. This generated 24 spots with the fabricated quasi-cavity described previously.  

Spot size measurements were conducted using a near infrared camera with a 1 inch 
Vidicon image sensor. Since the quasi-cavity to camera distance was small enough to image 
one spot at a time without focusing, no lens system was necessary. Images from the 700 
horizontal line camera were digitized in 8-bit resolution by a frame grabber installed on a 
personal computer with beam diagnostic software. Sixteen frames were acquired at a time for 
each of the first 20 spots and the mean used for the measurement value. A polarizer was 
placed in front of the laser aperture and rotated accordingly to avoid reaching the camera’s 
damage threshold and saturation. The camera’s manual analog gain was also adjusted to avoid 
any ambient noise. The beam measurement method chosen by software was the industry 
standard 90/10 knife edge method which is well suited for a TEM00 beam.  

3. Measurement results and discussion 

3.1 Spot size measurements 

The measured and modeled spot size plots followed the same behavior in growth as shown in 
Fig. 8. It is important to notice that less than 10% discrepancy between theoretical and 
experimental data is demonstrated, which is attributed to measurement errors due to (i) the 
angle at which each laser beam was incident on the image sensor, (ii) varying sensitivity at 
different parts of the image sensor and (iii) the camera’s gain factor which affected the 
intensity distribution of each spot. Also, the estimation of the position of the image sensor 
within the camera housing contributed to the overall discrepancy. This small discrepancy 
validates the theoretical model based on ABCD non-paraxial matrices, which is presented in 
section 2.C. Note that the beam width growth over the first 20 spots is considerable for the 
fabricated cavity, where the 20th spot measures double the diameter of the first spot. This is 
due to the non-focusing and compounded nature of the spot size growth where every change 
in spot size depends on the previous Gaussian complex parameter. 
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Fig. 8. Measured and modeled spot size growth for beams transmitted from the front side at a 
half meter range. 
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3.2 Ray trajectory measurement 

To validate the modeled ray trajectory described in section 2B, the intersecting coordinates of 
20 rays with a vertical line plotted from (277,0) to (277,500) was recorded with the quasi-
cavity center at (0,0) and R1 = 0.25m and R2 = 0.263m. Experimentally, a screen was placed in 
the same position relative to the cavity. The projected spot positions were marked on the 
screen and then measured with a ruler. The recorded y coordinates for the 20 intersections is 
compared to the measured positions. Figure 9 shows the modeled and measured positions 
along the screen. Position on screen refers to the distance from the spot to screen end (277,0). 
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Fig. 9. Measured and modeled spot positions on screen. 
 

A 0.7mm lead pacer was used to mark each spot, therefore a standard deviation of 10% 
has been applied. The difference in measured and modeled results begins to increase from the 
15th spot. This is due to an increasingly larger angle each beam makes with the screen  which 
results in a wider spot. Hence approximation of the spot center by hand becomes more 
difficult. However, Fig. 9 shows close conformity of the modeled and the approximately 
measured positions, therefore confirming the accuracy of the ray tracing method described 
previously. 

4. Conclusions and future work 

This paper has presented a novel method for wide angle pattern projection in the form of a 
laser spot array through multiple internal reflections and refractions. The effect of an off-axis 
optical system with respect to ray trajectory has been demonstrated. The wave guiding effect 
of the off-axis quasi-cavity on the spot size has also been successfully modeled and validated 
with experimental spot size measurements. The measured first and 20th  spot sizes for a cavity 
of radii R1 = 0.25m and R2 = 0.263m have been 1.2mm and 2.8mm respectively. However, 
simulated results have shown that the 20th spot size can be reduced to only 1.6mm by 
increasing the cavity radii to R1 = 1.05m and R2 = 1.063m, thus improving the scanning 
quality.  

Future work will include performing range measurements to each spot using dual 
triangulation and testing the performance of the ranging system, having the quasi-cavity as the 
emitting unit. A method for controlled spot projection also needs to be implemented. 

By conjoining as many quasi-cavities as needed, the scanned angle can be extended to 
360°. Furthermore, scanning in elevation can be achieved by stacking the quasi-cavities 
vertically.  
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