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Euclidean distance (ED) calculates the distance between n-coordinate points that n equals the dimension of the space these points
are located. Some studies extended its application to measure the diference between fuzzy numbers (FNs).Tis study shows that
this extension is not logical because although an n-coordinate point and an FN are denoted the same, they are conceptually
diferent. An FN is defned by n components; however, n is not equal to the dimension of the space where the FN is located. Tis
study illustrates this misapplication and shows that the ED between FNs does not necessarily refect their diference. We also
revisit triangular and trapezoidal fuzzy TOPSIS methods to avoid this misapplication. For this purpose, we frst defuzzify the FNs
using the center of gravity (COG) method and then apply the ED to measure the diference between crisp values. We use an
example to illustrate that the existing fuzzy TOPSIS methods assign inaccurate weights to alternatives and may even rank
them incorrectly.

1. Introduction

Te Euclidean distance (ED) measures the distance be-
tween two points in an n-dimensional space. Te ED is
calculated based on the Pythagorean theorem expresses
that the square of the straight line distance between two
points in an n-dimensional space is equal to the sum of the
squares of the diferences between their components.
Some studies extend ED application to measure the dif-
ference between fuzzy numbers (FNs). For example, Chen
[1] extends the ED to measure the diference between
triangular FNs (TFNs). Also, Chen et al. [2]; Wan and Li
[3]; and Seiti and Hafezalkotob [4] use the ED to calculate
the diference between trapezoidal FNs (TrFNs). Some
researchers like Yue [5] use the ED formula to measure the

diference between interval values. An interval value, also
called a gray number (GN), can be considered an FN in
which all values in the given interval have a membership
degree of 1.

One of the most well-known techniques extended for
fuzzy environments based on ED is the technique for order
preferences by similarity to the ideal solution (TOPSIS).
TOPSIS is a multi-attribute decision-making (MADM)
technique proposed by Hwang and Yoon [6]. Tis method
ranks the alternatives based on their EDs from positive- and
negative-ideal solutions (PIS and NIS). TOPSIS has been
extended for fuzzy environments. Diferent fuzzy TOPSIS
(FTOPSIS) methods have been developed for type-1 fuzzy
sets. By type-1 fuzzy sets, wemean the fuzzy sets proposed by
Zadeh [7] for the frst time.
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Type-1 FTOPSIS methods usually defne the fuzzy PIS
(FPIS) and fuzzy NIS (FNIS), and rank the alternatives based
on their distances from the FPIS and FNIS. Te most
common distance used in the literature for this purpose is
the ED (See the FTOPSIS methods proposed by Chen [1];
Chen et al. [2]; Mokhtarian and Hadi-Vencheh [8]; Huang
and Peng [9]; Buyukozkan and Cifci [10]; Gok [11]; Wang
et al. [12]; Baykasoglu and Golcuk [13]; and Seiti and
Hafezalkotob [4]. Most of these methods have been devel-
oped for TFNs, although some researchers like Chen et al.
[2] and Seiti and Hafezalkotob [4] developed FTOPSIS
methods for TrFNs.

FTOPSIS methods have also been developed for other
types of fuzzy sets; some methods extended the ED for
measuring the diferences between FNs. For example, Li
et al. [14] and Chen and Hong [15] developed TOPSIS for
intuitionistic and interval type-2 FNs, respectively. Ye and Li
[16] proposed an extended FTOPSIS method by utilizing the
possibility theory. Yu et al. [17] extended TOPSIS under the
interval-valued Pythagorean fuzzy environment. Mathew
et al. [18] calculated the ED between alternatives and the
spherical fuzzy positive and negative ideal solutions.

Tis study shows that extending the ED to measure the
diferences between FNs, including TFNs and TrFNs, sufer
from ED misapplication. Tis misapplication causes the
diference between two FNs to be incorrectly measured. In
fact, the values obtained from the ED do not necessarily
represent the real diferences between FNs. In other words,
extending the ED to measure the diference between FNs is
not logical because although an n-coordinate point and an
FN are denoted the same, they are conceptually diferent. As
a result, the techniques extending the ED to measure the
diferences between FNs also sufer from the same misap-
plication. Tis misapplication, in turn, causes a computa-
tional error; therefore, the results of these techniques are
unreliable.

Te existing FTOPSIS methods usually misapply the
ED to measure the diferences between FNs; therefore,
they may assign the wrong weights to alternatives. To
avoid this misapplication, we suggest that instead of using
the ED formula, the diference between two FNs is con-
sidered equal to the diference between their centroids. To
show the application of this suggestion, we present a gray
TOPSIS (GTOPSIS) method that considers the diference
between the centroids of GNs as their diference. We also
revisit the triangular and trapezoidal FTOPSIS methods.
In the revisited methods, the diferences between FNs are
considered equal to the diferences between their
centroids.

Te rest of this paper is organized as follows: Section 2
illustrates the misapplication of using the ED to measure the
diference between FNs. Section 3 presents a GTOPSIS
method and revisits the FTOPSIS methods for TFNs and
TrFNs. Section 4 provides a numerical example to compare
the results of a classical FTOPSIS with its revised version
proposed in this study. Section 5 gives the conclusion.

2. The ED Misapplication

Tis section is divided into four subsections. Subsection 2.1
reviews the formulas obtained by extending the ED to
measure the diferences between FNs. Subsection 2.2 ana-
lyzes the ED. Subsection 2.3 discusses and illustrates the
misapplication of ED to measure the diference between
FNs. Subsection 2.4 obtains the diferences between FNs
using two diferent approaches: using the ED and calculating
the diference between FNs based on their centroids. Tis
subsection compares the results of these methods and uses
some numerical examples to illustrate how the ED leads to a
wrong diference between FNs.

2.1. Measuring the Diferences between FNs Using the ED.
Te ED is defned below.

Defnition 1. Let X1 ×X2 × , . . . ×Xn be a universal set of an
n-coordinate system, and P1 � (x1

1, . . . , xn
1) and

P2 � (x1
2, . . . , xn

2) be two points ofR
n.Te ED between these

points, d(P1, P2), is obtained as follows:

d P1, P2( 􏼁 � 􏽘
n

i�1
x

i
1 − x

i
2􏼐 􏼑

2⎛⎝ ⎞⎠

1/2

. (1)

Te ED has been used to measure the diferences be-
tween GNs. To review this application, let A � [a1, a2] and
B � [b1, b2] be two GNs. Yue [5] computes the diference
between A and B as follows:

d(A, B) �

������������������

a1 − b1( 􏼁
2

+ a2 − b2( 􏼁
2

􏽱

. (2)

Some studies use the ED to measure the diferences
between FNs. For example, Chen [1] extends the ED to
measure the diference between two TFNs, denoted as K �

(k1, k2, k3) and L � (l1, l2, l3), as follows:

d(K, L) �

������������������������������
1
3

k1 − l1( 􏼁
2

+ k2 − l2( 􏼁
2

+ k3 − l3( 􏼁
2

􏽨 􏽩

􏽲

. (3)

Chen et al. [2] use the ED to calculate the diference
between two TrFNs, M � (m1, m2, m3, m4) and
N � (n1, n2, n3, n4), as follows:

d(M, N) �

��������������������������������������������
1
4

m1 − n1( 􏼁
2

+ m2 − n2( 􏼁
2

+ m3 − n3( 􏼁
2

+ m4 − n4( 􏼁
2

􏽨 􏽩

􏽲

. (4)
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Note that other formulas in the literature have been
developed based on the ED formula to measure the dif-
ference between FNs. For example, Wan and Li [3] and Seiti

and Hafezalkotob [4] measure the diference between TrFNs
M and N as follows:

d(M, N) �

����������������������������������������������
1
6

m1 − n1( 􏼁
2

+ 2 m2 − n2( 􏼁
2

+ 2 m3 − n3( 􏼁
2

+ m4 − n4( 􏼁
2

􏽨 􏽩

􏽲

. (5)

2.2. Te ED Properties. Te ED calculates the distance be-
tween two n-coordinate points located in an n-dimensional
space. For this purpose, frst, it calculates n distinct distances
between the same dimensions of given points and then
combines these distances using equation (1). For example, let
X×Y be a universal set of a two-coordinate system, and A1 �

(x1, y1) and A2 � (x2, y2) be two ordered points. Te dif-
ferences between x-values and y-values of these points, called
the horizontal and vertical distances, are obtained as |x1 −

x2| and |y1 − y2|, respectively.Te ED between points P1 and
P2 is calculated by combining their horizontal and vertical
distances as follows:

d A1, A2( 􏼁 � x1 − x2( 􏼁
2

+ y1 − y2( 􏼁
2

􏼐 􏼑
1/2

. (6)

Te dashed lines in Figure 1(a) show the horizontal and
vertical distances between points A1 and A2, and the solid
line indicates the ED between them. Equation (6) uses the
Pythagorean theorem to calculate the ED between two
points in a two-coordinate system based on their horizontal
and vertical distances. According to this theorem, the square
of the hypotenuse in a right triangle is equal to the sum of the
squares of the other two sides.

ED has been used for diferent purposes, including
calculating the distance between two points in an n-di-
mensional space and measuring the diference between two
FNs. However, using the ED for some purposes may come
with some faws.We provide a defnition below to determine
whether the ED is an appropriate tool for the given purpose.

Defnition 2. (Te mutual interchange property). Let
X1 ×X2 ×, . . ., ×Xn be a universal set of an n-coordinate
system and P1 � (x1

1, . . . , xn
1) and P2 � (x1

2, . . . , xn
2) be two

points in this system. By mutually interchanging the values
of the same dimension i for these points, i.e., the values of xi

1
and xi

2, for one or more i indexes, the new points P3 and P4
are created. If the real distance between the new points P3
and P4 is equal to the real distance between P1 and P2, we can
use the ED for the given purpose.

When the values of the same dimensions are mutually
interchanged for one or more dimensions, equation (1)
always calculates the same ED. However, the real distance
between the new points may change. If the real distance
between the new points is changed (not changed), the ED is
inconsistent (consistent) with the real situation and cannot
(can) be used for the given purpose. For example, by mu-
tually interchanging the x-values of points A1 � (x1, y1) and
A2 � (x2, y2) in Figure 1(a), two new order points are
created as A3 � (x2, y1) and A4 � (x1, y2) shown in

Figure 1(b). Te ED between A3 and A4 is calculated as
follows:

d A3, A4( 􏼁 � x2 − x1( 􏼁
2

+ y1 − y2( 􏼁
2

􏼐 􏼑
1/2

. (7)

Equations (6) and (7) indicate that although A3 and A4 are
two diferent points fromA1 andA2, the ED betweenA3 andA4
equals the ED betweenA1 andA2.Tis conclusion is consistent
with the real distances between the points. It implies that
calculating the distance between points in a two-coordinate
system comeswith themutual interchange property.Terefore,
the ED is an appropriate tool for this purpose.

2.3. Misapplying the ED to Measure the Diference between
FNs. Tis section argues that the ED is not an appropriate
tool to measure the diference between FNs. In particular, we
show that the misapplications of equations (2)–(5) extended
based on the ED to measure the diferences between GNs,
TFNs, and TrFNs. For this purpose, we show that these
equations do not come with the mutual interchange
property; therefore, they should not be used to measure the
diferences between FNs. For example, by mutually inter-
changing the lower bounds of two GNs A � [a1, a2] and B �

[b1, b2], two new GNs are created as C � [b1, a2] and D �

[a1, b2], provided that a1, b1 ≤ a2, b2. Te real diference
between new GNs C and D is not necessarily equal to the
diference between GNs A and B(See Example 1). However,
equation (2) calculates equal diferences between the GNs
for both cases. Tis implies the ED is inconsistent with
measuring the diference between GNs. Tis conclusion can
be generated for FNs. We present Examples 2 and 3 to il-
lustrate this inconsistency for TFNs and TrFNs, respectively.

A question arises: why is ED consistent with measuring
the distance between two n-coordinate points located in an
n-dimensional space but inconsistent with measuring the
diference between two FNs? To answer this question,
consider that n naturally diferent components characterize
an n-coordinate point; each component is measured based
on a diferent dimension. For example, let A� (10, 20, 30) be
a point in a three-dimensional space. Tree naturally dif-
ferent components characterize this point: its length, width,
and height; the values of these components are 10, 20, and
30, respectively.Te number of components characterizing a
point equals the number of dimensions of the space in which
the point is located. As a result, the ED between two points in
an n-dimensional space is calculated based on their difer-
ences obtained for the same dimensions based on the Py-
thagorean theorem.

Complexity 3



However, the number of components characterizing an
FN is not equal to the number of dimensions of the space in
which it is located. For example, the GN, TFN, and TrFN
characterized with 2, 3, and 4 components, respectively, are
located in a one-dimensional space, not in two-, three-, and
four-dimensional spaces. In other words, an FN is charac-
terized by n components of the same nature; all of them are
measured based on only the same dimension. For example,
let B� (10, 20, and 30) be a TFN representing the fuzzy set of
young people. Although B is characterized by three com-
ponents, i.e., 10, 20, and 30, they do not correspond to three
diferent dimensions; these components have the same
nature, i.e., age, and can be measured using only one
dimension.

Both the three-coordinate point A and the TFN B are
identifed as (10, 20, 30). However, they are entirely con-
ceptually diferent and should not be treated the same. Point
A is a three-coordinate point located in a three-dimensional
space, while B is a TFN located in a one-dimensional space.
Tis clearly shows that although A and B look similar, they
are conceptually quite diferent.Terefore, we cannot simply
generalize operations that are inherently appropriate for
points located in three-dimensional space to TFNs.

We can also criticize using the ED to measure the dif-
ference between FNs from the extension principle per-
spective. According to this principle, each fuzzy relation has
been generally developed based on a crisp relation. However,
the ED between FNs has been extended improperly based on
the crisp ED. In other words, the ED in a crisp environment
measures the distance between two n-coordinate points;
each coordinate corresponds to a unique dimension. In
contrast, the ED in a fuzzy environment measures the
diference between two n-component FNs; all these com-
ponents together correspond to only one dimension. It is
clear that a point in an n-dimensional space is conceptually
completely diferent from an FN denoted with n
components.

A point in an n-dimensional space contains n hetero-
geneous components. For example, the three components of
a point in a three-dimensional space are length, width, and
height, representing three diferent characteristics. In con-
trast, an FN contains n homogenous components. For ex-
ample, the three components of a TFN are the lower, middle,
and upper values of the same variable; these components
together represent the same characteristic. A question arises:
on what logic has the ED been extended to measure the

distance between one-coordinate FNs? Te only answer to
this question is the similarity between denoting a point in an
n-dimensional space and an FN. For example, both a point
in a three-dimensional space and a TFN are denoted as (a ,b,
c). Despite this similarity, they are entirely diferent;
therefore, the operations proposed for one of them cannot be
extended to the other simply.

2.4. Illustrating the ED Misapplication to Measure the Dif-
ference between FNs. Te previous section concluded that
using the ED to measure the diference between two FNs in a
one-dimensional space is meaningless. Terefore, other ap-
proaches should be used to measure the diference between
FNs. One of the approaches used for this purpose is to calculate
the diference between the centroids of FNs. In the following,
we frst review the center of gravity (COG) method used to
obtain the centroid of an FN. Ten, we present a theorem to
show that calculating the diference between two intervals using
the ED and COG methods leads to diferent results. It is to be
noted that the proposed theorem can be extended to FNs,
including TFNs and TrFNs. Next, some numerical examples
are given to illustrate the ED misapplication. To show this
misapplication, we compare the results of two methods be-
tween FNs: the ED and the COG methods.

Remark 1. Yager [19] proposed the COG method to obtain
the centroid of the FN 􏽥A with the membership function of
μ􏽥A

(x) as follows:

C(􏽥A) �
􏽒

+∞
− ∞ x.μ􏽥A

(x).dx

􏽒
+∞
− ∞ μ􏽥A

(x).dx
, (8)

where C(􏽥A) is the centroid of 􏽥A. Equation (8) can be used to
fnd the centroids of diferent types of FNs. For example,
consider Figures 2(a)–2(c) representing the normal TFN
􏽥A � (l, m, u), GN 􏽥B � (l, u), and TrFN 􏽥C � (l, m, m′, u),

respectively.
Arman et al. [20] obtained the centroids of 􏽥A, 􏽥B, and 􏽥C

using equation (8) as follows:

C(􏽥A) �
l + m + u

3
, (9)

C(􏽥B) �
l + u

2
, (10)

A2

A1

x

y2

y2 – y1

x2 – x1

y1

x1 x2

(a)

A4

A3

x

y2

y2 – y1

x2 – x1

y1

x1
x2

(b)

Figure 1: Mutual interchange property of ED.
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C(􏽥C) �
1
3

l + m + m′ + u( 􏼁 −
m′ × u( 􏼁 − (l × m)

m′ + u( 􏼁 − (l + m)
􏼢 􏼣. (11)

Theorem 1. Let A � [a1, a2] and B � [b1, b2] be two distinct
GNs.Ten, the diference between A and B using ED and COG
leads to diferent results.

Proof. Te centroids of GNs A and B using equation (10) are
C(A) � a1 + a2/2 and C(B) � b1 + b2/2, respectively. By
contrast, assume that the diference between A and B using
the ED and COG methods is the same. Terefore�������������������

(a1 − b1)
2 + (a2 − b2)

2
􏽱

� |a1 + a2/2 − b1 + b2/2|%⇒ a1 −

a2 � b1 − b2.
We know that although two new GNs are created by

mutually interchanging the values of the same dimension of
GNs A and B, the ED between new points is not changed. By
mutually interchanging the lower bounds of A and B, two
new GNs are created as C � [b1, a2] and D � [a1, b2],
provided that a1, b1 ≤ a2, b2. Te centroids of GNs C and D
using equation (10) are C(C) � b1 + a2/2 and C(D) � a1 +

b2/2, respectively. Assume that the diference between C and
D using the ED and COG methods leads to the same. Tus,

������������������

b1 − a1( 􏼁
2

+ a2 − b2( 􏼁
2

􏽱

�
b1 + a2

2
−

a1 + b2

2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
%⇒ a1 + a2 � b1 + b2.

(12)

Since (a1 − a2 � b1 − b2) and (a1 + a2 � b1 + b2). So

a1 − a2( 􏼁 + a1 + a2( 􏼁 � b1 − b2( 􏼁 + b1 + b2( 􏼁%⇒ a1 � b1

a1 − a2( 􏼁 − a1 + a2( 􏼁 � b1 − b2( 􏼁 − b1 + b2( 􏼁%⇒ a2 � b2
.

(13)

Tis means A�B, and this is a contradiction. Now, the
proof is completed. □

Example 1. Let A1 � [10, 90] and B1 � [80, 120] be two GNs.
By interchanging the frst components of these GNs, the new
GNs A2 � [80, 90] and B2 � [10, 120] are created. Te ED
between GNs A2 and B2 is 76.16 using equation (2), exactly
equal to that of GNs A1 and B1. On the other hand, the
centroids of intervals A1, B1, A2, and B2 are obtained at 50,
100, 85, and 65, respectively, using equation (10). Terefore,
the absolute diference between the centroids of A1 and B1 is
|C(A1) − C(B1)| � 50, while the absolute diference between
the centroids of A2 and B2 is |C(A2) − C(B2)| � 20. It im-
plies that equation (2) is inconsistent with measuring the
diference between GNs.

Example 2. Assume that K1 � (1, 3, 5) and L1 � (2, 4, 6) are
two TFNs (Figure 3(a)).Te ED between TFNs K1 and L1 is 1
using equation (3). L1 is greater than K1 because all com-
ponents of L1 are greater than their corresponding com-
ponents of K1.Tis is confrmed by calculating the diference
between the centroids of these TFNs.Te centroids ofK1 and
L1 are 3 and 4, respectively, using equation (9); therefore, the
diference between them is C(K1) − C(L1) � − 1.

By mutually interchanging the third components of K1
and L1, two new TFNs, K2 � (1, 3, 6) and L2 � (2, 4, 5), are
created (Figure 3(b)). Compared to K1 and L1, the values of
the frst and second components of K2 and L2 have not
changed; but the values of their third components have
increased and decreased, respectively. Terefore, the FNs K2
and L2 are expected to be closer to each other compared to
the FNs between K1 and L1. However, the ED between K2
and L2 is 1 using equation (3), exactly equal to the ED
between K1 and L1. On the other hand, the centroids of K2
and L2 are 3.33 and 3.66, respectively, using equation (9);
thus, the absolute diference between their centroids is
|C(K2) − C(L2)| � 0.33 that is smaller than
|C(K1) − C(L1)| � 1. It indicates that measuring the dif-
ference between TFNs based on their centroids is consistent
with our expectation. Tis example shows that when the
same elements of two TFNs are mutually interchanged, the
real diference between new TFNs may change. However,
equation (3) cannot discover this change and computes the
same ED. As a result, the ED is not an appropriate tool for
measuring the diference between two TFNs.

Example 3. Using the numbers 1 to 8, eight diferent two-
member sets can be made, provided that the members in
each set are TrFNs without using a number twice in each set.
In other words, there are only eight separate sets as Ai �

(a, b, c, d), (e, f, g, h)􏼈 􏼉, i� 1, . . ., 8, provided that the
numbers 1 to 8 appear only once in each set, and a< b< c<d

and e<f<g< h (See Table 1).
Te ED between two TrFNs is calculated equal to 1 using

equations (4) and/or (5) for all sets. It means that the ED
measures the diference between two TrFNs in each set equal
to 1. However, it does not refect reality. To prove that, we
obtain the centroids of TrFNs using equation (11) and then
calculate the diference between the centroids of TrFNs in
each set. Te results are given in Table 1. Tis table clearly
shows that the diferences between the centroids better
refect the real diferences between TrFNs.

3. Revisiting the Gray and Fuzzy
TOPSIS Methods

Tis section is divided into three subsections. Subsection 3.1
presents a new gray TOPSIS method to avoid misapplying
the ED distance. Subsections 3.2 and 3.2 revise two trian-
gular and trapezoidal FTOPSIS methods, respectively,
proposed by Chen [1] and Chen et al. [2]. Tese methods
misapply the ED to measure the diferences between FNs.
We revise these methods to avoid this misapplication.

3.1. Te Interval value (Gray) TOPSIS. Consider the fol-
lowing gray comparison matrix.

In this matrix, Ai(i � 1, . . . , m) and Cj(j � 1, . . . , n)

represent the alternative i and criterion j, respectively, and
aij � [aL

ij, aU
ij] is the interval (gray) value of alternative i for

criterion j. Here, we propose a new gray TOPSIS method
consisting of six steps as follows.

Step 1. Normalizing the decision matrix
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At this step, the decision matrix D � [aij]m×n is con-
verted into the normalized matrix N � [nij]m×n using
the linear scale transformation as follows:

nij �
a

L
ij

U
∗
j

,
a

U
ij

U
∗
j

⎡⎢⎣ ⎤⎥⎦, U
∗
j � max

i
a

U
ij, if j ∈ B;

nij �
L

−
j

a
L
ij

,
L

−
j

a
U
ij

⎡⎢⎢⎣ ⎤⎥⎥⎦, L
−
j � min

i
a

L
ij, if j ∈ C;

(14)

where B and C are the sets of beneft and cost criteria,
respectively, and nij � [nL

ij, nU
ij] is the normalized value

of aij � [aL
ij, aU

ij].
Step 2. Weighting the normalized matrix
Let W � wj|j � 1, . . . , n􏽮 􏽯 denote the vector of interval
weights of criteria as wj � [αj, βj] is the triangular
fuzzy weight of criterion j. Terefore, the weighted
normalized matrix V � [vij]m×n is obtained as V � W ×

N, in which each element vij � wj.nij is calculated as
follows:

vij � v
L
ij, v

U
ij􏽨 􏽩 � αj.n

L
ij, βj.n

U
ij􏽨 􏽩, ∀i, j. (15)

Step 3. Defning the ideal solutions
Te interval values of PIS and NIS for criterion j, shown
as v∗j � [(v∗j )L, (v∗j )U] and v−

j � [(v−
j )L, (v−

j )U], re-
spectively, can be defned as follows:

�v
∗
j � ([1, 1]|j ∈ B), [0, 0]|j ∈ C))􏼈 􏼉, j � 1, . . . , n;

�v
−

j � ([0, 0]|j ∈ B), ([1, 1]|j ∈ C)􏼈 􏼉, j � 1, . . . , n.
(16)

Step 4. Transforming into crisp values based on the
COG method
In this step, the gray matrix V is converted into the
crisp matrix V. For this purpose, we use equation (10)
to transform the gray value vij(∀i, j) into the crisp value
as follows:

vij �
v

L
ij + v

U
ij

2
. (17)

Tis step also uses equation (10) to transform the in-
terval values of PIS and NIS for criterion j into the crisp
values as follows:

v
∗
j �

v
∗
j􏼐 􏼑

L
+ v
∗
j􏼐 􏼑

U

2
,

v
−
j �

v
−
j􏼐 􏼑

L
+ v

−
j􏼐 􏼑

U

2
.

(18)

Note that if a gray PIS (or a gray NIS) is defned as (1, 1)
or (0, 0), its corresponding crisp value is 1 or 0,
respectively.
Step 5. Computing the EDs
Te outcomes of Step 4 are a crisp weighted normalized
matrix V � [vij]m×n and the crisp PIS and NIS vectors,
shown as S∗ � [v∗j ]1×n and S− � [v∗j ]1×n. In this step, we
compute d∗i and d−

i , representing the EDs between the
alternative i and the crisp PIS and NIS vectors. Tese
distances are calculated as follows:

μx

1

l m u
x

(a)

μx

1

l u
x

(b)

μx

1

l m m' u
x

(c)

Figure 2: Membership function of three common FNs.

Table 1: Comparing TrFNs using the ED and the COG methods.

Set
TrFNs

Euclidean distance
Centroid

C(M) − C(N)
TrFN M TrFN N C(M) C(N)

1 (1, 3, 5, 7) (2, 4, 6, 8) 1 4 5 − 1
2 (1, 3, 5, 8) (2, 4, 6, 7) 1 4.296 4.714 − 0.418
3 (1, 3, 6, 7) (2, 4, 5, 8) 1 4.222 4.810 − 0.588
4 (1, 4, 5, 7) (2, 3, 6, 8) 1 4.19 4.778 − 0.588
5 (2, 3, 5, 7) (1, 4, 6, 8) 1 4.286 4.704 − 0.418
6 (2, 3, 5, 8) (1, 4, 6, 7) 1 4.583 4.417 0.166
7 (2, 3, 6, 7) (1, 4, 5, 8) 1 4.5 4.5 0
8 (2, 4, 5, 7) (1, 3, 6, 8) 1 4.5 4.5 0
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d
∗
i �

�����������

􏽘

n

j�1
vij − v

∗
j􏼐 􏼑

2

􏽶
􏽴

, i � 1, .., m,

d
−
i �

�����������

􏽘

n

j�1
vij − v

−
j􏼐 􏼑

2

􏽶
􏽴

, i � 1, .., m.

(19)

Step 6. Ranking the alternatives
Tis step calculates the relative closeness measures for
alternatives as follows:

C
+
i �

d
−
i

d
−
i + d
∗
i

, i � 1, . . . , m, (20)

C+
i is a utility measure.Terefore, the alternatives are ranked

based on C+
i ascendingly.

3.2. Revisiting the Triangular FTOPSIS. Consider the fol-
lowing decision matrix flled with TFNs.

In this matrix, Ai(i � 1, . . . , m) and Cj(j � 1, . . . , n)

represent the alternative i and criterion j, respectively, and
􏽥aij � (aL

ij, aM
ij , aU

ij) is the triangular fuzzy value of alternative
i for criterion j. Te revised triangular FTOPSIS method
consists of six steps as follows.

Step 1. Normalizing the decision matrix
At this step, the decision matrix 􏽥D � [􏽥aij]m×n is con-
verted into the normalized matrix 􏽥N � [􏽥nij]m×n using
the linear scale transformation as follows:

􏽥nij �
a

L
ij

U
∗
j

,
a

M
ij

U
∗
j

,
a

U
ij

U
∗
j

⎛⎝ ⎞⎠, U
∗
j � max

i
a

U
ij, ifj ∈ B;

􏽥nij �
L

−
j

a
L
ij

,
L

−
j

a
M
ij

,
L

−
j

a
U
ij

⎛⎝ ⎞⎠, L
−
j � min

i
a

L
ij, ifj ∈ C;

(21)

where B and C are the sets of beneft and cost criteria,
respectively, and 􏽥nij � (nL

ij, nM
ij , nU

ij) is the fuzzy nor-
malized value of 􏽥aij � (aL

ij, aM
ij , aU

ij).
Step 2. Weighting the normalized matrix
Let 􏽥W � 􏽥wj|j � 1, . . . , n􏽮 􏽯 denote the vector of fuzzy
weights of criteria as 􏽥wj � (αj, βj, χj) is the triangular

fuzzy weight of criterion j. Terefore, the weighted
normalized matrix 􏽥V � [􏽥vij]m×n is obtained as
􏽥V � 􏽥W⊗ 􏽥N, in which each element 􏽥vij � 􏽥wj. 􏽥nij is
calculated as follows:

􏽥vij � v
L
ij, v

M
ij , v

U
ij􏼐 􏼑 � αj.n

L
ij, βj.n

M
ij , χj.n

U
ij􏼐 􏼑, ∀i, j. (22)

Step 3. Defning the ideal solutions
Te FPIS and FNIS for criterion j, shown as
􏽥v∗j � ((v∗j )L, (v∗j )M, (v∗j )U) and
􏽥v−

j � ((v−
j )L, (v−

j )M, (v−
j )U), respectively, can be defned

as follows:

􏽥v
∗
j � ((1, 1, 1)|j ∈ B), (0, 0, 0)|j ∈ C))􏼈 􏼉, j � 1, . . . , n;

􏽥v
−
j � ((0, 0, 0)|j ∈ B), ((1, 1, 1)|j ∈ C)􏼈 􏼉, j � 1, . . . , n.

(23)

Note that diferent approaches in the literature defne
the ideal solutions. We used the approach proposed by
Chen [1]. However, the researchers can apply other
approaches for future research.
Step 4. Defuzzifying based on the COG method
In this step, the weighted normalized matrix 􏽥V is
converted into the crisp matrix V. For this purpose, we
use equation (9) to defuzzify the triangular fuzzy value
of 􏽥vij(∀i, j) as follows:

vij �
v

L
ij + v

M
ij + v

U
ij

3
. (24)

Tis step also uses equation (9) to defuzzify the FPIS
and FNIS for criterion j as follows:

v
∗
j �

v
∗
j􏼐 􏼑

L
+ v
∗
j􏼐 􏼑

M
+ v
∗
j􏼐 􏼑

U

3
,

v
−
j �

v
−
j􏼐 􏼑

L
+ v

−
j􏼐 􏼑

M
+ v

−
j􏼐 􏼑

U

3
.

(25)

Note that if a FPIS (or a FNIS) is defned as (1, 1, 1) or
(0, 0, 0), its corresponding crisp value is 1 or 0,
respectively.
Step 5. Computing the EDs
Te outcomes of Step 4 are a crisp weighted normalized
matrix V � [vij]m×n and the crisp PIS and NIS vectors,

L1K1

1 2  3 4 5 6

1

μ (x)

x

(a)

K2 L2
1

1 2 3 4 5 6

μ (x)

x

(b)

Figure 3: Comparing TFNs when interchanging their third components.
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shown as S∗ � [v∗j ]1×n and S− � [v∗j ]1×n. In this step, we
compute d∗i and d−

i , representing the EDs between the
alternative i and the crisp PIS and NIS vectors. Tese
distances are calculated as follows:

d
∗
i �

�����������

􏽘

n

j�1
vij − v

∗
j􏼐 􏼑

2

􏽶
􏽴

, i � 1, .., m,

d
−
i �

�����������

􏽘

n

j�1
vij − v

−
j􏼐 􏼑

2

􏽶
􏽴

, i � 1, .., m.

(26)

Step 6. Ranking the alternatives
Tis step calculates the relative closeness measures for
alternatives as follows:

C
+
i �

d
−
i

d
−
i + d
∗
i

, i � 1, . . . , m, (27)

C+
i is a utility measure.Terefore, the alternatives are ranked

based on C+
i ascendingly.

3.3. Revisiting the Trapezoidal FTOPSIS. Consider the fol-
lowing decision matrix flled with TrFNs.

In this matrix, 􏽥aij � (aL
ij, aM

ij , aM′
ij , aU

ij) is the trapezoidal
fuzzy value of alternative i for criterion j. Te revised
trapezoidal FTOPSIS method consists of six steps as follows.

Step 1. Normalizing the decision matrix
Tis step uses the linear scale transformation to convert
the decision matrix 􏽥D � [􏽥aij]m×n into the normalized
matrix 􏽥N � [􏽥nij]m×n as follows:

􏽥nij �
a

L
ij

U
∗
j

,
a

M
ij

U
∗
j

,
a

M′
ij

U
∗
j

,
a

U
ij

U
∗
j

⎛⎝ ⎞⎠, U
∗
j � max

i
a

U
ij, if j ∈ B;

􏽥nij �
L

−
j

a
L
ij

,
L

−
j

a
M
ij

,
L

−
j

a
M′
ij

,
L

−
j

a
U
ij

⎛⎝ ⎞⎠, L
−
j � min

i
a

L
ij, if j ∈ C;

(28)

where B and C are the sets of beneft and cost criteria,
respectively, and 􏽥nij � (nL

ij, nM
ij , nM′

ij , nU
ij) is the fuzzy

normalized value of 􏽥aij � (aL
ij, aM

ij , aM′
ij , aU

ij).
Step 2. Weighting the normalized matrix
Assume that 􏽥W � 􏽥wj|j � 1, . . . , n􏽮 􏽯 represents the
vector of fuzzy weights of criteria in which
􏽥wj � (αj, βj, βj

′, χj) is the trapezoidal fuzzy weight of
criterion j. Terefore, the weighted normalized matrix
􏽥V � [􏽥vij]m×n is obtained as 􏽥V � 􏽥W⊗ 􏽥N so that each
element 􏽥vij � 􏽥wj.􏽥nij is calculated as follows:

􏽥vij � v
L
ij, v

M
ij , v

M′
ij , v

U
ij􏼒 􏼓 � αj.n

L
ij, βj.n

M
ij , βj
′.nM′

ij , χj.n
U
ij􏼒 􏼓, ∀i, j.

(29)

Step 3. Defning the ideal solutions
Te FPIS and FNIS for criterion j, shown as
􏽥v∗j � ((v∗j )L, (v∗j )M, (v∗j )M′ , (v∗j )U) and 􏽥v−

j � ((v−
j )L,

(v−
j )M, (v−

j )M′ , (v−
j )U), respectively, can be defned as

follows:

􏽥v
∗
j � ((1, 1, 1, 1)|j ∈ B), (0, 0, 0, 0)|j ∈ C))􏼈 􏼉, j � 1, . . . , n;

􏽥v
−
j � ((0, 0, 0, 0)|j ∈ B), ((1, 1, 1, 1)|j ∈ C)􏼈 􏼉, j � 1, . . . , n.

.

(30)

Note that we used the approach Chen et al. [2] pro-
posed to defne the ideal solutions. However, the other
approaches in the literature can be used for this pur-
pose in future research.
Step 4. Defuzzifying based on the COG method
Tis step converts the weighted normalized matrix 􏽥V

into the crisp matrix V. For this purpose, we use
equation (11) to defuzzify the trapezoidal fuzzy value of
􏽥vij(∀i, j) as follows:

vij �
1
3

v
L
ij + v

M
ij + v

M′
ij + v

U
ij􏼒 􏼓 −

v
M′
ij × v

U
ij􏼒 􏼓 − v

L
ij × v

M
ij􏼐 􏼑

v
M′
ij + v

U
ij􏼒 􏼓 − v

L
ij + v

M
ij􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(31)

Tis step also uses equation (11) to convert the FPIS 􏽥v∗j
and FNIS 􏽥v−

j into the crisp PIS v∗j and the crisp NIS v−
j ,

respectively, as follows:

v
∗
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1
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∗
j􏼐 􏼑

L
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∗
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(32)
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Note that if a FPIS (or a FNIS) is defned as (1, 1, 1, 1) or
(0, 0, 0, 0), its corresponding crisp value is 1 or 0,
respectively.
Step 5. Computing the EDs
Te outcomes of Step 4 are the crisp matrix
V � [vij]m×n and the crisp PIS and NIS vectors S∗ �

[v∗j ]1×n and S− � [v∗j ]1×n.Tis step computes d∗i and d−
i ,

representing the EDs between the alternative i and the
crisp PIS and NIS vectors. Tese distances are calcu-
lated as follows:

d
∗
i �

�����������

􏽘

n

j�1
vij − v

∗
j􏼐 􏼑

2

􏽶
􏽴

, i � 1, .., m,
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�����������

􏽘

n

j�1
vij − v

−
j􏼐 􏼑

2

􏽶
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, i � 1, .., m.

(33)

Step 6. Ranking the alternatives
Tis step calculates the relative closeness measures for
alternatives as follows:

C
+
i �

d
−
i

d
−
i + d
∗
i

, i � 1, . . . , m, (34)

C+
i is a utility measure.Terefore, the alternatives are ranked

based on C+
i ascendingly.

4. Illustrative Example

Tis section uses a numerical example to illustrate that the
FTOPSIS method proposed by Chen [1], and its revised
version presented in this study assign diferent weights to
alternatives and may even rank them diferently. Assume
that we aim to rank two alternatives, A and B, considering

two attributes, C1 and C2. Te values of these alternatives for
each attribute are given in Table 2 as TFNs. In this table, the
weights of attributes are also given as TFNs. Both C1 and C2
are beneft-type attributes.

Both the FTOPSIS methods proposed by Chen and its
revised version have some common steps, including nor-
malizing the decision matrix using equations (20) and (21),
and obtaining the weighted normalized matrix using
equation (22). Te results of these steps are given in Table 3.
Since both attributes C1 and C2 are of the beneft type, the
FPIS and FNIS are considered to be (1, 1, 1) and (0, 0, 0),
respectively, for both attributes.

After the common steps, Chen’s method and its revised
version follow diferent steps described as follows.

4.1.ResultsBasedonChen’sFTOPSIS. Chen’smethod obtains
the EDs between the weighted normalized values and the FPIS
and FNIS for each attribute, then calculates the relative
closeness for alternatives, C+

i (i � 1, 2), and accordingly ranks
them. Tese calculations are given in Table 4. In this table,
d∗ij(d−

ij), representing the ED between alternative i and FPIS
(FNIS) for attribute j, is calculated using equation (3).

4.2. Results Based on the Revised FTOPSIS. Te revised
FTOPSIS method presented in this study converts the fuzzy
weighted normalized values into crisp values using equation
(9), shown in Table 5 as vij. Also, C1 and C2 are both beneft-
type attributes; therefore, both consider (1, 1, 1) and (0, 0, 0) the
FPIS and FNIS, respectively. Terefore, the crisp PIS and NIS
are obtained asA∗ � 1, 1{ } andA− � 0, 0{ }, respectively.Ten,
this method computes d∗i and d−

i , the EDs between the al-
ternative i and the crisp PIS A∗ and NIS A− , respectively.
Finally, it calculates the relative closeness of alternatives and
accordingly ranks them.Tese calculations are given in Table 5.

In contrast to Chen’s method, our revised FTOPSIS
method ranks alternative B as the best one.

Table 3: Te common steps of Chen’s method and its revised version.

Alternative
Te normalized matrix Te weighted normalized matrix

C1 C2 C1 C2

A (0.167, 0.5, 0.833) (0.375, 0.5, 1) (0.083, 0.3, 0.583) (0.113, 0.2, 0.5)
B (0.333, 0.667, 1) (0.125, 0.375, 0.625) (0.167, 0.4, 0.7) (0.038, 0.15, 0.313)

Table 2: Fuzzy triangular decision matrix.

Alternative C1 C2

A (1, 3, 5) (3, 4, 8)
B (2, 4, 6) (1, 3, 5)
Weight (0.5, 0.6, 0.6) (0.3, 0.4, 0.4)

Table 4: Te required calculation based on Chen’s method.

Alternative EDs C1 C2 Summation C+
i Ranking

A
d∗Aj using equation (3) 0.708 0.748 1.456

0.325 1
d−

Aj using equation (3) 0.382 0.318 0.699

B
d∗Bj using equation (3) 0.618 0.841 1.459

0.317 2
d−

Bj using equation (3) 0.475 0.201 0.677
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5. Conclusion

Te ED is the length of a straight line connecting two points in
an n-dimensional space. It calculates n distinct diferences
between these points for n given dimensions and then com-
bines them using the Pythagorean theorem. A misconception
caused the ED to be applied to measure the diference between
FNs.Tis misconception occurs because an n-coordinate point
and an FN are denoted alike. Some studies considered only this
similarity and generalized using the ED to measure the dif-
ference between FNs. However, they did not consider the
fundamental diferences between a point in an n-dimensional
space and an FN denoted by n components. For example,
although both a point in a three-dimensional space and a TFN
are denoted exactly the same as (a, b, c), they have fundamental
conceptual diferences.Tree components of a point in a three-
dimensional space represent three completely diferent vari-
ables, while the three components of a TFN together represent
the same variable. We showed that the ED used to measure the
distance between two points in an n-dimensional space is
inappropriately applied to measure the diference between two
n-components FNs in a one-dimensional space.

In the literature, diferent felds misapply the ED to
measure the diference between FNs; one of the most widely
used is fuzzy MADM. Tis study reviewed some FTOPSIS
methods that misapplyied the ED to measure the diference
between FNs and revisited two FTOPSIS methods for TFNs
and TrFNs to avoid this misapplication. Tis study also
presented a GTOPSIS method that uses the COG method to
measure the diference between GNs instead of the ED
method. It is suggested that future research revise the other
FTOPSIS methods misapplyied the ED to measure the
diference between FNs. Tis suggestion can be generalized
to other fuzzy MADM techniques. Future research can also
revisit the other felds in which the ED is misapplied to
measure the diference between FNs.
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