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Abstract
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School of Computer and Security Science

Doctor of Philosophy

Intelligent Network Intrusion Detection Using an Evolutionary

Computation Approach

by Samaneh Rastegari

With the enormous growth of users’ reliance on the Internet, the need for secure

and reliable computer networks also increases. Availability of effective automatic

tools for carrying out different types of network attacks raises the need for effective

intrusion detection systems.

Generally, a comprehensive defence mechanism consists of three phases, namely,

preparation, detection and reaction. In the preparation phase, network administra-

tors aim to find and fix security vulnerabilities (e.g., insecure protocol and vulnerable

computer systems or firewalls), that can be exploited to launch attacks. Although

the preparation phase increases the level of security in a network, this will never

completely remove the threat of network attacks. A good security mechanism re-

quires an Intrusion Detection System (IDS) in order to monitor security breaches

when the prevention schemes in the preparation phase are bypassed. To be able

to react to network attacks as fast as possible, an automatic detection system is

of paramount importance. The later an attack is detected, the less time network

administrators have to update their signatures and reconfigure their detection and

remediation systems. An IDS is a tool for monitoring the system with the aim of

detecting and alerting intrusive activities in networks. These tools are classified into

two major categories of signature-based and anomaly-based. A signature-based IDS

stores the signature of known attacks in a database and discovers occurrences of

attacks by monitoring and comparing each communication in the network against

the database of signatures. On the other hand, mechanisms that deploy anomaly

detection have a model of normal behaviour of system and any significant deviation

from this model is reported as anomaly.

http://http://www.ecu.edu.au/
http://http://www.ecu.edu.au/faculties/health-engineering-and-science/overview
http://http://www.ecu.edu.au/schools/computer-and-security-science/overview
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This thesis aims at addressing the major issues in the process of developing signature

based IDSs. These are: i) their dependency on experts to create signatures, ii) the

complexity of their models, iii) the inflexibility of their models, and iv) their inability

to adapt to the changes in the real environment and detect new attacks. To meet

the requirements of a good IDS, computational intelligence methods have attracted

considerable interest from the research community.

This thesis explores a solution to automatically generate compact rulesets for net-

work intrusion detection utilising evolutionary computation techniques. The pro-

posed framework is called ESR-NID (Evolving Statistical Rulesets for Network In-

trusion Detection). Using an interval-based structure, this method can be deployed

for any continuous-valued input data. Therefore, by choosing appropriate statistical

measures (i.e. continuous-valued features) of network traffic as the input to ESR-

NID, it can effectively detect varied types of attacks since it is not dependent on the

signatures of network packets.

In ESR-NID, several innovations in the genetic algorithm were developed to keep

the ruleset small. A two-stage evaluation component in the evolutionary process

takes the cooperation of rules into consideration and results into very compact,

easily understood rulesets. The effectiveness of this approach is evaluated against

several sources of data for both detection of normal and abnormal behaviour. The

results are found to be comparable to those achieved using other machine learning

methods from both categories of GA-based and non-GA-based methods. One of

the significant advantages of ESR-NIS is that it can be tailored to specific problem

domains and the characteristics of the dataset by the use of different fitness and

performance functions. This makes the system a more flexible model compared to

other learning techniques. Additionally, an IDS must adapt itself to the changing

environment with the least amount of configurations. ESR-NID uses an incremental

learning approach as new flow of traffic become available. The incremental learning

approach benefits from less required storage because it only keeps the generated

rules in its database. This is in contrast to the infinitely growing size of repository

of raw training data required for traditional learning.

Keywords: Network security, intrusion detection, evolutionary computation, classi-

fication, genetic based machine learning, supervised learning, rule based algorithms.
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Chapter 1

Introduction

Computers and networks have been under threat from viruses, worms and attacks

from hackers since they were first used. In 2008, the number of devices connected

to the Internet exceeded the number of human beings and this increasing trend will

see about 50 billion devices by 2020 (see Figure 1.1) (Evans, 2011). Securing these

devices and the data passing between them is a challenging task because the number

of intrusions is also increasing sharply year by year.

Figure 1.1: Increases on the number of devices connected to the Internet over
years.

1
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To address this issue, a large number of defences against network attacks have been

proposed in the literature. Despite all the efforts made by researchers in the com-

munity over the last two decades, the network security problem is not completely

solved. One reason for that is the rapid growth in computational power and available

resources to attackers, which enables them to launch complex attacks (Wu et al.,

2010). This can be considered a two-player game, where an attacker attempts to find

the most effective strategy to disrupt normal operations in a network and the de-

fender’s challenge is to determine optimal defensive solutions and block illegitimate

access to the network.

In general, defence against network attacks consists of preparation, detection and

reaction phases. A risk analysis process is usually conducted by security engineers

during the preparation phase to understand the environment and the assets they are

trying to protect in that environment. This process is very crucial because it helps

the engineers to understand how attacks can take place and how they affect the

network (Santos, 2007). The preparation phase also includes identification of infras-

tructure vulnerabilities, development of security strategies and plans and installation

of required security devices based upon analysis of the information gathered (Hamdi

& Boudriga, 2005; Mölsä, 2005). Another key element of network security is a de-

tection system. An intrusion detection system (IDS) usually complements a firewall

to form an effective cyber security solution. One security motto is “Prevention is

ideal but detection is a must” (Cole, 2011). Fast detection of attacks is required

to be able to react rapidly. Thus, an automatic detection phase is of paramount

importance. Finally, handling detected intrusions in a network is done during the

reaction phase. A traffic blocking method is an example of a mitigation mechanism

used in the reaction phase.

One of the main challenges in securing networks is the appropriate design and use

of an intrusion detection system, that can monitor network traffic and effectively

identify network intrusions. The role of this key element in an effective defence

system will be explained in the next section.
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1.1 The Role of Intrusion Detection

A large number of defence approaches have been proposed in the literature to provide

different functions in various environments. The core element of a good defence sys-

tem is an Intrusion Detection System (IDS), which provides proper attack detection

before any reaction. An IDS aims to detect intrusions before they seriously damage

the network. The term intrusion refers to any unauthorised attempt to access the

elements of a network with the aim of making the system unreliable. Figure 1.2

depicts the organization of a generalized IDS. The solid lines show the data/control

flow and the dashed lines indicate the responses to the intrusions.

Data Pre-processingData 
Collection

Intrusion Recognition Alarm Report

Intrusion Models Security 
Administrator

Monitored System

Response to Intrusion

Response to Intrusion

Figure 1.2: Organization of a generalized intrusion detection system (Wu &
Banzhaf, 2010).

Intrusion detection systems are generally categorised into signature based or anomaly

based. Signature based IDSs use a database of rules or so called signatures to classify

network connections, whereas anomaly based IDSs create a normal user profile and

identify anything that does not match this profile as an attack. In the former, known

intrusions can be detected efficiently with a low false alarm rate. Thus, in most of

the commercial systems, this approach has been widely used.

One of the major challenges in the signature based intrusion detection is the de-

tection of new intrusions. To address this issue, the database of rules should be

regularly updated with a manual or automatic process. A manual process is usu-

ally done by a network administrator by finding new signatures and adding them

to the database of rules, while an automatic process can be done with the help of
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supervised learning algorithms. Another way to address this problem is to switch

to an anomaly detection system, which has the capability of detecting new types of

attacks. However, the major problem in anomaly detection systems is discovering

the boundaries between normal and anomalous behaviour. In addition to that, as

the normal traffic pattern is also changing over time, an anomaly detection system

needs to adapt itself to this changing behaviour.

Nowadays, due to the exponential growth of technologies and the increased number

of available hacking tools, in both approaches, adaptability should be considered as

a key requirement. To be able to react to network intrusions as fast as possible, an

automatic or at least semi-automatic detection phase is required. This will decrease

the amount of damage to legitimate users because an early detection system supplies

more time for a proper reaction.

1.1.1 Essential Requirements of an IDS

The main features that an IDS should have are effectiveness, adaptability and exten-

sibility (Lee, 1999). Effectiveness refers to the ability of an IDS in detection of slight

variations of known attacks and extensibility means that an IDS can be customised

easily for different environments.

A majority of proposed IDSs in the past are based on signature detection (Gómez

et al., 2013) because of their effectiveness in detection of known attacks. Two exam-

ples of widely used open-source signature-based tools are Snort (Roesch, 1999) and

ClamAV (Kojm, 2004). Both have their own database of signatures (more than 4000

rules in Snort database and over 800,000 in ClamAV repository). However, these

systems raise two important issues for further research: 1) a human is responsible

for generation of signatures and updating the database and as a result the cost of

developing and maintaining this database is an important issue. They also suffer

from the time lag between facing new attacks and manually updating the signatures.

and 2) they do not work against new and unknown attacks.
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To automate the process of signature generation, the use of computational algo-

rithms is a promising method with adaptation, fault tolerance, high computational

speed and error resilience in the face of noisy information characteristics (Wu &

Banzhaf, 2010). Additionally, to update the database of signatures for a dynamic

environment, an incremental learning approach can be used to repeatedly learn new

attacks.

To summarise, the laborious manual process of signature creation for IDSs, non-

adaptability of them to a dynamically changing environment and considering exten-

sibility as an important feature for the design of IDSs introduce a new direction of

research and the motivation for this thesis.

1.2 Research Motivation and Objectives

As the number of malicious computer users and their intrusive behaviour increase,

the task of designing comprehensive network protection systems become more and

more difficult. This thesis focuses on the majority class of IDSs, which is based on

signature detection and proposes a method for automatically generating signatures

for network intrusion detection. The main disadvantage of signature-based detec-

tion systems is the impossibility of detecting new intrusions because they only look

for patterns that match the signatures (or rules) stored in their databases. These

systems need frequent updates to keep the database of signatures current. Creation,

test and distribution of these signatures are often carried out by human experts.

This involves examining and analysing the malicious traffic for extracting informa-

tion needed for signature-based detectors. After creation of signatures, they should

be tested against some captured network data and if they perform well, they will be

added to the repository of signatures. To facilitate the signature creation process,

a computational intelligence method can be used in a supervised learning mode in

building an automatic rule-based IDS. More specifically in this thesis, a Genetic-

based Machine Learning (GBML) technique is proposed and its application to IDS
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problems is evaluated. The proposed approach uses a genetic algorithm (GA) to

generate an optimal set of rules for intrusion detection.

Although the application of nature inspired rule based systems, such as genetic algo-

rithms, for classification tasks is a promising line of work, there are some challenges

that need to be addressed, such as scalability (how do they deal with datasets with

a high number of attributes?), flexibility (can they deal with both balanced and

imbalanced (i.e. a problem where the total number of a class of data is far less than

the total number of another class of data) datasets?), understandability of the model

(how complex is the final ruleset?), etc. These challenges are discussed below.

One of the challenges in evolutionary rule learning techniques is dealing with datasets

with a large number of attributes. Standard feature selection strategies are often

used to find relevant attributes and reduce the search space. However, these meth-

ods are only able to initially filter the dataset for the use of a classification method

and thus the classifier is forced to use the same subset of features for every rule

(signature) it generates. Therefore, the same subset of attributes are seen for the

whole solution (i.e. ruleset). For example, if the feature selection method chose

five of the 10 received features as the relevant attributes for the classifier, then

the final ruleset generated by the classifier includes rules that are all the same size

(each rule comprises five features). Recently, some other approaches have been pro-

posed to integrate feature selection and learning in a concurrent manner (Bacardit &

Krasnogor, 2009a). These fine grained feature selection approaches are more flexible

and produce rules with different sets of attributes. This also reduces complexity

of the final ruleset generated for the classification task by giving the flexibility to

learning system to only use and keep relevant attributes during the evolutionary

course. Therefore, two advantages of an integrated feature selection and learning

approach are 1) a more efficient learning process and 2) a more compact and hence

understandable final solution.

In many real world situations (e.g., intrusion detection, risk management and med-

ical applications), cases where one class (usually the positive class) represents only
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a very small fraction of the entire dataset can often be seen. For example, in net-

work intrusion detection, the number of intrusive instances is typically a very small

fraction of the total network traffic records. Similarly, for classifying the cancerous

pixels from normal ones in mammogram images, the cancerous instances represent

only a very small fraction of the entire image (Chawla et al., 2003). Dealing with

these cases is considered one of the emergent challenges in data mining (Yang &

Wu, 2006). Since the minority class is considered the target class in the learning

and prediction process, the cost associated with misclassification of even one exam-

ple of that class should be higher than that of the other class. Therefore, a rule

learning system’s design should be flexible enough to adapt to different types of

problems and datasets.

Another important challenge for nature inspired rule based systems is the com-

plexity of the final ruleset. In most domains, experts are interested in human-

understandable models. A common metric used in the literature for measuring com-

plexity is the number of rules. To avoid generating too many rules and to minimize

overlapping regions covered by rules, cooperation between rules should be considered

when evolving rules.

Therefore, this thesis aims at designing a genetic-based rule learning classifier, which

can automatically generate a concise set of easy to understand rules for intrusion

detection. This system decreases human effort in creating and maintaining rules

for rule-based systems. Another goal of this thesis is to make the detection system

adaptable to the changes in the real environment using an incremental learning

approach. The contributions of the proposed approach to both the GBML and

network intrusion detection fields are explained in the following section.

1.3 Thesis Contributions

The main contributions of this thesis are:



Chapter 1. Introduction 8

• Automatic rule creation for intrusion detection:

The proposed nature inspired approach in this thesis is able to automatically

generate signatures (rules) to detect anomalous traffic. This is accomplished

by implementing a genetic algorithm with new features, which are explained

later, to autonomously derive a set of rules from network data. This facilitates

and speeds up the process of rule extraction from network audit data, which

has been traditionally carried out by human experts for signature based IDSs.

• Use of statistical features for detector rules:

The types of rules generated in this thesis are statistical based as it is be-

lieved that the generated packets by today’s attack tools with improved packet

crafting characteristics will most likely distort statistical measurements of the

composition of network traffic. For example, flooding attacks produce huge

amount of normal packets to disrupt normal victim’s services. To be able to

detect this kind of network intrusion, statistical methods can be used. Aiming

for generation of statistical based rules, the input features to the proposed

intrusion detection system are real-valued attributes. Accordingly, the sys-

tem is named ESR-NID (Evolving Statistical Rulesets for Network Intrusion

Detection). Examples of these statistical measures are number of data bytes

from source to destination, number of data bytes from destination to source,

Entropy of source IP address, Entropy of source port number, Entropy of des-

tination port number, Entropy of packet type and Entropy of packet size. The

rules generated by ESR-NID are not dependent on the categorical features

extracted from packets and can be used for detection of a wide range of in-

trusions. Most of the existing signature based IDSs lack the ability to detect

slight variations of known attacks because they look for exact matches against

network packets. Example of these features are source IP address, source port

number, protocol and destination port number.

• Development and analysis of a flexible genetic-based rule learning technique:

One of the main contributions of the thesis is the development of an effective

genetic algorithm with new features to generate accurate and compact rulesets
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for network intrusion detection. The proposed model, ESR-NID, has two main

features:

1. An advanced two-stage evaluation approach:

ESR-NID uses two functions to find the best cooperating rules in each

generation of an evolutionary run. These are a well-defined fitness func-

tion, which considers the cooperation of rules to eliminate redundancy

and minimize the overlap between the rules and a performance function,

which decides on the best ruleset in a cooperative manner and provides

flexibility in dealing with different problems, including imbalanced prob-

lems. ESR-NID is also flexible enough to accommodate alternative fitness

and performance functions based on the designer’s needs and preferences.

To show this, a new problem is defined for exploring the use of ESR-NID

for detecting normal instances instead of intrusions. The aim is to design

a detection system that matches maximum number of normal instances.

This can be achieved by changing the performance function in ESR-NID

model. Accordingly, a set of experiments is conducted to show the flexi-

bility aspect of ESR-NID.

2. An adaptive elitism mechanism:

To avoid the laborious task of finding the best elite value through a trial-

and-error method and also losing good cooperative rules over the gen-

erations, an adaptive approach is proposed for ESR-NID to adjust the

number of elites copied into each new generation. This enhances the

learning process by keeping the best performed rules from one generation

to the next.

Analysis of the proposed method: The performance of ESR-NID is eval-

uated against three sources of data: synthetic datasets, NSL-KDD dataset

(a new improved version of the KDD99) and a combined DARPA/CAIDA

dataset. Preliminary evaluations of the method are carried out against the

first set of data as the ground truth is known for synthetic problems. Four

different scenarios are designed for generation of synthetic datasets. The other

two sets of data are used for evaluating the ESR-NID within the context of a
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real-world problem (network intrusion detection). The outcomes of ESR-NID

are compared against five machine learning methods from two categories of

GA-based and non-GA-based algorithms: J48, kNN and JRip (non-GA-based)

and GASSIST-ADI and MPLCS (GA-based).

• Incremental learning:

Finally, a methodology is developed to make ESR-NID adaptable to environ-

ment changes. Using this approach, ESR-NID is able to frequently update

its database of rules to detect new attacks. The adaptability of ESR-NID is

evaluated against synthetic datasets and NSL-KDD dataset.

1.4 Thesis Structure

The remainder of this thesis is structured as follows: In chapter 2, the context of this

thesis is set by providing a brief introduction to the intrusion detection problem and

the existing detection systems. After describing the important factors that should

be considered in the design and implementation of intrusion detection systems, an

overview of capabilities of machine learning techniques and their application to rule

learning is provided. Additionally, a review of some of the recent and most related

work to the proposed approach is provided.

In chapter 3, the design and implementation of the proposed approach, ESR-NID,

for generating optimised rulesets for network intrusion detection is presented. The

contributions of ESR-NID to the genetic based machine learning techniques are also

explained in more detail.

Chapter 4 introduces the synthetic datasets generated for evaluation of ESR-NID.

Through the first set of experiments, an adaptive elitism mechanism is proposed

for enhancing the proposed algorithm. Additionally, an algorithm tuning process is

conducted to find the best settings for ESR-NID for all the subsequent experiments.

In chapter 5, ESR-NID is more extensively evaluated for network intrusion detec-

tion. This is achieved through a series of experiments against NSL-KDD datasets.
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Additionally, by combining the new attack traces in CAIDA DDoS 2007 data with

the attack-free DARPA data, another dataset is created for testing the performance

of ESR-NID. The flexibility in the use of ESR-NID on a different problem, where

the aim is to detect normal instances instead of intrusions, is tested in this chapter

as well.

In chapter 6, an incremental learning approach is proposed to make ESR-NID adapt-

able to a dynamic environment. To evaluate the proposed model, an evaluation

strategy is developed to carry out a series of experiments. Synthetic datasets and

the NSL-KDD dataset are again used as the sources of data in this chapter.

Finally, chapter 7 summarizes the contributions of this thesis, points out the limita-

tions of the work and discusses the future directions for continuing further research

in this area.
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Additionally, Table 5.13, 5.14 and 5.15 illustrate examples of the final rulesets gen-

erated by ESR-NID, GASSIST-ADI and MPLCS for classification of the NSL-KDD

dataset with 8 features. In contrast to these, the outputs of the JRip and J48 cannot

be presented due to their complexity (39 rules for JRip and 123 rules for J48).

Table 5.13: A ruleset generated by ESR-NID for the NSL-KDD dataset with 8
features.

rule1: if diff srv rate ∈ [0.04 0.29] then anomaly
rule2: if dst bytes ∈ [0 1261360321] and num root ∈ [0 149] and srv serror rate ∈ [0 0.53] and

dst host srv serror rate ∈ [0.34 1] then anomaly
rule3: if srv serror rate ∈ [0.98 1] and dst host srv diff host rate ∈ [0 0.02] and

dst host srv serror rate ∈ [0 0.10] then anomaly
rule4: if dst bytes ∈ [0 26198748] and num root ∈ [0 149] srv serror rate ∈ [0.47 1] and

same srv rate ∈ [0 0.93] and dst host srv serror rate ∈ [0 0.75] then anomaly
rule5: if dst host srv diff host rate ∈ [0.23 0.93] and dst host srv serror rate ∈ [0 0.97] then

anomaly
rule6: if dst bytes ∈ [0 26198748] and srv serror rate ∈ [0.61 0.92] and

dst host srv diff host rate ∈ [0 0.02] then anomaly

Table 5.14: A ruleset generated by GASSIST-ADI for the NSL-KDD dataset
with 8 features.

rule1: Att dst host srv serror rate is [>0.57] | anomaly
rule2: Att dst bytes is [<436645800] | Att dst host srv diff host rate is [>0.25] | anomaly
rule3: Att srv serror rate is [>0.11] | Att dst host srv diff host rate is [<0.09] | anomaly
rule4: Default rule − > normal

Table 5.15: A ruleset generated by MPLCS for the NSL-KDD dataset with 8
features.

rule1: Att num root is [<2800.5] | Att dst host srv diff host rate is [>0.25] | anomaly
rule2: Att num root is [<5974.4] | Att same srv rate is [<0.96] | Att diff srv rate is [<0.12] |

Att dst host srv diff host rate is [<0.5] | Att dst host srv serror rate is [<0.95] | anomaly
rule3: Att srv serror rate is [>0.16] | Att dst host srv diff host rate is [<0.04] | anomaly
rule4: Att srv serror rate is [<0.5] | Att dst host srv serror rate is [>0.8] | anomaly
rule5: Default rule − > normal

The second sets of experiments are against the NSL-KDD dataset with 15 features

chosen by CSE method. Table 5.16 illustrates the results obtained from ESR-NID,

J48, kNN and JRip methods against the NSL-KDD dataset with 15 features. This

time, the proposed algorithm performed slightly better than the kNN, GASSIST-

ADI and MPLCS and slightly worse than the J48 and JRip. The complexity of the

ESR-NID model will be medium and it sits between GASSIST-ADI and MPLCS

with low complexity and J48 and JRip with high complexity.
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Table 5.16: Comparing the performance of ESR-NID on the NSL-KDD dataset
with 15 features with J48, kNN, JRip, GASSIST-ADI and MPLCS performances.

Classifier Specifications g-performance TNrate TPrate Accuracy
J48 Size of tree: 371

number of leaves: 186
78.4 97.2 63.3 77.9

kNN 1 nearest neighbour 75 93.4 60.3 74.6
JRip number of rules: 46 77.8 96.1 63.1 77
GASSIST-ADI number of rules: 6 75.3 92.1 61.6 74.7
MPLCS number of rules: 6 73.3 91.4 58.8 72.8
ESR-NID number of rules: 18 76.4 92.7 63.3 75.9

Finally, the ESR-NID is evaluated against the NSL-KDD dataset with all 32 contin-

uous features and the results are presented in Table 5.17. In this set of experiments,

ESR-NID performed slightly better than kNN, JRip, GASSIST-ADI and MPLCS

and slightly worse than J48. Similar to the previous experiments (i.e. with 15

features) the complexity of the ESR-NID model is in between the GASSIST-ADI,

MPLCS and J48, KNN.

Table 5.17: Comparing the performance of ESR-NID on the NSL-KDD dataset
with all 32 continuous features with J48, kNN, JRip, GASSIST-ADI and MPLCS

performances.

Classifier Specifications g-performance TNrate TPrate Accuracy
J48 Size of tree: 323

number of leaves: 162
82.8 95 72.3 82

kNN 1 nearest neighbour 75.2 93 60.9 75.1
JRip number of rules:38 76.3 95 61.3 76.8
GASSIST-ADI number of rules: 6 74.9 93.4 60.2 74.5
MPLCS number of rules: 5 75.5 90.8 62.9 74.9
ESR-NID number of rules: 19 78.1 87 70 78

In conclusion, the results indicate that ESR-NID has similar performance to the

other algorithms in all cases, except that J48 does slightly better when there are

many more features, and kNN, JRip, GASSIST-ADI and MPLCS do slightly worse.

In all cases, ESR-NID discovers rulesets up to an order of magnitude smaller than

those found by J48, and having only 23-50% as many rules as JRip. When the

input data is more complex and includes all the attributes, although GASSIST-ADI

and MPLCS generated less rules than ESR-NID, this decreased the effectiveness of
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the system in detection of anomalous records (and as a result the accuracy of the

system) as can be seen from the true positive rates in Table 5.17.

5.3.3 Experiments with DARPA/CAIDA Dataset

This section presents the results obtained from the experiments on the combined

DARPA/CAIDA dataset. As can be seen from Table 5.18, in this classification

problem, ESR-NID, kNN, GASSIST-ADI and MPLCS produced better results than

J48 and JRip classifiers. The complexity of the ESR-NID model is also low and

comparable to other classifiers as can be seen in Table 5.19. ESR-NID and GASSIST-

ADI are similarly using two features from the collected statistical attributes (i.e.

Entropy of source IP address, Entropy of source port number) while J48, JRip and

MPLCS are only utilising Entropy of source IP address. In the GASSIST-ADI

ruleset, one redundant rule can be seen because the instances that can be detected

by Entropy of source IP address is [> 0.37] | anomaly rule could also be classified

using Entropy of source IP address is [> 0.43] | anomaly rule. As a result, ESR-

NID ruleset is considered a more compact model. The J48 approach partitioned

only one attribute (i.e. Entropy of source IP address) range into two intervals using

a single cut point. This resulted into a poor classification accuracy of 84%. This

is in contrast to JRip and MPLCS approaches, which provided several intervals of

the same feature using a set of cut points and thus generated better classification

accuracy.

As the complexity of these rulesets is low, the attributes ranges can be easily com-

pared among different approaches. For example, both ESR-NID and GASSIST-ADI

generated approximately the same range for the Entropy of source port number (i.e.

[0.09, 0.32] in ESR-NID ruleset and [0.09, 0.29] in GASSIST-ADI ruleset).
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Table 5.18: Comparing the performance of ESR-NID on the combined DARPA/-
CAIDA dataset with J48, kNN, JRip, GASSIST-ADI and MPLCS performances.

Classifier Specifications g-performance TNrate TPrate Accuracy
J48 Size of tree: 3

number of leaves: 2
81.9 86.7 77.4 84

kNN 1 nearest neighbour 98.3 100 96.7 98
JRip number of rules:3 96.7 100 93.5 97.9
GASSIST-ADI number of rules: 4 99.2 100 98.5 98.9
MPLCS number of rules: 4 98.3 100 96.7 98.9
ESR-NID number of rules: 2 97.8 99.7 96 98.4

Table 5.19: Comparing the final ruleset generated by ESR-NID, J48, JRip,
GASSIST-ADI and MPLCS.

Approach Output
ESR-NID rule1: if Entropy of source IP address ∈ [0.38, 0.50]

then anomaly
rule2: if Entropy of source port number ∈ [0.09, 0.32]
then anomaly

J48 Entropy of source IP address > 0.37: anomaly
Entropy of source IP address <= 0.37: normal

JRip (Entropy of source IP address >= 0.39): anomaly
(Entropy of source IP address <= 0.27) and (Entropy
of source IP address >= 0.17): anomaly
Others: normal

GASSIST-ADI Entropy of source port number is [0.09, 0.29] | anomaly
Entropy of source IP address is [> 0.43] | anomaly
Entropy of source IP address is [> 0.37] | anomaly
Default rule − > normal

MPLCS Entropy of source IP address is [> 0.44] | anomaly
Entropy of source IP address is [0.10, 0.32] | anomaly
Entropy of source IP address is [> 0.39] | anomaly
Default rule − > normal

5.4 ESR-NID for Detecting Normal Instances

In this section, a set of experiments will be conducted to explore the use of ESR-NID

for detecting normal instances. When there is not enough knowledge about attacks

in the captured data, it would be more useful to utilise ESR-NIS as an anomaly



Chapter 5. Experiments on Intrusion Detection 136

detector to generate rules for normal background traffic. Any deviation from the

normal model will be detected as an attack and as a result ESR-NID will fire an

alarm showing suspicious behaviour in the network.

In this experiment, the NSL-KDD training and testing datasets with all continuous

features are used and the results are compared against the other machine learning

methods. Here, the positive examples are the normal records. Table 5.20 summarizes

the results. The accuracy of the J48 model is the best but this model is very complex

with 162 leaves. After J48, kNN and JRip provide slightly better results than ESR-

NID, GASSIST-ADI and MPLCS with approximately similar classification accuracy

values. If the aim in designing a classifier for detection of normal instances is to

make it more accurate in matching normal cases (positives), then TPrate can also

be used as a metric for evaluating the approaches. Here, J48 and kNN produced

higher TPrates than ESR-NID while kNN, GASSIST-ADI and MPLCS provided less

values. Among the tested rule-based methods, the complexity of ESR-NID model is

medium as it is between GASSIST-ADI and MPLCS with low complexity and JRip

and J48 with high complexity.

Comparing Table 5.17 and 5.20 results, when the classifiers were designed for de-

tection of anomalies, less rules were generated by JRip, GASSIST-ADI, MPLCS

and ESR-NID approaches. However, this is not the case for J48 since in both ex-

periments for detection of anomalies and normal instances, the complexity of the

generated models is the same (size of tree: 323, number of leaves: 162). Moreover,

the JRip, GASSIST-ADI, MPLCS and ESR-NID classifiers produced higher accu-

racy results for detecting intrusions compared to the results achieved for detecting

normal instances.

Since the aim of the experiments in this section is to develop a model that matches

maximum number of normal instances, a system designer might need to put more

emphasis on detection of these input records. One of the aspects of ESR-NID is its

flexibility on the choice of fitness and performance functions. In this section, ESR-

NID will be evaluated with a different performance function with the aim of providing

better true positive rate. A better true positive rate increases the sensitivity of the
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Table 5.20: Performance of ESR-NID for detecting normal instances.

Classifier Specifications g-performance TNrate TPrate Accuracy
J48 Size of tree: 323

number of leaves: 162
83.5 72 97 83

kNN 1 nearest neighbour 75.6 60.9 93.9 75.1
JRip number of rules:41 74.9 57.7 97.4 74.7
GASSIST-ADI number of rules:7 72.9 56.9 93.4 72.6
MPLCS number of rules:7 73.7 58.3 93.3 73.4
ESR-NID number of rules:22 72.3 55.9 95.1 72.3

detection system to match most of the input normal records. For this purpose, the

following performance function is used:

performancefunction = 3
√

TPrate ∗ TPrate ∗ TNrate (5.2)

As can be seen from Table 5.21, the true positive rate increases when a different

performance function with more emphasis on this metric (TPrate) is used in the

design of IDS. Although the customised model produced more rules compared to

the previous model, it provided a more accurate classifier with 75.4% accuracy. It

also outperformed kNN, JRip, GASSIST-ADI and MPLCS in terms of accuracy.

Table 5.21: Performance of customised ESR-NID as an anomaly detection sys-
tem.

Classifier Specifications g-performance TNrate TPrate Accuracy
J48 Size of tree: 323

number of leaves: 162
83.5 72 97 83

kNN 1 nearest neighbour 75.6 60.9 93.9 75.1
JRip number of rules:41 74.9 57.7 97.4 74.7
GASSIST-ADI number of rules:7 72.9 56.9 93.4 72.6
MPLCS number of rules:7 73.7 58.3 93.3 73.4
ESR-NID (Performance function 3.8) number of rules:22 72.3 55.9 95.1 72.3
Customised ESR-NID (Performance function 5.2) number of rules:25 76.3 58.8 99.2 75.4
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5.5 Summary

This chapter evaluated ESR-NID on network intrusion detection problems. For this,

the existing publicly available datasets and the selected ones for this study were in-

troduced. NSL-KDD and a combined DARPA/CAIDA datasets are the selected

datasets for the experiments in this chapter. Since ESR-NID is designed to classify

examples based on the provided continuous input features, some statistical features

of network traffic were used for the classification task. Processed NSL-KDD dataset

has 32 continuous and 9 discrete features. Therefore, 32 continuous attributes were

selected. Additionally, a feature selection module was applied to the continuous fea-

tures of NSL-KDD dataset to reduce the size of search space by selecting the most

relevant attributes. Two different feature selection methods were used in this chap-

ter: Correlation-based Feature Selection (CFS) and Consistency Subset Evaluator

(CSE). These two methods selected 8 and 15 attributes of the NSL-KDD dataset

with 32 continuous features. In addition to evaluation of ESR-NID on the NSL-

KDD dataset with 8 and 15 features, it was also evaluated on the data with all

the 32 features. For the combined DARPA/CAIDA dataset, the raw network traffic

should be pre-processed to extract suitable features for intrusion detection. In this

study, entropy of selected packet attributes are calculated over a time-window of 10

seconds. These are Entropy of source IP address, Entropy of source port number,

Entropy of destination port number, Entropy of packet type and Entropy of packet

size. For both datasets, in the pre-processing stage of ESR-NID framework, the in-

put continuous values were scaled linearly between 0 and 1. For these experiments,

ESR-NID was configured using the tuned parameters found in the previous chap-

ter. The performance of ESR-NID was compared against five well-known machine

learning techniques. These techniques are from two categories of GA-based and

non-GA-based algorithms: J48, kNN and JRip (non-GA-based) and GASSIST-ADI

and MPLCS (GA-based). The results showed that the performance of ESR-NID is

comparable to the other tested methods and produces compact, easily understood

rulesets.

Additionally, ESR-NID was evaluated for generating an effective model for detecting
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normal instances. This can be a useful method when there is not enough informa-

tion about attacks in the captured data. One of the advantages of ESR-NID is that

depending on the problem domain and the characteristics of the dataset, it is cus-

tomisable by changing the fitness and performance function to provide customised

optimal results. This option can not be found in other techniques and thus makes

ESR-NID a more flexible model. This has been shown in an experiment, where the

aim is to increase the true positive rate. Thus, a new performance function was in-

troduced, which puts more emphasis on detection of hits (i.e. normal records in this

experiment). The use of ESR-NID as an anomaly detector is an area that requires

further investigation in the future.





Chapter 6

Adaptation in a Dynamic

Environment

6.1 Introduction

This chapter presents how ESR-NID can be utilised for incremental learning in

a dynamic environment. Using the proposed approach, ESR-NID will be able to

frequently update its database of rules to detect new attacks.

The real environment in which an IDS is deployed is continuously changing be-

cause of network topology and technology changes (Kuwatly et al., 2004) and cer-

tain worms or attacks gain and lose popularity or new attacks come into existence

(Pietraszek, 2004). High false positive and false negative rates produced by deployed

IDSs can be the result of such changes in the environment. This has been considered

as one of the challenging problems in the community and thus requires attention from

intrusion detection analysts (Pietraszek, 2004). An IDS should be able to adapt to

the changing environment with the least amount of manual intervention. Various

approaches have been suggested in the literature for learning new information when

new training data becomes available. With the increasing and diverse types of novel

network attacks, researchers attempt to use incremental learning in IDSs to enable

141
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them to adapt themselves to new attacks without forgetting previously learned infor-

mation. This also increases IDS’s performance, efficiency and sustainability (Nasr

et al., 2014). For example, one approach is to discard the existing classifier and

retrain using the entire accumulated training data. However, it would be very ex-

pensive to rebuild the classifier after each new input instance becomes available. To

address this problem, a batch incremental learning approach can be used to handle

training examples in batches. The size of these batches can be decided based on a

constant value or depending on the current performance of the classifier (Pietraszek,

2004; Polikar et al., 2001). This approach, however, suffers from the drawback that

the size of the training dataset grows infinitely over time and as a result the training

time increases.

To address this issue, in this chapter, an incremental learning technique is incorpo-

rated into ESR-NID that meets the following criteria:

• preserves previously acquired knowledge (i.e. rules)

• does not require access to the original data used to train the current classifier

• learns additional information from new data and updates the database of sig-

natures with the new information

The proposed framework for ESR-NID to make it adaptable to environment changes

is explained in the next section.

6.2 Incremental Learning for ESR-NID

An effective IDS should be able to incrementally learn and adapt to changes in the

environment, the behaviour of users and the pattern of attacks. In this section,

an incremental learning approach is proposed for enhancing ESR-NID. Figure 6.1

gives an overview of the proposed incremental learning model. It consists of two

phases: startup/classification phase and update phase. The startup phase (shown
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Figure 6.1: Incremental learning used in ESR-NID.

in the upper box in Figure 6.1) is the stage that an IDS is designed to perform

classification in its intended environment for the first time. In the startup phase,

an initial set of training examples is collected and given to ESR-NID to generate a

classification model for the given environment.

Once the startup phase is accomplished, the existing model will operate continuously

in the classification mode. However, further learning might be needed from time to

time, as defined by network administrators.

In the update phase, ESR-NID updates its database of rules (signatures) using the

new batch of data accumulated over the pre-defined time window. ESR-NID uses

this new training data to generate some new rules. These rules are added to the

current database of signatures to constitute a new model for classification. The new

model then go through a post-processing stage (similar to the one in Section 3.1.3)

to produce a more concise ruleset for the use of IDS. In the post-processing stage

similar rules are removed. Similarity between rules is determined by comparing the
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values of their active features, using a user-defined cut-off for the number of digits of

precision in floating-point numbers as features are continuous real values. Finally,

the new processed model will be used for classification tasks in the classification

phase.

In this framework, instead of preserving all the training data, only the previous rule-

set is maintained, which is much smaller than the whole training dataset. Another

advantage of this framework is that less time and computational resources will be

needed to train the system on only a batch of new data, compared to learning by

retraining the system using all of the data that has been accumulated thus far.

To evaluate the proposed incremental learning approach for ESR-NID, a set of ex-

periments is carried out using the evaluation strategy explained in the next section.

First, ESR-NID will be trained using the existing training data in the startup phase

to generate a model for classification of normal and attack records. Then, for the

update phase, two different learning techniques are used, which lead to further com-

parisons. These are traditional learning and incremental learning (i.e. the method

used for ESR-NID). For this phase, it is assumed that a new data is captured over

a pre-defined time interval and the system is ready to be updated.

6.3 Evaluation Strategy

In the experiments in this chapter, two sets of data are always provided: old data

and new data. The old data is used in the startup phase for generating a model

for IDS, while it is assumed that the new data is the new incoming flow of network

traffic that has been collected over a pre-defined time interval. As the new data

becomes available, the existing IDS needs to be updated. For the updating phase,

as can be seen in Figure 6.2, the proposed incremental learning approach for ESR-

NID is compared with a traditional learning scheme, which requires the entire old

and new data to adapt to a changing environment.
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Figure 6.2: Evaluation strategy used in the experiments in this chapter.
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To provide an estimate of classification rate, the old and new datasets are divided

into three folds to be used in a reversed 3-fold cross-validation approach, where 2

folds are used to test the fitness of model. However, if there were no time constraints,

more folds could be used to improve performance estimation. The folds are stratified

so that they contain approximately the same proportions of two types of classes as

the original dataset. Additionally, the evaluation method in this chapter used two

different seeds to provide a total of six runs using the three folds of data. Therefore,

the evaluation does not depend on a single outcome. Using the evaluation strategy

presented in Figure 6.2, three different sets of experiments will be conducted for each

scenario in this chapter to compare the performance of traditional and incremental

learning schemes. The first set is designed to generate a model for intrusion detection

based on the existing data (referred to as old data). This set is similar to the

experiments conducted in Chapters 4 and 5 for generating classifiers for different

classification tasks. The other two sets of experiments are related to the update

phase. Two different methods of learning are used in these experiments: traditional

learning and incremental learning. In the traditional learning, the system needs both

old and new datasets because in each run, ESR-NID is trained on one fold of old data

(e.g., fold0) combined with one fold of new data (e.g., N fold0) and tested on the

remaining folds of new data (e.g., N fold1 and N fold2). Therefore, in the traditional

learning experiments, storing the old data is essential for future retraining. On the

other hand, for incremental learning, the system only requires the new data and

previously generated rulesets (e.g., Ruleset old00) in the startup phase. In these

experiments, ESR-NID is trained twice on the three folds of new data using two

different seeds. Then, the produced rulesets (e.g., Ruleset new00) are added to the

rulesets generated for the old data (e.g., Ruleset old00) and after post-processing of

rulesets, they are tested against the folds of new data (e.g., N fold1 and N fold2)

that were kept apart. As the proposed incremental learning approach only stores the

previous acquired rules, it requires less storage compared to the traditional learning

scheme.

In the evaluation strategy presented in Figure 6.2, an average of performance is
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calculated for each set of experiments and thus comparison of traditional and incre-

mental learning approaches is facilitated.

In the following sections, 3 scenarios are defined for experiments on synthetic datasets.

The problem with 6 input features explained in Section 4.2.3 is used as the old data

for these scenarios and additionally 3 new datasets are also generated. Moreover, the

NSL-KDD dataset with 8 features (listed in Table 5.10) is used for the experiments

on the NSL-KDD dataset. This dataset has two separate training and testing data.

The NSL-KDD training data represents the old data and the NSL-KDD testing data

is used as the new incoming data for the experiments in this chapter.

6.3.1 Experiments with Synthetic Datasets

In this section, the problem with 6 input features defined in Chapter 4 for evaluation

of ESR-NID against higher dimensional datasets is used as the old dataset. The

following rules were used to generate this dataset:

Normal: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0, 0.2] and f4 ∈ [0, 0.3] and f5

∈ [0.3, 0.6] and f6 ∈ [0, 0.2] then normal

Attack1: if f1 ∈ [0, 0.3] and f2 ∈ [0, 0.2] and f3 ∈ [0.4, 0.8] and f4 ∈ [0, 0.3] and f5

∈ [0, 0.2] and f6 ∈ [0.4, 0.8] then anomaly

Attack2: if f1 ∈ [0, 0.1] and f2 ∈ [0.5, 0.9] and f3 ∈ [0, 0.3] and f4 ∈ [0, 0.1] and f5

∈ [0.5, 0.9] and f6 ∈ [0, 0.3] then anomaly

Three different scenarios were then designed to generate new datasets for evaluation

of the proposed learning approach for ESR-NID. These are:

• Scenario 1: a new version of an old attack becomes available (old attacks

appear in the new data).

• Scenario 2: a completely new attack becomes available (old attacks appear).
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• Scenario 3: a completely new attack becomes available (old attacks do not

appear).

In the first two scenarios, the new data contains the same normal records (that

existed in the old dataset) and both old and new attacks. However, in the third

one, it is assumed that the old attacks are not popular any more and thus in the

new data, there is no record of previous attacks. The reason to evaluate the system

on synthetic data is that the properties of data can be controlled to meet various

conditions and validation of final rulesets against the rules used to generate the data

can be easily carried out.

After presenting the parameters defined for the experiments in the next section, the

following three sections will explain the experiments in more details and discuss the

classification results for each synthetic problem.

6.3.1.1 Parameter Settings

For the experiments in this section, ESR-NID is configured using the following set-

tings:

• Fitness Function = fitness function (3) (Equation (3.6))

• Performance function = g-performance (
√
TPrate ∗ TNrate)

• Mutation probability = 0.1

• Population size = 50

• Generations = 300

• Number of runs = 6
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6.3.1.2 Scenario 1

This scenario simulates the case of facing a new variation of an existing network

attack in the new flow of network traffic. For generating the data for the first

scenario, the following rules were used:

Normal: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0, 0.2] and f4 ∈ [0, 0.3] and f5

∈ [0.3, 0.6] and f6 ∈ [0, 0.2] then normal

Attack1: if f1 ∈ [0, 0.3] and f2 ∈ [0, 0.2] and f3 ∈ [0.4, 0.8] and f4 ∈ [0, 0.3] and f5

∈ [0, 0.2] and f6 ∈ [0.4, 0.8] then anomaly

Attack2: if f1 ∈ [0, 0.1] and f2 ∈ [0.5, 0.9] and f3 ∈ [0, 0.3] and f4 ∈ [0, 0.1] and f5

∈ [0.5, 0.9] and f6 ∈ [0, 0.3] then anomaly

Attack3 (a new variation of an old attack (i.e. attack1)): if f1 ∈ [0.1, 0.4] and f2 ∈

[0.1, 0.3] and f3 ∈ [0.5, 0.9] and f4 ∈ [0.1, 0.4] and f5 ∈ [0.1, 0.3] and f6 ∈ [0.5, 0.9]

then anomaly

Using the evaluation strategy presented in Figure 6.2, three sets of experiments

were conducted and the average results were calculated. Table 6.1 shows the av-

erage results for different phases. Additionally, the g-performance results (only for

traditional and incremental learning phases) are presented using a box plot in Figure

6.3 (incremental learning has a tighter interquartile range than traditional learning).

To compare the final rulesets generated through traditional and incremental learn-

ing, Table 6.2 provides examples of the old ruleset generated during startup phase

and rulesets obtained from traditional learning and incremental learning when new

training data becomes available. The attacks that can be detected using each rule

are also listed in the third column of Table 6.2. For example, in startup phase, rule1

matches attack number 1 and 2 in the old dataset. In the ruleset produced from

the incremental learning approach, rule3, which was existed in the database of sig-

natures generated during the startup phase, is a general version of rule6. This rule

can be eliminated from the final ruleset by improving the post-processing stage. As

a result, the number of rules can be reduced and less complex model would be pro-

duced for the classification task. However, for the synthetic problems, which are only
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designed for testing and evaluating the proposed system, this extra post-processing

step is not carried out and as will be seen later, this issue (i.e. having redundant

rules) rarely happens in more complicated high dimensional real problems (See the

experiments with NSL-KDD dataset in Section 6.3.2).

The results in Table 6.1 show that the performance of proposed incremental learn-

ing for ESR-NID (97%) is slightly worse than traditional learning (97.35%). The

incremental learning approach also produced more rules compared to the traditional

learning approach because it keeps the previous rules in its database. However,the

incremental learning scheme benefits from less required storage because it only needs

to maintain the database of rules which is much smaller than the whole training data

needed for each re-training phase in the traditional approach. Comparing the true

positive rates, the incremental learning produced a slightly better result (98.1%

compared to 97.1%).

Table 6.1: Average results for startup and update phases in the first scenario.

Phase Number of rules g-performance TNrate TPrate Accuracy

Startup 4 96.7 97.08 96.34 96.67

Traditional Learning (update) 5 97.35 97.52 97.19 97.37

Incremental Learning (update) 7 97 95.8 98.1 96.9

Figure 6.3: Performance of different learning approaches in the first scenario.
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Table 6.2: Comparing the final rulesets generated by ESR-NID during startup
and update phases in the first scenario.

Phase Ruleset Attack

Number

Startup rule1: if F3 ∈ [0.19, 0.78] then anomaly

rule2: if F6 ∈ [0.20, 0.79] then anomaly

rule3: if F2 ∈ [0.59, 0.89] then anomaly

rule4: if F5 ∈ [0.60, 0.89] then anomaly

1, 2

1, 2

2

2

Traditional Learning

(Update)

rule1: if F3 ∈ [0.19, 0.89] then anomaly

rule2: if F6 ∈ [0.20, 0.79] then anomaly

rule3: if F2 ∈ [0.60, 0.88] then anomaly

rule4: if F5 ∈ [0.59, 0.88] then anomaly

1, 2, 3

1, 2, 3

2

2

Incremental Learning

(Update)

rule1: if F3 ∈ [0.19, 0.78] then anomaly

rule2: if F6 ∈ [0.20, 0.79] then anomaly

rule3: if F2 ∈ [0.59, 0.89] then anomaly

rule4: if F5 ∈ [0.60, 0.89] then anomaly

rule5: if F3 ∈ [0.22, 0.85] then anomaly

rule6: if F2 ∈ [0.61, 0.89] then anomaly

1, 2, 3

1, 2, 3

2

2

1, 2, 3

2

6.3.1.3 Scenario 2

The second scenario is for the case of seeing a completely new attack in the new

collected data. Here, it is assumed that old attacks are still popular and can be seen

in the new data. So, the following rules were used for generating the data:

Normal: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0, 0.2] and f4 ∈ [0, 0.3] and f5

∈ [0.3, 0.6] and f6 ∈ [0, 0.2] then normal
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Attack1: if f1 ∈ [0, 0.3] and f2 ∈ [0, 0.2] and f3 ∈ [0.4, 0.8] and f4 ∈ [0, 0.3] and f5

∈ [0, 0.2] and f6 ∈ [0.4, 0.8] then anomaly

Attack2: if f1 ∈ [0, 0.1] and f2 ∈ [0.5, 0.9] and f3 ∈ [0, 0.3] and f4 ∈ [0, 0.1] and f5

∈ [0.5, 0.9] and f6 ∈ [0, 0.3] then anomaly

Attack3 (completely new attack): if f1 ∈ [0.5, 0.8] and f2 ∈ [0.2, 0.4] and f3 ∈ [0.8,

1] and f4 ∈ [0.5, 0.7] and f5 ∈ [0.9, 1] and f6 ∈ [0.9, 1] then anomaly

A set of experiments similar to those in the previous section was carried out to

compare the performance of ESR-NID using traditional and incremental learning.

Table 6.3 presents the average results. The g-performance rates for the two different

learning approaches are also demonstrated in Figure 6.4. To provide a more detailed

picture of the final rulesets generated during different phases, Table 6.4 presents the

rulesets and the attacks that each rule is able to detect. As old attacks appear in

the new data, when ESR-NID used traditional learning approach for this problem,

it generated a set of more general rules that are useful for detecting both the old

and new attacks. For example, rule2 in the traditional learning phase is a general

version of rule2 in the startup phase. The wider range produced by traditional

learning for F6 attribute helps the system classify the new attack (Attack3) as well

as the old attacks. Using the incremental learning scheme, ESR-NID utilised the

previous ruleset generated during the startup phase for detecting old attacks and

generated a set of rules, which can be useful for classification of both attacks as the

new data contains all types of attacks.

In this scenario, similar to the previous scenario, the traditional learning produced

slightly better g-performance, accuracy and true negative rates than the incremental

learning. However, the true positive rate for the incremental learning is slightly

better than the traditional learning. Despite the larger ruleset generated by the

incremental learning approach, this method is more desirable and less expensive

because it does not require to maintain the whole training data over time.
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Table 6.3: Average results for startup and update phases in the second scenario.

Phase Number of rules g-performance TNrate TPrate Accuracy

Startup 4 96.7 97.08 96.34 96.67

Traditional Learning (update) 6 98.78 99.79 97.79 98.59

Incremental Learning (update) 8 97.1 95.67 98.63 97.4

Figure 6.4: Performance of different learning approaches in the second scenario.

6.3.1.4 Scenario 3

This section evaluates the use of incremental learning for ESR-NID in a scenario that

a completely new attack becomes available assuming that previous attack types lose

popularity and they will not exist in the new data. For this scenario, the following

rules were used for generating the new training data:

Normal: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0, 0.2] and f4 ∈ [0, 0.3] and f5

∈ [0.3, 0.6] and f6 ∈ [0, 0.2] then normal

Attack3 (completely new attack): if f1 ∈ [0.5, 0.8] and f2 ∈ [0.2, 0.4] and f3 ∈ [0.8,

1] and f4 ∈ [0.5, 0.7] and f5 ∈ [0.9, 1] and f6 ∈ [0.9, 1] then anomaly

The average results are presented in Table 6.5. A box plot is also used to compare

the g-performance of traditional and incremental learning approaches in Figure 6.5.
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Table 6.4: Comparing the final rulesets generated by ESR-NID during startup
and update phases in the second scenario.

Phase Ruleset Attack
Number

Startup rule1: if F3 ∈ [0.19, 0.78] then anomaly
rule2: if F6 ∈ [0.20, 0.79] then anomaly
rule3: if F2 ∈ [0.59, 0.89] then anomaly
rule4: if F5 ∈ [0.60, 0.89] then anomaly

1, 2
1, 2
2
2

Traditional Learning
(Update)

rule1: if F3 ∈ [0.20, 0.98] then anomaly
rule2: if F6 ∈ [0.20, 0.99] then anomaly
rule3: if F2 ∈ [0.60, 0.88] and F5 ∈ [0.34,
0.91] then anomaly
rule4: if F5 ∈ [0.64, 0.99] then anomaly
rule5: if F5 ∈ [0.50, 0.98] then anomaly
rule6: if F5 ∈ [0.64, 0.85] then anomaly

1, 2, 3
1, 2, 3
2, 3
2, 3

2, 3
2

Incremental Learning
(Update)

rule1: if F3 ∈ [0.19, 0.78] then anomaly
rule2: if F6 ∈ [0.20, 0.79] then anomaly
rule3: if F2 ∈ [0.59, 0.89] then anomaly
rule4: if F5 ∈ [0.60, 0.89] then anomaly

rule5: if F3 ∈ [0.20, 0.99] then anomaly
rule6: if F5 ∈ [0.60, 0.99] then anomaly
rule7: if F6 ∈ [0.20, 0.99] then anomaly

1, 2
1, 2
2
2

1, 2, 3
2, 3
1, 2, 3

Additionally, the final rulesets generated from different phases of evaluation process

are demonstrated in Table 6.6. In this scenario, although the average results for

the traditional learning are slightly better than the incremental learning, the same

number of rules is generated for both approaches. As the old attacks do not appear

in the new batch of data, the incremental learning approach generated a set of

new rules (rule5, rule6 and rule7), which are only useful for classifying the new

attack (Attack3). These rules will be added to the previous rules in the database

of signature for future classification. On the other hand, when ESR-NID uses the

traditional learning approach, a set of rules will be generated for the entire data

(both old and new data). Examples of these rules are rule1 and rule2 from the

traditional learning phase, which are useful for all three types of attacks.
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Table 6.5: Average results for startup and update phases in the third scenario.

Phase Number of rules g-performance TNrate TPrate Accuracy

Startup 4 96.7 97.08 96.34 96.67

Traditional Learning (update) 7 99.3 98.8 99.8 99

Incremental Learning (update) 7 98.5 97.3 99.5 98.4

Figure 6.5: Performance of different learning approaches in the third scenario.

6.3.2 Experiments with NSL-KDD Dataset

To evaluate the incremental learning for ESR-NID, a set of experiments is also

conducted using the evaluation strategy presented in Figure 6.2 against the NSL-

KDD dataset with 8 features. The NSL-KDD training dataset includes 21 different

attacks out of the 37 present in the test dataset. Therefore, the NSL-KDD test

dataset contains both old and new attacks and it will be used as the new incoming

data for the experiments in this section. The same settings that were found to

be most reliable in the experiments with synthetic datasets were also used for the

experiments against NSL-KDD dataset.

The average results for different phases of startup, traditional and incremental learn-

ing are presented in Table 6.7. In this real intrusion detection problem, the incremen-

tal learning produced better g-performance, accuracy and true positive rates using
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Table 6.6: Comparing the final rulesets generated by ESR-NID during startup
and update phases in the third scenario.

Phase Ruleset Attack Number
Startup rule1: if F3 ∈ [0.19, 0.78] then anomaly

rule2: if F6 ∈ [0.20, 0.79] then anomaly
rule3: if F2 ∈ [0.59, 0.89] then anomaly
rule4: if F5 ∈ [0.60, 0.89] then anomaly

1, 2 (old)
1, 2 (old)
2 (old)
2 (old)

Traditional
Learning
(Update)

rule1: if F3 ∈ [0.20, 0.99] then anomaly
rule2: if F6 ∈ [0.24, 0.98] then anomaly
rule3: if F5 ∈ [0.61, 0.99] then anomaly
rule4: if F6 ∈ [0.21, 0.85] then anomaly
rule5: if F6 ∈ [0.20, 0.75] then anomaly
rule6: if F2 ∈ [0.62, 0.88] and F5 ∈ [0.08,
0.99]
rule7: if F2 ∈ [0.61, 0.82] and F5 ∈ [0.08,
0.99]

1, 2 (old), 3 (new)
1, 2 (old), 3 (new)
2 (old), 3 (new)
1, 2 (old)
1, 2 (old)
2 (old)

2 (old)

Incremental
Learning
(Update)

rule1: if F3 ∈ [0.19, 0.78] then anomaly
rule2: if F6 ∈ [0.20, 0.79] then anomaly
rule3: if F2 ∈ [0.59, 0.89] then anomaly
rule4: if F5 ∈ [0.60, 0.89] then anomaly

rule5: if F4 ∈ [0.52, 0.69] then anomaly
rule6: if F2 ∈ [0.23, 0.48] and F6 ∈ [0.89,
0.97] then anomaly
rule7: if F3 ∈ [0.81, 0.96] and F5 ∈ [0.84,
0.93] then anomaly

1, 2 (old)
1, 2 (old)
2 (old)
2 (old)

3 (new)
3 (new)

3 (new)

more rules compared to the traditional learning. Comparison of these two learning

approaches is also presented in Figure 6.6 using g-performance box plots. Moreover,

the final rulesets generated from startup and two update phases are demonstrated

in Table 6.7. In these rulesets, there is a less issue of seeing extra rules (i.e. a rule

that is more general than another) compared to the previous synthetic scenarios.

In the presented rulesets in Table 6.8, there is only one example of this case in

the traditional learning phase ruleset. In this ruleset, rule3 is able to classify the

examples that are classified by rule2. Therefore, by removing rule2 from the final

ruleset, the classification rate will not be affected. This can be achieved through an

improved post-processing stage, which leads to a less complex model for the clas-

sification task. Comparing the two models generated from traditional learning and

incremental learning, some similar rules can be found. For example, rule1 from the
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incremental learning is quite similar to rule6 from the traditional learning. Another

example is the combination of rule4 and rule8 from the incremental learning, which

approximately provides the same coverage as rule9 from the traditional learning

model.

Table 6.7: Average results for startup and update phases against the NSL-KDD
dataset.

Phase Number of rules g-performance TNrate TPrate Accuracy

Startup 13 91.59 94.33 88.93 91.82

Traditional Learning (update) 14 80.6 95.92 67.73 79.88

Incremental Learning (update) 20 82.04 73.86 91.53 83.83

Figure 6.6: Performance of different learning approaches against the NSL-KDD
dataset.

6.4 Summary

In this chapter, due to the need for an IDS to adapt to changes in the real en-

vironment, an efficient model was proposed to incrementally update the database

of signatures (rules) in ESR-NID. The proposed framework consists of two phases:

startup/classification phase and update phase. During the startup phase, an initial

set of collected training samples are fed into the ESR-NID to generate an initial

model for the given environment. This initial IDS is able to classify normal and
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Table 6.8: Comparing the final rulesets generated by ESR-NID during startup
and update phases for the NSL-KDD daraset.

Phase Ruleset

Startup rule1: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and

dst host srv serror rate ∈ [0.39, 1] then anomaly

rule2: if dst bytes ∈ [0, 130993] and diff srv rate ∈ [0.05, 0.46] then anomaly

rule3: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.16, 1] then anomaly

rule4: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.8, 1] and

dst host srv diff host rate ∈ [0, 0.01] then anomaly

rule5: if dst bytes ∈ [0, 139307] num root ∈ [0, 0.74] and srv serror rate ∈

[0.12, 1] and diff srv rate ∈ [0.05, 0.92] and dst host srv serror rate ∈ [0, 0.85]

then anomaly

rule6: if src bytes ∈ [0, 1174619101] and dst bytes ∈ [0, 130993] and

srv serror rate ∈ [0, 0.01] and dst host srv diff host rate ∈ [0.2, 0.86] and

dst host srv serror rate ∈ [1, 0.01] then anomaly

rule7: if same srv rate ∈ [0.72, 0.97] then anomaly

rule8: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.19, 0.36] and

dst host srv diff host rate ∈ [0, 0.01] then anomaly

rule9: if same srv rate ∈ [0.54, 0.63] then anomaly

rule10: if diff srv rate ∈ [0.91, 0.97] and dst host srv diff host rate ∈ [0, 0.22]

then anomaly

rule11: if diff srv rate ∈ [0.79, 0.82] and dst host srv diff host rate ∈ [0, 0.01]

then anomaly

rule12: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and srv serror rate

∈ [0, 0.04] and same srv rate ∈ [0.05, 0.23] and diff srv rate ∈ [0.52, 0.55] and

dst host srv diff host rate ∈ [0, 0.54] then anomaly
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Traditional

Learning

(Update)

rule1: if dst bytes ∈ [0, 336232536] and if num root ∈ [0, 0.74] and

diff srv rate ∈ [0.03, 0.47] then anomaly

rule2: if num root ∈ [0, 0.74] and diff srv rate ∈ [0.03, 0.58] then anomaly

rule3: if num root ∈ [0, 0.74] and diff srv rate ∈ [0.03, 0.99] then anomaly

rule4: if num root ∈ [0, 0.74] and same srv rate ∈ [0.01, 0.49] then anomaly

rule5: if num root ∈ [0, 0.74] and same srv rate ∈ [0.01, 0.92] and

dst host srv diff host rate ∈ [0, 0.16] then anomaly

rule6: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and

dst host srv serror rate ∈ [0.17, 1] then anomaly

rule7: if dst bytes ∈ [0, 130993] and dst host srv serror rate ∈ [0.85, 1] then

anomaly

rule8: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and same srv rate

∈ [0.03, 0.94] and dst host srv diff host rate ∈ [0, 0.16] then anomaly

rule9: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.09, 1] and

dst host srv diff host rate ∈ [0, 0.01] then anomaly

rule10: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and

dst host srv diff host rate ∈ [0.22, 0.61] then anomaly

rule11: if dst bytes ∈ [0, 1107936940] and srv serror rate ∈ [0.55, 0.90] and

dst host srv diff host rate ∈ [0, 0.03] then anomaly

rule12: if dst bytes ∈ [0, 1107936940] and srv serror rate ∈ [0.33, 0.44] then

anomaly

rule13: if same srv rate ∈ [0.76, 0.98] then anomaly

rule14: if dst host srv serror rate ∈ [0.69, 0.77] then anomaly

rule15: if dst bytes ∈ [4259411, 1013436963] and num root ∈ [0, 0.74] then

anomaly

rule16: if src bytes ∈ [24210394, 1221033923] and num root ∈ [0, 0.74] then

anomaly

rule17: if dst bytes ∈ [0, 879630256] and num root ∈ [0, 0.74] and

dst host srv diff host rate ∈ [0.90, 0.96] then anomaly
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Incremental

Learning

(Update)

rule1: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and

dst host srv serror rate ∈ [0.39, 1] then anomaly

rule2: if dst bytes ∈ [0, 130993] and diff srv rate ∈ [0.05, 0.46] then anomaly

rule3: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.16, 1] then anomaly

rule4: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.8, 1] and

dst host srv diff host rate ∈ [0, 0.01] then anomaly

rule5: if dst bytes ∈ [0, 139307] num root ∈ [0, 0.74] and srv serror rate ∈

[0.12, 1] and diff srv rate ∈ [0.05, 0.92] and dst host srv serror rate ∈ [0, 0.85]

then anomaly

rule6: if src bytes ∈ [0, 1174619101] and dst bytes ∈ [0, 130993] and

srv serror rate ∈ [0, 0.01] and dst host srv diff host rate ∈ [0.2, 0.86] and

dst host srv serror rate ∈ [1, 0.01] then anomaly

rule7: if same srv rate ∈ [0.72, 0.97] then anomaly

rule8: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.19, 0.36] and

dst host srv diff host rate ∈ [0, 0.01] then anomaly

rule9: if same srv rate ∈ [0.54, 0.63] then anomaly

rule10: if diff srv rate ∈ [0.91, 0.97] and dst host srv diff host rate ∈ [0, 0.22]

then anomaly

rule11: if diff srv rate ∈ [0.79, 0.82] and dst host srv diff host rate ∈ [0, 0.01]

then anomaly

rule12: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and srv serror rate

∈ [0, 0.04] and same srv rate ∈ [0.05, 0.23] and diff srv rate ∈ [0.52, 0.55] and

dst host srv diff host rate ∈ [0, 0.54] then anomaly

rule13: if dst bytes ∈ [0, 178] then anomaly

rule14: if dst bytes ∈ [0, 1013] and same srv rate ∈ [0, 0.78] then anomaly

rule15: if dst bytes ∈ [0, 1013] and dst host srv serror rate ∈ [0.05, 0.99] then

anomaly

rule16: if dst bytes ∈ [0, 29381] and dst host srv serror rate ∈ [0.05, 0.82]

then anomaly

rule17: if srv serror rate ∈ [0.07, 0.99] then anomaly

rule18: if dst bytes ∈ [8140, 8318] then anomaly

rule19: if num root ∈ [0.5, 583] then anomaly

rule20: if dst bytes ∈ [283505, 284305] then anomaly

rule21: if dst bytes ∈ [386889, 513338] then anomaly
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attack records. Therefore, after the startup phase, the produced model will be de-

ployed in its intended environment to operate in the classification mode. However,

from time to time, the network administrator might need to update the existing

model because of changes in the environment such as modification in the network

topology, technology changes and arrival of new types of attacks. For learning new

information, in the update phase, ESR-NID is exposed to the new collected data

and a new set of rules will be generated and then added to the existing database

of rules. The updated database, however, goes through a post-processing stage,

which results in removing the similar rules from the database. Finally, the existing

model for classification in the startup/classification phase will be replaced by the

new processed database.

Using the proposed incremental learning approach, ESR-NID does not need to store

the entire training data from the startup day until now. This is the issue of tradi-

tional learning, where the system requires huge resources to store the whole training

data accumulated thus far and retrain the classifier on the entire data every time an

update is needed. For evaluating the proposed model, a series of experiments were

carried out when ESR-NID was using the traditional learning and the incremental

learning schemes. These experiments included 3 scenarios of synthetic problems and

a real intrusion detection problem using NSL-KDD dataset. The results from the

experiments against synthetic problems showed that the performance of proposed

incremental learning for ESR-NID is slightly worse than the traditional learning and

the incremental learning also produced more rules compared to the traditional learn-

ing. However, the incremental learning approach benefits from less required storage

because it only keeps the generated rules in its database. This is in contrast to

the infinitely growing size of repository of raw training data required for traditional

learning. Additionally, the results from the experiments against the real intrusion

detection problem using NSL-KDD dataset showed that incremental learning is bet-

ter than traditional learning in terms of g-performance, accuracy, true positive rates

and number of rules. This concludes that incremental learning is more effective and

efficient for intrusion detection problems with large amount of raw data.
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As a future work, some other post-processing methods can be implemented to reduce

the number of rules. For example, one rule might be more general than another,

which can be eliminated from the final ruleset without affecting the classification

rate.



Chapter 7

Conclusions

The detection of network intrusions is a challenging task due to the changes in the

real environment over time and availability of advanced tools to attackers. In order

to deal with this challenge, effective intrusion detection systems that can adapt to

the changes in the environment and variations of attacks are needed.

In this thesis, the selection criteria for intrusion detection systems were reviewed.

Examples of these factors are effectiveness, adaptability, ease of implementation and

installation place. Amongst all, effectiveness, adaptability and flexibility are the

focus of this study. To overcome these challenges in the design and implementation

of IDSs, a nature-inspired machine learning approach is proposed in this dissertation.

The proposed technique, ESR-NID, is used to acquire knowledge of normal and

abnormal behaviour in the form of rules.

ESR-NID uses a genetic algorithm as a base learner to extract signatures for intrusion

detection. The database of signatures should be updated over time to adapt to

environment changes. For this, ESR-NID utilises an incremental learning approach

to incrementally learn the changes in the behaviour of users and the pattern of

attacks.

In a series of experiments against different sources of data, the performance of ESR-

NID is evaluated and compared with five well-known machine learning techniques.

163



Chapter 7. Conclusions 164

These techniques are from two categories of GA-based and non-GA-based algo-

rithms. The results show that the performance of ESR-NID is comparable to the

other tested methods and produces compact, easily understood rulesets for classifi-

cation problems.

In the next section, a summary of contributions of the proposed approach to both

network intrusion detection and genetic-based machine learning fields are explained.

7.1 Summary of Contributions

The main contributions of this research are outlined as follows:

• Automatic rule creation for intrusion detection:

After reviewing the literature, it was found that construction and maintenance

of rules for signature based intrusion detection systems is a challenging task.

To reduce the cost and time associated with extraction of signatures (rules)

from network data, a genetic based rule learning technique was developed in

this thesis with some new features, which contributes to the field of GBML.

• Use of statistical features for detector rules:

The attack detection process in this thesis is a statistical based approach that

provides the ability to detect a wider range of network intrusions. The use of

statistical measures overcomes the challenge involved in some of the existing

signature based IDSs that are dependent on network packet features such as

source IP address and protocol. These systems are unable to detect flooding

attacks, which send huge amount of normal packets toward victim to disrupt its

services to legitimate users. As the input features to ESR-NID are statistical

measures of network traffic, it used a real-valued chromosome representation.

Accordingly, only the continuous features of NSL-KDD dataset were used in

the intrusion detection process. When a raw network traffic was used for

evaluation of the system (i.e. the combined DARPA/CAIDA dataset), an

extra pre-processing stage was used to extract suitable statistical features.
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• Development and analysis of a flexible genetic-based rule learning

technique:

An effective GA-based approach was proposed and developed in this thesis

with two distinct features. These are an advanced two-stage evaluation ap-

proach and an adaptive elitism mechanism. The former makes ESR-NID a

flexible model by giving system designers the choice of selecting appropriate

fitness and performance functions for different application domains. The two-

stage evaluation component in ESR-NID aimed to derive a set of classification

rules from the provided dataset, which can cooperatively provide a good cover-

age of search space. For this, a fitness function was designed for the evaluation

of each rule in the system, which takes the cooperation of rules into considera-

tion. Additionally, a performance function was used in this component, which

operates on a higher level to evolve the rules cooperatively. This resulted into

compact, easily understood rulesets for classification tasks. To show that how

variant classifiers can be produced for different problems, first in Chapter 4,

ESR-NID was configured using a different performance function and tested

against a synthetic problem. Then in Chapter 5, the use of ESR-NID for de-

tecting normal instances was explored and showed how the flexibility aspect

of the proposed model helps the designers to put more emphasis on detection

of instances from the desired class.

The latter feature, adaptive elitism mechanism, was proposed to address the

problem of losing good rules over the generations. This problem was found

through the preliminary experiments conducted for evaluation of ESR-NID

using a fixed elitism mechanism. The proposed elitism mechanism for ESR-

NID adaptively determines the amount of elitism in the selection process.

This ensures that cooperating rules are kept together and not lost from one

generation to the next. This also means that there is no need to find the best

elite value through a trial-and-error method.

• Incremental learning:

Finally, to make ESR-NID adaptable to the environment changes, an incre-

mental learning method was introduced. Using this approach, ESR-NID does
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not need to store the original data used for training the classifier. Instead

it preserves the previously acquired knowledge (i.e. ruleset) and learns ad-

ditional information from new data and updates the database of signatures

with the new information. This addresses the storing of the entire training

data and the increased training time challenges in the traditional learning

approaches. These techniques discard the existing classifier and retrain the

system using the entire accumulated training data. The proposed incremental

learning for ESR-NID consisted of startup/classification and update phases.

During the startup phase, a classification model is designed using the initial

set of training examples. This phase will then be called classification phase

throughout the system life cycle. From time to time, ESR-NID updates the

database of rules during the update phase. This is achieved by retraining the

system on the training data and adding the generated rules to the current

database. Before the new model can be used for classification, the combined

rules go through a post-processing stage to produce a more concise ruleset

for the use of IDS. This is because in most domains, experts are interested in

simple human-understandable models.

7.2 Limitations

There are a number of limitations in the work presented in this thesis, which are

listed below.

• The system is aimed at learning statistical signatures of network traffic to de-

tect a wider range of attacks. Therefore, only real-valued attributes can be

used as the input to ESR-NID.

• The system evaluation on intrusion detection was only limited to the publicly

available datasets that have been used for IDSs evaluations in the literature.

If there were no constraints on the availability of large scale traffic collection
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infrastructure and privacy concerns, additional real network traffic could be

collected for testing the system.

• The final evaluations of the incremental learning approach for ESR-NID is

limited to only six runs per experiment (2 different initial seeds and 3 folds).

Therefore, the performance measure reported is the average across six runs. If

there were no time constraints, more folds and seed values could be used to

improve performance estimation.

7.3 Future Work

Several directions can be taken to extend this work. The potential areas for future

research are summarized below.

• Improving ESR-NID: with some evolved rulesets, the fitness and performance

measurements that drive the algorithm are insensitive to small modifications

to boundary values (because there are no training examples nearby). The next

step is to investigate efficient local generalisation and specialisation operators

that could exploit this fact. For example, they could be used in a memetic

version of the algorithm, combining evolution with local modification.

• Classification of attack types: in this thesis, ESR-NID is used as a binary

classifier to detect network intrusions. However, identifying the type of attacks

is another challenge and hence ESR-NID can be extended to discover rulesets

for multi-class classification problems.

• Improving the incremental learning component: in this thesis, an incremental

learning approach is utilised for ESR-NID to re-train the system once a new

batch of data becomes available. Using this, ESR-NID generates ruleset for

the new data, and then this ruleset will be added to the existing database

of rules. Next, the similar rules will be removed through a post-processing

stage and finally the post-processed ruleset will be used for future classification
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tasks. One step for improving this approach is to extend the post-processing

stage by keeping the general rules and eliminating the more specific ones in

the ruleset without affecting the classification rate. This decreases the size of

ruleset and minimize the complexity of the classification model. The similarity

between rules can be more accurately determined using the Jaccard index (or

Jaccard similarity coefficient) (Real & Vargas, 1996), which is a statistic used

for comparing the similarity and diversity of sample sets. Jaccard index as

a similarity metric describes the degree of overlap between the rules and is

defined as the ratio of the intersection to the union of the pairwise compared

variables (Pang-Ning et al., 2005).

• Applying ESR-NID to other areas: the focus of this research was on intrusion

detection problem, however, this can be extended for other classification prob-

lems. It would be nice to evaluate the developed system with datasets from

other areas.
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