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Machine learning of plasma metabolome 
identifies biomarker panels for metabolic 
syndrome: findings from the China Suboptimal 
Health Cohort
Hao Wang1†, Youxin Wang2†, Xingang Li3, Xuan Deng4, Yuanyuan Kong1, Wei Wang2,3 and Yong Zhou4* 

Abstract 

Background: Metabolic syndrome (MetS) has been proposed as a clinically identifiable high-risk state for the 
prediction and prevention of cardiovascular diseases and type 2 diabetes mellitus. As a promising “omics” technol-
ogy, metabolomics provides an innovative strategy to gain a deeper understanding of the pathophysiology of MetS. 
The study aimed to systematically investigate the metabolic alterations in MetS and identify biomarker panels for the 
identification of MetS using machine learning methods.

Methods: Nuclear magnetic resonance-based untargeted metabolomics analysis was performed on 1011 plasma 
samples (205 MetS patients and 806 healthy controls). Univariate and multivariate analyses were applied to identify 
metabolic biomarkers for MetS. Metabolic pathway enrichment analysis was performed to reveal the disturbed meta-
bolic pathways related to MetS. Four machine learning algorithms, including support vector machine (SVM), random 
forest (RF), k-nearest neighbor (KNN), and logistic regression were used to build diagnostic models for MetS.

Results: Thirteen significantly differential metabolites were identified and pathway enrichment revealed that argi-
nine, proline, and glutathione metabolism are disturbed metabolic pathways related to MetS. The protein-metabolite-
disease interaction network identified 38 proteins and 23 diseases are associated with 10 MetS-related metabolites. 
The areas under the receiver operating characteristic curve of the SVM, RF, KNN, and logistic regression models based 
on metabolic biomarkers were 0.887, 0.993, 0.914, and 0.755, respectively.

Conclusions: The plasma metabolome provides a promising resource of biomarkers for the predictive diagnosis and 
targeted prevention of MetS. Alterations in amino acid metabolism play significant roles in the pathophysiology of 
MetS. The biomarker panels and metabolic pathways could be used as preventive targets in dealing with cardiometa-
bolic diseases related to MetS.

Keywords: Metabolic syndrome, Machine learning, Metabolomics, Biomarkers, Diagnostic models, Amino acid 
metabolism

Background
Metabolic syndrome (MetS) is a combination of cardio-
metabolic risk determinants, including central obesity, 
elevated blood pressure, hyperglycemia, and dyslipidemia 
[1]. It is a clinically identifiable high-risk state, and MetS 
patients are at high risk for developing cardiovascular 
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diseases (CVD) and type 2 diabetes mellitus (T2DM) in 
the future [2]. Depending on the International Diabetes 
Federation (IDF) definition of MetS, the prevalence of 
MetS is approximately 25% of all adults in the world [3]. 
MetS and its consequent chronic diseases lead to high 
morbidity and mortality rates. In 2016, CVD resulted in 
17.9 million deaths [4], and 6.7 million individuals died 
from T2DM in 2021 worldwide [5]. As these cardiomet-
abolic diseases are among the leading causes of death 
worldwide, MetS is still a global health issue.

MetS has a multifaceted etiology, involving complex 
interactions between genetic and environmental fac-
tors [6]. The pathophysiological mechanism of MetS is 
characterized by abnormal metabolism, including dys-
regulation of glucose and lipid metabolism [7], storage of 
adipose tissue [8], and chronic low-grade inflammation 
[9]. Although increasing evidence has shown that insulin 
resistance and obesity play essential roles in the patho-
physiology of MetS [10, 11], several other factors such as 
increase in cellular oxidative stress [12], low mitochon-
drial function [13], and dysregulation of the hypotha-
lamic—pituitary—adrenal [14] can also be involved in its 
pathogenesis. Considering the multi-factorial pathophys-
iology of MetS, it is inevitable to understand and study 
the disease from a systemic point of view.

To comprehensively investigate the metabolic charac-
terization of MetS and its role in the development of con-
sequent cardiometabolic diseases, several attempts have 
been made to screen biomarkers using various omics 
technologies, including metabolomics [15]. Metabo-
lomics, an emerging “omics” technology, is the profil-
ing of metabolites in a biological system [16]. With the 
help of metabolomics, the pathophysiological charac-
teristics of MetS have been further explored by looking 
for potential metabolic biomarkers that provide strong 
support for the diagnosis and treatment of MetS. These 
new metabolic insights could lead to a paradigm shift in 
how preventive interventions and treatment targets are 
being discovered [17]. In recent years, studies have iden-
tified several MetS related metabolic pathways, including 
amino acid metabolism, glutathione production, gluco-
neogenesis, and tricarboxylic acid cycle in American, 
Japanese, and Dutch cohorts [18–20]. However, to the 
best of our knowledge, the plasma metabolome of MetS 
patients has not been systematically profiled in a large 
Chinese cohort to identify biomarkers for the diagnosis 
of MetS.

The analysis of metabolomics big data is complicated 
due to its complex structure, such as high dimensional-
ity, high noise levels, and missing values. Conventional 
statistics-based models are usually not suitable for the 
analysis of metabolomics big data. Therefore, machine 
learning methods have become popular for the analysis 

of metabolomics data, especially for the construction of 
prediction models based on potential biomarkers for the 
diagnosis of diseases [21]. Notably, the selection and opti-
mization of machine learning algorithms are also crucial 
in the diagnosis of diseases.

Taking into account these necessities, the aim of the 
present study was to comprehensively investigate the 
plasma metabolic characteristics of MetS in a large well-
established Chinese cohort—China Suboptimal Health 
Cohort Study (COACS), and to screen potential meta-
bolic biomarkers for MetS using proton nuclear magnetic 
resonance (1H-NMR)-based untargeted metabolome 
profiling. Univariate analysis and multivariate analysis 
were applied to identify potential metabolic biomarkers 
for the diagnosis of MetS. Metabolic pathway enrichment 
analysis was performed to discover which metabolic 
pathways and metabolites are crucial to the physiopathol-
ogy of MetS. Four machine learning algorithms, includ-
ing support vector machine (SVM), random forest (RF), 
k-nearest neighbor (KNN), and logistic regression were 
used to build diagnostic models for MetS based on 
potential metabolic biomarkers. The protein-metabolite-
disease interaction network was also explored, so that 
novel insights or hypotheses regarding the progression 
of MetS towards its consequent cardiometabolic diseases 
might be obtained.

Materials and methods
Study design and participants
A community-based study was conducted in a Chinese 
population who received routine health check-ups at 
the Jidong Oilfield Staff Hospital from September 2013 
to June 2014. The present study was based on a well-
designed cohort named the COACS cohort, which was 
described previously [22]. All participants were required 
to meet the following inclusion criteria: (1) aged 18 to 
65 years old; and (2) signed informed consent before par-
ticipation. Participants were excluded if they currently 
suffering from one or more of the following diseases: (1) 
diabetes; (2) hypertension; (3) hyperlipemia; (4) cardio-
vascular or cerebrovascular conditions; (5) cancers; or (6) 
gout. All participants included in this study signed writ-
ten informed consent forms. The study was approved by 
the Ethics Committee of the Jidong Oilfield Staff Hospi-
tal. Ethnics approval was given in compliance with the 
Declaration of Helsinki.

Measurements and sample collection
The demographic characteristics of participants, anthro-
pometric measurements, and biochemical tests were 
collected as described in our previous study [22]. Accord-
ing to the IDF definition of MetS [23], the participants 
to be defined as having MetS must have abdominal 
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obesity and any two of the following four phenotypes: 
(1) systolic blood pressure (SBP) ≥ 130  mmHg and/or 
diastolic blood pressure (DBP) ≥ 85  mmHg; (2) triglyc-
erides (TG) ≥ 1.7  mmol/L; (3) fasting plasma glucose 
(FPG) ≥ 5.6 mmol/L; or (4) high-density lipoprotein cho-
lesterol (HDL-C) < 1.03 mmol/L in men or < 1.29 mmol/L 
in women. Abdominal obesity was defined as waist cir-
cumference (WC) ≥ 90  cm in men and WC ≥ 80  cm in 
women [23]. After at least a 12-h fasting, blood samples 
were collected from all participants using venipuncture 
in the morning. The plasma samples were separated in 
the laboratory after centrifugation at 4 °C, for 10 min at 
3000 × g. Then, the samples were stored at − 80 °C imme-
diately, and freeze–thaw cycles were strictly avoided until 
metabolomic analysis [22].

Untargeted 1H‑NMR metabolomics analysis
Plasma samples were thawed at 4  °C. Once thawed, 
200 μL of plasma was added to 400 μL of 0.045 M phos-
phate-buffered saline (PBS) prepared in deuterium oxide 
 (D2O) and vortexed for 10 s. The mixture was centrifuged 
at 13,000 rpm for 15 min at 4 °C. Then 550 μL of super-
natant was transferred into 5 mm NMR tubes for further 
analyses.

All 1H-NMR spectra of plasma samples were acquired 
using a Varian VNMRS 600  MHz spectrometer (Agi-
lent Technologies, USA) operating at a 1H frequency of 
599.77  MHz. One-domensional (1D) 1H-NMR spectra 
were recorded using the Carr-Purcell-Meiboom-Gill 
(CPMG) pulse sequence. Each spectrum was acquired 
with 128 scans per sample using a spectral window of 
16.4  ppm. The temperature was kept constant at 25  °C. 
Water suppression was achieved by using gated irradia-
tion focused on the water frequency. All raw spectra files 
were obtained using VnmrJ software (Agilent Technolo-
gies, USA).

Data analysis and statistics
The study design and data analysis workflow are shown 
in Fig. 1. The raw NMR data were recorded in the form 
of free induction decay (FID) files which are time-domain 
spectra. Then the FID files were Fourier transformed into 
frequency domain spectra using NMRProcFlow software 
[24]. To remove effects of possible variations on the water 
suppression efficiency, the region of the water signal was 
discarded. NMRProcFlow was applied for the preproc-
essing of NMR spectra data, including phase correction, 
baseline correction, chemical shift referencing, and spec-
tra alignment [24]. After the constant sum normalization 
of the spectra, the data matrix was exported to the ASICS 
R package for the identification and quantification of 
metabolites. ASICS is based on a library of pure metabo-
lite spectra that is used as a reference to fit a unpenalized 

model followed by the control of the family wise error 
rate (FWER). Then the model fit provides the relative 
quantifications of metabolites in each sample [25].

The data are presented as the means and standard 
deviations (SDs) if the continuous variables conformed 
to normal distribution. Otherwise, medians and inter-
quartile ranges (IQRs) were used in descriptive statis-
tics. The differences in continuous variables between the 
MetS and control groups were tested by Student t-test or 
Wilcoxon rank-sum test. Categorical variables are repre-
sented as frequencies and percentages. The Chi-square 
test or Fisher’s exact test was used to examine the differ-
ences in categorical variables between the two groups. 
The multiple testing corrections were controlled by using 
the false discovery rate (FDR).

The orthogonal partial least squares projection-dis-
criminant analysis (OPLS-DA) model was performed to 
identify the metabolic biomarkers using SIMCA, version 
14.1 (Umetrics, Umea, Sweden). To estimate the associa-
tion between metabolic biomarkers and cardiometabolic 
risk factors, Spearman’s rank correlation was performed 
and visualized using the “corrplot” R package. Meta-
bolic pathway analysis and protein-metabolite-disease 
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interaction network analysis were performed by using 
MetaboAnalyst [26], and Cytoscape, version 3.7.1 
(National Institute of General Medical Sciences, 
Bethesda, USA) was used to create the interaction net-
works. The diagnostic models for MetS were constructed 
by using 4 machine learning algorithms, including SVM 
(“e1071” R package), RF (“randomForest” R package), 
KNN ( “kknn” R package), and logistic regression (“glm” 
R package). The receiver operating characteristic (ROC) 
curves were used to evaluate the predictive performance 
of the models. The area under the curve (AUC) and 95% 
bootstrap confidence intervals (CI) were also estimated.

Statistical analyses were performed using R, version 
4.1.2 (R Foundation for Statistical Computing) and SPSS 
25.0 (IBM Corporation, New York, USA). Two-tailed 
P < 0.05 was considered statistically significant.

Results
Clinical characteristics of the study population
In total, 205 MetS patients and 806 healthy controls 
were analysed in the present study. The average ages of 
the MetS and control groups were 57.21 ± 10.00 and 
47.05 ± 12.93 years, respectively. The levels of body mass 
index (BMI), SBP, DBP, hip circumference (HC), WC, 

waist-to-hip ratio (WHR), FPG, TG, total cholesterol 
(TC), low-density lipoprotein cholesterol (LDL-C), blood 
urea nitrogen (BUN), and creatinine (Cr) were signifi-
cantly higher in the MetS group than those in the con-
trol group, whereas a significantly lower level of HDL-C 
was observed in the MetS group (all P < 0.05). Aside from 
these, significantly different frequencies of abdominal 
obesity, elevated blood pressure, elevated FPG, elevated 
TG, and reduced HDL-C phenotypes were observed 
between the two groups (all P < 0.05). The details about 
the demographic, biochemical, and anthropometric char-
acteristics of the MetS patients and healthy controls are 
presented in Table 1.

Identification of metabolic biomarkers
The metabolome of 1011 plasma samples was analysed 
using 1H-NMR, and the stacked NMR spectra are shown 
in Additional file  1. After the preprocessing of NMR 
spectra, identification and quantification of metabolites, 
and removal of missing values, 85 metabolites were iden-
tified successfully (Fig.  2A and Additional file  2). The 
variable importance on projection (VIP) values of each 
metabolite was calculated by the OPLS-DA model, and 
the metabolites with VIP values > 1 were considered the 

Table 1 Characteristics of the study participants

Data are presented as means ± SDs or frequencies (percentages)

MetS metabolic syndrome, SD standard deviation, SBP systolic blood pressure, DBP diastolic blood pressure, BP blood pressure, BMI body mass index, WC waist 
circumference, HC hip circumference, WHR waist-to-hip ratio, FPG fasting plasma glucose, TC total cholesterol, TG triglycerides, HDL-C high-density lipoprotein 
cholesterol, LDL-C low-density lipoprotein cholesterol, BUN blood urea nitrogen, Cr creatinine

P < 0.05 is considered statistically significant

Characteristics MetS group (N = 205) Control group (N = 806) P value

Age (years) 57.21 ± 10.00 47.05 ± 12.93  < 0.001

Male (%) 97 (47.32) 331 (41.07) 0.106

SBP (mmHg) 141.06 ± 19.90 118.79 ± 14.39  < 0.001

DBP (mmHg) 86.04 ± 12.83 75.30 ± 9.51  < 0.001

BMI (kg/m2) 26.99 ± 3.01 23.14 ± 3.06  < 0.001

WC (cm) 94.34 ± 8.14 81.76 ± 9.03  < 0.001

HC (cm) 102.54 ± 6.58 95.81 ± 7.16  < 0.001

WHR 0.92 ± 0.06 0.85 ± 0.07  < 0.001

FPG (mmol/L) 6.12 ± 1.66 5.06 ± 0.75  < 0.001

TC (mmol/L) 4.75 ± 1.01 4.31 ± 0.72  < 0.001

TG (mmol/L) 1.89 ± 1.24 1.01 ± 0.41  < 0.001

HDL-C (mmol/L) 1.08 ± 0.19 1.29 ± 0.27  < 0.001

LDL-C (mmol/L) 2.77 ± 0.71 2.36 ± 0.51  < 0.001

BUN (mmol/L) 5.21 ± 1.59 4.83 ± 1.43 0.001

Cr (μmol/L) 76.89 ± 14.83 74.54 ± 12.75 0.035

Abdominal obesity (%) 205 (100.00) 305 (37.84)  < 0.001

Raised BP (%) 170 (82.93) 179 (22.21)  < 0.001

Raised FPG (%) 127 (61.95) 86 (10.67)  < 0.001

Raised TG (%) 92 (44.88) 29 (3.60)  < 0.001

Reduced HDL-C (%) 152 (74.15) 271 (33.62)  < 0.001
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potential candidate metabolites.The number of latent 
variables in the OPLS-DA model was chosen according 
to cross-validation. The cumulative  R2Y and cumulative 
 Q2 values of the OPLS-DA model were calculated to esti-
mate the “goodness of fit” and the predictive ability of the 
model. The OPLS-DA model yielded a cumulative  R2Y of 
0.207 and a cumulative  Q2 of 0.161. The OPLS-DA score 
plot showed that the MetS patients were separated from 
the healthy controls (Fig.  2B). Among the 85 candidate 
metabolites, 13 metabolites with VIP values > 1, P val-
ues < 0.05, and FDR-, age-adjusted P values < 0.05 were 

identified as candidate biomarkers for MetS (Table 2 and 
Additional file 2).

Metabolic pathway enrichment analysis
Metabolic pathway analysis was performed to reveal the 
disturbed metabolic pathways related to MetS based on 
potential metabolic biomarkers. These metabolites were 
involved in 12 metabolic pathways (Fig.  2C and Addi-
tional file  3). Among these 12 metabolic pathways, two 
pathways with P values < 0.05 and impact values > 0.00 
were identified as arginine and proline metabolism, and 
glutathione metabolism pathways, respectively. The 
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arginine and proline metabolism pathway included 38 
metabolites in total, while 3 metabolites (guanidinoac-
etate, hydroxyproline, and L-ornithine) were measured in 
this study. The glutathione metabolism pathway included 
28 metabolites in total, while 2 metabolites (pyroglutamic 
acid and L-ornithine) were measured in the present study 
(Fig. 2C and Additional file 3).

Association between metabolic biomarkers 
and cardiometabolic risk factors
To investigate the potential relationships between 13 
metabolic biomarkers and 14 cardiometabolic risk 
factors, Spearman’s correlation coefficients were cal-
culated (Additional file  4). The matrix of correlation 
coefficients is visualized in Fig.  3. Among the 13 met-
abolic biomarkers, 13 metabolites were significantly 
associated with TG, and 10 metabolites were associ-
ated with WC, WHR, SBP, FPG, HDL-C, LDL-C, and 
Cr, followed by 9 metabolites were associated with 
HC, BMI, and DBP, 6 metabolites were associated with 
BUN, and 5 metabolites were associated with age and 
TC (Additional file 4). The significant correlation coeffi-
cients ranged from − 0.335 to 0.534. D-Fucose showed 
the highest correlation with the cardiometabolic risk 
factors, associated with 9 of the 13 metabolic risk fac-
tors. The correlation coefficient between D-fucose and 
TG was highest (r = 0.534, P value < 0.001). There were 

five metabolites correlated with age (P values < 0.05), 
and the correlation coefficients ranged from − 0.238 to 
0.188, which were relatively low. D-Maltose and Deoxy-
adenosine were associated with all the 14 cardiometa-
bolic risk factors included in this study (Fig.  2D and 
Additional file 4).

Protein‑metabolite‑disease interaction network
A protein-metabolite-disease interaction network was 
constructed to provide a comprehensive understand-
ing of potential functional relationships among poten-
tial metabolic biomarkers, proteins, and diseases. 
Based on the previous knowledge of literature asso-
ciations, biological pathways, similar structures, and 
similar functions, the interactions between metabo-
lites and proteins were searched from the Search Tool 
for Interactions of Chemicals (STITCH) database [27]. 
There were 38 proteins associated with 10 metabolic 
biomarkers for MetS (Fig. 3). According to the associa-
tion between metabolites and diseases in the Human 
Metabolome Database (HMDB) [28], the metabolite-
disease interaction network was also constructed to 
explore the association between MetS-related metab-
olites and chronic diseases. Finally, 23 diseases were 
associated with 10 MetS-related metabolites (Fig. 3).

Table 2 Differential metabolites identified between MetS participants and controls

Down trend, relatively lower levels of metabolites present in MetS group. Up trend, relatively higher levels of metabolites present in the MetS group

MetS metabolic syndrome, FC fold change, VIP variable importance on projection

P value, P value from Wilcoxon test without adjustment

P < 0.05 was considered statistically significant

P* value, P value adjusted for age

P# Value, P value adjusted for age and false discovery rate using the Benjamini‒Hochberg method

Metabolites MetS group Control group Trend FC VIP P value P* value P# value

Mean SD Mean SD

Trans-Acotinic Acid 0.0043 0.0031 0.0054 0.0022 Down 0.7917 4.4239 3.543E–03 2.515E–06 2.138E–05

Methanol 0.0051 0.0012 0.0049 0.0008 Up 1.0432 1.0652 3.836E–04 9.162E–03 2.685E–02

Guanidinoacetate 0.0039 0.0011 0.0036 0.0007 Up 1.0579 1.0384 5.379E–04 9.941E–04 4.970E–03

Hydroxyproline 0.0027 0.0020 0.0035 0.0016 Down 0.7738 3.4554 2.930E–06 1.113E–06 1.052E–05

Pyroglutamic Acid 0.0021 0.0009 0.0025 0.0009 Down 0.8438 2.0394 1.155E–11 2.459E–08 5.225E–07

Glutaconic Acid 0.0008 0.0010 0.0014 0.0010 Down 0.5850 2.6766 3.108E–15 4.362E–10 1.236E–08

D-Maltose 0.0014 0.0011 0.0019 0.0008 Down 0.7296 2.2688 1.547E–09 8.209E–08 1.395E–06

D-Fucose 0.0010 0.0005 0.0008 0.0003 Up 1.2343 1.2169 3.648E–10 1.209E–11 1.028E–09

Taurine 0.0017 0.0006 0.0014 0.0005 Up 1.1609 1.5231 1.675E–08 4.260E–04 2.481E–03

Deoxyadenosine 0.0002 0.0004 0.0004 0.0004 Down 0.6409 1.0993 2.990E-06 4.379E–04 2.481E–03

L-Ornithine 0.0010 0.0013 0.0013 0.0013 Down 0.7367 1.8037 3.846E–04 1.291E–03 5.777E–03

L-Asparagine 0.0007 0.0006 0.0009 0.0006 Down 0.7888 1.0710 2.398E–06 4.334E–03 1.635E–02

Carnosine 0.0003 0.0004 0.0004 0.0005 Down 0.6662 1.0302 1.743E–05 3.734E–04 2.442E–03
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Diagnostic models for MetS using machine learning 
algorithms
After comprehensively profiling the metabolic biomark-
ers, four machine learning algorithms, including SVM, 
RF, KNN, and logistic regression, were performed to 
construct diagnostic models based on 13 metabolic 
biomarkers. The parameters of different models were 
tuned using ten-fold cross-validation on the whole 
dataset. Then, the parameters were applied to the 
whole dataset to provide final metrics of the suitabil-
ity of the models for classifying individuals with MetS 
and healthy controls. Eventually, the kernel used in the 
SVM model was the radial kernel. The number of trees 
in the RF model was 500. The number of neighbours 
in the KNN model was 19. Then the diagnostic models 
based on 14 cardiometabolic risk factors were also built 
to compare the predictive ability with models based on 
metabolic biomarkers. The diagnostic performance of 

these eight models was shown in Table 3 and Fig. 4, and 
the AUCs ranged from 0.755 to 0.993 (Fig. 4).

Discussion
Identifying key metabolic biomarkers and pathways 
relevant to MetS and its progression towards cardio-
metabolic diseases is considered a viable strategy for the 
predictive diagnosis and targeted prevention of cardio-
metabolic diseases. In the present study, we comprehen-
sively described the metabolomic biosignatures of MetS, 
and the metabolic biosignatures revealed significant 
differences between MetS patients and healthy partici-
pants. Based on the 13 potential metabolic biomarkers 
for MetS, the pathway analysis suggested that arginine 
and proline metabolism, and glutathione metabolism 
pathways were disturbed in MetS patients. Four machine 
learning algorithms, including SVM, RF, KNN, and 
logistic regression were used to build diagnostic mod-
els for MetS. ROC curve analysis showed that the AUCs 
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of four models based on metabolic biomarkers ranged 
from 0.755 to 0.993. To our knowledge, the present study 
is the first to comprehensively provide metabolomic 
biosignatures of MetS based on a large well-established 
Chinese cohort by using 1H-NMR-based metabolome 
profiling. Our findings unveiled that metabolome pro-
vides a valuable resource of biomarkers for the diagnosis 
and prevention of MetS and its consequent cardiometa-
bolic diseases. These metabolomic biomarkers also pro-
vide a better insight into the critical metabolic pathways 
associated with MetS and a deeper understanding of its 

progression towards cardiometabolic diseases. Thus, the 
MetS-related metabolites and the metabolic patterns of 
metabolites can be used as potential diagnostic models 
for population risk stratification and targeted interven-
tion of MetS towards chronic diseases, including CVD 
and T2DM.

We identified significant differences between MetS 
patients and healthy controls in cardiovascular risk fac-
tors, including BMI, SBP, DBP, HC, WC, WHR, FPG, TG, 
TC, HDL-C, LDL-C, BUN, and Cr (Table  1). We addi-
tionally found that 13 metabolic biomarkers for MetS 

Table 3 Diagnostic performance of four machine learning algorithms

The 95% CIs of AUCs were estimated using bootstrap resampling for 2000 times

AUC  area under curve, CI confidence interval

Machine learning algorithms Models Sensitivity Specificity Non‑error Rate AUC (95% CI)

Support vector machine Metabolites 0.878 0.837 0.846 0.887 (0.857–0.915)

Risk factors 0.956 0.909 0.919 0.979 (0.971–0.986)

Random forest Metabolites 0.956 0.971 0.968 0.993 (0.988–0.997)

Risk factors 0.995 0.996 0.996 1.000 (0.999–1.000)

K-nearest neighbor Metabolites 0.985 0.734 0.785 0.914 (0.895–0.930)

Risk factors 0.980 0.871 0.893 0.977 (0.970–0.984)

Logistic regression Metabolites 0.673 0.742 0.728 0.755 (0.715–0.794)

Risk factors 0.847 0.912 0.861 0.944 (0.929–0.959)
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were also significantly correlated with these cardiovascu-
lar risk factors (Fig. 2D). These metabolites may also be 
affected by these clinical risk factors. Considering that 
MetS is a constellation of closely related cardiometabolic 
risk factors, these candidate metabolic biomarkers for 
MetS could also be potential biomarkers for abdominal 
obesity, hypertension, hyperglycemia and dyslipidemia. 
Plasma concentrations of these metabolites may be 
important indicators of the pathophysiological mecha-
nism of MetS and provide insights into effective treat-
ments for cardiometabolic risk factors.

Pathway analysis revealed that the arginine and proline 
metabolism pathways are associated with MetS. Guanidi-
noacetate, hydroxyproline, and L-ornithine are the meas-
ured metabolites that participate in arginine and proline 
metabolism. Arginine, a semi-essential amino acid, is one 
of the most metabolically versatile amino acids. It serves 
as a precursor for the synthesis of urea, polyamines, pro-
line, nitric oxide, creatine, glutamate, and agmatine [29]. 
Numerous studies have suggested that intravenous use 
or dietary supplementation of arginine is beneficial in 
improving cardiovascular, pulmonary, renal, gastrointes-
tinal, liver, and immune functions, as well as enhancing 
insulin sensitivity and maintaining tissue integrity [30]. 
The dynamic balance of L-arginine may be an endog-
enous determinant of arterial tone in hypertension [31]. 
Mirmiran et al. [32] found that plant-derived L-arginine 
could be a potentially protective factor against the devel-
opment of MetS and its phenotypes, and higher intakes 
of animal-derived L-arginine could be a dietary risk fac-
tor for the development of MetS. The potential modula-
tory effects of L-arginine supplementation are currently 
considered a novel and effective strategy for the treat-
ment and prevention of MetS and its phenotypes, includ-
ing central obesity, hyperglycemia, and dyslipidemia [33, 
34]. In our study, a significantly higher level of guanidi-
noacetate was found in MetS patients. Otherwise, a sig-
nificantly lower-level of L-ornithine was found in MetS 
patients. These findings supported that MetS and its 
phenotypes are associated with the imbalance of arginine 
metabolism, and these biomarkers can be used as new 
intervention targets for MetS and cardiometabolic risk 
factors.

Hydroxyproline, a nonessential amino acid, is a struc-
turally and physiologically important amino acid in 
humans. Emerging evidence proves that the oxidation of 
hydroxyproline plays a significant role in regulating oxi-
dative defense, apoptosis, and angiogenesis [35]. Studies 
have suggested that chronic low-grade inflammation and 
oxidative stress in obese individuals are the important 
underlying mechanism that led to the development of 
MetS through changed cellular and nuclear mechanisms, 
including impairments in DNA damage reparation and 

cell cycle regulation [12]. Capel et al. [36] observed that 
metabolites from arginine and proline metabolism path-
ways were significantly different between MetS patients 
and healthy controls. Targeted and untargeted metabolite 
profiling found that hydroxyproline could be a potential 
metabolic biomarker for cardiovascular diseases [37]. In 
the present study, the significantly lower level of hydroxy-
proline in MetS patients showed that plasma hydroxypro-
line was associated with MetS and its phenotypes of the 
cardiovascular system. The findings of the present study 
indicated that plasma hydroxyproline could be used as a 
potential biomarker for the progression of MetS towards 
cardiovascular diseases, and hydroxyproline metabolism 
could serve as treatment targets for MetS and cardiomet-
abolic diseases.

Pyroglutamic acid and L-ornithine are the measured 
metabolites that participate in glutathione metabolism. 
Glutathione is a low-molecular-weight tripeptide com-
posed of the amino acid glutamine, cysteine, and gly-
cine [38]. It plays a pivotal role in maintaining redox 
balance, reducing oxidative stress, enhancing metabolic 
detoxification, and regulating the immune response 
[38]. A great body of evidence suggested that glu-
tathione may be a potential biomarker and treatment 
target in various chronic, metabolic diseases, such as 
hypertension, T2DM, and CVD [39–41]. Sekhar et  al. 
[42] found that patients with uncontrolled T2DM have 
severely decreased synthesis of glutathione. In the pre-
sent study, significantly lower levels of pyroglutamic acid 
and L-ornithine in the glutathione metabolism pathway 
were observed in MetS patients. These findings showed 
that deficient synthesis of glutathione occurred in MetS 
patients, which indicated that elevated oxidative stress 
may play a significant role in the pathophysiology of 
MetS.

The metabolite-protein interaction network ena-
bles the visualization and exploration of interactions 
between metabolites and functionally related proteins. 
This visual network can be used to acquire innovative 
insights into the pathophysiology of MetS and its pro-
gression towards cardiometabolic diseases. According 
to the association between metabolites and diseases 
obtained from the HMDB database, a metabolite-dis-
ease interaction network was also produced to explore 
the disease-related metabolites. In the present study, 
MetS-related metabolic biomarkers were found to be 
associated with 23 diseases, such as Parkinson’s disease, 
Alzheimer’s disease, lung cancer, and schizophrenia. 
Some of these diseases were reported to be associated 
with MetS. The lower levels of L-ornithine, hydroxy-
proline, carnosine, and L-asparagine were observed 
in the individuals with MetS. All these four potential 
metabolic biomarkers for MetS were also found to be 
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associated with Alzheimer’s disease. Previous stud-
ies supported that MetS and T2DM are risk factors for 
Alzheimer’s disease [43]. The underlying mechanism of 
MetS toward Alzheimer’s disease may be involved in 
the aberrations in the amino acid metabolism in MetS 
patients.

Several limitations in the present study need to be 
addressed. Firstly, the causal effect was difficult to infer 
in data from a cross-sectional study design. The observed 
MetS-related metabolites may be the consequences 
rather than causes of MetS and its phenotypes. To inves-
tigate the causations between metabolic biomarkers and 
cardiometabolic risk factors, Mendelian randomiza-
tion studies in the same cohort of participants are also 
needed. Secondly, given the semi-quantitative nature of 
untargeted metabolomics profiling, a targeted metabo-
lomics study is underway against the same cohort to vali-
date the potential biomarkers and pathways based on the 
findings in the present study. Despite the limitations, the 
present study has provided a novel strategy that plasma 
metabolomics offers an innovative alternative for the rec-
ognition of MetS. Building on the findings, further stud-
ies from diverse populations and geographical areas are 
warranted.

Conclusions
The early diagnosis of MetS has the potential to identify 
the patients who are at high risk of developing CVD and 
T2DM at early stages, and evidence-based intervention 
for MetS may be a cost-effective method for targeted 
prevention, and personalized intervention for cardio-
metabolic diseases, such as CVD and T2DM. A total of 
13 metabolites, including trans-acotinic acid, methanol, 
guanidinoacetate, hydroxyproline, pyroglutamic acid, 
glutaconic acid, D-maltose, D-fucose, taurine, deoxy-
adenosine, L-ornithine, L-asparagine, and carnosine, 
were selected as candidate biomarkers for MetS. The 
present study revealed the potential value of metabo-
lomic biomarkers for the predictive diagnosis of MetS. 
MetS patients have a universal metabolic disturbance. 
The significantly higher level of guanidinoacetate and 
significantly lower level of L-ornithine in MetS patients 
indicated that the disturbance of arginine metabolism 
plays a significant role in the pathophysiologic mecha-
nism of MetS and its phenotypes. Hydroxyproline and 
glutathione metabolism also play potential roles in the 
pathophysiologic mechanism of MetS. These findings 
determined the potential utility of MetS-related meta-
bolic biomarkers and pathways for targeted prevention 
and personalized therapy of cardiometabolic diseases.
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