
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2022 to 2026 

2023 

Multivariate cross-validation and measures of accuracy and Multivariate cross-validation and measures of accuracy and 

precision precision 

Ute Mueller 
Edith Cowan University 

Sangga Rima Roman Selia 

Raimon Tolosana-Delgado 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2022-2026 

 Part of the Engineering Commons 

10.1007/s11004-022-10040-y 
Mueller, U., Selia, S. R. R., & Tolosana-Delgado, R. (2023). Multivariate cross-validation and measures of accuracy 
and precision. Mathematical Geosciences, 55, 693-711. 
https://doi.org/10.1007/s11004-022-10040-y 
This Journal Article is posted at Research Online. 
https://ro.ecu.edu.au/ecuworks2022-2026/1897 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2022-2026
https://ro.ecu.edu.au/ecuworks2022-2026?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F1897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F1897&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/s11004-022-10040-y
https://doi.org/10.1007/s11004-022-10040-y


Mathematical Geosciences
https://doi.org/10.1007/s11004-022-10040-y

SPEC IAL ISSUE

Multivariate Cross-Validation andMeasures of Accuracy
and Precision

Ute Mueller1 · Sangga Rima Roman Selia2,3 ·
Raimon Tolosana-Delgado2

Received: 30 August 2022 / Accepted: 1 December 2022
© The Author(s) 2023

Abstract
Cross-validation and performance measures are standard components in the evalua-
tion of a geostatistical model. These are well established in the univariate case, but
measures for multivariate geostatistical modeling have not received as much atten-
tion. In the case of a single target variable, the univariate approaches remain valid,
but in the fully multivariate case where a vector of variables needs to be estimated,
the evaluation needs to be based on all estimates simultaneously. An extension of
cross-validation and associated performance measures to the fully multivariate case
is presented and discussed for the case of regionalized compositions. The method is
demonstrated by validating geostatistical models for two case studies: a sample drawn
from a geochemical survey data set estimated with cokriging, and an application of
direct sampling multiple-point simulation.

Keywords Geostatistical simulation · Model validation · Compositional data

1 Introduction

Cross-validation and jackknifing are established methods for validating statistical
models. In a geostatistical context, the model is based either on geostatistical esti-
mation via kriging or on spatial simulation. The standard outputs include scatterplots
and correlation coefficients of estimated against true values, and (possibly standard-
ized) estimation errors against estimates, accompanied by error statistics (Webster
and Oliver 2007). These are widely used to validate and optimize model parameters
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or to determine the most suitable model from a set of competing models. In addition,
scatterplots of coverage probabilities versus theoretical values may be used to check
the quality of the posterior distributions derived from the model (Deutsch 1997; Olea
2012). These approaches were initially formulated for the estimation/simulation of
univariate random functions or for cases where a clear primary variable is to be mod-
eled, with one or more covariates which are of secondary importance. However, in the
case of fully multivariate data such as directional (van den Boogaart and Schaeben
2002a, 2002b) or compositional data (van den Boogaart and Tolosana-Delgado 2013;
Pawlowsky-Glahn and Egozcue 2020), the entire regionalized vector is seen as an
entity which needs to be modeled rather than just its component parts. As a conse-
quence, geostatistical estimation and simulation need to be treated as fullymultivariate,
and any appraisal of the quality of the geostatistical model needs to take this aspect
into account. This concerns all statistical results mentioned before: error statistics, cor-
relation between predictions and observations, and accuracy of estimated intervals.

In this contribution, a generalization of accuracy in the sense of Deutsch (1997)
is proposed for the multivariate setting. The proposal is analogous to the method
described by Olea (2012) for quantifying the quality of the estimated distribution.
Of specific interest is the evaluation of the suitability of a geostatistical estimation
or simulation model in the compositional framework, namely, where each variable is
non-negative, and its values inform of the relative abundance of a certain component
forming the system (Tolosana-Delgado et al. 2019).

After this introduction, four further sections follow. In Sect. 2 the fundamentals
of compositional data analysis are recalled briefly along with their implications in
geostatistics. Section 3 reviews the existing proposals for univariate validation, with
methods, diagrams, and statistics commonly used for this task. In Sect. 4 a fully mul-
tivariate approach to cross-validation is proposed for vector-valued random functions
specified on the example of compositional data, both for cokriging outcomes (Sect. 4.1)
and cosimulation (Sect. 4.2). Two case studies are presented in Sect. 5 illustrating these
two sets of techniques. Conclusions are provided in Sect. 6.

2 Regionalized Compositions and Their Geostatistical Treatment

A regionalized composition is a set {z(u) � [z1(u), . . . , zD(u)] : zk(u) ≥ 0, k �
1, . . . , D;

∑D
k�1zk(u) � c, u ∈ A} of compositional data defined on some study

region A, where u ∈ A denotes a location in A, and c is an arbitrary but fixed con-
stant. To avoid problems arising out of the fact that compositional data are closed
to that constant sum and formed by non-negative components, compositions are
usually transformed prior to any geostatistical or statistical treatment. Several logra-
tio transformations are commonly used. These include the centered (clr; Aitchison
1986), additive (alr; Aitchison 1986) and isometric (ilr; Egozcue et al. 2003) logra-
tio transforms. However, the choice of logratio transformation does not impact the
final results, because the geostatistical techniques discussed here are affine-equivariant
(Filzmoser andHron 2008; Tolosana-Delgado et al. 2019). Affine equivariance implies
that m(ZB) � m(Z)B and
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S(ZB) � BT S(Z)B, (1)

where m denotes the mean, S a covariance matrix, and B a linear transformation. In
spite of this invariance, it is mathematically convenient to use the ilr transformation in
the geostatisticalworkflow (Pawlowsky-Glahn andEgozcue 2020). The corresponding
regionalized composition of ilr-transformed variables will be denoted by {ζ(u) �[
ζ1(u), . . . , ζD−1(u)

]
: u ∈ A}. The image space of the ilr transformation is (D − 1)-

dimensional Euclidean space.
The standard workflow then is known as the principle of working in coordinates:

1. Transform the regionalized composition to logratios using a suitably chosen ilr
transformation (Egozcue et al. 2003; Tolosana-Delgado andMueller 2021) ζ (u) �
lnz(u)V , where V is a D × (D − 1) matrix with V T V � ID−1 and VV T �
ID − 1

D 1D×D .
2. Apply the geostatistical technique to the logratios.
3. Backtransform the geostatistical estimate or realization of the logratio scores,

ζ ∗(u), to the compositional space via z∗(u) � C(exp(ζ ∗(u)V T
)
, where C(·)

denotes the closure operation defined as

C(x) � c

x1TD
x.

The Aitchison geometry version of the Mahalanobis distance is of fundamental
importance for the methods introduced in this paper. With a covariance matrix S as
defined above, the (square) Mahalanobis distance between two compositions in the
Aitchison geometry is

d2AM
(
zα, zβ |S) � [

ilr(zα) − ilr
(
zβ

)]
S−1[ilr(zα) − ilr

(
zβ

)]T
, (2)

analogous to the (square) Aitchison distance

d2A
(
zα, zβ

) � [
ilr(zα) − ilr

(
zβ

)][
ilr(zα) − ilr

(
zβ

)]T � d2
(
ilr(zα), ilr

(
zβ

))
. (3)

Note that, although dAM is more comfortably defined in terms of the ilr-transformed
scores, it is an affine-equivariant quantity, hence intrinsic to the composition and the
covariance S, and not dependent on the actual logratio transformation being used.
One must merely represent S in the same transformation used for the composition,
according to Eq. (1). This is not true of theAitchison distance (Eq. 3), which holds only
in terms of the ilr or clr transformations. With the Aitchison–Mahalanobis distance,
one can define the additive logistic normal distribution (ALN ) as the probabilitymodel
with density proportional to

fZ (z|m, S) ∝
(

D∏

i�1

zi

)−1

det(S)−1exp

(

−d2AM (z,m|S)

2

)

. (4)
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This probability density function is, as required, also affine-equivariant, owing to
the determinant being one of the invariants of S.

3 Cross-Validation, Accuracy and Precision in the Univariate Case

Leave-one-out cross-validation is a well-established tool used to assess a given geo-
statistical model and to determine the best model from a set of competing models. It
is based on kriging, and given a sample data set at each location u, a kriging estimate
z∗K (u) and corresponding error variance σ 2∗

K (u) are derived by removing the location
from the set and estimating the value of the variable of interest based on the neighbor-
ing data. In jackknifing, a separate validation set is assumed to be available, and the
sample data are used to provide estimates or simulated values at the jackknife loca-
tions. A more general cross-validation approach, known as n-fold cross-validation,
is to partition the data set into n disjoint subsets and then apply jackknifing on each
of the subsets based on the remaining sample data. Independently of the validation
method actually used, one finally has a paired list of observed and estimated values,
as well as their kriging variance.

If the true value at u is z(u), then the error is given by e(u) � z(u) − z∗K (u), and
the squared deviation ratio is defined as

sdr(u) �
(
z(u)−z∗K (u)

)2

σ 2∗
K (u)

� e2(u)

σ 2∗
K (u)

.

Averaging these quantities over all sample locations results respectively in a mean
error (ME) and mean squared deviation ratio (MSDR). The former and the associated
mean square error (MSE) should be close to 0 and the latter close to 1 if the geosta-
tistical estimator is adequately defined (Webster and Oliver 2007). Typical diagnostic
plots are a scatterplot of the true values against the estimates, a histogram of the
standardized errors and a scatterplot of the standardized errors against the estimates.
Analogously to the linear model, here one expects a tight scatter between estimates
and true values, a symmetric histogram of standardized errors with mean close to 0
and variance close to 1 (as a weakened version of standardized normality), and the
scatter between standardized errors and estimates showing no correlation (Chilès and
Delfiner 2012; Webster and Oliver 2007). Cross-validation is routinely performed in
geostatistical practice and used for the appraisal of the variogram and trend model, the
local neighborhood and parameters associated with the simulation method applied.

Performance measures in addition to ME, MSE and MSDR concern the quality of
the local posterior distributions. Their assessment was first discussed in the context of
univariate geostatistical simulation by Deutsch (1997) and is based on the coverage
of the local distributions. If the local distribution is Fu with mean μ(u) and standard
deviation σ (u), then the indicator function

i(u, p) �
{
1 if z(u) ∈

[
F−1
u

(
1−p
2

)
, F−1

u

(
1+p
2

)]

0 otherwise
(5)
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defined for p ∈ (0, 1] allows measurement of the closeness of the true value to
the local mean in the context of a symmetric target distribution. If the simulation
algorithm is Gaussian, then the parameters of the local distribution are derived via
kriging; otherwise, the local distribution is inferred via the generation of a family of
simulated values at the sample location leaving the actual value out. The coverage
π (p) is set equal to the average of i(u, p) over all available locations u.

To determine the accuracy of the model, a further indicator variable a(p) is intro-
duced which is set to 1 if the proportion π (p) of locations falling into the p-interval
exceeds p, and to 0 otherwise. The integral A � ∫ 1

0a(p)dp then provides a measure
of accuracy. That is, A measures the proportion of exact or over-pessimistic confi-
dence intervals around the estimates. A useful means for appraising the accuracy of
the model is a plot of π (p) against p. An accurate model will result in a plot where
the pairs of points (p, π(p)) fall above the bisector line. Two measures of precision
are defined in Deutsch (1997), one restricted to pairs of points (p, π(p)) falling above
the bisector line, called precision and defined as P � 1 − 2

∫ 1
0a(p) · (π(p) − p)dp,

and the other, called goodness, given by G � 1 − ∫ 1
0(3a(p) − 2)(π(p) − p)dp. For

any value of p for which the point (p, π(p)) lies below the bisector, the departure
of π(p) from p is penalized in this definition, and high values of G correspond to
precise models. Thus, an accurate and precise model has values of A, P and G close
to 1. It is important to note that for high accuracy, it suffices that the actual coverage
is larger than the nominal one (i.e., p < π(p)), while precision and goodness also
reward proximity to the bisector (i.e., |p − π(p)| small). The precision measure P
only makes sense in the case of accurate models, while goodness G is more generally
useful.

An alternative approach for assessing the quality of the local posterior distributions
was introduced by Olea (2012). In his approach, the symmetric p-interval used in
Eq. (5) is replaced by the unilateral interval

(−∞, F−1
u (p)

)
. For each p ∈ (0, 1) and

each u, an indicator variable is defined by putting

iO(u, p) �
{
1 if F−1

u (p) > z(u)

0 otherwise
.

For each p, the empirical probability p∗(p) is set equal to the average of iO(u, p)
over all available locations u and plotted against p.Themodeling is optimal if the pairs
(p, p∗(p)) fall on the bisector line, and according to Olea (2012) indicates “perfect
global agreement between themodeling of uncertainty and the limited amount of infor-
mation provided by the sample.” In practice, however, there will be deviations from the
bisector, and they can be quantified via the maximum absolute deviation and the sum
of absolute deviations between the empirical and theoretical probabilities. It should be
noted that the functionsπ (•) and p∗(•) are related byπ(1 − α) � p∗(1 − α

2

)−p∗(α
2

)
.
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4 The Compositional Case

Here, the implementation depends on whether or not cokriging is applied to derive
the parameters of the local distribution. In this case it is assumed that the composi-
tion follows an additive logistic normal distribution as expressed by Eq. (4), at least
locally, that is, conditional on the estimated composition. As usual in geostatistics, this
assumption cannot be formally tested, owing to the presence of spatial dependence,
and is to be considered a modeling choice. Otherwise, if conditional additive logis-
tic normality is deemed inappropriate, one should use either multipoint methods or
else some form of multivariate transformation to normality (e.g., Barnett et al. 2014;
van den Boogaart et al. 2017; Sepulveda et al., under review) followed by Gaussian
cosimulation, in which cases Sect. 4.2 applies.

4.1 Cross-Validation, Accuracy and Precision via Cokriging

For compositional data sets, the implementation of the cross-validation procedure
via cokriging is straightforward, even if not implemented in most software packages
(Tolosana-Delgado and Mueller 2021). At a location to be cross-validated, the entire
compositional vector is removed and the surrounding compositions are used to estimate
the composition at the sample location via cokriging. As the cokriging is performed
in logratio coordinates, the error measures are also calculated in terms of logratios.
The mean error is given by

ME � 1

N

N∑

α�1

(
ζ(uα) − ζ∗

CK (uα)
) � 1

N

∑N

α�1
ln[z(uα)/z∗

CK (uα)]V T ,

and the associatedmean square error isMSE � 1
N

∑N
α�1 ‖ζ(uα) − ζ∗

CK (uα)‖2,which
corresponds to the average Aitchison distance (Eq. 2) between estimates and observa-
tions. There are twoways to generalize themean square deviation ratio to amultivariate
quantity (Tolosana-Delgado and Mueller 2021), namely

MSDR1 � 1

N

N∑

α�1

(
ı(uα) − ı∗CK (uα)

)
�−1
CK (uα)

(
ı(uα) − ı*CK (uα)

)T

� 1

N

∑

α

� 1N ln
(
z(uα)/z∗

CK (uα)
)
V T�−1

CK (uα)V ln
(
z(uα)/z*CK (uα)

)T

(6)

and

MSDR2 � 1

N (D − 1)

N∑

α�1

D−1∑

i�1

‖ζi (uα) − ζ ∗
CK ,i (uα)‖2/σ 2

i i (uα). (7)
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In the equations above, z(uα), ζ (uα), ζ ∗
CK (uα) and z∗

CK (uα) denote the true com-
positional vector, its logratio image, the logratio estimate and the corresponding
backtransform at location uα. The expression ln

(
z(uα)/z∗

CK (uα)
)
is an abbrevia-

tion of
[
ln

(
z1(uα)/z∗CK ,1(uα)

)
, . . . , ln

(
zD(uα)/z∗CK ,D(uα)

)]
. The matrix�CK (uα)

denotes the cokriging error variance–covariance matrix at location uα , and σ 2
i i (uα) are

its diagonal elements.
Only the mean errorME is a vectorial quantity. All other quantities (MSE,MSDR1

and MSDR2) are scalars. The measure MSDR1 is nothing other than the average over
the square Aitchison–Mahalanobis distances (Eq. 2) d2AM (z(uα), z∗

CK (uα)|�CK (u))
between z(uα) and z∗

CK (uα) with respect to the cokriging error variance–covariance
matrix. Its target value is equal to D − 1. Moreover, under the hypothesis of additive
logistic normality of the D− component compositional random function, the square
Aitchison–Mahalanobis distance follows a χ2(D − 1) distribution. The version of
MSDR in Eq. (7) is the average over the univariate MSDR values for the components
of the logratios. In contrast to MSDR1, this measure does not have the equivariance
property.

The relationship between theAitchison–Mahalanobis square distances and theχ2−
distribution gives rise to a diagnostic tool that may be used in place of the histogram
of standardized errors of the univariate case. This is a qq-plot of the observed quan-
tiles of the Aitchison–Mahalanobis square distances against the quantiles of the χ2−
distribution with D−1 degrees of freedom. As in the univariate case (where the com-
parison is against the standard normal distribution), one expects the qq-plot to be close
to the bisector. Even if multivariate additive logistic normality does not hold locally
for the compositional random function, this diagram will still provide a means to
rank competing geostatistical parameter setups (mostly variogram models or kriging
neighborhoods) in the sense of their approximation to this distributional assumption,
exactly in the same way as for the univariate case.

Other common diagnostic plots are scatterplots of the individual components
against their estimates, or of the estimation errors versus the estimates. Composi-
tional versions of these plots are formed by the set of scatterplots between pairwise
logratios of estimates against pairwise logratios of true values, and a set of scatterplots
of logratio estimation errors against logratio estimates (Tolosana-Delgado andMueller
2021); both can be conveniently presented in a (D × D) matrix of scatterplots.

Compositional analogues of accuracy and goodness described in Sect. 3 are also
based on the square Aitchison–Mahalanobis distance of estimates and true values with
respect to the estimation error covariance. The definition of the indicator variables
required for the calculation of coverage is subject to a certain arbitrariness, because
there is no natural ordering of vectorial quantities. In general, any one-dimensional
summary of the random composition can be used to generate coverage indicators,
as long as the probability distribution of this target quantity is known. A reasonable
requirement is for these quantities to be affine-equivariant. The square Mahalanobis
distance (Eq. 2) arises naturally as the best option: for each location u and each
p ∈ (0, 1], the indicator function i AM (u, p) is defined as

123



Mathematical Geosciences

i AM (u, p) �
{
1 if χ2(d

2
AM

(
z(u), z∗

CK (u)|�CK (u)
)
, D − 1) ≤ p

0 otherwise
,

analogously to Olea’s (2012) proposal. As in the univariate case, the coverage πAM (p)
is defined as the average over all sample locations, and the indicator variable a(p) is
equal to 1 for πAM (p) > p and 0 else. The metrics A, P and G then have the same
definitions as previously, and an accurate and precise model has values of A, P and G
close to 1. Other one-dimensional summaries can also be of use: It should be noted that
the univariatemeasures discussed in Sect. 3may be computed for each relevant logratio
variable, each one of them being univariate summaries of the random composition.
Even the original variables could be considered in this sense appropriate univariate
summaries, if one were ready to obtain the confidence intervals in Eq. (5) by means
of Hermite quadrature, as explained in Pawlowsky-Glahn and Olea (2004).

4.2 Cross-Validation, Accuracy and Precision via Simulation

When cross-validation or jackknifing needs to be based on simulation at the sample
locations, the definitions of the errors and also the local distributions are based on the
simulation results. As before, the errors are in the first instance calculated in logratio
coordinates. For L realizations

{
ζ	(uα)|	 � 1, . . . , L, α � 1, . . . , N

}
, we define the

local mean

ζ (uα) � 1

L

∑L

	�1
ζ 	(uα)

and the local covariance as

�̂(uα) � 1

L2

∑L

	�1
(ζ �(uα) − ζ (uα))

T
(ζ

	

(uα) − ζ (uα)).

Then, analogously to the cokriging case, one has the mean error given as

ME � 1

N

N∑

α�1

(
ζ (uα) − ζ (uα)

)

and

MSDR1,sim � 1

N

N∑

α�1

(
ζ(uα) − ζ (uα)

)
�̂−1(uα)

(
ζ(uα) − ζ(uα)

)
T

,

MSDR2,sim � 1

N (D − 1)

N∑

α�1

D−1∑

i�1

(
ζi (uα) − ζ i (uα)

)2

�̂i i (uα)
.
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In contrast to Eq. (6) where the target value was (D − 1), the value of MSDR1,sim
for a good model should be slightly greater than this quantity, owing to the fact that
�̂−1(uα) is estimated from a set of L realizations. A reasonable target quantity can
be derived from the expected value of MSDR1,sim under the assumption that ζ(uα) is
normally distributed conditionally on ζ (uα), which produces a Hotelling’s T 2 distri-
bution for the Mahalanobis distance, with parameters (D − 1) and (L − 1). This gives
an expected value of

E
[
T 2
(D−1,L−1)

]
� (D − 1)(L − 1)

L − D + 1
E

[
F(D−1,L−D+1)

]

� (D − 1) (L − 1)

L − D + 1
× L − D + 1

L − D − 1
� (D − 1)

L − 1

L − D − 1
,

thanks to the equivalence between Hotelling’s T 2 and Fisher F-distributions and the
fact that the expected value of a Fisher F(p,q)-distributed variate is q/(q − 2).

For deriving the coverage indicators to calculate accuracies and derived quantities,
we can follow the same ideas as in the section about cokriging: one needs to select a
univariate summary of the composition, compute that statistic for the true value and
generate its probability distribution with the realizations. Again, in general terms, it
makes sense to enforce that summary statistic to be affine-equivariant. The indicator
variable defining the position of the true compositional vector within the local distri-
bution can then be based on the square Aitchison–Mahalanobis distance: the distance
d0(uα) between the true composition and the mean is compared with the empirical
distribution of the distances {d	(uα) : 	 � 1, 2, . . . , L} of the simulated results and
the mean at uα

d0(uα) � (
ζ(uα) − ζ (uα)

)
�̂(uα)−1(ζ(uα) − ζ (uα)

)T
,

d	(uα) �
(
ε	(uα)

)
�̂(uα)−1

(
ε	(uα)

)T
,

where ε	(uα) � ζ	(uα) − ζ (uα) for each 	 � 1, 2, . . . , L .
The values {d	(uα)|	 � 1, . . . , L} are arranged in ascending order{

d̂	(uα)|	 � 1, . . . , L
}
, and

i(uα, p) �
{
1 if d0(uα) ≤ d̂
pL�(uα)

0 otherwise
,

where 
pL� denotes the smallest integer greater than pL . The statistics A, P and G
are then defined as in Sect. 4.1. This construction mimics that of Deutsch (1997) in
that in the univariate case, the simulated values are used to derive a local distribution,
and the location of the true value is determined relative to it. Note that, as in the case of
cokriging, other uni-dimensional summariesmay also bemeaningful for specific cases:
the simulation approach outlined here is particularly useful in these cases because the
probability distribution of the target summary can always be derived from the set of
realizations.
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5 Illustration

In what follows, two applications are provided. The first demonstrates the cross-
validation for cokriging of a regionalized subcomposition of the Tellus data (Young
and Donald 2013), while the second concerns cross-validation and accuracy assess-
ment in the case of direct simulation for the modeling of the structure of a tailing
storage facility.

5.1 The Tellus Data Set

The composition considered in this example (Fig. 1) consists of the components MgO,
Al2O3, CaO and Fe2O3 from a sample of the Tellus soil horizon A data (Young and
Donald 2013; Tolosana-Delgado and Mueller 2021).

The subcomposition was closed through the inclusion of an additional component
called Rest and transformed to logratios via the default ilr transform, as described in
Tolosana-Delgado et al. (2019). The ilr variables exhibit geometric anisotropy with
direction of greatest continuity N135 and a linear model of coregionalization com-
prised of a nugget, and an exponential structure of range 35 km was fitted, with an
anisotropy ratio of 0.4. For the sake of comparison, an isotropic version of this model
was also considered, with a range of 26.9 km. Tenfold cross-validation via ordinary
cokriging with a moving neighborhood (search radius 60 km, minimum number of
samples: 7, maximum number of samples: 20) was applied with both models.

A summary of the performance measures in Table 1 indicates that the anisotropic
model is superior to the isotropic one. This is also supported by the graphs of coverage
against confidence level in Fig. 2. Additionally, the actual coverage of the composi-
tional model is greater than theoretically expected for the majority of the confidence
levels, as evidenced by the value of A compared to those of the individual components.
The accuracy plots in Fig. 2 provide further insight on the behavior of coverage versus
confidence for the components and the entire composition. The coverage is generally
closer to the chosen confidence level for the individual components compared to the
model in its entirety (although the overall accuracy of the compositionalmodel is supe-
rior to those of the constituent parts) for values of confidence (p) up to 0.7; for greater
values of confidence, this behavior is no longer observed. This example thus provides
support for our claim that evaluation of the performance of a geostatistical model for
compositional data should not be based on the performance of themodel on the individ-
ual components only. Figure 2 also shows that the model ignoring anisotropy appears
to have higher accuracy, but at the price of constructing much wider p-intervals. In
the accuracy plot, this is shown through the much greater deviation from the bisector.
Accounting for anisotropy notably increases the model precision, as evidenced by the
higher value of P � 0.79 andG � 0.88 in the anisotropic case compared to P � 0.47
and G � 0.74 for the isotropic model.
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Table 1 Values of A, P and G from ordinary cokriging of the Tellus sample subcomposition obtained with
the anisotropic model versus isotropic model

ilr1 ilr2 ilr3 ilr4 Composition (anisotropic) Composition (isotropic)

A 0.49 0.73 0.76 0.65 0.78 0.98

P 0.97 0.96 0.91 0.94 0.79 0.47

G 0.94 0.96 0.92 0.92 0.88 0.74

Fig. 2 Accuracy plot derived from tenfold ordinary cokriging cross-validation of the Tellus subcomposition
sample, with an isotropic model (omni) and with an anistropic one (globally, and for each one of the ilr
variables based on the anisotropic LMC)

Table 2 gives a summary of the compositional error measures for both the isotropic
and anisotropic models. The vector of ilr mean errors (ME) is in both cases very close
to zero, with mean square errors (MSE) of roughly 0.4 in both cases. The difference
between the two models is apparent in the MSDR measures, where it is clear that the
isotropic model overestimates the spread. MSDR2 clearly shows that on average over
all logratios, the anisotropic model meets the target of MSDR equal to 1.

This subcomposition was also studied using direct simulation (Mariethoz et al.
2010), with a validation subset of 100 samples, and the rest used as conditioning
data and training image generation, reported in Tolosana-Delgado and Mueller (2021;
Ch. 10–11). To complement the discussion in these chapters, the accuracy metrics in
the original units (raw data) are shown in Table 2. The results show overly optimistic
metrics in general terms, indicating a potential lack of variability in the training image,
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Table 2 Compositional error measures obtained by cross-validation with isotropic and anisotropic models

MSDR1 MSDR2 MSE

Isotropic 2.03 0.52 0.39

Anisotropic 4.09 1.00 0.40

ME ilr1 ilr2 ilr3 ilr4

Isotropic −0.001 0.001 −0.001 −0.005

Anisotropic −0.000 0.002 −0.001 −0.001

Table 3 Values of A, P and G from direct sampling of the subcomposition of interest for the validation
sample in the Tellus data set

MgO Al2O3 CaO Fe2O3 Rest Compositional

A 0.95 0.55 0.45 0.20 0.85 0.95

P 0.83 0.97 0.97 0.99 0.84 0.53

G 0.91 0.95 0.95 0.94 0.92 0.77

Table 4 Parameter values for the stratigraphic forward simulation (left) and direct sampling (DS) simulation
(right)

Delft3D parameter Value DS parameter Value

Domain (m3) 25 × 25 × 6 Grid size (voxel) 18 × 21 × 21

Pixel size (m3) 0.5 × 0.5 × 0.1 Search area (voxel) 10 × 10 × 3

Silicate density 2.7kg/m3 TI fraction to scan 0.25

Sulfide density 4.00kg/m3 Data event size 15 points

Inflow 0.5, 0.4, 0.3m3/s Distance threshold 0.01

Silicates 0.5kg/m3 No. of simulations 100

Sulfides 0.02kg/m3

with generally high goodness values for the individual variables in contrast to a large
range of accuracy values (from a low of 0.2 for Fe2O3 to amaximum of 0.95 forMgO).
The corresponding compositional metrics have high accuracy but low precision and
moderate goodness (Table 3).

5.2 The Tailings Storage Facility Case Study

The second example illustrates the usage of the simulation-based approach of Sect. 4.2,
by means of a case study with direct sampling (Mariethoz et al. 2010) with a very
complex setup, far from additive logistic normality. Here the aim is to model dis-
tributions of particle types in a multiple stream tailings storage facility (Selia et al.
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Fig. 4 Synthetic sample data for the tailing storage case study

Table 5 Values of A and G from simulation-based leave-one-out cross-validation of the direct sampling
example (logratio coefficients; global: Aitchison–Mahalanobis distance summary)

ilr1 ilr2 ilr3 Global

A 0.00 0.05 0.00 0.00

G 0.84 0.88 0.81 0.89

in prep). Stratigraphic forward modeling is used for training image generation and
direct sampling for data fusion with the measured data. A multipoint method was
considered as most appropriate because of the strong effects of non-linearity and non-
stationarity of the patterns typical of these anthropogenic sedimentary systems.Briefly,
the study considers four particle classes, according to size and dominant mineralogy,
forming a four-part mass composition: sand-sized silicates (V1), clay-sized silicates
(V2), sand-sized sulfides (V3) and clay-sized sulfides (V4). The forward model used
is Delft3D-FLOW (Lesser et al. 2004), an open-source, process-based stratigraphic
forward modeling software accounting for diffusion, advection in both bed load and
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Fig. 5 Accuracy plot derived from simulation-based leave-one-out cross-validation of the direct sampling
example (logratio coefficients; global: Aitchison–Mahalanobis distance summary)

Table 6 Values of A and G from simulation-based leave-one-out cross-validation of the direct sampling
example (raw data)

V1 V2 V3 V4

A 0.00 0.00 0.00 0.00

G 0.87 0.84 0.87 0.83

suspended load, erosion and compaction in both aerial and subaquatic environments.
The parameters of the forward simulation are described inTable 4 (left). Boundary con-
ditions are designed to mimic the behavior of tailings dams, allowing water to seep
while retaining sediments. Results were cropped to the basin without the upstream
channels and upscaled to 18× 21× 21 voxels to form the ground truth, which for this
study, is also taken to be the training image (Fig. 3). Synthetic boreholes were ran-
domly taken at 36 locations (Fig. 4). Of the resulting 677 samples, 100 were randomly
picked for leave-one-out cross-validation.

To predict each of these 100 samples, direct sampling was applied excluding that
sample, based on the parameters specified in Table 4 (right), using the Aitchison
distance (Eq. 3) as the measure of proximity between the composition at each training
image pixel and the data set. The resulting simulations were used to calculate the
accuracy and goodness as defined in Sect. 4.2.
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Fig. 6 Accuracy plot derived from simulation-based leave-one-out cross-validation of the direct sampling
example (raw data)

As can be seen from the numerical (Table 5) and graphical results (Fig. 5), the
simulations show inaccurate but moderately good results: the accuracy curve for both
individual ilr coefficients and for the global Aitchison–Mahalanobis summary are
systematically below but close to the reference line, particularly for theoretical cov-
erage levels below 0.20. This indicates that confidence intervals tend to be too small
to deliver the coverage promised by their nominal confidence. Correspondingly, the
numerical values of accuracy A are close to zero, and precision is meaningless (hence
not reported in the tables). In this situation, the goodnessG becomes useful:G is above
0.81 for all three ilr variables, and the global goodness is the highest (0.89).

The availability of a simulation allows an evaluation of the accuracy in terms of
the original four components. Results are reported in Table 6 and Fig. 6, and do not
qualitatively diverge from the logratio-based results: confidence intervals are too large,
so that accuracy values A are not useful. However, goodness values are high (above
0.83), suggesting that themodel is acceptable in both representations, raw and logratio.

6 Conclusions

We have provided an extension of quantitative measures of goodness of fit to the mul-
tivariate context, particularly for compositional data, which allow ranking of models
analogously to already existing univariate approaches. In addition to generalizations
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of mean errors to vectorial quantities, the average Mahalanobis distance between
estimates and observations (MSDR1) gives an additional decision tool for choosing
between competing models. This measure explicitly accounts for the multivariate
structure, is affine-equivariant and shifts the focus from the individual components to
the entire composition. Alternatively, an average mean square deviation ratio over all
logratios (MSDR2) can also be used, although this quantity is not affine-equivariant,
that is, it depends on which specific logratios are being used to compute the statistic.
In principle, both measures focus on different aspects and could result in different
rankings of models, although both would result in the choice of the same model in
the case studies provided here. The joint accuracy and precision measures introduced
here can provide further insights into the system inasmuch as they evaluate the global
structure, and may rank competing models differently as when evaluated in terms of
just the marginals.

The Mahalanobis distance also provides a reasonable one-dimensional summary
of the multivariate distribution, to derive a cumulative distribution and with them
measures of accuracy, precision and goodness after Deutsch (1997). Accuracy cannot
be evaluated isolated from goodness or precision measures, in either the univariate or
multivariate case. This is particularly evident in the metrics for the isotropic versus
anisotropic linear models of coregionalization of the Tellus subcomposition, where
the accuracy is marginally higher for the isotropic model, but goodness and precision
provide a higher contrast to choose the better model. In particular, the goodness metric
is important here, as it accounts for both accurate and inaccurate cases. In the case of the
tailings storage facility case study, the model overall ended up showing results being
too far from the center and hence resulting in an accuracy value of 0. Nevertheless,
examination of the actual versus theoretical coverage shows reasonable goodness,
with the plot for the global metric quite close to the bisector. The tools could thus still
be used for ranking competing models, such as training images or method parameter
setups, had several of them been available.
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