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Location Verification for Future Wireless Vehicular
Networks: Research Directions and Challenges

Shihao Yan, Member, IEEE, Ullah Ihsan, Student Member, IEEE, Robert Malaney, Senior Member, IEEE,
Linlin Sun, Member, IEEE, and Stefano Tomasin, Senior Member, IEEE

Abstract—Vehicle location information obtained through the
global navigation satellite system (GNSS) will play a pivotal role
in emerging vehicular networks. This vital information is, how-
ever, susceptible to a host of unwanted manipulations, especially
if a malicious entity is involved. The most obvious example of such
manipulations is the forwarding by a malicious vehicle of false
GNSS locations to other members of the network. Such events
can lead to poor operational outcomes for the vehicular network,
and in extreme cases even lead to catastrophic safety violations.
Here, we highlight research efforts pursued in the past few years
which have attempted to address this weakness in vehicular
networks. We also discuss the importance of location verification
in the wake of emerging wireless technologies such as those being
proposed for beyond fifth generation (B5G) wireless vehicular
networks. In particular, we detail an opportunity to conduct
location reporting and verification simultaneously with the aid of
mmWave technology and discuss how emerging machine learning
(ML) techniques will provide for location verification solutions
whose reliability levels will be commensurate with that required
by the vehicular network paradigm. We close by discussing the
potential enhancements for location verification within a future
combined B5G-ML architecture.

I. INTRODUCTION

A wireless vehicular network (WVN) is a particular type
of intelligent transportation system that utilizes vehicle-to-
everything (e.g., inter-vehicle and infrastructure-vehicle) com-
munications to carry out different network operations. In the
context of communicating cars, with the aid of a WVN we can
optimize traffic routing, minimize traffic congestions, improve
road tolling infrastructure, assist smart city traffic planning, aid
in road infrastructure expansions, achieve seamless in-vehicle
entertainment services, increase electric vehicle charging per-
formance [1], and most importantly enhance road safety. As
per a survey conducted by the world health organization, there
are annually over one million causalities worldwide due to car
accidents. Overcoming such a high number of fatalities, even
partially, is a challenge that motivates an increasing amount of
research on WVNs. In order to enable the full functions of a
WVN, we require the following three desirable features; ultra-
high data rates, ultra-reliability, and ultra-low latency. These
desirable features cannot be fully met by existing general
wireless communication systems such as fourth-generation
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(4G) cellular systems or the dedicated short-range commu-
nication (DSRC) system. However, the forthcoming beyond
fifth generation (B5G) technology is specifically designed with
these desirable features in mind.

Location information plays an important role in WVNs
and even serves a foundation role in several key functional
areas [2]–[4]. For example, many network operations of
WVNs, such as location-based routing, depend critically on
the location information of each vehicle in the network. Also,
location information serves as the enabler of many services
provided by WVNs, e.g., collision avoidance and location-
based advertising. The WVN paradigm normally assumes that
positioning systems are client-based, i.e., the vehicle itself
obtains its location information, normally via an on-board
GNSS device. However, these devices are vulnerable to attacks
(or faults) and thus may provide fake (or unreliable) location
information to the WVN. That is, the reliability and correct-
ness of a vehicle’s reported location information cannot be
fully guaranteed in this context. An emerging technology that
addresses this important issue is a location verification system
(LVS). Such systems have attracted an increasing amount of
research interest in recent years, e.g. [5].

Different from positioning systems, an LVS aims at con-
firming whether a user (e.g., a vehicle) is physically at its re-
ported/claimed location. Mathematically, location verification
is a binary detection problem, while localization is an estima-
tion problem. The importance of an LVS can be evidenced by
the negative effects of fake location information on WVNs,
e.g., dramatically reduced packet delivery in position-based
routing protocols or even life-threatening road accidents. In
principle, an LVS can remove these negative impacts on WVN
operations. We also note that verified location information can
improve the performance of mmWave-based communication (a
key enabler of the B5G wireless networks), since this location
information can aid in the determination of accurate channel
state information (CSI). In order to fully support the services
of emerging WVNs, location verification should be embedded
into emerging B5G technology - a belief that forms the thrust
of this article.

In the following we detail the integration of LVSs into
WVNs via B5G technology, and outline the opportunities
this delivers. To this end, we first review location verification
frameworks and techniques, and present the state-of-the-art
LVS algorithms. We then provide insight on the optimal use
of the B5G technology to address location verification. We
also identify an opportunity of using mmWave to incorporate
location verification into a communication system with a
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low implementation cost. Furthermore, noting the recently
emerging use of machine learning (ML) in the context of
WVNs, we summarize how ML can enhance the performance
and be deployed in real-world LVS systems. Some critical
aspects of ML-based LVS that can only be deployed with
the aid of the B5G technology are also identified. Finally,
future research directions and challanges in LVSs for WVNs
are discussed.

II. STATE-OF-THE-ART OF LOCATION VERIFICATION

In this section, we briefly highlight a few notable LVS
frameworks post 2013, which may represent state-of-the-art of
location verification in existing and future wireless networks.

A. Physical-Layer-Based Location Verification

Physical-layer-based LVSs utilize the inherent properties
of the wireless medium to verify a user’s reported location
information and thus infer whether the user is legitimate or
malicious. Their performance is based on the fundamental
theories of detection, which serves as the performance limit
of location verification in wireless networks.

In the LVS literature, the work [6], for the first time,
developed an information-theoretic framework for location
verification, proving that the likelihood ratio test is optimal
in terms of maximizing the mutual information between
the input and output of an LVS. This information-theoretic
framework was deployed and examined in an LVS with
received signal strength (RSS) measurements. The work [7]
extended this framework by considering directional antennas
under realistic dual-slope large-scale fading channel models in
vehicular networks, showing that the directional antenna can
significantly increase the capability of an LVS in correctly
detecting malicious vehicles. Also in the context of vehicular
networks, the authors of [8] considered location verification
with multiple antennas under Rician fading channels. Inter-
estingly, it was proved that the performance limit of LVSs is
independent of the parameters of the channel from a malicious
vehicle to a base station. In addition, as proved, the malicious
vehicle’s number of antennas does not affect this limit once it
is greater than the legitimate vehicle’s number of antennas.
This is mainly due to the consideration of the worst-case
scenario, where the malicious vehicle optimizes all the system
parameters under its control. Because of this optimization, a
further increase in the number of antennas held by a malicious
vehicle has little additional impact.

LVSs also draw an increasing amount of research attention
in the Internet of things (IoT). We note that WVN is one
type of IoT, where the “things” are vehicles. For example, the
work [9] developed an enhanced location verification using
audibility and two-way time-of-arrival information in order
to guarantee the reliability of location information for geo-
spatial tagging and location-based services in IoT. Based on
both synthetic and real-world datasets, it demonstrated that
the LVS performance is improved when audibility is used.
Considering the low-complexity hardware used to collect RSS
measurements, they have been widely used in the context
of location estimation and verification. In order to eliminate

the requirement of knowing transmit power in RSS-based
systems, the differential RSS (DRSS) have been used as
measurements as well. For the first time, [10] proved the
identity of using RSS and DRSS in location verification for
known and unknown transmit power, respectively.

B. Machine-Learning-Based Location Verification
Although LVSs based on information or statistical detection

theory can offer performance limit of location verification,
they require ideal operating conditions (e.g., known channel
parameters), which may not be fully satisfied in practice. One
motivation of using ML in practical LVSs is to eliminate this
requirement. In this subsection, we briefly review some recent
works on ML-based location verifications.

The authors of [11] developed an LVS based on neural
network and demonstrated its efficient performance in the
absence of prior knowledge on the proportion of genuine or
malicious vehicles among all the vehicles. It was shown that
the LVS based on neural network outperforms an information-
theoretic LVS when the signals from the vehicles are under
the impact of non-line-of-sight biases.The work [12] resorted
to ML solutions for in-region location verification in order
to solve the issues of lacking channel feature statistics. It was
shown that the developed solution based on neural network and
support vector machines, using typical loss functions, becomes
the most powerful test at learning convergence for sufficiently
complex learning machines and large training datasets, even
in the absence of communication channel statistics. We note
that the aforementioned typical loss functions refer to different
loss functions used during the training phase of various ML
algorithms, e.g., the cross-entropy loss function and the mean
squared error loss function. Different from most aforemen-
tioned physical-layer-based LVSs that assume known channel
models, the authors of [13] used logistic regression algorithm
of the ML family for conducting location verification. This
algorithm eliminates the assumption of known channel models
or parameters and thus is applicable to more general scenarios
of wireless networks. The performance of the proposed algo-
rithm was examined based on RSS measurements at multiple
landmarks (each is equipped with multiple antennas), where
a distributed Frank-Wolfe-based verification is also developed
in order to reduce the communication overhead. The detection
accuracy of the proposed algorithm was confirmed by simu-
lation and experimental results.

Based on the above existing works, we know that ML-based
LVSs have the potentials of performing satisfactorily under
variable conditions and in new environments. For example, an
ML-LVS designed for an urban area may still function well
in a suburban or rural area, as long as some training data is
available. In Section IV, we will present more details to further
demonstrate its high robustness.

III. SIMULTANEOUS LOCATION REPORTING AND
VERIFICATION IN WIRELESS VEHICULAR NETWORKS

B5G wireless networks bring new opportunities to fully
address the requirement of WVNs. In this section, we identify
a promising solution to location verification by using mmWave
frequencies combined with multi-antenna techniques.
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Fig. 1. The frameworks of location reporting and verification simultaneously
with the aid of mmWave and multi-antenna techniques in B5G wireless
vehicular networks.

A. Frameworks and Principles

An obvious benefit of enabling location reporting and ver-
ification simultaneously (LRVS) is the reduction of needed
hardware resources and entailed processing delay. Communi-
cations via mmWave techniques can enhance LRVS in WVNs
mainly due to the high frequency (e.g., 28 GHz, 60 GHz)
and high bandwidth (e.g., 400 MHz, 1 GHz) utilized. Also,
the communication channels for mmWave are typically line-
of-sight (LoS). Both these issues aid LRVS. The LRVS con-
cept is inspired by emerging combined radar-communication
techniques [14]. Although, the detection target and communi-
cation content are not closely related in radar-communication
systems, in our proposed LRVS system the communication
content is the location information of the detection target
(e.g., a vehicle). Therefore, LRVS can be interpreted as
an application of radar-communication, which demonstrates
the benefits of joint communication and sensing. The multi-
antenna techniques are useful for LRVS systems, since in
many scenarios a vehicle may be connected to only one base
station. In such a scenario a single-antenna system cannot
guarantee the reliability of the reported location information.
This is due to the fact that a malicious vehicle can modify
its location metric (e.g. transmit power or transmission time)
together with a false reported location in order to deceive an
LVS [10].

We now present two frameworks of using mmWave com-
bined with multi-antenna techniques to enable LRVS in WVNs
(see Fig. 1). The first framework involves the use of the data
frame A shown in Fig. 1. This frame is of a form widely
used for wireless communications based on the use of full
CSI (coherent communications). In the context of LRVS the
pilot signals of this frame are used for channel estimation
and the location information part (indicated by the yellow
shading in Fig. 1) is used simply to transfer the encoded GNSS
coordinates. In addition to channel estimation, the pilot signals
can also be used for location verification [8], since one benefit

of using data frame A for LRVS is a ‘double-dipping’ on the
use of pilot signals - a technique that can significantly reduce
latency.

A second framework for LRVS involves the use of the
data frame B shown in Fig. 1. In this frame only statistical
information of the channel is used for encoding (non-coherent
communications). In this case a combined encoding of the
claimed location coordinates and the verification information
(e.g., signal strength and/or time-of-arrival) can be utilised.
We note that the aforementioned two data frame structure
does not require specific size, and in general a commonly
used transmission control protocol (TCP) data size (e.g.,
1500 bytes) is acceptable.

B. Challenges and Future Research Directions

Both these LRVS frameworks are different from previous
studies of LVSs where the claimed location and the verification
processes are considered to be separate and sequential phases
of the LVS (e.g. data frame A used solely for conveying coor-
dinates and then a separate set of signals sent for verification
purposes). Which of the above frameworks for LRVS will
prove to be more useful in B5G - enhanced WVN networks
remains an open question. While data frame B may be more
efficient, as it merges the two functionalities of data frame A
in a single format, channel coding based on statistical CSI is
not as efficient as that based on full CSI.

In general, communication and detection systems require
different channel parameters for their own objectives. For
example, in Rician fading channels for mmWave, an LVS
requires the Rician parameter that determines the weight of the
LoS component in these channels. Against this background,
how to design transmit signals to simultaneously enable both
the communication and detection systems is a main challenge
in the context of LRVS - an issue further complicated by
quantization errors and its impact on claimed location accu-
racy. Ultimately there exists a performance tradeoff between
location reporting and location verification, which is highly
affected by the resource (e.g., time slots and transmit power)
allocation between the communication and detection systems.
As such, a further challenge is how to optimally split resources
between location reporting and location verification in order to
achieve the best location verification. We note that ML may
have the abilities to overcome these challenges. We discuss
the use of ML in the context of location verification in the
following section.

Data exchange among vehicles can also be observed by
a fixed roadside network, that can independently verify the
location of the vehicles (through either of the proposed data
frames) and report its assessment to the cars. In this scenario
the fixed network can also collect data points from many
cars over time in its coverage area, thus obtaining a reliable
training of ML solutions with a limited effort. Moreover,
having multiple receive antennas at the roadside that sense the
transmission of the same location-reporting vehicles strength-
ens the location verification and makes it more robust against
sophisticated attacks by a vehicle using beamforming to the
legitimate receiving vehicles.
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Fig. 2. A schematic of integrating machine learning (ML) with optimal
decision theory to produce an LVS that is practically functioning in real-
world channel conditions.

IV. MACHINE LEARNING FOR LOCATION VERIFICATION
IN WIRELESS VEHICULAR NETWORKS

In this section, we first present some preliminary trials and
conclusions of using ML in the context of location verification.
Then, we present some principles and steps of using ML in
solving location verification problems. Finally, we clarify and
identify some challenges and future research directions on
ML-based location verification for WVNs.

A. Preliminary Trials and Results of Using ML in LVS

Many physical-layer-based LVSs reviewed in Section II will
function optimally if the system model they assumed is a
reality. However, this is nearly impossible in practice due to
abrupt changes in channel conditions, changing noise parame-
ters, diverse transceiver characteristics, and environment-based
positioning errors. These issues may lead to a circumstance
where an LVS designed for one application scenario may not
function properly in other scenarios (e.g., with different chan-
nel conditions). For instance, an LVS designed for an urban
environment may not function properly in a rural area (and
vice versa). To accommodate all the above issues, we desire
an LVS that can re-tune itself to the changing environments.
The reviewed works mentioned in Section II confirm that ML
plays a pivotal role towards the development of such an LVS
within the context of WVNs.

It is part of our own ongoing work to seamlessly integrate
ML with optimal decision theory to develop an LVS solution
for WVNs that is practically deployable. A schematic of our
approach to development of such a solution is shown in Fig. 2.
We aim to integrate the information-theoretic LVS framework
into neural networks. As shown in phase 1 of Fig. 2, we use the
data considered for the information-theoretic LVS as training
data for the LVS based on neural networks, where we aim
to achieve similar location verification performance by neural
networks to that of the information-theoretic LVS. In addition,
the information-theoretic framework is able to provide us a
benchmark performance that can aid the training of the neural

networks, e.g., to avoid the over training issues. In phase 2,
we introduce real-world channel conditions to the ML-based
LVS. Specifically, we plan to supply RSS, ToA, and AoA
measurements of the vehicles’ transmitted signals, and their
claimed locations, as input to the LVS. Also, with the aid of
existing and newly identified features in the input data and by
adjusting the neural network architectures, we plan to further
enhance the performance for the ML-based LVS. An active
feedback from the verification output assists in continuously
tuning the hyper parameters of the neural network, which leads
to a scalable, adoptable, and up-to-date LVS in this context.

Some preliminary results achieved by our framework de-
tailed above are presented in Fig. 3, where the total error is
adopted as the performance metric. This total error is defined
as P0α + P1β, where P0 and P1 are the proportions of the
legitimate and malicious vehicles, respectively, and α and β
are the false positive and missed detection rates, respectively.
To spoof the LVS, we consider that a malicious vehicle adopts
an attacking strategy where it randomly claims its attack
location at a predetermined distance (100 meters) away from
its true location. We recall that, as discussed in Section III-
A, the malicious vehicle not only reports a false location, but
also intends to modify the measurements used by an LVS for
verifying the reported location (in order to deceive the LVS).
To plot Fig. 3, we assumed that the malicious vehicle has
optimized its transmit power using the methodology presented
in [10]. This is the worst-case scenario where the malicious
vehicle optimizes all the parameters under its control.

An information-theoretic LVS [6], which is developed based
on a likelihood ratio test (LRT), needs some a prior knowledge
(e.g., P1) for operation, while an LVS based on neural net-
works may not need such knowledge [11]. In the simulations,
we train the neural network with incremental data as the time
increases before testing the performance of the neural network
by using the test data. Specifically, the number of training
examples at 1 second is 1 and this number increases by 1
in each second. Therefore, we have severe fluctuations in the
total error at the start, and polynomial fitting is used to smooth
the total error curves. In this figure, we show that the neural
network based LVS can still outperform the former, even when
the neural network based LVS does not know P1 (the values
of P1 shown in the legend of Fig. 3 are unknown). However,
for the calculations in Fig. 3 it is assumed the LRT-based LVS
knows the value of P1. In order to examine the robustness of
the ML-based LVS, we consider different values of P1, ranging
from very high (e.g., 50%) to very low (i.e., 0.05%). This
result explicitly demonstrates the superiority of the ML-based
LVS relative to the LRT-based LVS. We also see that the total
error for the ML-based LVS converges once the framework is
trained for approximately 800 seconds. The slight variation in
the curves after 800 seconds is due to the applied polynomial
fitting.

B. Principles and Steps of Using Neural Networks in LVS

Neural networks are chains of interconnected functions
where one function processes the output of the one that pre-
cedes it. We take f(x) = f3(f2(f1(x))) as an example, where
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Fig. 3. Preliminary comparison results between an LVS based neural networks
with unknown P1 and an information-theoretic LVS based on likelihood ratio
test (LRT) with known P1.

x is the input information. This input in our case includes
the physical layer measurements and the vehicle’s claimed
location. In this example, f1, f2, and f3 represent the first,
second, and third layer of the neural network, respectively,
where the final layer is the output layer as shown in Fig. 4.

How to determine a suitable neural network architecture
for an LVS in WVNs is an issue that can largely be resolved
through extensive trials based on the available datasets. How-
ever, we note that determining an efficient neural network
architecture is challenging due to many unknowns in the
system. Here, we highlight a few key guidelines for facilitating
the design of such a neural network architecture in the context
of location verification for WVNs.

• It is sufficient to start with a feedforward neural network
with a single hidden layer and enough hidden units
(neurons) to cover the anticipated number of unknowns.

• Increasing the number of layers and neurons (in each
layer) can help in extracting the unknowns in the training
data. However, we note that it is occasionally difficult
to optimize a neural network based on such training
data. During our intensive simulations with the available
inputs, we observe that a single hidden-layer neural
network may provide the best performance.

• If more features are identified as inputs in an LVS,
a neural network with more depth and width can be
potentially adopted. This can reduce the detection error
probability achieved by the neural network (which is
achieved based on the training data and the ground
truth available information). However, we note that such
deep neural networks may lead to over-fitting issues. In
addition, more depth and width results in more compu-
tations and thus a trade-off exists between the desired
performance and the corresponding complexity.

• It is suggested to choose transfer functions in the neurons
that are close to linear, since they help in improving the
LVS performance in WVNs with acceptable complexities.

Fig. 4. Principles and steps of using neural networks in location verifications
for B5G wireless vehicular networks.

Based on our comprehensive trials, we recommend the
use of a linear rectified unit (ReLu) transfer function in
the hidden layers and a pure linear transfer function in
the output layer. The ReLu transfer function is half-linear
and thus the complexity of the resultant optimization is
relatively acceptable. On the other hand, the well-known
logistic sigmoid and tangent sigmoid transfer functions
saturate at absolute large values. As such, gradient-based
learning is difficult with such functions. Thus, their use
in the hidden layers is discouraged. To support this claim,
we present Fig. 5 here, which is obtained from our
detailed study of a neural network for LVS using different
transfer functions. Two different spoofing scenarios from
a malicious vehicle are shown in the figure. In both
scenarios, the malicious vehicle randomly claims its lo-
cation at some predetermined distance away from its true
location. This distance is 50 meters in the first scenario
(represented by the solid curves) and it is 75 meters in
the second scenario (represented by the dashed curves).
The curves in both scenarios relate to different transfer
functions (refer to the legends in Fig. 5 for more details).
In this figure, a better or equal performance in terms
of achieving a lower or equal total error is obtained by
the ReLu function (with a relatively lower complexity),
compared to the logistic sigmoid and tangent sigmoid
transfer functions.

• We suggest to determine a learning gradient for the
neural network using a backpropagation algorithm. The
weights and biases in different layers can then be updated
through a learning process (e.g., by applying a stochastic
gradient descent to the calculated gradients). A backprop-
agation algorithm that is fast at convergence should be
adopted. Based on our extensive trials, we recommend
the Levenberg-Marquardt backpropagation algorithm for
using neural networks in location verifications for WVNs.

C. Challenges and Future Research Directions

As an issue plaguing all ML methods, overfitting or over-
training exists in the ML-based location verifications. This
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Fig. 5. Location verification performance of neural networks with different
transfer functions in the hidden layers for B5G wireless vehicular networks.

is also the main reason to use simple and closely linear
transfer functions in the neural networks for an LVS in the
last subsection, as this issue is usually caused by a high model
complexity. In addition, the overfitting issue becomes more
visible when there exists more biases between the training
data and real test data. In LVSs for WVNs, these biases are
due to many aspects, e.g., varying channel models, dynamic
noise statistics, and uncertainties in threat models. Against this
background, how to quantify these biases and then provide
data support for avoiding overfitting issues is a challenging
research problem in ML-based location verifications, which
deserves a certain amount of research efforts.

As reviewed in Section II-B, ML methods have been in-
creasingly used to address the unknown channel parameters
in LVSs for WVNs. In addition to these issues related to
channel modelling, another major source of uncertainties in
location verifications is the threat model, wherein the attacking
strategies (e.g., the transmit power) and the true locations of
the malicious user (e.g., the vehicle) should be specified. So
far, most of the threat models for LVSs are developed by
considering worst-case scenarios, where a malicious user’s
attacking strategy and true location are first optimized to mini-
mize the detection performance of an LVS (e.g., [6]). Although
these threat models can provide analytical results, they require
some specific channel models or system parameters, which
may not be available in practical application scenarios. In
practical LVSs, we desire a threat model that is model-free
and can update itself based on newly available data dynami-
cally. Therefore, developing model-free, robust, and dynamic
updating threat models is believed to be another advantage of
using ML methods in the context of location verification for
emerging WVNs. The challenges in this context include (but
are not limited to) the the trustworthiness of all input data, the
potential for overfitting, and identification of when to retrain
the network updating.

A possible approach would be to make no assumptions

on the attacks, but only design an ML model to identify
correct location reports - a problem that goes under the name
of one-class classification. Neural networks used to perform
one-class classification are called auto-encoders, and in [12]
it was shown that an auto-encoder asymptotically (for large
inputs and complex enough networks) performs as well the
generalized likelihood ratio test. Within this context, we would
be aiming at keeping under control false alarms (that do
not depend on the attack model), while the missed-detection
probability would be assessed by simulations or experiments
with specific attack models.

Another promising direction to improve location verification
is based on the integration (fusion) of many location-dependent
services. For example, information partially dependent on
location may come from other available reports within WVNs
such as broadcast messages, routing update messages, and
radar reports. This additional information from various mes-
sages and reports, e.g., the relative location information among
multiple vehicles (obtained based on the routing results as per
the known protocols), can be transformed into new features
and supplied as input to the ML-based location verification
frameworks. Although each of these additional features alone
would not be useful for localization or location verification,
when analyzed collectively with the other existing input fea-
tures, they may significantly improve location verification pro-
cesses. Indeed, it has been previously shown how merging data
from different sources makes user-authentication mechanisms
more robust [15]. The ML solutions described in the previous
sections can be adapted to such merging of multi-source data,
by suitable training and adaptation. In addition, the emerging
federated ML is another candidate for addressing location
verification issues. An attractive feature of federated ML is
that it preserves a user’s privacy (e.g., keeps the location
information private) while enabling the use of powerful ML
techniques. It can also avoid the transmission of a large amount
of raw data.

V. CONCLUSIONS

Verification of reported locations will be a critical function
within emerging vehicular networks. In this work we have
reviewed state-of-the-art techniques for delivering reliable
location verification within real-world operational networks.
Although optimal decision-making algorithms have been de-
veloped for many idealised channel conditions, we have argued
that real-world verification solutions will most likely depend
on ML-based algorithms, and have discussed initial research
in this direction. Finally, we have peered into the future
and presented some ideas on how emerging B5G solutions,
combined with ML, could lead to even more robust forms of
location verification.

REFERENCES

[1] Y. Cao, T. Jiang, O. Kaiwartya, H. Sun, H. Zhou, and R. Wang, “Toward
pre-empted ev charging recommendation through V2V-based reservation
system,” IEEE Trans. Syst. Man Cybern., vol. 51, no. 5, pp. 3026–3039,
May 2021.

[2] G. Yan, S. Olariu, and M. Weigle, “Providing location security in
vehicular ad hoc networks,” IEEE Wireless Commun., vol. 16, no. 6,
pp. 48–55, Dec. 2009.



7

[3] R. Lu, X. Lin, X. Liang, and X. Shen, “A dynamic privacy-preserving
key management scheme for location-based services in VANETs,” IEEE
Trans. Intell. Transp. Syst., vol. 13, no. 1, pp. 127–139, Mar. 2012.

[4] Y. Cao, X. Zhang, B. Zhou, X. Duan, D. Tian, and X. Dai, “MEC intel-
ligence driven electro-mobility management for battery switch service,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7, pp. 4016–4029, Jul.
2021.

[5] J. Yang, Y. Chen, W. Trappe, and J. Cheng, Pervasive Wireless Environ-
ments: Detecting and Localizing User Spoofing. Springer, 2014.

[6] S. Yan, R. Malaney, I. Nevat, and G. Peters, “Optimal information-
theoretic wireless location verification,” IEEE Trans. Veh. Technol.,
vol. 63, no. 7, pp. 3410–3422, Jan. 2014.

[7] M. Monteiro, J. Rebelatto, and R. Souza, “Information-theoretic location
verification system with directional antennas for vehicular networks,”
IEEE Trans. Intell. Transp. Syst., vol. 17, no. 1, pp. 93–103, Jan. 2016.

[8] S. Yan, R. Malaney, I. Nevat, and G. Peters, “Location verification
systems for vanets in Rician fading channels,” IEEE Trans. Veh. Technol.,
vol. 65, no. 7, pp. 4132–4144, Jul. 2016.

[9] J. Y. Koh, I. Nevat, D. Leong, and W.-C. Wong, “Geo-spatial location
spoofing detection for Internet of Things,” IEEE Internet Things J.,
vol. 3, no. 6, pp. 971–978, Dec. 2016.

[10] S. Yan, I. Nevat, G. Peters, and R. Malaney, “Location verification
systems under spatially correlated shadowing,” IEEE Trans. Wireless
Commun., vol. 15, no. 6, pp. 4132–4144, Jul. 2016.

[11] U. Ihsan, S. Yan, and R. Malaney, “Location verification for emerging
wireless vehicular networks,” IEEE Internet Things J., vol. 6, no. 6, pp.
10 261–10 272, Dec. 2019.

[12] A. Brighente, F. Formaggio, G. Nunzio, and S. Tomasin, “Machine
learning for in-region location verification in wireless networks,” IEEE
J. Sel. Areas Commun., vol. 37, no. 11, pp. 2490–2502, Nov. 2019.

[13] L. Xiao, X. Wan, and Z. han, “PHY-layer authentication with multiple
landmarks with reduced overhead,” IEEE Trans. Wireless Commun.,
vol. 17, no. 3, pp. 1676–1687, Mar. 2018.

[14] F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, “MU-MIMO commu-
nications with MIMO radar: From co-existence to joint transmission,”
IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2755–2770, Apr.
2018.

[15] H. Fang, X. Wang, and S. Tomasin, “Machine learning for intelligent
authentication in 5G and beyond wireless networks,” IEEE Wireless
Commun., vol. 26, no. 5, pp. 55–61, Oct. 2019.

Shihao Yan received his Ph.D degree from The University of New South
Wales (UNSW), Sydney, Australia, in 2015. He was a Postdoctoral, University,
and Senior Research Fellow at The Australian National University, Macquarie
University, and UNSW, Australia, respectively. He is currently a Senior
Lecturer in Edith Cowan University, Perth, Australia.

Ullah Ihsan received his B.Sc. degree from GIK Institute Pakistan. He
pursued his PhD degree from UNSW Australia. He has been associated in
technical roles with various wireless telecommunication operators and vendors
for 12 years. Currently, he is the Lead Data Scientist with Xynoptik Australia
in their digital transformation division.

Robert Malaney has a BSc. and Ph.D. from the University of Glasgow,
Scotland, and the University of St. Andrews, Scotland, respectively. He is
currently a Professor at the University of New South Wales, Australia. He was
previously with the California Institute of Technology, USA, the University
of California, Berkeley, USA, and the University of Toronto, Canada.

Linlin Sun received her B.S., M.S., and Ph.D. degrees from the Nanjing
University of Science and Technology, Nanjing, China, in 2000, 2003, and
2020, respectively, where she is currently an Associate Professor with the
School of Electronic and Optical Engineering.

Stefano Tomasin is an Associate Professor at the University of Padova, Italy.
He has been on leave at Polytechnic University in Brooklyn and Huawei
Research Laboratory in Paris. His research interests include physical layer
security and signal processing for wireless communications, with application
to cellular networks.


	Location verification for future wireless vehicular networks: Research directions and challenges
	tmp.1679040929.pdf.f7WtE

