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and attention-based Ensembles are used in experiments to synergize the output features
from the Deep CNNs and perform the final classification.
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described in Section 2.4.5. 

A four-layer neural network classification head with 25% dropout regularization 
gives the best results for VGG-19, Inception-v3, ResNet-152-v2, InceptionResNet-v2 mod-
els while a three-layer neural network classification head with 50% dropout regularization 
gives the best results for Densenet-201, Efficientnet-B7 and Xception models. The models 
were trained using Adam [55] as an optimizer with a learning rate of 0.001 and the calcu-
lated loss being categorical cross-entropy. Figure 7 demonstrates training a Deep CNN 
model for feature extraction. The top four best -performing architectures obtained on eval-
uating the test are saved as base models for future Ensemble Deep CNNs models.  
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or averaged to obtain the Ensemble model’s predicted class. These models do not require 
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Figure 6. Overview of Methodology.

Various state-of-the-art Deep CNN architectures are used to extract deep feature rep-
resentations from the CT scan image database. VGG-19, Inception-V3 and ResNet-152-v2,
Densenet-201, InceptionResNet-V2, Xception, and Efficientnet-B7 are used as feature ex-
tractors to obtain deep feature maps that are then used to train a fully connected neural
network classification head to obtain the final model prediction. The hyperparameters of
the Deep CNN feature extractors are optimized in [39,49,50,52–54]. These architectures are
initialized with ImageNet weights for transfer learning on 224 � 224 sized images. The
classification head is hyperparameter tuned with different numbers of layers, a different
number of neurons per layer and dropout factors. Dropout regularization is used to prevent
the classification head from overfitting the training fold database and generalize better on
the validation fold. ReLU activation is employed to learn the non-linearity. The CT scan im-
ages are first preprocessed by resizing them to 224 � 224 pixels using Bilinear interpolation
and rescaling the image intensity to the range [–1, 1] so as to get it into the correct format
pertaining to the architectures, thereby making efficient use of transfer learning.

Average and Majority Ensemble CNNs are described in Section 2.4.1. Shallow Ensem-
ble CNNs are described in Section 2.4.2. NN Ensemble CNNs are described in Section 2.4.3.
CNN Ensemble CNNs are described in Section 2.4.4. Attentive Ensemble CNNs are de-
scribed in Section 2.4.5.

A four-layer neural network classification head with 25% dropout regularization gives
the best results for VGG-19, Inception-v3, ResNet-152-v2, InceptionResNet-v2 models while
a three-layer neural network classification head with 50% dropout regularization gives
the best results for Densenet-201, Efficientnet-B7 and Xception models. The models were
trained using Adam [55] as an optimizer with a learning rate of 0.001 and the calculated
loss being categorical cross-entropy. Figure 7 demonstrates training a Deep CNN model for
feature extraction. The top four best-performing architectures obtained on evaluating the
test are saved as base models for future Ensemble Deep CNNs models.
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Figure 7. Training Deep CNN Models.

2.4.1. Deep Voting Ensemble CNN Models

In the Voting Ensemble CNN Model, as shown in Figure 8, the softmax scores obtained
from the four trained classification models corresponding to each class are maxed or
averaged to obtain the Ensemble model’s predicted class. These models do not require
additional training on five-fold cross-validation.
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2.4.2. Shallow Meta-Learning Ensemble CNN Models

For Deep Ensemble CNNs using Shallow Meta-Learners, the feature vectors obtained
from the trained deep CNN feature extractors were first stacked to get a deep feature
vector. This deep feature vector was then fed to a machine learning classifier. Logistic
Regression, Support Vector Machine, Decision Tree, Gaussian Naive Bayes, K-Nearest-
Neighbor (KNN), Random Forest Ensemble, Bagging Ensemble, AdaBoost Ensemble, and
Gradient Boost Ensemble models were leveraged as meta-learning classifiers for the deep
ensemble approach. The Logistic Ensemble CNNs Model was trained with a regularizing
strength of 40 and l2 penalization. The model was trained for 100 iterations for convergence.
The SVC Ensemble CNNs Model gave the best results using the RBF kernel, regularizing
strength of 40 and l2 penalization. The Decision Tree Ensemble CNNs Model was hyper


