






can be helpful to improve the overall process of RL for fruit

and vegetables dataset enhancement and classification.

4.3. ClassiÞcation accuracy

A DCNN based image classification is performed to estimate

the image data enhancement. A pre-trained ResNet50 [84]

on ImageNet [85] is transfer learned with the groundtruth

and synthesised images for classification. The initial 45-

layers are considered as the bottleneck feature extractor

where the last five layers are adapted considering the hypoth-

esis of significant disparity between ImageNet and our classi-

fication task. This technique can also achieve significant

auxiliary goals of computational cost reduction and over-

fitting. The extracted features by bottleneck and adapted lay-

ers are then used to train a softmax classifier with 20 classes

where a categorical cross entropy and Adam Optimiser are

employed as loss function and optimiser, respectively. The

weights for trainable layers are initialised using Xavier uni-

form initialisation. A 10-fold cross validation with random

sample shuffling using an approximate proportion with class

labels is used for training the ResNet.

Training accuracy and loss for groundtruth and synthe-

sised images is illustrated in Fig. 15(a). The ResNet is transfer

learned for the groundtruth dataset and synthesised images

separately on 51 200 and 3 200 images, respectively. The test-

ing has been performed on a disjoint image dataset. A com-

parison of average test accuracy and error for both

groundtruth and synthesised images is depicted in Fig. 15(b)

and Fig. 15(c). The test set for both datasets is portioned in

three disjoint sets of 10 images per class where accuracy is

estimated for each class with transferred learned ResNet(s).

The per class accuracy obtained by disjoint test sets is aver-

aged to find the mean accuracy and error range for both the

groundtruth and synthesised images. A significant conjunc-

tion between the range of the estimated accuracy repre-

sented by the error bar of multiple classes implicates the

dataset similarities and, hence, dataset enhancement. Smal-

ler difference between the mean accuracy of the groundtruth

and synthesised images can also be used to estimate the sim-

ilarity of the two training datasets used. A much larger data-

set can be built and used for training complex and deeper

DCNNs. Significant similarity as a smaller mean accuracy dif-

ference can be observed for more texture rich fruit and veg-

etable images.

5. Conclusion

This paper has evaluated different Variational Autoencoders

(VAEs), Generative Adversarial Networks (GANs) and

texture-based latent space disentanglement based GAN for

the state-of-the-art application of Representation Learning

(RL) of a fruit and vegetables dataset. The scarcity of large

labelled datasets of fruit and vegetables is the major motiva-

Fig. 13 – Comparison of results for InfoGAN: (a) samples after 16 000 iterations for Orange, Capsicum and Hass Avocado, (b)

samples after 32 000 iterations for Topless Pineapple, Watermelon and Yellow Banana, (c) samples after 48 000 iterations for

Hass Avocado, Tomato and Honeydew Melon, and (d) samples after 64 000 iterations for Potato, Topless Pineapple and

Orange (left to right).
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Fig. 14 – Example synthesised images based on the texture-based latent space disentanglement for dataset enhancement.

Table 7 – Frechet Inception Distance (FID) estimation of synthesised and groundtruth images.

Method FID Estimation

1 Dense VAE (256) 46.23
2 Dense VAE(512) 48.56
3 Dense VAE(1 024) 44.15
4 Convolutional VAE 34.56
5 Wasserstein GAN(1 600) 34.78
6 Wasserstein GAN(3 200) 32.67
7 Wasserstein GAN (6 400) 31.33
8 InfoGAN (16 000) 22.45
9 InfoGAN(32 000) 21.78
10 InfoGAN(48 000) 19.99
11 InfoGAN(64 000) 16.74
12 Our Proposed Approach 5.18
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Fig. 15 – The ResNet based classification accuracy estimation for groundtruth and synthesised images: (a) Transfer learning

accuracy and loss, (b) A comparison of mean classification accuracy and error (transfer learned on groundtruth), and (c) A

comparison of mean classification accuracy and error (transfer learned on synthesised images).
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tion to perform RL for data enhancement. The classification

of fruit and vegetables is a multi-class classification problem

with significant inherent limitations. Convolutional Neural

Networks (CNNs) are a more suitable technique for suchmulti

class classification tasks, however the effective training of

CNNs requires a significantly large labelled dataset. The VAEs

and GANs have been evaluated to use the learned representa-

tion for novel sample generation. This representation can also

be extended for feature extraction for classification of fruit

and vegetables, which is the main purpose of this study.

Comparison of the implemented VAEs and GANs shows

that using the Wasserstein distance as a distribution diver-

gence metric improve the results significantly as compared

to dense VAE and convolutional VAE. Colour and texture

details are more evident in the test images generated with

the help of a Wasserstein GAN whereas the images generated

with dense VAE are similar to colour noise. The images gener-

ated with convolution VAE have no discrete texture and col-

our information that can be used for classification or

training of a supervised CNN. The mutual information max-

imisation used in the Information Maximisation Generative

Adversarial Network (InfoGAN) further improves representa-

tion and distinct colour and texture information is evident

in the generated images. As evident from the results a combi-

nation of mutual information maximisation and use of the

Wasserstein distance metric can improve the performance

significantly. The transformation of a high dimensional latent

space to linear sub spaces can provide significant control over

the representation learning and synthesis process. The disen-

tanglement obtained by the linear sub space transformation

has been explored to achieve more effective results with tex-

ture details. We have used a combination of disentanglement

techniques to achieve our goal of dataset enhancement for

Artificial Neural Network (ANN) based fruit and vegetables

classification. The texture details of a subsequent random

disjoint subset of training data has been used as a semantic

latent code to control the use of disentangled latent space

for image synthesis in the generator network. The image size

has been limited to 128 � 128 resolution to reduce the time

and computational complexity, however the results illustrate

that more texture rich high resolution images can also be syn-

thesised using the same approach.

As part of our futurework, wewill investigate sophisticated

statistical semantic information for better disentanglement

and use with semi supervised GANs [86]. There is a potential

of improvement using semi-supervised GANs with small

labelled datasets of fruit and vegetables. We will also investi-

gate more sophisticated distance metrics and a combination

of different distance metrics with sophisticated semantic

information to improveRL for fruit andvegetables. The learned

representationcanbeused forgenerationofnovel samplesand

feature extraction for classification as our final goal.
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