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Research article
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A B S T R A C T

Leptospirosis, typhoid and dengue are three water-related diseases influenced by environmental factors. We
examined whether seasonality and rainfall predict reported syndromes associated with leptospirosis,
typhoid and dengue in Fiji. Poisson generalised linear models were fitted with s6 early warning, alert and
response system (EWARS) syndromic conditions from March 2016 until December 2020, incorporating sea-
sonality, temperature and rainfall. Watery diarrhoea, prolonged fever and suspected dengue displayed sea-
sonal trends with peaks corresponding with the rainy season, while bloody diarrhoea, acute fever with rash
and acute jaundice syndrome did not. Seasonality was the most common predictor for watery and bloody
diarrhoea, prolonged fever, suspected dengue, and acute fever plus rash in those aged 5 and over, explaining
between 0.4% − 37.8% of the variation across all conditions. Higher rainfall was the most common predictor
for acute fever plus rash and acute jaundice syndrome in children under 5, explaining between 1.0% − 7.6%
variation across all conditions. Each EWARS syndromic condition case peak was associated with a different
rainfall lag, varying between 0 and 11 weeks. The relationships between EWARS, rainfall and seasonality
show that it is possible to predict when outbreaks will occur by following seasonality and rainfall. Pre-posi-
tioning of diagnostic and treatment resources could then be aligned with seasonality and rainfall peaks to
plan and address water-related disease outbreaks.

© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/)
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Introduction

Water-related diseases, such as cholera, leptospirosis, typhoid and
dengue, are a major public health issue causing 3.4 million deaths
annually [1,2]. Diarrhoea alone is the fifth leading cause of death in
children under 5 years [3]. In 2019, the World Health Organization
(WHO) listed dengue as one of the 10 top public health threats [4].
Drivers of these water-related diseases include climate change,
changing weather patterns, and water access and security [5,6].

In Pacific Island Countries (PICs), water-related diseases contrib-
ute to a significant disease burden [7]. PICs are at risk and vulnerable
to outbreaks because of a variety of factors, including: their tropical
climate; location; climate change impacts; poverty; poor sanitation;
limited resources (financial and human); location of the population
from healthcare facilities; limited outbreak investigation and verifica-
tion; lack of surveillance infrastructure; laboratory capacity; and

wider health systems capacity such as status of preparedness plan-
ning that influence the ability to deliver comprehensive health serv-
ices [7−10]. Because of laboratory capacity and inadequate
surveillance, it is thought that conditions such as dengue are likely
underdiagnosed and under-reported [7]. Recent outbreaks such as
the 2000 Federated States of Micronesia cholera outbreak with 3542
cases, the 2012 New Caledonia dengue outbreak with 10,000 cases,
and the Fiji 2013−14 dengue outbreak with 25,000 cases highlight
the vulnerability of PICs to water-related disease outbreaks [11−13].

Public health surveillance is a strategy to manage this increased
risk of water-related disease. It is an important tool for disease pre-
vention and control, and can help reduce the disease burden [14].
Surveillance is a core function of public health and can inform deci-
sions for prevention, planning, and resource allocation [14,15]. It can
provide a timely response to disease outbreaks, mitigating the effects
on populations resulting in reductions in morbidity and mortality
[16]. There are several types of monitoring systems used to detect
disease outbreaks, including sentinel surveillance, clinical-based
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surveillance, event-based surveillance, surveillance by proxy, envi-
ronmental monitoring, and syndromic surveillance [7,8,15,16].

Syndromic surveillance is a detection method at the individual
and population level for disease symptoms prior to clinical or labora-
tory confirmation [17,18]. There is a growing popularity of syndromic
surveillance as it allows real-time outbreak detection, monitoring
and investigation that can identify clusters of undiagnosed diseases
and help engage a rapid response [17,18]. More timely responses can
contribute to a reduction in morbidity and mortality [18].

The early warning, alert, and response system (EWARS) is an
example of a public health syndromic surveillance system. It was
developed by the WHO to improve disease outbreak detection in
emergency settings (e.g., after a natural disaster or in countries in
conflict; [19]). EWARS can be rapidly implemented, as it can run off
solar chargers in areas without electricity [19−21]. A kit (includes
laptops, solar chargers, smartphones preinstalled with open-source
EWARS applications) costs approximately US$5000, and can support
up to 500,000 people across 50 healthcare facilities [19]. Since
EWARS conception in 2012, it has been used in several countries
including Brazil, Bangladesh, Indonesia, Malaysia, Mexico and Syria
to monitor syndromic conditions and potential outbreaks [20−23]. In
February 2016, it was first implemented in Fiji by the Ministry of
Health and Medical Services with the help of the WHO after Cyclone
Winston hit the country to monitor future outbreaks [24]

Since 2016, only one study has been conducted on EWARS in Fiji;
this focused on the performance of EWARS post-Cyclone Winston
[24]. Our paper presents findings of a study designed to understand
EWARS syndromic conditions over time and the relationship to
weather data. Our study aimed to establish: (a) the national and divi-
sional trends for 6 EWARS syndromic conditions that are commonly
associated with leptospirosis, typhoid and/or dengue (watery diar-
rhoea, bloody diarrhoea, prolonged fever, acute fever plus rash, acute
jaundice syndrome, and suspected dengue) from 2016 to 2020; (b)
any association between the 6 syndromic conditions and meteorolog-
ical data, including seasonality; and (c) determine the best-fitting
models between rainfall time lag and syndromic case numbers. Our
findings can help inform the timing of when to pre-position of diag-
nostic and treatment resources to prevent and address water-related
disease outbreaks.

Materials and methods

Background

Fiji is composed of 332 islands, and is divided administratively
into with four divisions (Central, Western, Eastern and Northern).
In Fiji, the average annual temperature is 25 °C, and from May to
October it lowers to an average of 22 °C [25,26]. Temperatures
range from a high of 30 °C, and as low as 12 °C overnight. December
to April is the wet season, especially over the larger islands, Viti
Levu and Vanua Levu [26−28]. Rain is variable, and higher in the
windward, south-eastern areas (4000−5000 mm/yr), and lower in
the leeward, north-western areas (<2000 mm/yr) of larger islands,
due to localised island rain shadow effects [29]. Heavy short local
showers are common [28].

Fiji is specifically at risk of outbreaks of leptospirosis, typhoid and
dengue [13,30,31]. Research findings indicate that leptospirosis inci-
dence rates range between 20 and 100 cases per 100,000, and are
highest in iTaukei (Indigenous) males 15 to 45 year-olds with peaks
occurring between February and June [32−34]. In the Central Divi-
sion, the typhoid incidence rate is 205.8 cases per 100,000 people,
with 90% of cases amongst iTaukei people [30,35]. Records indicate
that typhoid cases peak 2 months after the rainy season every Janu-
ary to June [36]. Dengue cases peak during the warmer and wetter
season every December to July [37]. Incidence rates of dengue vary
from 0.34 to 51.15 per 100,000 people during non-outbreak periods

to as high as 1057 per 100,000 in outbreaks such as the rate for 20 to
24 year olds in 2014 [38]. Because of the population's susceptibility
to water-related diseases, the Fijian Ministry of Health and Medical
Services launched a campaign in October 2020 to prevent leptospiro-
sis, typhoid, dengue and diarrhoea outbreaks [39]. This paper pro-
vides findings that illustrate that seasonality and weather data can be
used as public health tools to guide diagnostic and treatment resour-
ces to prevent outbreaks.

Data collection

EWARS data are collected through indicator-based surveillance
and events-based surveillance systems, which allows real-time
reporting on public health events from 761 sites across the four
divisions in Fiji (Northern n = 19, Central n = 23, Western n = 24,
Eastern = 10) (Fig. 1) [40]. Information is collected on 10 syndromic
conditions in people and in this paper is reported in 2 age groups;
under 5 years old and 5 years and older. This paper only examines
6 of the syndromic conditions (Table 1). The 2 age divisions were
chosen as syndromic conditions influence the age groups differ-
ently, for example., diarrhoea is the second leading cause of death
in children under the age of 5 [41], and is not a common cause of
death in adults. The 6 syndromic conditions chosen are those most
closely associated with leptospirosis, typhoid and/or dengue [42
−45]. Data are automatically analysed by the EWARS system, and
alerts are generated based on predetermined thresholds [40]. More
information on the data collection procedure and thresholds is
available from the Ministry of Health and Medical Services EWARS
standard operating procedure document [40]. The data from the 76
sites from March 6 2016, to December 27 2020, (4.75 years) were
collated, cleaned, and checked for duplicates in Microsoft Excel,
with duplicates removed.

Meteorological data for 2016 to 2020 were obtained from the Fiji
Meteorological Service on daily rainfall and minimum and maximum
air temperatures from weather stations across Fiji. Across each
weather site, daily data were combined to calculate average weekly
rainfalls and average minimum and maximum temperatures. The
weekly average data for each site were then combined to provide
divisional and national averages. The divisional and national weather
data derived were combined with the EWARS data into five datasets
on matching dates. Of the five data sets produced, one was at the
national level and four for were at the divisional level (one for each
division).

Seasonal and meteorological modelling

Microsoft Excel was used to create time series plots with rainfall
data to identify seasonal patterns for the 6 syndromic conditions.
Poisson generalised linear models (GLMs) were created using the sta-
tistical software R (version 4.0.5) (Table 2) [46]. Rainfall time lag peri-
ods (the time lag in weeks after the rainfall) were decided based on
existing literature for each syndromic condition. Watery and bloody
diarrhoea models were run with rainfall time lag of 1 to 12 weeks [47
−50]; prolonged fever models time lag was 3 to 12 weeks [51,52];
acute fever plus rash and acute jaundice syndrome models time lag
of 4 to 12 weeks [49,50]; and the suspected dengue models used a
time lag of 5 to 14 weeks [53−55].

The percentage of patients by age group for the 6 syndromic con-
ditions was calculated by dividing the total number of each syn-
dromic condition per year by the total number of patients across all
syndromic conditions (Table 3).

1 *Lodoni Health Center was destroyed by a fire in August 2017

S. Nelson, A. Jenkins, S.D. Jupiter et al. The Journal of Climate Change and Health 6 (2022) 100112

2



Calculating the model fit

The analysis used methods similar to that in Stratton et al. [56] to
calculate model fit. The percentage variation explained by each GLM
modelled syndromic condition was calculated using the null and
residual deviances (Appendix 1 Tables 1 and 2). A comparison
between models (Table 2) was conducted to explain the model and
rainfall time lag percentage variation, with the aim to identify which
rainfall time lag period produced a model of best fit (the model with
the highest variation percent). The Pearson's Goodness of Fit test was

used to determine the statistical significance of the impact of using
time lag in Models 3a and 3b. Once the national models were built,
decisions for the divisional level analyses were based on the rainfall
time lag model that explained the highest variation at the national
level. The divisional level analyses then replicated the earlier steps.

Ethics

The overarching WISH Fiji project received ethical approval from
the Fiji National Health Research and Ethics Review Committee

Fig. 1. EWARs locations across the four divisions of Fiji.

Table 1
EWARs syndrome case definition and trigger threshold.

Syndrome Case Definition Threshold to trigger alert [40] Associated condition Citations to supporting
associated condition(s)

Watery diarrhoea 3 or more loose or watery stools in 24 h
(non-bloody)

Twice the average number of cases seen
in the previous 2 weeks

Leptospirosis and typhoid Haake & Levett [42]
Bhandari et al. [44]

Bloody diarrhoea Any episode of acute bloody diarrhoea 3 cases in one location OR twice the aver-
age number of cases seen in the previ-
ous 2 weeks

Leptospirosis and typhoid Najafi et al. [43]
Bhandari et al. [44]

Prolonged fever Any fever either reported or measured
(>38 °C) lasting three or more day.

Twice the average number of cases seen
in the previous 2 weeks

Typhoid Bhandari et al. [44]

Acute fever plus rash Fever either reported or measured (>38 °
C) plus non-blistering rash

1 case Leptospirosis Haake & Levett [42]

Acute jaundice
syndrome

Jaundice (yellow eyes or dark urine) and
severe illness with or without fever

3 cases Leptospirosis Haake & Levett [42]

Suspected dengue Fever for at least 2 days plus at least 2 of
the following:
1) nausea or vomiting; 2) muscle or
joint pain; 3) severe headache or pain
behind the eyes; 4) rash; or 5) bleeding

Twice the average number of cases seen
in the previous 3 weeks

Dengue Gubler [45]
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(FNHRERC No: 2018.231.CEN), Fiji National University’s College
Health Research Ethics Committee (CHRED ID: 009.19) and the Uni-
versity of Sydney’s Human Research Ethics Committee (2019/588).
The meteorological and EWARS data are publicly available data
sourced from the Fiji Meteorological Service and the Ministry of
Health and Medical Services in Fiji.

Results

The percentage of patients experiencing each syndromic condi-
tion were different from 2016 to 2020 (Table 3). The peak numbers of
total patients seen every year was in March and April. Patient num-
bers in children under 5 and those aged 5 and over show an annual
seasonal trend at the national level and geographical areas. Across
the 6 syndromic conditions there is considerable variation, and some
syndromic syndromes are rarer than others (e.g., acute jaundice syn-
drome). More results are available in Appendix 1.

In-depth analysis found there is an annual seasonal trend with
higher rates around March/April for watery diarrhoea, prolonged
fever and suspected dengue in both age groups at the national level
(Appendix 1 Figures 2A, 2B, 3A, 3B, 4C and 4D). Further there is also
an annual seasonal trend with higher rates in March/April for watery
diarrhoea and suspected dengue at the divisional level (Appendix 1
Figures 2A, 2B, 4C and 4D). However, there is no trend present for
bloody diarrhoea, acute fever plus rash, and acute jaundice syndrome
in both age groups at the national and divisional levels (Appendix 1
Figures 2C, 2D, 3C, 3D, 4A and 4B).

The models produced show the national-scale variation in the 6
syndromic conditions with seasonality, temperature, and time-lag
effects of rainfall (Tables 4 and 5). Variation explained across condi-
tions ranged from 0.4% to 43% amongst the different models. Model 1
showed 0.4% to 37.8% of the variation in the syndromic case numbers
could be explained by seasonality. Variation across Model 2 showed

minor change from Model 1 with only 1.0% to 38.2% of the syndromic
cases numbers being explained by seasonality and temperature.
Model 3a showed 2.2% to 38.4% of the variation in syndromic cases
numbers could be explained by seasonality, temperature, and rainfall
with no lag. Variation in Model 3b showed 1.0% to 42.9% of the syn-
dromic cases numbers could be explained by seasonality, tempera-
ture, and different rainfall time lags. Across all the models for the 6
conditions, acute jaundice syndrome in children under 5 had the low-
est percent variation and suspected dengue in the 5 and over group
had the highest percent variation that could be explained.

Seasonality appeared to contribute significantly to the variability
in models, except for acute fever plus rash in children aged under 5,
and acute jaundice syndrome for both age groups. Seasonality
explained between 0.4% and 37.8% of the variation in syndromic con-
ditions. Rainfall explained the greatest proportion of variability for
acute fever plus rash in children aged under 5 and acute jaundice
syndrome in both age groups. Rainfall explained between 1.0% and
7.6% of the variation in syndromic conditions. Temperature was not a
major contributory factor for any of the conditions; it only explained
between 0.4% and 3.7% variation in cases.

Analyses were also conducted to identify the rainfall time lag of
best fit with the highest variation percent for each syndromic condi-
tion (Tables 4 and 5). Across the 6 conditions, the rainfall time lag of
best fit ranged from a 2-week period to an 11-week period. The lag
time of best fit was different for each condition based on the age
group. All the best fit time lag models identified were statistically sig-
nificant based on their p values of less than or equal to 0.5.

Divisional level analysis of the best time fit lag data showed varia-
tion across the four divisions for the 6 conditions (Table 6). There was
mixed significance in the models, and large differences in the vari-
ability across the four divisions for syndromic condition. Watery diar-
rhoea, prolonged fever and suspected dengue for both age groups
were the only statistically significant findings across all four divisions.
Central division for prolonged fever and acute fever in both popula-
tions had higher variation than present at the national level. Western
division had higher variation than the national level for suspected
dengue for both age groups and acute jaundice syndrome in those
aged five and over. Eastern division also experienced higher variation
than at the national level for acute fever in under-fives.

Discussion

Our paper indicates seasonality and meteorological trends from
2016 to 2020 in 6 EWARS syndromic conditions (watery diarrhoea,
bloody diarrhoea, prolonged fever, acute fever plus rash, acute jaun-
dice syndrome, and suspected dengue). Rainfall explained the most

Table 2
Creation of models including seasonality and weather parameters.

Model Model content

1 Seasonality
2 Model 1 + maximum temperature + minimum

temperature
3a Model 2 + no rainfall time lag
3b Model 2 + rainfall time lag

Variables: Seasonality: week since EWARS data collection included tem-
perature (maximum + minimum): average weekly temperature in
degrees Celsius, rainfall time lag: average weekly rainfall with a time lag.

Table 3
The percentage of patients diagnosed with the condition aged under 5 and those aged over 5 yearly from 2016 to 2020.

EWARS Condition
2016*
(N = 35,581)

2017
(N = 36,551)

2018
(N = 40,875)

2019
(N = 44,033)

2020
(N = 38,250)

Watery diarrhoea in children under 5 22.8% 21.3% 20.4% 20.6% 19.5%
Watery diarrhoea in 5 and over 49.3% 46.2% 42.4% 41.5% 46.6%
Bloody diarrhoea in children under 5 0.5% 0.3% 0.3% 0.3% 0.3%
Bloody diarrhoea in 5 and over 1.1% 0.8% 0.9% 0.7% 1.0%
Acute fever plus rash in children under 5 0.4% 0.1% 0.1% 0.2% 0.1%
Acute fever plus rash in 5 and over 1.9% 0.1% 0.0% 0.2% 0.1%
Prolonged fever in children under 5 1.4% 1.7% 1.0% 3.5% 1.2%
Prolonged fever 5 and over 4.4% 3.7% 3.6% 7.3% 3.8%
Acute jaundice syndrome in children under 5 0.1% 0.2% 0.1% 0.2% 0.2%
Acute jaundice syndrome in 5 and over 0.4% 0.2% 0.2% 0.3% 0.6%
Suspected dengue in children under 5 0.5% 1.3% 1.2% 0.8% 1.0%
Suspected dengue in 5 and over 17.2% 23.9% 29.7% 24.3% 25.6%

*2016 data starts from the week of March 13th, 2016 N = the total number of syndromic cases per year.
% = number cases of each syndromic condition divided by the total number of syndromic cases per year (N).
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variance in watery and bloody diarrhoea syndromic conditions, and
the peak number of cases for both conditions were similar to other
rainfall time lag periods reported in other studies. Carlton et al. [47]
reported peak cases of diarrhoea in Ecuador 2 weeks after heavy rain-
fall, whereas Bhavnani [48] reported peak cases in Ecuador five
weeks after rainfall. The differences in peaks may indicate that

different pathogens are responsible for cases. Heavy rainfall can dam-
age or overwhelm WASH systems, cause faecal material to enter
waterways leading to water source contamination, which in turn
leads to increased rates of diarrhoea [57]. Further, rainfall can create
a muddy environment contaminated with human or animal faeces,
which is common in rural agricultural areas with poor sanitation and

Table 4
Variation explained by GLM models of watery diarrhoea, bloody diarrhoea and prolonged fever by age group with seasonal-
ity, temperature, and time-lag effects of rainfall.

Models# Watery
diarrhoea <5

Watery
diarrhoea >5

Bloody
diarrhoea <5

Bloody
diarrhoea >5

Prolonged
fever >5

Prolonged
fever >5

Model 1 12.4% 10.8% 3.1% 6.1% 24.6% 24.5%
Model 2 13.8% 13.8% 4.8% 7.1% 24.7% 25.1%
Model 3a 14.0%* 13.8%* 4.9%* 7.1%* 31.6%*+ 31.8%*+
Model 3b with 1 week rainfall
time lag

14.7%* 15.1%* 5.8%* 7.3%* − −

Model 3b with 2-week rainfall
time lag

14.0%* 14.4%* 8.9%*+ 7.6%* − −

Model 3b with 3-week rainfall
time lag

13.8%* 14.5%* 6.3%* 7.6%*+ 26.7%* 26.2%*

Model 3b with 4-week rainfall
time lag

15.6%*+ 15.5%* 4.5%* 7.2%* 25.5%* 25.1%*

Model 3b with 5-week rainfall
time lag

15.5%* 18.3%*+ 4.8%* 7.0%* 25.3%* 25.1%*

Model 3b with 6-week rainfall
time lag

14.9%* 16.4%* 4.5%* 6.8%* 24.6%* 26.2%*

Model 3b with 7-week rainfall
time lag

15.2%* 15.5%* 3.4%* 6.5%* 26.2%* 28.5%*

Model 3b with 8-week rainfall
time lag

14.8%* 15.9%* 4.2%* 6.3%* 26.2%* 27.0%*

Model 3b with 9-week rainfall
time lag

14.3%* 15.6%* 3.2%* 6.4%* 25.3%* 25.9%*

Model 3b with 10-week rainfall
time lag

14.3%* 15.5%* 3.2%* 6.1%* 26.7%* 28.2%*

Model 3b with 11-week rainfall
time lag

14.1%* 15.5%* 3.6%* 6.1%* 27.7%* 26.3%*

Model 3b with 12-week rainfall
time lag

13.3%* 15.0%* 3.2%* 5.7%* 26.8%* 26.8%*

# Model 1 syndromic case number and seasonality.
Model 2 syndromic case number, seasonality, maximum and minimum temperature.
Model 3a syndromic case number, seasonality, maximum and minimum temperature, and no rainfall time lag.
Model 3b syndromic case number, seasonality, maximum and minimum temperature and with varying rainfall time lag.
Significance: * < 0.05.
+ The rainfall lag time of best fit per condition.

Table 5
Variation explained by GLM models of acute fever plus rash, acute jaundice syndrome and suspected dengue by age group with seasonality, temperature,
and time-lag effects of rainfall.

Models# Acute fever
plus rash <5

Acute fever
plus rash >5

Acute jaundice
syndrome <5

Acute jaundice
syndrome >5

Suspected
dengue <5

Suspected
dengue >5

Model 1 0.4% 7.0% 0.7% 2.8% 23.0% 37.8%
Model 2 1.7% 7.8% 1.0% 6.5% 23.8% 38.2%
Model 3a 3.5%* 8.4%* 2.2%* 7.0%* 24.0%* 38.4%*
Model 3b with 4-week rainfall time lag 1.1% 4.7%* 1.9%* 7.2%* − −
Model 3b with 5-week rainfall time lag 1.0% 4.1%* 1.4% 5.8%* 30.0%*+ 41.1%*
Model 3b with 6-week rainfall time lag 1.7%* 5.0%* 2.0%* 7.9%*+ 28.8%* 42.4%*
Model 3b with 7-week rainfall time lag 2.5%* 10.2%* 2.5%*+ 6.1%* 29.2%* 42.9%*+
Model 3b with 8-week rainfall time lag 4.3%* 7.7%* 2.1%* 4.6%* 26.0%* 42.2%*
Model 3b with 9-week rainfall time lag 3.8%* 9.2%* 1.8%* 4.6%* 27.0%* 41.1%*
Model 3b with 10-week rainfall time lag 4.0%* 11.4%*+ 1.3% 5.0%* 26.1%* 40.4%*
Model 3b with 11-week rainfall time lag 8.0%*+ 11.2%* 1.5% 4.6%* 24.7%* 39.8%*
Model 3b with 12-week rainfall time lag 4.0%* 4.9%* 1.3% 5.3%* 24.0%* 39.2%*
Model 3b with 13-week rainfall time lag − − − − 24.3%* 38.1%*
Model 3b with 14-week rainfall time lag − − − − 24.1%* 37.3%*

# Model 1 syndromic case number and seasonality.
Model 2 syndromic case number, seasonality, maximum and minimum temperature.
Model 3a syndromic case number, seasonality, maximum and minimum temperature, and no rainfall time lag.
Model 3b syndromic case number, seasonality, maximum and minimum temperature and with varying rainfall time lag.
Significance: * < 0.05.
+ The rainfall lag time of best fit per condition.
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may lead to the ingestion of diarrhoea pathogens [58]. Research in
the PICs by Singh et al. [9] found that climate change and the
increased extremes in rainfall will exacerbate diarrhoeal illness.

The connection with rainfall is important because the impact of
climate change in Fiji is predicted to cause increased intensity and
frequency of days that have extreme rainfall [59]. In contrast, in other
PICs such as Papua New Guinea and Tonga, changes in rainfall from
climate change will lead to increased experiences of droughts [60]. In
Fiji increased rainfall will exacerbate already existing problems in
capacity, funds, and resources to address water supply problems, and
increase water-related diseases [9]. Changes in rainfall can lead to
flash flooding, erosions, and landslides, which in turn can impact
food security, infrastructure and human health [61]. Evidence shows
the link between climate change and health in the Pacific through
changes in water-related disease levels. For example, extensive flood-
ing in Honiara and the province of Guadalcanal in the Solomon
Islands in April 2014 from heavy rainfall was linked to increased rota-
virus cases [62]. After the 2018 Cyclone Gita in Tonga, there was a sig-
nificant focus to ensure safe drinking water by the WHO and partners
to prevent disease outbreaks [63].

While seasonality, temperature and rainfall accounted for a lim-
ited amount of the variation in both watery and bloody diarrhoea
syndromic cases, other factors may also be contributing. Other factors
that could explain the variation in diarrhoea cases include food con-
tamination, close human-animal contact, levels of tank water, hand
washing levels, and poor hygiene [9,64,65]. These other factors could
also contribute to other syndromic factors.

In Fiji, typhoid case numbers peak in January to June annually, 2
months after the rainy season [36]. This supports the peaks found in
the prolonged fever data reported in this paper. Dewan et al. [51]
found typhoid cases from 2005 to 2009 had a 3 to 5 week rainfall
time lag in Bangladesh, and Thindwa [52] found a 2-month time lag
in Malawi. These timeframes of peak typhoid cases were different to
those found in this paper. Rainfall can cause increased contamination
of rivers (e.g. with human faecal waste) that is used for bathing, cook-
ing and cleaning, and in turn lead to increased typhoid cases
[36,51,66]. The variation in peak cases after rainfall could reflect the
presence of 2 different transmissions patterns, short and long cycle
typhoid [52]. Short cycle transmission can be linked with households,
while long cycle transmission can be linked with environmental fac-
tors including contaminated water [67].

While the relationship between rainfall and typhoid is important
to consider in prevention, the residential setting (the environment
people live in which includes infrastructure, microbiological and
physicochemical characteristics (such as the concentration of phos-
phate of drinking water)) is also key. Jenkins et al. [36] found 42.5% of
the variance in typhoid risk could be explained by the residential set-
ting. The factors they examined included the external condition (e.g.,

garden, drainage), drinking water condition (e.g., water storage), san-
itation (e.g., toilet smell), and microbial loads (e.g., ammonia concen-
tration). Cases of typhoid are more likely to have occurred in areas
that have experienced flooding of a stream or river in the last 2
months [68]. This is important to consider as some PICs such as the
Marshall Islands and Kiribati are predicted to face increased flooding,
and rising sea levels from climate change [69,70], and in turn greater
risk from water-related diseases.

Acute fever with rash and acute jaundice syndrome are both
symptoms of leptospirosis, with different rainfall time peaks. Other
studies have also found an impact of rainfall time lags. Matsushita
et al. [50] found a 2-week time lag in the Philippines and Desvars
et al. [71] found a 2-month rainfall time lag in Reunion Island. The
variation of peak leptospirosis cases could be due to the level of rain-
fall [50]. Heavy rainfall has been linked to leptospirosis outbreaks in
India, Brazil and Sri Lanka [72−74]. One route of transmission for lep-
tospirosis is the ingestion of contaminated water [75]. Rainfall
increases the risk of leptospirosis as it brings the bacteria and animal
hosts in closer contact with humans and increases the risk of contam-
inated water sources [75].

Climate change predictions in Fiji indicate there will be an
increased intensity and frequency of extreme rainfall, and increased
numbers of severe cyclones [59], which means Fiji is at risk of an
increase in leptospirosis in Fiji unless more is known about the pat-
terns of infection such as this paper contributes so that strategies can
be implemented to minimise risk. While this paper focuses on Fiji,
other countries in the PICs such as French Polynesia, and Futuna and
Wallis face issues with leptospirosis [76,77]. Strategies that Fiji and
other PICs could implement to help address leptospirosis include
increased monitoring and surveillance, increasing community and
health professionals’ knowledge about leptospirosis as it not well rec-
ognised as a cause of fever, changing agriculture practices, and
requiring safe rubbish dump practices that involve creating clear
boundaries between humans and animals to prevent contamination
of water sources and rodent control [75−78].

The EWARS data shows a seasonal trend for suspected dengue
from March to April. This is similar to data from Suva, Fiji with den-
gue being most common during December to July [37]. The variation
for dengue found in this paper is lower than that seen in Australia
[56]. The rainfall time lags found were in line with Chang et al. [55]
who found a 4 to 8-week peak rainfall time lag in Taiwan, but differ-
ent from Kakarla [53] findings of an 8 to 12-week peak rainfall time
lag in India. One explanation for the increased presence of dengue
after rainfall is rain creates abundant stagnant water pools that
enable mosquito breeding and dengue transmission rates [79,80].
Dengue is likely to become a growing public health concern within
PICs as changes in rainfall and temperatures occur due to climate
change and these factors can contribute to ideal breeding grounds for

Table 6
GLMmodels variation by age for the best time fit lag on a divisional level.

Model Central
division

Western
division

Eastern
division

Northern
division

Watery diarrhoea <5 (4-week lag) 9.9%* 8.3%* 4.3%* 11.4%*
Watery diarrhoea >5 (5-week lag) 7.8%* 12.3%* 8.1%* 6.1%*
Bloody diarrhoea <5 (2-week lag) 6.2%* 3.1%* 5.8% 1.2%
Bloody diarrhoea >5 (3-week lag) 7.4%* 5.5%* 1.8% 1.9%*
Prolonged fever <5 (No time lag) 22.9%* 27.8%* 4.8%* 11.8%*
Prolonged fever >5 (No time lag) 32.3%* 24.6%* 3.9%* 12.0%*
Acute fever plus rash <5 (11-week lag) 11.5%* 5.4%* 8.4% 5.3%*
Acute fever plus rash >5 (10-week lag) 3.5%* 7.0%* 29.4% 0.9%
Acute jaundice syndrome <5 (7-week lag) 3.1% 2.2% 5.0% 2.4%*
Acute jaundice syndrome >5 (6-week lag) 12.4%* 12.4% 2.2% 3.1%*
Suspected dengue <5 (5-week lag) 19.4%* 33.0%* 4.7%* 14.0%*
Suspected dengue >5 (7-week lag) 21.6%* 47.0%* 19.7%* 24.0%*

Significance: * < < 0.05.
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mosquitoes [38,81]. It is estimated by 2080, 60% of the world’s popu-
lation will be at risk of dengue [82]. This finding provides further sup-
port to Hii et al. [80] findings from their Singaporean-based study on
the relationship between temperature and rainfall and levels of den-
gue, and indicates the usefulness of monitoring weather and temper-
ature data as a public health tool to predict water-related diseases
such as dengue.

The rainfall and temperature differences across divisions can be
used to explain the variation in syndromic case numbers across the
four divisions. Wider literature shows risk factors for leptospirosis,
typhoid, and dengue are geographically different [51,75,83−85]. Our
results highlight the growing importance of weather and seasonality
data for public health planning in Fiji and other PICs, as these data
can help guide and inform where resources should go and ensure
that the most appropriate areas are prioritised. This is specifically
important for Fiji as geographical inequalities of healthcare provision
exist, with the Eastern division having reduced numbers of nurses
and doctors [86].

It is apparent from the findings that the use of EWARs is another
tool to help understand water-related disease outbreaks. To date,
syndromic surveillance such as EWARS is underutilised for infectious
disease outbreak, with only 15% of infectious disease outbreaks being
detected using this form of surveillance [8]. Since its introduction in
Fiji, EWARS is credited with saving human resources, reducing
human error and helping ensure data surveillance teams focus on
data collection, management, and alert response [24]. Other countries
have not had the same success as Fiji has had with EWARS. For exam-
ple in Brazil and Mexico following dengue outbreaks and evaluations
of EWARS systems in Nepal there was a lack of intersectoral work
and engagement from sectors other than health [23,87]. Many coun-
tries could learn from Fiji and implement EWARS as part of their reg-
ular disease monitoring system rather than only implementing it in
emergency and humanitarian situations.

Unreliable or lack of Wi-Fi or internet services, poor mobile
ne2rks, and lack of mobile credit can all make it difficult to edit and
update the case records, causing issues to review surveillance infor-
mation that EWAR relies on [20,21,24]. Limited funding and lack of
resources can also make it difficult to investigate outbreaks because
of issues in the verification of the system alerts [21,23,87]. Variations
in data can be linked to the size of the healthcare facility, and staff
training, motivation and supervision [24]. In Nepal, for example not
every disease in the EWARS systems was found to be prone to out-
breaks [87]. Fiji can learn from this and ensure that only relevant
data are recorded. This finding of country differences indicates that
to improve EWARS usefulness and effectiveness as a surveillance sys-
tem it should be tailored to a country’s specific syndrome data so
that relevant and useful trends can be captured [23,24].

Strengths and limitations

The strength of our study is we used weekly and longitudinal syn-
dromic data at a national level, that could also be analysed at a
regional level. By combining weather and syndrome data over time
we were able to track the impact of specific events such as natural
disasters on the volume of cases of specific conditions. The limitation
of the data is that there is no information about gender and the only
data about age was under 5 and 5 and over. Different age groups may
generate different patterns. Some of the data collected can be more
easily linked back to a specific disease e.g., there is a specific variable
for dengue, whereas something like diarrhoea can be a condition or a
symptom of something else such as typhoid or leptospirosis.

Conclusion

The findings indicate the connection between water-related dis-
eases, rainfall and seasonality in Fiji. Further research needs include

exploring the connection between EWARS data, seasonality, and rain-
fall in the PICs. Rainfall and seasonality data can be used as a tool to
help guide decision-making to pre-position of diagnostic and treat-
ment resources to prevent and reduce water-related disease out-
breaks. The priority is to create resilient adaptable systems that
mitigate the negative impacts of climate change on human health,
and prevent disease outbreaks in Fiji, and the wider Pacific Island
Region.
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