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Abstract 
Sandy beaches make up approximately three-quarters of the world’s shorelines. They are 

important ecosystems, hosting abundant invertebrate macrofaunal communities that 

provide food resource for vertebrate predators such as shorebirds, seabirds, marine 

mammals and fish. Although possessing a terrestrial appearance, food input on sandy 

beaches is derived predominantly from the sea. Such food input includes detrital matter, 

mostly in the form of wrack, and has the potential to support a great diversity of species, 

as well as stabilising energy fluxes and dynamics of consumer populations. The 

movement of detritus, along with other vectors such as organisms and nutrients, across 

ecosystem boundaries can alter productivity and change consumers’ distribution, 

abundance, and growth rates at multiple trophic levels in recipient systems. Ultimately, 

the input of nutrients and detritus can increase primary and secondary production and 

alter food web structures and community dynamics in recipient ecosystems, a process 

termed “spatial subsidy”.  

 

Ghost crabs (Ocypode spp.) form an important component within beach communities in 

several places around the world and are part of this trophic complexity. However, little is 

known of their densities, trophic structure and the role they play as vectors for spatial 

subsidies through movement of marine derived nutrients inland. The aim of this study 

was to determine the trophic ecology of the Golden ghost crab (Ocypode convexa) and 

understand what its role is in terms of marine connectivity along the Mid-West coastline 

of Western Australia. Using ghost crab burrows as a proxy for relative abundance, this 

study illustrated that Ocypode spp. are abundant and reside along beaches with minimal 

foot- and off-road vehicle traffic and exist in the upper intertidal zone in comparison to 

zones within the dune environment. In addition, from stomach content (percentage 

frequency (%F) and percentage volume (%V)) and stable isotope analyses (δ13C and 

δ15N), as well as laboratory assays, it was found that the Golden ghost crab is an omnivore 

that consumes a wide variety of plant and animal material. A larger proportion of its diet 

comprises material derived from the marine environment, compared to material derived 

from the terrestrial environment. These results support the importance of marine detritus 

as a spatial subsidy on beaches, and the important role ghost crabs are likely to play as 
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consumers within sandy beach ecosystems, and as vectors for the transfer of marine 

material through the beach-dune food web.   
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1 Introduction 

1.1 Ecology of sandy beaches 
Sandy beaches are highly dynamic habitats, physically defined by the interaction of sand, 

waves, and tides (Brown & McLachlan 1994). Beaches dominate the world’s coastline, 

making up around 75% of the globe’s land-sea boundaries (Gonçalves & Marques 2011), 

and form an essential habitat for a diversity of species, including numerous invertebrates, 

fishes, birds, and mammals (Dugan et al. 2000). Although having a terrestrial appearance, 

organic matter supporting beach food webs comes almost exclusively from the sea 

(Brown & McLachlan 1994; Gonçalves & Marques 2011). This is particularly the case 

on dissipative beaches, which are usually flat with breakers far from the intertidal zone 

dissipating their force gradually along wide surf zones (Branco et al. 2010; Short 2012), 

resulting in large allochthonous inputs of energy and nutrients frequently occurring on 

these types of beaches (Brown & McLachlan 1994; Short 2012).   

 

Sandy beach food webs are almost completely underpinned by trophic subsidies from the 

sea, mainly in the form of phytoplankton and the stranding of larger plants and animal 

carcasses. Conventionally, beach food webs have been categorized into three 

components: 1) interstitial invertebrates, numerically dominated by small meiofauna 

within the sand matrix; 2) the microbial loop; and 3) macroscopic organisms comprising 

larger invertebrates, birds, and fishes (Bergamino et al. 2011). Detritus (decomposing 

organic matter) is an important input to all compartments in beach food webs (Wallace et 

al. 1999). Carbon, fixed by photosynthetic organisms, can be made available to other 

ecosystem components via herbivores or detritivores (Enriquez et al. 1993), where the 

detrital path acts as a major determinant for the flow of carbon in ecosystems (Enriquez 

et al. 1993). Decomposition of plant detritus is principally conducted by bacteria and 

fungi and the rate of this process depends on all the factors influencing their activity 

(Enriquez et al. 1993). During decomposition, detritus can be a major food resource for 

many mobile organisms, including meiofauna such as copepods, and therefore transport 

of carbon can easily occur across large distances in coastal regions (Enriquez et al. 1993).  

 

Detrital inputs can support a diversity of species, and modulate energy fluxes and the 

dynamics of consumer populations (Moore et al. 2004). In beach ecosystems, the 
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movement of detritus and other forms of organic matter across ecosystem boundaries, 

termed ‘spatial subsidies’, can significantly alter productivity and change the distribution, 

abundance, and growth rates of consumers at multiple trophic levels (Polis & Hurd 1996; 

Polis & Strong 1996; Hyndes et al. 2014). Cross-boundary spatial subsidies vary 

enormously among ecosystems and several factors can influence exchange rates (Polis et 

al. 1997). Firstly, the physical characteristics of the recipient habitat (topography and 

vegetation) and the trophic position at which a subsidy enters a food web can determine 

how much the recipient habitat will be affected by the subsidy (Anderson & Polis 2004; 

Witman et al. 2004). The level of subsidy can also be influenced by: 1) the rate of 

consumption of the vector by a population in the recipient system and the mobility of the 

consumer (Ostfeld & Keesing 2000); 2) the nature of the vector available for transport 

(e.g. detritus, dissolved nutrients); and 3) the nature of boundaries between habitats (e.g. 

permeability) (Cadenasso et al. 2004; Witman et al. 2004). For example, cross-boundary 

subsidies can easily permeate into sandy beach ecosystems and can strongly affect the 

recipient system due to its low in-situ productivity, i.e. no autochthonous primary 

production (Power & Dietrich 2002; Liebowitz et al. 2016).  

 

Substantial amounts of marine macrophytes regularly become detached from reefs and 

seagrass meadows, and are transported by waves and tides to the surf zones of beaches   

(Wernberg et al. 2006). Accumulations of this plant material form ‘wrack’ that is a key 

energy input to many beach food webs. Depending on beach morphodynamics, that is 

wave height and period combined with sand grain size, wrack can extend beyond the 

swash zone and foredune, and into the dune swale (Dugan et al. 2015).  Kelp transported 

to surf zones has been shown to drive secondary production in shoreline habitats with 

inputs providing ‘spatial trophic subsidies’ for consumers (Crawley et al. 2009). On 

shores with sizeable amounts of wrack, beach-cast macrophytes can structure faunal 

assemblages, influencing abundance, biomass, species composition and trophic 

pathways; most of these effects are positive, generally attributed to wrack providing food 

and increasing physical habitat complexity (Ince et al. 2007; Olds et al. 2017). 

 

Movement of nutrients across ecosystem boundaries, including the beach-dune interface, 

requires a vector and force to move matter (Hyndes et al. 2014). On sandy beaches, 



14 
 

physical forces that move organic matter onshore are primarily wind, currents, tides, and 

waves (Lastra et al. 2008; Baring et al. 2014). These physical forces can deposit large 

amounts of stranded marine matter (i.e. wrack or carrion) on the shore that forms a crucial 

resource for beach consumers (Dugan et al. 2000; Baring et al. 2014). However, it is not 

only this passive flow of detritus that influences recipient habitats, but the active 

movement of animal vectors, such as flying insects (e.g. kelp flies), which feed on detritus 

and extend the influence of the detritus on terrestrial systems (Mellbrand et al. 2011).  

 

1.2 Ghost crabs (Ocypode spp.) 
Ghost crabs (Ocypode spp. (Weber, 1795)) are mobile semi-terrestrial invertebrates that 

normally constitute an important component of beach communities in tropical and 

subtropical habitats (Lucrezi & Schlacher 2014). They are efficient bioturbators on 

beaches and are a key link in food webs, frequently being important predators, whilst also 

providing food for larger vertebrate consumers (e.g. fish, birds) feeding at the land-sea 

interface (Lucrezi & Schlacher 2014). A characteristic of ghost crabs are their fossorial 

habits: they create deep and complex burrows and alternate between surface activity and 

being in underground microhabitats (Lucrezi & Schlacher 2014). They have evolved a 

range of physiological, morphological and behavioural adaptations that allow them to 

occupy broad beach to dune gradients (Lucrezi & Schlacher 2014). Ghost crabs can 

inhabit a range of beaches from sheltered coves and estuarine sandflats to fully-exposed 

ocean shores (Morrow 2012; Schlacher et al. 2013a).  

 

Across the beach-dune gradient, ghost crabs are found in a wide band from the mid to 

lower intertidal zones to 400 m inland (Lucrezi & Schlacher 2014). Both the distributional 

extent and the boundaries vary greatly among species: some species can occupy the full 

dune-beach profile, e.g. O. quadrata (Fabricius, 1787), whilst others only occur on the 

non-vegetated part of the beach seawards of the dunes (e.g. O. fabricii (H. Milne Edwards, 

1837)), (Lucrezi & Schlacher 2014). Other species, such as O. ceratophthalma (Pallas, 

1772), can occur in both the supratidal and intertidal zones (Lucrezi & Schlacher 2014). 

Some species show fairly restricted distributions, such as O. cordimanus (Latreille, 1818), 

which mainly occurs in supratidal areas. Ocypode convexa (Quoy & Gaimard, 1824), 
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which occurs in Western Australia, is reported to burrow around high-tide levels with 

some individuals extending a ‘short distance’ inland (Jones & Morgan 1994). In areas 

where O. ceratophthalma coexist with O. convexa, the distribution of the O. convexa 

shifts further upslope towards and into the dune areas (Lucrezi & Schlacher 2014).  

 

Ghost crabs are omnivorous with catholic food choices (Lucrezi & Schlacher 2014), 

capable of exploiting an extraordinary broad range of food (Chartosia et al. 2010; Lucrezi 

& Schlacher 2014). This broad trophic ambit is reflected in five feeding modes that have 

been identified in ghost crabs: 1) ‘deposit feeders’ that extract benthic microalgae from 

the sand with up to 70% efficacy (Lucrezi & Schlacher 2014); 2) ‘carnivores’ that can be 

an important invertebrate predator on sandy beaches, with up to 90% of their diet 

consisting of live prey, comprising mostly of shallow-burrowing macroinvertebrates, 

such as isopods and annelids (Wolcott 1978); 3) ‘detritivores’ that can readily consume 

plant detritus deposited on beaches, ingesting anything from seagrass and macroalgae to 

seeds, pods and terrestrial plant matter (Lucrezi & Schlacher 2014); 4) ‘scavengers’: who 

readily consume animal carcasses, as demonstrated by Schlacher et al. (2013b), who 

showed that they respond rapidly to, and aggregate around, carrion inputs; and 5) 

‘cannibals’ which are common especially when other food items are rare (Lucrezi & 

Schlacher 2014).   

 

Five species of ghost crabs occur in Australia (Jones & Morgan 1994; Sakai & Türkay 

2013; Lucrezi & Schlacher 2014): O. convexa (Golden ghost crab), O. ceratophthalma 

(Horn-eyed ghost crab), O. cordimanus (Smooth-handed ghost crab), O. pallidula 

(Hombron & Jacquinot, 1846) and O. fabricii (Figure 1.1). Four species occur along the 

Western Australian (WA) shoreline (i.e. O. convexa, O. ceratophthalma, O. cordimanus 

and O. fabricii) (Sakai & Türkay 2013). In this region, they have been reported on both 

sheltered and exposed beaches (e.g. Geraldton, WA) as well as muddy subtidal habitats 

(Jones & Morgan 1994). Anecdotal evidence does suggest that O. convexa, in particular, 

is the most abundant species within WA.  

Many of the more exposed sandy beaches can contain large accumulations of wrack based 

on deposition of allochthonous inputs of organic matter from the sea, which is known to 

subsidise beach food webs and include several types of stranded macrophytes in the 
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region (Ince et al. 2007; Mellbrand et al. 2011). Species of ghost crabs may feed on 

wrack, with impacts on the provision of spatial/cross-boundary subsidies through the 

processing of organic detritus and the predation of ghost crabs by other organisms, 

including higher-order organisms (Lucrezi & Schlacher 2014). 

 

Figure 1.1: Distributions of four of the five species of ghost crabs which occur along the 

Australian coastline (adapted from Lucrezi and Schlacher (2014)). Although not 

indicated, Ocypode pallidula distributions are constrained to islands off the Queensland 

coast, such as Lady Elliot and Heron Islands (Sakai & Türkay 2013).  

 

As illustrated above, ghost crabs can be highly abundant (Schlacher et al. 2011), play 

both a predatory and scavenger role within the food web on sandy beaches (Silva & 

Calado 2013), and exhibit high mobility across beach systems (Lucrezi & Schlacher 
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2014). Although the ecology of some species of ghost crab has been explored, very little 

is known of Ocypode convexa (Golden ghost crab). Its general ecology remains unknown, 

including its distribution and abundance, and its role in food webs on sandy beaches and 

terrestrial habitats, such as sand dunes (Morrow 2012; Lucrezi & Schlacher 2014). Due 

to the high biomass of wrack that can accumulate on sandy beaches in temperate Western 

Australia (Wells 2002), the generalist diet, high abundances, and extensive mobility 

exhibited by other ghost crab species, O. convexa possesses the potential to influence the 

movement of marine-derived nutrients across the beach-dune gradient.  

 

Beach and coastal dune systems are becoming increasingly exposed to a broad range of 

anthropogenic pressures from either side of the coastal ecotone, for example, climate 

change from a marine perspective and urban development from the terrestrial biome 

(Schlacher et al. 2016). To conserve and mitigate these pressures requires interventions, 

which need to be reinforced by reliable data in terms of severity and frequency of adverse 

ecological impacts (Schlacher et al. 2016). Ghost crabs are recognised as appealing 

ecological indicators, as they are widespread throughout subtropical and tropical regions, 

are locally abundant and large. Sampling them, therefore, requires minimal technical 

methods. In addition, their taxonomy is well known, identification is reasonably simple, 

and they construct semi-permanent burrows which are clearly visible from a beach 

perspective (Schlacher et al. 2016). Evidence of anthropogenic pressures is often obtained 

by measuring the response of ‘indicator species’, such as ghost crabs, which is ultimately 

useful in assessing ecosystem and environmental integrity (Branco et al. 2010; Lucrezi 

& Schlacher 2014; Schlacher et al. 2016). Thus, to understand if sandy beach ecosystems 

are healthy, there is a fundamental requirement to first understand the ecology of such a 

bio-indicator (Strachan et al. 1999). While ghost crabs are recognised as good indicators 

of beach health, there are some aspects of their ecology which evidently require further 

investigation. Understanding these aspects would provide access to new metrics for 

assessment, as well as expose the dynamics between species ecology and human 

stressors/impacts. Given the putative importance of the trophic ecology of ghost crabs for 

spatial subsidies in coastal ecotones, and how this remains poorly understood renders it 

paramount to carry out an investigation to fill such a knowledge gap. Understanding this 

role is particularly important since crab densities can be significantly impacted by off-

road vehicle (ORVs) activities, for example by sand compaction and getting crushed by 
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vehicles on the beach, and via consumption by invasive predators, such as foxes (Brown 

& McLachlan 1994; Schlacher et al. 2012). 

 

1.3 Aim and rationale 
The broad aim of this study was to determine the relevance of the Golden ghost crab, 

Ocypode convexa, as a consumer and potential vector for the transport of marine nutrients 

across sandy beach and dune systems in temperate Western Australia. To establish this, 

the specific objectives of the study on O. convexa were to determine the: 1) patterns in 

burrow densities along a gradient between the upper tidal and secondary dune zones; 2) 

diet and sources of production; and 3) feeding preference for marine- and/or terrestrial-

derived material. 

The outcomes of this research aim to contribute to the building body of knowledge on 

beach ecology and ghost crab ecology, by providing new information on the trophic 

ecology of ghost crabs, on their relevance in terms of spatial subsidies, and on the general 

ecology of a poorly known ghost crab species. The research will also inform decision- 

making by providing data, which can be used to propose the development of management 

plans for vulnerable sections of the coastal zone. 

 

2 Materials and methods 

2.1 Study sites  
The distribution and feeding ecology of O. convexa were studied at three beaches in 

Dongara, Western Australia. Whilst O. convexa was the only ghost crab species seen in 

large densities, other ghost crab species (O. ceratophthalma and O. fabricii) were 

occasionally seen (per obs. C. Rae). They are representative of exposed beaches, which 

are prevalent along much of the west coast of Australia, with moderate to heavy wave 

action, which, depending on season, causes steep beach slopes. They are intermediate 

morphodynamic types, with 10 – 30 m wide beaches (surf zone to foredune), backed by 

primary and secondary dune systems, with exposure to predominately south-westerly 

winds reaching up to 50 km/hr and 1.5 – 2 m swells from a west to south-westerly 
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direction. Beaches chosen were identified as Meares beach (site 1), Seven Mile beach 

(site 2) and Getaway beach (site 3) (Figure 2.2). Meares and Seven Mile beaches 

consisted of wide (25 – 30 m) beach profiles, with low (5 – 10 m high) primary dune 

systems and high secondary dune systems. In comparison, Getaway beach consisted of a 

narrow beach profile with steep and high (15 – 20 m) primary dune and secondary dune 

systems. These beaches were sampled in June 2015, September 2015 and February 2016, 

and were selected based on their minimum interference to natural distributions and 

processes by urban development, ORV use and beach visitors. 
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Figure 2.2: Location of the 3 study sites on the Mid-West coast of Western Australia 

where samples were collected at Meares (Site 1), Seven Mile (Site 2) and Getaway (Site 

3) beaches. 

 

2.2 Distribution and density of Ocypode spp. 
The relative abundance of ghost crabs in different parts of the beach-dune system was 

estimated using counts of active burrow entrances as a proxy (Lucrezi et al. 2009). 
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However, since the distinguishing characteristics of different ghost crab species’ known 

also to burrow openings cannot be determined with confidence, all burrow counts were 

reported at the genus level (O. ceratophthalma and O. fabricii seen along sampling 

beaches, per obs. C. Rae).  

 

Based on pilot sampling and observed O. convexa activity, burrow entrances were 

counted in replicate belt transects at five locations along the beach-dune gradient: the 

upper intertidal [UI], base of primary dune [BPD], top of primary dune [TPD], primary 

dune swale [PDS], and the top of secondary dune [TSD]) (Figure 2.3). Zones were 

determined based on morphological features, such as the swash zone, vegetation zones, 

and swales between the dunes. 

At each location and site, six 30 m x 3 m belt transects were positioned, with the longer 

axis being parallel to the shoreline. At each site, individual belt transects were spaced ca. 

200 m apart alongshore. Only active burrow openings were counted, judged by the 

presence of fresh tracks surrounding the entrance, excavated sediment next to the 

opening, or both  (Lucrezi et al. 2009). Counting was done at first light over three days, 

producing a total of 30 transects per site and sampling time. In addition, ten 1 m2 quadrats 

were placed randomly within transects, with two in each zone. This was to collect data 

on cover of wrack and to determine dominant species within wrack and of dune vegetation 

(Appendix: Table C).  

Soil moisture was also recorded after preforming burrows counts using a digital soil 

moisture metre (model PMS-714). The sand moisture was measured within each zone at 

the 15 m mark at each site.  
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Figure 2.3: A) Illustrates the location of the upper intertidal (UI) and base of the primary 

dune (BPD) zones; B) Location of the terrestrial zones – top of the primary dune (TPD), 

primary dune swale (PDS) and top of the secondary dune (TSD).  

 

2.3 Dietary composition of Ocypode convexa 
Both stomach content analysis (SCA) and stable isotope analysis (SIA) were used to 

identify the principal types and sources of ingested and assimilated food items. For both 

approaches, I sampled 90 adult O. convexa (19 - 26 mm in carapace width) (Fig. 2.4), 30 

each in June 2015, September 2015 and February 2016. Surface-active adults were hand-

collected from the upper intertidal zone. Adults were selected so that adequate muscle 

tissues were available for SIA. In the field, individuals were stunned in-situ by placing 

them in an ice slurry; once euthanised, they were injected with 70% ethanol into the 

stomach to preserve ingested items; this did not affect any muscle tissue outside the 

stomach cavity (Kolts et al. 2013). Specimens were transported on ice to the laboratory 

and processed for SIA within 72 hours of collection. 

 

A B 
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Figure 2.4: Ocypode convexa: dorsal, ventral and frontal aspects. 

 

To obtain a representative sample of potential dietary items of crabs, the dominant (in 

terms of biomass, cover, and distribution) of marine and terrestrial autotrophs and 

invertebrates were collected across zones. As described above, ten 1 m2 quadrats were 
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placed randomly, two quadrats per zone, at each site. From these, wrack material (algae 

and seagrass) and live invertebrates were hand-collected and terrestrial vegetation cut 

above the ground. We analysed three marine autotrophs (Ecklonia radiata, kelp; 

Amphibolis spp., seagrass; Jania rosea, red alga), two dune plants (Scaevola crassifolia, 

thick-leaved fan-flower; Atriplex sp., saltbush), and two invertebrates, a snail being 

widespread in the coastal dunes (Theba pisana, sand hill snail) and species of Talitridae 

(amphipods). 

 

Ninety stomachs were dissected (ten crabs per site x three sites x three sampling times) 

by first detaching the jaws and then gently removing the stomach whilst holding the 

oesophagus cartilage with forceps. All stomach content was preserved in 70% ethanol. 

Forty-five cheliped muscles were also removed (five individuals per site x three sites x 

three sampling times) from randomly selected male crabs for SIA. Males were chosen 

because they assimilate a greater proportion of their diet into somatic tissues than females, 

who direct their diet partly, depending on time of year, to form lipid-rich eggs (Kolts et 

al. 2013).   

 

Samples of potential diet items were rinsed in Milli-Q water, dried (60°C, 48 hr), ground 

and encapsulated in tin capsules for δ13C and δ15N analysis. Epiphytes were removed 

from seagrass leaves, and snails extracted from their shells. For δ13C analysis, amphipods 

were acid-treated (1N HCl until effervescence ceased) to remove inorganic carbon 

present in exoskeletons. The untreated portion of amphipods was analysed separately for 

δ15N (Crawley et al. 2009). Stable isotope ratios (δ13C and δ15N) were measured on a PDZ 

Europa ANCA-GSL elemental analyser interfaced to a PDZ Europa 20-20 isotope ratio 

mass spectrometer at the Stable Isotope Facility at the University of California, Davis. 

Isotope ratios were calculated as deviations from the international limestone standard 

Vienna Pee Dee Belemnite (VPDB) (δ13C and δ15N) in part per thousand (‰): dX = 

[(Rsample/Rstandard) - 1] * 1000, where X is the heavier isotope of the element (13C or 15N) 

and R is the isotopic ratio (13C/12C and 15N/14N).   
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Stomach fullness was visually graded using five broad categories: empty (0%); traces of 

food to roughly a quarter full (1-25%); a quarter to half full (26-50%); half to three-quarter 

full (51-75%); and three-quarter to full (>76-100%) (Chartosia et al. 2010; MacArthur et 

al. 2011). Stomach contents were placed in a petri dish with 5 millilitres of Milli-Q water 

and examined with a Leica CLS 150 dissecting microscope at 80x magnification (Kolts 

et al. 2013). Contents were then analysed using the numeric points system (Hyslop 1980), 

where contents were placed into a petri dish and spread evenly on a grid. The taxon 

present at each of the 100 systematically placed points were identified to the lowest 

possible taxonomic resolution (Branco et al. 2010), and the percentage of each food item 

was determined. The percentage of each food item was expressed as a percentage volume 

based on the number of points on which it was found respectively for each stomach.  

 

2.4 Feeding assays of Ocypode convexa 
To test whether ghost crabs prefer marine or terrestrial organic matter, a number of 

laboratory-based feeding assays were conducted that comprised both choice (i.e. food 

preference) and no-choice experiments. Both types of assays used five food items that 

were common on the beaches or coastal dunes in the study region: 1) blades of the beach-

cast marine kelp Ecklonia radiata; 2) leaves of the marine seagrass Amphibolis spp.; 3) 

leaves of thick-leaved fan-flower, Scaevola crassifolia, a plant common in the coastal 

dunes; 4) the flesh from Theba pisana, a sand hill snail which was the most abundant in 

terms of terrestrial fauna within the study region; and 5) the flesh from sandy sprat, 

Hyperlophus vittatus, a typically abundant fish species in the surf zones within the study 

region (Ayvazian & Hyndes 1995), which was used to represent marine carrion that can 

wash up onto beaches.    

 

The feeding assays used adults (with carapace widths between 19 - 26 mm) from both the 

non-vegetated part of the beach (n = 60) and the coastal dunes (n = 60). Assays were 

established in 10 L aquaria that either housed a single crab (treatments) or no consumer 

(controls). In the choice experiments, five food items were added, each weighing 10 g 

(wet weight (ww)) and placed randomly within the aquaria (50 g ww of food in total). In 

the no-choice experiments, a single food item (10 g ww) was presented per replicate to 

measure consumption rates. 
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Food items were randomly collected across the 3 sites within the study region. Food items 

used in the assays were kept frozen during transit and thawed for 12 hours prior to the 

commencement of feeding assays. Crabs used in the assays were captured and transported 

to the laboratory in individual aerated containers housed in a cooler with ice bricks to 

keep them subdued whilst in transit for 4 hours. In the laboratory, individuals were housed 

in fourteen 80 L aquaria, which were separated to house individual crabs whilst 

maximising on space and availability of aquaria. Each aquarium contained 40 L of 

washed river quartz sand and a 12:12 day and night cycle was also established to mimic 

their natural environment. In addition, 5 L of seawater was added every 5 hours (or until 

conditions were dry) to aquaria to feign incoming high tides and prevent crabs from 

desiccating. A mixture of potential food sources, including brown and red algae, 

seagrasses (Amphibolis spp. and Posidonia spp.) and fish carrion, were provided to 

sustain crab specimens. However, prior to assays commencing, crabs were fasted for 24 

hours before being introduced to the arenas and presented with food. 

 

In the choice assay, once each food type was thawed, it was blotted dry and 10 g (ww) of 

each source placed in both the treatment and control (no crab) experimental units. Twenty 

crabs were starved for 24 hours before being placed in the experimental arenas, after 

which consumption in treatments was monitored every 30 minutes over 8 hours, starting 

at 09:00 each day. Treatments were terminated when ≥50% of the tissue of at least one 

food source had been consumed. Each food source from each replicate for both treatment 

and control were rinsed in seawater to remove any sand, then its blotted weight recorded 

to the nearest 0.01g. Upon completion of the feeding assay, crabs remaining in treatment 

replicates were released back into the wild at the site of collection.  

 

In the no-choice experiments, a hundred crabs were starved for 24 hours before being 

placed in the experimental arenas and presented with a single type of food item. Treatment 

replicates for each of the five food types were randomly allocated to aquariums, as was 

the sequence in which crabs were offered different food types over the course of the 
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experiment. Termination of no-choice experiments and measurements of consumption 

rates followed the same procedure as for the choice experiments. 

 

2.5 Data analyses  
Spatial patterns in the density of ghost crab burrows were analysed with a mixed-model 

permutational analysis of variance (PERMANOVA) in PRIMER 7 & PERMANOVA 

software package using Euclidean distance, with the factors ‘ZONE’ across the dune-beach 

gradient (fixed), ‘SITE’ nested within zone (random), and ‘TIME’ (random). 

A Pearson correlation was also performed in IBM SPSS Statistics 24 to test whether there 

was an association between Ocypode spp. densities and average soil moisture content (%) 

at each zone. Data were square-root transformed.   

 

PERMANOVA was performed to identify significant differences in stomach content 

composition of crabs between sites and sampling times, followed by a SIMPER analysis 

to determine the food items that contributed most to the differences between sites and 

times. This was further complemented by non-metric multidimensional scaling (nMDS) 

of volume and frequency of occurrence of diet items across all individuals from whom 

stomachs were extracted and examined, as well as to illustrate spatial and temporal 

differences and or similarities in diet composition. The use of non-metric 

multidimensional scaling in comparison to metric was to minimise the criterion stress and 

allow for an accurate resemblance scale (Anderson et al. 2008). 

 

The Bayesian isotope mixing model framework, MixSIAR, was used to calculate the 

likely contribution of different food sources to assimilated carbon and nitrogen in the 

ghost crabs body tissue. MixSIAR estimates probability distributions of source 

contributions to consumer diets while accounting for uncertainty in source isotope 

signatures and trophic fractionation (Stock & Semmens 2015). The probability 

distributions are estimated using a Markov Chain Monte Carlo (MCMC) algorithm (Stock 

& Semmens 2015).  



28 
 

Trophic fractionation rates are known to vary between species with differences in diet 

types and dietary studies (Post 2002; Vanderklift & Ponsard 2003). However, 

fractionation experiments could not be performed within the limits of this project. 

Fractionation values of decapod crustacean species were obtained from the literature: 1) 

brown and red algae: ∆13C = 2.01 ± 0.86, ∆15N = 2.80 ± 0.98 (Gates 2006); 2) 

angiosperms and terrestrial plants: ∆13C = 1.90 ± 0.07, ∆15N = 6.00 ± 0.10 (Rudnick & 

Resh 2005); and 3) other diet items: ∆13C = 2.17 ± 0.15, ∆15N = 3.77 ± 2.42 (Waddington 

& MacArthur 2008; Guest et al. 2009).  

Nutritional values were also calculated based from stable isotope analysis data, which led 

to the determination of C:N ratios. 

 

For the feeding assays, consumption rates (mg/individual/h/g body weight) were 

calculated as: (HiCf / Ci) – Hf, where Hi and Hf were initial and final wet weights, 

respectively, of food sources presented to crabs, and Ci and Cf were wet weights of paired 

controls before and after. Replicates in which consumption was zero or the animals died 

were discarded as they did not provide sensible information on feeding preferences 

(removal of replicates where total consumption was ≤ zero did not affect statistics) 

(Goecker & Kall 2003; Crawley & Hyndes 2007).  

The choice assays were analysed using a Friedman non-parametric test of ranks (Peterson 

& Renaud 1989; Jiménez 2015), followed by a post hoc Wilcoxon signed-rank test 

(Wilcoxon 1945) (IBM SPSS Statistics 24). To minimize Type I errors in multiple pair-

wise comparisons, a more stringent p-value of 0.02 was used; Bonferroni adjustments 

were not used as they can increase Type II error rates (Cabin & Mitchell 2000).  

The no-choice assay data were analysed using a two-way ANOVA, using the factors food 

source (random) and zone (fixed). Data was square-root transformed and tested for 

homogeneity of variance with a Levene’s test. The two-way ANOVA was followed by 

post hoc Tukey HSD tests, to test for significant effects for all types of food sources (IBM 

SPSS Statistics 24). 
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3 Results 

3.1 Patterns in Ocypode spp. densities 
Burrows of Ocypode spp. were present across the entire width of the beach (upper 

intertidal and base of primary dune zones), where they were recorded in 96% of all 

transects, but were rarely found in the dune zones (Fig. 3.5). This resulted in a significant 

Zone effect (p = 0.001) (Table 3.1). However, there was also a significant Site (nested in 

Zone) effect (p = 0.006), and Zone by Time (p = 0.002) and Site by Time (p = 0.001) 

interactions, indicating that the burrow densities differed across Site, and that the Zone 

and Site effects were dependent on time of year. These were mainly due to the shifts in 

densities between the upper intertidal and base of the primary dune zones among times 

of year (Fig. 3.5). The mean density of crab burrows in the upper intertidal zone in June 

2015 were 44 - 115 burrows per 100 m2, but densities decreased in September 2015 and 

February 2016 to 22 - 73 and 26 - 64 burrows per 100 m2, respectively. The average 

density of crab burrows at the base of the primary dune was at its lowest in June 2015 

with 7 - 10 burrows per 100 m2, however this increased in September 2015 with 10 - 18 

burrows per 100 m2, then again in February 2016 with 27 - 58 burrows per 100 m2.  
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Figure 3.5: Mean density (± SE) of Ocypode spp. (burrows/100 m2) at each of the three 

study sites across the 5 zones (upper intertidal [UI], base of primary dune [BPD], top of 

the primary dune [TPD], primary dune swale [PDS] and top of the secondary dune [TSD]) 

and across 3 different sampling times: June 2015 (A), September 2015 (B) and February 

2016 (C).  
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Table 3.1: Results of a nested PERMANOVA testing differences (p ≤ 0.05) in densities 

of Ocypode spp. burrows across 5 zones. Mixed design with Zone (Fixed factor, 5 levels), 

Site nested within zone (Random factor, 3 levels), and time of the year (Random factor, 

3 levels). Data were log-transformed. 

 df MS Pseudo-F P(perm) Unique 
perms 

Zo 4 94.001 7.2067 0.001 999 
Ti 2 3.5875 2.3641 0.128 999 
Si(Zo) 10 5.4313 3.5791 0.006 997 
Zo x Ti 8 7.8228 5.1551 0.002 998 
Si(Zo) x 
Ti 20 1.5175 2.9731 0.001 999 

Res 225 0.51041                         
 

3.2 Ocypode convexa stomach content analyses  
Ghost crabs ingested a wide variety of food items, with 40 distinct food items being 

distinguished in stomachs (Table 3.2). Based purely on material found in stomachs, ghost 

crabs appeared to be overwhelmingly algivores: all but one individual had some type of 

algal material in the stomachs, whilst a single crab was found to be a pure carnivore (i.e. 

had no plant material in stomach; Table 3.2). Brown algae (Class Phaeophyceae) were 

the most frequently-ingested food item and also comprised the highest mean volume 

(Table 3.2). This included material from the family Sargassaceae and kelp of the genus 

Ecklonia that equally ranked second in terms of the frequency of occurrence and their 

mean volume (Table 3.2). After brown algae, unidentified plant material from 

Magnoliophyta ranked fourth, occurring in 29% of stomachs at an average volume of 

8.8% (Table 3.2). Animal matter was found in over half of the stomachs analysed for 

content, beetles were the most frequently observed animal food in the analysed crabs' 

stomachs, being found in 38% of crabs and making up 5.6% of the crabs’ stomach content 

(Table 3.2). The red alga Jania rosea was less common (FO = 27%) compared with either 

kelp (FO = 60%) or Sargassaceae (FO = 64%) yet ranked as fifth most frequent item. 

Individual seagrass species were neither very common, nor did they contribute large 

amounts to the crabs’ stomach material (Halophila spinulosa: FO = 1%, Vol = 0.1%; 

Posidonia ostenfeldii: FO = 11%, Vol = 1.7%). Food items of terrestrial origin (e.g. 
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various insects) occurred in half of individuals, comprising on average 12% of stomach 

volume. 

 

Table 3.2: Frequency of occurrence (%F) and percentage volume (%V) of dietary items 

(OTU) found in the stomachs (n = 90) of adult Ocypode convexa pooled from data 

summed over 3 sampling times (June 2015, September 2015 and February 2016) and 3 

sites.  

Higher Taxon 
Operational 

taxonomic units 
(OTU) 

Frequency 
of 

Occurrence 
(%F) 

Volume 
(%V) (+/- se) 

Volume  
95% CI 

 'Plant Matter'   99% 88.74 +/- 2.55 (83.75 - 93.73) 
 'Algae'  99% 74.33 +/- 3.09 (68.27 - 80.39) 
 'Brown Algae'  99% 64.02 +/- 3.34 (57.46 - 70.57) 
Ochrophyta, 
Phaeophyceae 

Phaeophyceae  78% 26.47 +/- 2.97 (20.64 - 32.29) 

      Dictyotales  Lobophora spp. 2% 0.05 +/- 0.04 (-0.03 - 0.12) 
  Dictyota spp. 7% 0.42 +/- 0.25 (-0.07 - 0.91) 
  Distromium spp. 10% 0.77 +/- 0.39 (0.01 - 1.53) 
       Fucales Cystoseira spp. 1% 0.26 +/- 0.26 (-0.25 - 0.78) 
  Sargassaceae  64% 14.55 +/- 2.38 (9.88 - 19.21) 
  Sargassum spp. 12% 1.61 +/- 0.53 (0.57 - 2.65) 
      Laminariales Ecklonia spp. 60% 19.9 +/- 2.89 (14.23 - 25.57) 
 'Red Algae'   33% 7.65 +/- 2.06 (3.61 - 11.69) 
Rhodophyta, 
Florideophyceae, 
Rhodomelaceae 

Dasyclonium 
spp. 

9% 0.38 +/- 0.16 (0.06 - 0.69) 

Rhodophyta, 
Florideophyceae, 
Corallinaceae 

Metagoniolithon 
spp. 

3% 1.06 +/- 1.01 (-0.93 - 3.04) 

  Jania spp. 3% 0.31 +/- 0.19 (-0.07 - 0.68) 
  Jania rosea 27% 5.91 +/- 1.74 (2.49 - 9.33) 
 'Green Algae' 
(Chlorophyta) Chlorophyta 19% 2.67 +/- 0.95 (0.8 - 4.53) 

 'Vascular Plants'  49% 14.41 +/- 2.36 (9.79 - 19.04) 
Seagrass  12% 1.84 +/- 0.86 (0.15 - 3.53) 

   Posidoniaceae 
Posidonia 
ostenfeldii 11% 1.71 +/- 0.86 (0.03 - 3.39) 

   Hydrocharitaceae 
Halophila 
spinulosa 1% 0.13 +/- 0.13 (-0.12 - 0.38) 

Magnoliophyta, Poaceae Poaceae 
unidentifided 
spp. 

8% 0.85 +/- 0.4 (0.07 - 1.63) 

Tracheophyta, 
Alismatales Alismatales  3% 0.17 +/- 0.14 (-0.1 - 0.43) 
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Tracheophyta (Phylum)  Tracheophyta 20% 2.72 +/- 1.25 (0.27 - 5.18) 
Magnoliophyta 
(Phylum) Magnoliophyta  29% 8.84 +/- 1.84 (5.24 - 12.45) 

 'Animal Matter'  58% 11.26 +/- 2.55 (6.27 - 16.25) 
Porifera Porifera  9% 0.22 +/- 0.08 (0.06 - 0.37) 
Mollusca, Gastropoda Gastropoda  2% 0.05 +/- 0.04 (-0.03 - 0.14) 
Crustacea Crustacea  8% 0.34 +/- 0.17 (0 - 0.68) 
 'Insects'  49% 10.22 +/- 2.5 (5.32 - 15.13) 
Coleoptera Coleoptera  38% 5.64 +/- 1.46 (2.79 - 8.49) 
Hymenoptera Hymenoptera  13% 0.74 +/- 0.25 (0.25 - 1.23) 
Diptera Diptera 3% 0.1 +/- 0.07 (-0.03 - 0.23) 
  Cecidomyiidae  1% 0.02 +/- 0.02 (-0.02 - 0.07) 
Blattodea Blattodea  1% 0.02 +/- 0.02 (-0.02 - 0.05) 
Hemiptera Hemiptera  12% 2.02 +/- 0.87 (0.32 - 3.72) 

  
Hemiptera - 
Heteroptera  

10% 0.66 +/- 0.29 (0.08 - 1.23) 

  Insecta  11% 1.03 +/- 0.37 (0.3 - 1.76) 
Arthropoda Arthropoda  10% 0.31 +/- 0.11 (0.09 - 0.53) 

  
Unidentified 
Animalia spp. 

4% 0.12 +/- 0.06 (0 - 0.24) 

 'Marine material'   99% 76.89 +/- 2.99   (71.02 - 82.75) 
 'Terrestrial material'   56% 11.55 +/- 2.54   (6.56 - 16.53) 

 

PERMANOVA illustrated no significant temporal or spatial differences in the dietary 

composition, however, there was a significant interaction between sampling time and site 

(p = 0.001) indicating some temporal segregation (Table 3.3, Fig. 3.6). This was 

particularly evident in the post hoc pairwise comparisons. There were significant 

differences between all sampling times within each site, and between sites 2 & 3 for June 

2015, sites 1 & 2 and 1 & 3 for September 2015, and sites 1 & 2 and 2 & 3 for February 

2016. The SIMPER analysis indicated that the differences among sites and sampling 

times were driven by a combination of Phaeophyceae, Sargassaceae, Ecklonia spp., 

Coleoptera, J. rosea and Magnoliophyta (seen between sampling times only), with the 

relative importance of these variables differing according to respective groups (Table 

3.4). However, the dissimilarity and standard deviations of the contributions of influential 

taxa was low, as was their contribution percentages, with all taxa less than 20% (Table 

3.4). Therefore, it was difficult to determine strongly influential discriminating species 

(Clarke & Warwick 1994). The nMDS plot indicated a slight separation of samples 

between sampling times and sites, with taxon in Ochrophyta (including Sargassaceae) 

being the dominant item consumed (Fig. 3.6). Separation between June 2015 sampling 
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time and September and February times was apparent, as was a difference between sites 

1 and 3 (Fig. 3.6). 

 

Table 3.3: Results of a PERMANOVA testing differences (p ≤ 0.01) in the diet of 

Ocypode convexa across the 3 different study sites (Si) and sampling times (Sa). 

Significance level lowered to p ≤ 0.01, as data were still heterogeneous after square-root 

transformation. Orthogonal design with sampling time random (3 levels) and site random 

(3 levels).  

 df     MS Pseudo-F P(perm) Unique 
perms 

Sa 2 12354 1.9347 0.096 943 
Si 2 17896 2.8025 0.027 946 
Sa x Si 4 6385.7 3.6372 0.001 998 
Res 81 1755.7                         

 

 

Figure 3.6: nMDS plot based on a Bray-Curtis similarity matrix representing stomach 

contents of Ocypode convexa collected across all sites, highlighting the differences 

between sites and sampling times (June 2015, September 2015 and February 2016). 
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Vectors represent the food items characterising the composition of the diet (Pearson 

correlation = 0.5). Data were square-root transformed. 

 

Table 3.4: SIMPER summary table indicating which taxa contributed to the significant 

pairwise differences between sites and sampling times (cumulative % cut-off at 50%). 

Groups  Taxa identified Mean 
value* 

Mean 
value 

Dissimilarity/
Square 

Difference 
(SD) 

Contribution % 

Site 1* 
vs. Site 

2 

Phaeophyceae  3.83 5.34 1.27 16.02 
Sargassaceae  2.21 3.88 1.13 15 
Ecklonia spp. 1.8 2.42 0.93 13.14 
Coleoptera  2.65 0.32 0.91 10.3 

Site 1* 
vs. Site 

3 

Phaeophyceae  3.83 3.1 1.19 11.83 
Sargassaceae  2.21 1.89 0.92 9.6 
Ecklonia spp. 1.8 5.16 1.32 17.66 
Coleoptera  2.65 0.61 1.01 10.27 
J. rosea 0.76 1.75 0.71 8.61 

Site 2* 
vs. Site 

3 

Phaeophyceae  5.34 3.1 1.14 16.79 
Sargassaceae  3.88 1.89 1.04 14.09 
Ecklonia spp. 2.42 5.16 1.23 18.63 
J. rosea 0.6 1.75 0.64 9.1 

Jun 
2015* 

vs. Sept 
2015 

Magnoliophyta  4.09 0 1.46 14.19 
Phaeophyceae  3.84 3.15 1.19 12.17 
Sargassaceae  1.44 2.56 0.94 9.44 
Ecklonia spp. 2.94 3.47 1.04 11.4 
J. rosea 0.7 2.01 0.86 8.02 

Jun 
2015* 

vs. Feb 
2016 

Magnoliophyta  4.09 0.41 1.42 14.78 
Phaeophyceae  3.84 5.28 1.29 13.1 
Sargassaceae  1.44 3.97 1.33 12.42 
Ecklonia spp. 2.94 2.97 1.09 10.64 

Sept 
2015* 

vs. Feb 
2016 

Phaeophyceae  3.15 5.28 1.5 18.7 
Sargassaceae  2.56 3.97 1.2 16.42 

Ecklonia spp. 3.47 2.97 1.05 16.28 
 

3.3 Stable isotope analysis 
Stable carbon isotopes of potential food items and consumers covered a broad range of 

values, from the most depleted signatures in thick-leaved fan-flower (Scaevola 

crassifolia, δ13C = -24.76 ± 0.24‰, mean ± se; Fig. 3.7) to the most enriched signatures 
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in beach casts of the red alga Jania rosea (δ13C = -11.96 ± 0.22). Tissues of Scaevola 

crassifolia had the lightest stable nitrogen ratios (δ15N = 0.43 ± 0.44), whilst the most 

enriched signatures were recorded in sandy sprat (Hyperlophus vittatus; δ15N = 10.87 ± 

0.05). The carbon isotope ratios of ghost crabs (δ13C = -17.30 ± 0.10) broadly straddled 

the middle of the range of producers and wrack material (Fig. 3.7), and were similar to 

talitrid amphipods (δ13C = -18.18 ± 0.29). Nitrogen ratios of ghost crabs (δ15N = 8.20 ± 

0.12) were the second most enriched after sandy sprat and heavier compared with both 

talitrid amphipods (δ15N = 3.40 ± 0.16) collected from the beach and sand hill snails 

collected from the dunes (δ15N = 3.91 ± 0.17; Fig. 3.7).  

 

Isotope ratios for both carbon and nitrogen in ghost crabs were remarkably invariant in 

space and time (Table 3.5). For carbon, there were no significant differences between 

sites and times, except for June 2015 when carbon ratios were slightly lower at site 3 

(δ13C = -18.12 ± 0.31‰) compared with other sites (δ13C = -16.80 to -16.85‰; Table 

3.5). Nitrogen ratios were equally invariant among sites and over time, with the only 

significant (p = 0.03) difference between means being slightly elevated values at site 2 in 

June 2015 (δ15N = 9.66 ± 0.48‰). At other times, mean δ15N values were similar among 

all three sites (range of δ15N means: 7.54 to 8.26‰), and no significant temporal variation 

was evident between all crabs collected during September 2015 and February 2016 (Table 

3.5).  
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Figure 3.7: Bi-plot of average δ13C and δ15N values of a range of primary producers and 

consumers (including Ocypode convexa) (Appendix: Table B). 

 

Table 3.5: Variation in stable carbon and nitrogen ratios of ghost crabs (Ocypode 

convexa) (n = 45) from Dongara, Western Australia.   

δ13C (‰) Meares Beach 
 

Seven Mile Beach  Getaway Beach  
Mean (SE)            Mean (SE)         Mean (SE) 

June '15 -16.80 (0.23)    -16.85 (0.05)    -18.12 (0.31) 
Sep. '15 -17.24 (0.22)    -17.15 (0.23)    -17.66 (0.39) 
Feb. '16 -16.84 (0.24)    -17.74 (0.23)    -17.33 (0.36) 
         
δ15N (‰) Meares Beach  Seven Mile Beach  Getaway Beach  

Mean (SE)    Mean (SE)    Mean (SE) 
June '15 8.40 (0.21)    9.66 (0.48)    8.14 (0.25) 
Sep. '15 7.81 (0.18)    7.54 (0.18)    7.90 (0.17) 
Feb. '16 8.10 (0.35)    8.26 (0.36)    7.99 (0.35) 

  

Isotope mixing models suggest that O. convexa assimilates carbon and nitrogen from a 

range of marine and terrestrial sources, with no clear dominance by any single source, or 

by a group of sources (Fig. 3.8). Marine kelp (Ecklonia radiata), available to ghost crabs 

as stranded wrack on the upper beach, and the thick-leaved fan-flower (Scaevola 

crassifolia), growing in the dunes, both had modelled median contributions of 16% (Fig. 
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3.8). Another dune plant, saltbush (Atriplex sp.) and sand hill snails (Theba pisana) had 

slightly lower median contributions at 11% each (Fig. 3.8). All other diet sources included 

in the mixing models had median contributions of 8 to 9% (Fig. 3.8). Overall, the inter-

quartile ranges of all potential food sources included in the mixing models indicated a 

mixed diet made up of algae/plant and animal matter of both marine and terrestrial 

provenance. 

However, the nutritional values of food sources illustrated a distinct difference (Table 

3.6). I found that the nitrogen content of animal prey was, on average, nine times higher 

than that of algae and vascular plants, with the most nutritious prey being fish carrion, 

followed by the soft tissues of snails and amphipods (Table 3.6). 

 

 

Figure 3.8: Box-whisker plots for the contributions of eight potential food sources for 

Ocypode convexa (sampling times and sites combined). Based on dual-isotope (δ13C and 

δ15N) mixing model (MixSIAR) outputs illustrating 3rd/98th (dots), 5th/95th (line), 25th/75th 

(box) and 50th (median) percentiles. 
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Table 3.6: Nutritional values (indexed by nitrogen content and C/N ratios) of a range of  

potential food items for Ocypode convexa (n = 45). 

  %N  C:N 
Algae and Vascular Plants mean se mean se 
Wrack 

    

  Kelp (Ecklonia radiata) 1.11 0.04 39.30 1.40 
  Seagrass (Amphibolis spp.) 0.85 0.15 72.10 9.60 
  Red algae (Jania rosea) 0.55 0.04 36.20 2.20 
Dune plants 

    

  Thick-leaved fan-flower (Scaevola 
crassifolia) 

1.61 0.07 33.40 1.40 

  Saltbush (Atriplex sp.) 1.45 0.10 24.90 1.70 
Animals 

    

 Amphipods (Fam. Talitridae) 5.19 0.31 7.90 0.70 
 Sand hill snail (Theba pisana) 9.77 0.60 5.00 0.20 
 Sandy sprat (Hyperlophus vittatus) 15.23 1.26 3.70 0.00 

 

 

3.4 Feeding assays 
Ghost crabs strongly and consistently preferred meat over algal and plant food (Fig. 3.9). 

This pronounced penchant for feeding on animal flesh was evident irrespective of whether 

crabs were given a choice of food items (Figure 3.9a; Friedman, χ2 = 125.07, df = 2, p < 

0.001), or whether the animals in the feeding assays originated from the non-vegetated 

beach or from the dunes (Table 3.7, Zone x Source p = 0.83; Fig. 3.9b). In the choice 

assays, crabs consumed 55 times the amount of fish carrion than the average of algal or 

plant food, and 17 times the amount of snail carrion (Fig. 3.9a). In fact, mean consumption 

rates of seagrass (0.70 ± 0.28 mg/individual/h/g body weight), kelp (0.21 ± 0.19) and 

dune plants (0.04 ± 0.04) were substantially lower compared with snail flesh (3.77 ± 0.85) 

and fish flesh (17.52 ± 0.85), which were significantly (p < 0.001) higher than the other 

material offered. This pattern of intense feeding on necromass and negligible intake of 

vegetable matter was mirrored in the no choice experiments (Fig. 3.9b). Fish carrion was 

consumed by crabs at rates 21 times exceeding intake of algae and plants, and snails were 

devoured 7 times more (Fig. 3.9b). Conversely, consumption of any of the three types of 

plant food was equally low (Fig. 3.9b). 
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Figure 3.9: Mean consumption (± SE) of Ocypode convexa found on beach and dune 

zones for Choice (a) and No-choice (b) assays for each of the 5 potential food sources - 

E. radiata, Amphibolis spp., S. crassifolia, H. vittatus and T. pisana. Bars labelled with 

the same letter do not differ significantly (Choice assay post hoc, Wilcoxon signed-rank 

test and No-choice assay post hoc Tukey HSD, p ≤ 0.05). 

 

Table 3.7: Two-way ANOVA testing the no-choice consumption rates for Ocypode 

convexa found in beach and dune zones for the 5 different food sources - E. radiata, 

Amphibolis spp., S. crassifolia, H. vittatus and T. pisana. 

Source of Variation df MS F Sig. 
Zone 1 0.12 0.40 0.53 
Source  4 6.74 22.61 0.00 
Zone x Source 4 0.11 0.37 0.83 
Error 59 0.30     
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4 Discussion 
This study is the first account of the ecology of the Golden ghost crab Ocypode convexa, 

a species endemic to the west coast of Australia. By investigating the densities and 

distributions at three beaches in the Mid-West region of Western Australia, I have shown 

that most of the population of ghost crabs occur on the non-vegetated beach, seawards 

from the base of the primary dunes. With regards to distribution patterns across the beach-

dune gradient, my results concur with other studies showing that the bulk of the 

population typically is distributed at or near the strandline between the upper tidal limit 

and the foredunes (Jones & Morgan 1994; Dugan et al. 2000; Chartosia et al. 2010; 

Corrêa et al. 2014). 

 

The diet of O. convexa, as gauged by stomach content analysis, appears extraordinarily 

varied. This melange of diverse food items consumed by ghost crabs is also reflected by 

stable isotope mixing models, suggesting assimilation of a broad range of material 

comprising detrital algae and vascular plants from marine and terrestrial sources, and 

animal carrion of invertebrate and fish carcasses being consumed in roughly similar 

proportions. However, this catholic diet of ghost crabs under field conditions may be a 

constraint of limited carrion availability on beaches rather than a continual penchant for 

a mixed diet that includes plants. In the feeding assays, I have conclusively shown that 

when animal carcasses are available, ghost crabs behave almost exclusively as 

scavengers, consistently selecting animal carrion over plant material (Schlacher et al. 

2013b). Therefore, ghost crabs are unenthusiastic consumers of vegetables, feeding on 

algae and plant matter only when animal carrion or live animal prey is sparse.   

 

4.1 Ocypode spp. densities and distribution across beach-dune gradient 
Ghost crab burrows were significantly more abundant in the upper intertidal zone at all 

sites and during all sampling times. By contrast, densities were consistently much lower 

in the dunes. This spatial pattern is likely to reflect the burrowing pattern of O. convexa 

since it was the only dominant species collected on those beaches during the crab 

sampling for dietary studies. These distributions across the beach are similar to those 

reported by Corrêa et al. (2014), for Ocypode quadrata in south eastern Brazil, and by 
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Quijón et al. (2001) for Ocypode gaudichaudii in Chile, both reporting consistently higher 

densities on the non-vegetated part of the beach seawards of the dunes. 

 

Higher abundance of ghost crabs closer to the sea do appear to be positively correlated 

with higher moisture content of the sediment, thus seems to be one factor influencing 

their distribution (Appendix: Fig. A; Table A; Fig. B). Additionally, other influential 

factors could be greater food availability at or near the wrack line or behaviour associated 

with reproduction. Sand moisture has been shown to influence burrow position and depth 

(Wolcott 1984; Schlacher & Lucrezi 2010b; Lucrezi & Schlacher 2014). One of the 

functions of burrows is to provide crabs with a moist environment, enabling them to take 

up oxygen and avoid desiccation during high temperatures (Lucrezi & Schlacher 2010). 

Another function of burrows is to act as a refuge during storms or hot weather, and 

considering deeper burrows are constructed in drier environments (Lucrezi & Schlacher 

2014), such as dune zones, this could explain higher distributions of crabs closer to dune 

zones in June 2015 (winter) compared to September 2015 (spring) and February 2016 

(summer) (significant interaction between zones and sampling times). Burrows are also 

important for moulting, sex-specific signalling, and egg development during the 

reproductive season of ghost crabs (Lucrezi & Schlacher 2014), potentially being another 

contributing factor to the higher densities observed within the upper intertidal zone across 

all sampling times.  

 

Although few ghost crabs occurred in the dune zones, this does not necessarily imply that 

coastal dunes are lesser habitats. On the contrary, coastal dunes are critically important 

as refuges during storms (Lucrezi et al. 2010; Harris et al. 2011). In fact, populations of 

ghost crabs on beaches where dunes have been replaced with urban structures take 

significantly longer to recover after storms (Walker & Schlacher 2011). Thus, the 

importance and value of dunes to ghost crabs is likely to be a ‘pulsed’ one, strongest 

during and after storms (Walker & Schlacher 2011). This was supported in the current 

study where more burrows were recorded in the dunes during winter (June 2015) 

compared with the warmer months (September 2015 & February 2016). However, to 

provide a greater understanding of the extent of nutrient transfer from the marine to the 

terrestrial environment, investigations regarding ghost crab movements into dune zones 

would be beneficial. 
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The bulk of the O. convexa population occurring between the upper intertidal and base of 

the primary dune zones has implications to human disturbance. This is the area where off-

road vehicles (ORVs) drive along the beach, and due to this spatial overlap, it is well 

established that these vehicles cause substantial and widespread environmental harm to 

beach ecosystems, including negative impacts on ghost crabs (Wolcott & Wolcott 1984; 

Lucrezi & Schlacher 2010; Schlacher & Lucrezi 2010a, b). Such impacts include being 

crushed at night by ORVs, which severely impact ghost crabs densities since they are 

most active at night and feed at the shoreline, as well as altered habitat quality (Moss & 

McPhee 2006; Schlacher & Thompson 2007; Lucrezi & Schlacher 2010; Schlacher et al. 

2016). It is, therefore, likely that the popular use of off-road vehicles on this beach zone 

in the Mid-west region (Moss & McPhee 2006; Carter & Schlacher 2009) will impact the 

population of O. convexa through crushing of crabs or destruction of burrows and 

compaction of sand in heavy ORV usage areas. In addition, the limited distribution of this 

species across the beach-dune interface and geographically makes it susceptible to a range 

of other human disturbances, such as global warming, altered precipitation and pollution, 

i.e. debris and chemicals, but little is known about these effects on ghost crabs (Schlacher 

et al. 2016). Ghost crabs represent a powerful model organism for detection of such 

ecological impacts in sub-tropical and tropical coastal systems (Jones & Morgan 1994; 

Schlacher et al. 2016). Therefore, accurately measuring and predicting the environmental 

risks that these elements pose for beach and other ecosystems is a research priority.  

 

4.2 Diet of Ocypode convexa 
Ocypode convexa in the Mid-West of Western Australia is an opportunistic feeder, 

consuming a remarkably wide variety of food items. Based on stomach content analyses, 

the diet composition of O. convexa showed some variation across sites and times, but was 

typically dominated by brown algae, complemented by some vascular plants including 

seagrass, and arthropods (various insects and amphipods). Stable isotope analysis, which 

indicates diet over a longer time period compared with stomach content analysis (weeks 

cf. daily) (Hyslop 1980; Layman et al. 2012), also indicated a mixed diet, including 

material commonly found in wrack (e.g. seagrass, kelp), detritus from dune plants, and 

arthropods from the beach and dunes (Ince et al. 2007; Laidre 2013). My findings of a 

varied diet that included both marine and terrestrial matter are broadly similar to other 

ghost crab species whose food intake has been examined (Chartosia et al. 2010; Lucrezi 
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& Schlacher 2014). For example, Chartosia et al. (2010) found that food intake of O. 

cursor comprised 67% drift algal material and 33% of animal material, mostly terrestrial 

insects dominated by ants (Myrmicinae). In comparison, 89% plant and 11% animal 

matter were identified in O. convexa for the present study, in which marine algae, 

Phaeophyceae and Rhodophyta, and terrestrial fauna predominantly from the Class 

Insecta, formed the majority of the diet. Whilst there have been few recent studies on the 

diet of ghost crabs, species from the superfamily Ocypodoidea (Uca spp., Scopimera 

inflata, Ocypode quadrata and Ocypode cursor) appear to feed opportunistically on both 

marine and terrestrial plants and fauna (Wolcott 1978; Robertson & Pfeiffer 1982; 

Wolcott & O'Connor 1992; Wolcott 1999; Chartosia et al. 2010). These opportunistic 

diets reflect those morphological and physiological characteristics seen in the Infraorder 

Brachyura that allow them to forage on a range of food types (Bellwood 2002; Josileen 

2011; Lee 2015).  

 

Ghost crabs are commonly reported to be efficient, frequent, and common scavengers of 

animal carcasses on sandy beaches and dunes worldwide (Lucrezi & Schlacher 2014). 

This contrasts with data from my stomach content analyses indicating that algal and plant 

material, particularly algae stranded as wrack, are the main food source. This may suggest 

that feeding is largely opportunistic on wrack deposits (Appendix: Table C). However, 

whilst not observed in-situ, O. convexa is likely to respond rapidly to both live animal 

prey and carrion inputs. This behaviour was demonstrated in the feeding assays, where 

the species almost exclusively fed on invertebrate and fish carcasses, shunning algae, 

seagrass and dune plants. Ghost crabs are frequently reported to actively predate, hunting 

prey as large as turtle hatchlings and the unfledged chicks of ground-nesting birds 

(Schlacher & Lucrezi 2010a; Peterson et al. 2012; Lucrezi & Schlacher 2014).   

 

Stomach content analysis (SCA) is a traditional approach in diet studies, but only provides 

a short-term (hours to days) ‘snapshot’ of recently ingested items (Hyslop 1980). It can 

also be misleading if diet items are digested at different rates and may not reflect what is 

assimilated into the animal’s tissues (i.e. a mismatch between food ingested and food 

assimilated). In this study, SCA would strongly point towards ghost crabs being mainly 

herbivorous based on the large amounts of plant material (mostly brown algae) in the 

crabs’ stomachs. Plant material, particularly vascular plants, is recalcitrant during 

digestion due to it containing complex structural molecules (e.g. cellulose), tannins and 
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phenolics, resulting in slower digestion compared to animal material (Wolcott & 

O'Connor 1992; Chartosia et al. 2010). These differences in digestibility can bias 

interpretations of stomach content data and can over-estimate the contribution of plant 

material.   

 

Stable isotope analyses from this study provided a more integrated picture of assimilated 

dietary items. Stable isotope analyses are one of the primary means to analysing the 

structure of food webs, where ẟ13C is often used to link consumer to food source and ẟ15N 

is typically used as a proxy for trophic position (Gannes et al. 1998; Layman et al. 2012). 

Based on ẟ13C and ẟ15N signatures and isotopic mixing model results, O. convexa 

assimilates nutrients from a broad range of food sources, including animal material in 

similar amounts to plants. The food sources analysed in this study were representative of 

a range of food items available to O. convexa within the study region. Carbon and nitrogen 

isotope values for food sources of O. convexa were similar to that of Ince et al. (2007), 

where macroinvertebrates (amphipods and dipteran flies) consuming wrack material had 

ẟ13C values from -22.3 to -17.3‰ and δ15N values ranging between 7.5 to 14.3‰, in 

comparison to primary producers (ẟ13C = -24.8 to -12.0‰; δ15N = 0.4 to 6.3‰) and faunal 

(ẟ13C = -24.1 to -18.2‰; δ15N = 3.4 to 10.9‰) food sources from this study. Moreover, 

a low ẟ15N value (‰) for O. convexa (δ15N = 8.2 ± 0.1) in comparison to H. vittatus (δ15N 

= 10.9 ± 0.1) was unsurprising due to ghost crabs being omnivores and sandy sprat being 

invertivores, thus making ghost crabs first to second order consumers (MacArthur et al. 

2011; Hyndes et al. 2013). This was similarly seen in MacArthur et al. (2011) where the 

mean ẟ15N value (‰) for the Western Rock Lobster was 8.3 ± 0.3 in comparison to 

invertebrate prey, i.e. gastropods and polychaetes (ẟ15N = 5.9 ± 0.3).   

 

The limitations of SCA have led to an increasing emphasis on stable isotope analysis 

(SIA) as a tool to assess food web structure and function (Layman et al. 2012; deVries et 

al. 2015). However, interpretation of an animal’s diet from its stable isotope composition 

is calculated based on knowledge of fractionation values of the food source assimilated 

into the tissues of consumers (deVries et al. 2015). Known fractionation values are limited 

for many consumer species and tissues (Waddington & MacArthur 2008), and are often 

based on assumed values (Caut et al. 2009; Bond & Diamond 2011). Thus, a degree of 

uncertainty must be acknowledged when using SIA. In addition, SIA depends on being 

able to locate, identify and sample a full range of dietary items that the consumer may 
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devour. Missing critical dietary items is likely to increase the uncertainty around the 

outcomes from SIA and the associated mixing models. However, the relatively close 

distributions of the potential contributions of the range of dietary items used suggest that 

uncertainty was not a major issue in the current study. Rather, it confirmed the varied diet 

of O. convexa shown through SCA. By combining these two techniques for dietary 

studies, this study has further provided a more robust short- and long-term estimate of the 

diet of O. convexa.  

 

Whilst ghost crabs can ingest a very broad range of food items in the field, my feeding 

assays demonstrated conclusively that crabs are almost exclusively scavengers in the 

situation where animal carcasses are available. This proclivity for animal flesh, is likely 

to be related to the greater nutritional value of protein-rich animal material (Pearson et al. 

2011). The nitrogen content of animal prey was higher than that of algae and vascular 

plants and even amphipods, the prey items with the lowest nitrogen content amongst the 

analysed animal prey, had three times more nitrogen than the plant material with the 

highest nitrogen values. These substantial differences in the nutritional value are closely 

related to food selection in ghost crabs, with 99% of the variation in feeding rates for 

different food items being explained by the nutritional value of food (Fig. 3.10). Crabs, 

therefore, appear to strongly and consistently select animal carrion over plant matter, and 

this active choice behaviour is closely linked to the nutritional value of food.  
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Figure 3.10: The relationship between feeding rate of Ocypode convexa and the 

nutritional value (indexed by nitrogen content) of different food items in feeding assays.  

 

The potential animal material on beaches can be in the form of carrion, i.e. animal 

carcasses (Schlacher et al. 2013b), however, little is known about the input or quantity of 

this material on West Australian beaches (possibly because it is consumed rapidly). In 

addition to animal carcasses, ghost crabs may also predate on living animals, most likely 

species that are associated with wrack. In particular, arthropods (e.g. amphipods, dipteran 

flies, spiders, beetles) can be abundant at the strandline and are found throughout coastal 

dunes (Ince et al. 2007; Mellbrand et al. 2011). It is, however, unclear to what extent 

ghost crabs actively hunt for live prey or whether consumption of live prey occurs 

coincidentally whilst scavenging. Active hunting behaviours have been reported for some 

ghost crab species on larger vertebrate prey (e.g. turtle hatchlings, unfledged chicks of 

ground-nesting birds) and benthic invertebrates (e.g. mole crabs) (Strachan et al. 1999; 

Wolcott 1999; Laidre 2013). However, it is unknown whether ghost crabs can detect and 

capture smaller and swiftly-moving animals, such as talitrid amphipods and other 

arthropods. Based on the interpretation of all three dietary techniques used in this study, 

the most plausible trophic mode of O. convexa appears to be an omnivore of catholic 
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tastes, foraging opportunistically on a wide range of both animal and plant matter from 

the marine and terrestrial provenance.  

 

4.3 Trophic implications of Ocypode convexa on sandy beaches 
This study further supports the conclusion that cross-boundary subsidies, such as algae, 

seagrass and animal carrion from the sea, underpin food webs of sandy beaches in the 

region (Ince et al. 2007; Mellbrand et al. 2011) and elsewhere (Barreiro et al. 2012; Tran 

2014; Claudino et al. 2015). Ghost crabs show distinct trophic plasticity (Lucrezi & 

Schlacher 2014), but as shown in the present study, consume high proportions of marine-

derived material. Since crustaceans can process a sizeable amount of this material (Lastra 

et al. 2014), and O. convexa is highly abundant in the region, it is likely to play a pivotal 

role in the energy pathway in beach food webs, as concluded for ghost crabs by Wolcott 

(1978). Furthermore, the occasional foray of O. convexa into the dune system suggests 

that it can act as a conduit of carbon transfer further inland.  

 

From the stomach content analyses, I demonstrated that O. convexa consumes high 

proportions of beach-cast macrophytes, particularly kelp. The impacts of climate change, 

i.e. increasing sea temperatures, on the abundance of seaweeds such as kelp (Wernberg 

et al. (2013), has the potential to produce a negative effect on O. convexa populations due 

to its existing diet composition and also its restricted range. The food web structure on 

beaches in the Mid-West of Western Australia is also likely to change if macroalgae 

disappears as a food source. For example the wrack-associated amphipod, Allorchestes 

compressa, has a preference for brown algae (Crawley et al. 2009), which could have a 

flow-on effect on ghost crab densities and distributions if kelp was impacted by climate 

change. Furthermore, Rodil et al. (2015) found that changes in the type of wrack on 

beaches, and alterations to its basic biochemical traits due to environmental shifts, i.e. 

increase in temperature, affected associated macrofaunal assemblages. In addition to 

range retractions of macroalgae due to climate change (Wernberg et al. 2013; Phelps et 

al. 2017), harvesting and/or removal of wrack for commercial purposes or beach 

grooming can impact beach ecosystems (Kirkman & Kendrick 1997; Fairweather & 

Henry 2003; McKechnie & Fairweather 2003; Ince et al. 2007; Baring et al. 2014). The 

strong link between ghost crabs and food sources in the wrack indicate that removal of 

beach wrack is likely to impact its populations. Thus, there is a need to educate multiple 
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sectors of society about the importance of wrack deposits and the conservation of 

strandlines. 

 

Whilst a complementary pathway of marine carbon can be transferred via nutrient 

translocation of ghost crab’s faecal matter (i.e. crabs feeding on algae and defecating in 

the dunes), the predators of ghost crabs are likely to provide a direct trophic link, relaying 

marine matter to terrestrial ecosystems. Ghost crabs are often important invertebrate 

consumers on sandy shores, however, they are also preyed upon by higher-level 

vertebrate consumers (e.g. birds, reptiles and mammals) (Lucrezi & Schlacher 2014). 

Although there is minimal data on vertebrate predators on beaches within the Mid-West 

region, potential predators to ghost crabs in the region include feral cats (Felis catus), 

Red foxes (Vulpes vulpes), the Silver (Chroicocephalus novaehollandiae), Kelp (Larus 

dominicanus) and Pacific (Larus pacificus) gulls, the Eastern osprey (Pandion cristatus), 

Brahminy kites (Haliastur indus), Nankeen kestrels (Falco cenchroides), corvids such as 

the Australian raven (Corvus coronoides), and the Northern quoll (Dasyurus hallucatus). 

These predators are all likely to use beaches and coastal dunes as foraging sites (Ambrose 

& Murphy 1994; Risbey et al. 1999; Burbidge et al. 2000; Burbidge & Morris 2002; 

Surman & Nicholson 2009; Debus 2012), and thus contribute to the transfer of marine 

matter through the terrestrial food web.  

 

Mammals are the most widely recorded vertebrate consumers of ghost crabs, with 

predation being intense in some settings (Lucrezi & Schlacher 2014). Mammal predation 

on ghost crabs is a pivotal mechanism in beach food webs (Lucrezi & Schlacher 2014). 

For example, cascading top-down effects were observed in Florida, USA when racoons 

were controlled to protect turtle eggs (Barton & Roth 2008). Instead there was a 

population increase of ghost crabs (Ocypode quadrata) and a resultant increase in 

predation of turtle nests due to racoon populations controlling ghost crab populations 

(Barton & Roth 2008). Vertebrates, for example birds of prey and foxes, can also suppress 

aggregative responses of ghost crabs around carcasses as a result of competition for food, 

higher risk of predation for crabs, and actual crab predation by birds and mammals that 

are facultative scavengers (Schlacher et al. 2013a; Schlacher et al. 2013b). Thus, 

predation on ghost crabs provide an important functional pathway for the spatial coupling 

of marine and terrestrial ecosystems (Lucrezi & Schlacher 2014). Additionally, human 

impacts negatively affecting ghost crab densities and behaviour would ultimately affect 
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these predators too, further interfering with this pathway. More studies on this topic in 

regard to the West Australian coastline would further assist in understanding the trophic 

importance of ghost crabs within the region.  

 In summary, the ghost crab, O. convexa, is an abundant generalist feeder, residing more 

on the intertidal beach profile than in the dune systems, thus demonstrating a clear intake 

of marine material over terrestrial, as well as a preference for fauna or carrion instead of 

plant material, further indicating their potential in transferring marine material into 

terrestrial environments.  
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6 Appendix 

 

Figure A: Average density of ghost crab (Ocypode spp.) burrows per 100 m2 (±SE) (sites 

combined) (indicated by the blue bars) in correlation to average soil moisture (%) (±SE) 

(indicated by green dot points) across zones and sampling times.  
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Table A: Pearson correlation results for Ocypode spp. densities and soil moisture (n = 

270) across zones and sampling times (June 2015, September 2015 and February 2016). 

All three correlation coefficients were p < 0.01. Data were square-root transformed. 

  Abundance Moisture 
Zone -0.66 -0.78 
Abundance   0.60 
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Figure B: Scatterplots illustrating differences between zone, average density of Ocypode 

spp. and soil moisture across sampling times (June 2015, September 2015 and February 

2016). 
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Table B: Sample sizes (n), mean and standard error values for δ13C and δ15N of a range 

of primary producers and consumers (including Ocypode convexa). 

Item Sample size 
(n) 

δ13C 
Mean 

δ13C  
SE 

δ15N 
Mean 

δ15N 
SE 

"Surf-zone Fish (carrion)"      

Sandy sprat (H. vittatus) 5 -18.46 0.04 10.87 0.05 
"Beach Invertebrates"      
Ghost crabs (O. convexa)  45 -17.30 0.10 8.20 0.12 
Amphipods (Fam. Talitridae) 8 -18.18 0.29 3.40 0.16 
"Dune Invertebrates"       
Sand hill snail (T. pisana) 10 -24.37 0.32 3.91 0.17 
"Dune Plants"      
Saltbush (Atriplex sp.) 10 -14.06 0.19 6.25 0.06 
Thick-leaved Fan-flower (S. crassifolia) 10 -24.76 0.24 0.43 0.44 
"Beach Cast (wrack)"      
Kelp (E. radiata) 10 -22.08 0.32 2.98 0.16 
Red alga (J. rosea) 10 -11.96 0.22 3.77 0.16 
Seagrass (Amphibolis spp.) 10 -12.91 0.46 3.38 0.19 

 

Table C: List of genera/species identified along the beach and dune systems across all 

sites and sampling times in Dongara, Western Australia. 

Wrack/plant Identification 
Dune vegetation 
Carpobrotus virescens 
Coast Bone Fruit (Threlkeldia diffusa) 
Scaevola crassifolia 
Spinifex longifolius 
Ruby Saltbush (Enchylaena tomentosa) 
Bromus diandrus 
Olearia axillaris  
Acacia rostellifera 
Alyxia buxifolia  
Atriplex sp. 
Tetragonia decumbens 
Wrack material 
Ecklonia radiata 
Sargassum spp. 
Brown algae mix 
Posidonia sinuosa 
Posidonia australis 
Posidonia spp. 
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Amhibolis spp.  
Halophila spp. 
Jania rosea 
Red algae mix 
Green algae mix 
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