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ABSTRACT 

 

Weak and unsuitable soil conditions have always caused problems for civil engineers during 

the construction of structures. To avoid problems in a cost-effective manner, proper and reliable 

solutions need to be developed. Fibre reinforcement and cement stabilisation are the most 

efficient and common methods in geotechnical engineering applications when engineers have 

problematic soil conditions. These methods can be used in different applications, such as 

pavement layers, retaining walls and slopes.  

 

Over the past three decades, many studies have been done to investigate the effects of adding 

synthetic and natural fibres to soil as the reinforcing material alone or with cement. The present 

work focuses on investigating the characteristics of local Perth sandy soil after inclusion of 

waste tyre fibres and cement. These wastes can be utilised in ground improvement projects in 

large quantities and could provide a cost-effective and environmentally friendly strategy that 

avoids tyre disposal problems. 

 

Fibres for reinforcement applications in soils are available in different types in terms of 

materials and their geometrical configurations. Using waste materials, which are present 

nowadays in large quantities and in different forms, such as used tyres and carpets, as 

reinforcing materials can be environmentally and economically beneficial. In the past, waste 

tyres have been used in some geotechnical applications, such as highway construction, 

retaining wall backfill and drainage layers for roads, but the efforts seem to be insufficient. 

Although much research has been conducted on cement stabilisation, but on fibre 

reinforcement, and their combination, no comprehensive research has been done to investiga te 

the UCS and CBR behaviour of sandy soils mixed with cement and tyre fibres, especially on 

the sandy soils available in Perth and its surrounding areas.  

 

A series of laboratory tests including compaction, unconfined compressive strength (UCS) and 

California bearing ratio (CBR) tests were conducted to investigate the effects of adding tyre 

fibre and cement on the engineering behaviour of Perth sandy soil. The contents were varied 

from 0 to 5% of dried soil by weight for cement and 1% of dried soil by weight for tyre fibres. 

The cemented specimens were cured in for 3, 7, 14, and 28 days. 
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This study aims at investigating the effect of different parameters, including cement content, 

tyre fibre content, curing time and confining pressure on the CBR behaviour of Perth sandy 

soils. Feasible, ecologically friendly, and economically reasonable solutions, both theoretica lly 

and practically, are studied in this research so that geotechnical/civil engineers can effective ly 

use them in the construction projects. 

 

The compaction test results indicate that the maximum dry unit weight generally increases by 

adding cement and decreases by tyre fibres inclusion, while adding cement and tyre fibre results 

in a lower optimum water content. 

 

For the fibre-reinforced and unreinforced materials, the compressive strength increases with an 

increase in the cement content. Adding 1% of tyre fibres to mixtures increases the UCS of the 

soil approximately by 10-70%. The results also show that as the curing time increases, the UCS 

increases, and the effect of curing is more pronounced for higher stabiliser contents.  

 

The results also indicate that adding cement and/or tyre fibres to soil leads to a higher CBR. 

The addition of 5% cement increases unsoaked CBR value from 11.74 to 19.31%, which is 

about 64% increase. Moreover, adding 1% tyre fibres to cemented-soil with 5% cement 

increases unsoaked CBR from 11.74 to 18.58 which shows a 58% increase. It is also noticed 

that the soaked CBR value for cemented soil with 5% cement increases from 11.74 to 363.63%. 

The addition of 1% tyre fibres to the cemented-soil mixtures with 5% cement increases the 

soaked CBR value from 13.78 to 266.89%. Several research studies have presented similar 

higher values for soaked CBR.  
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NOTATION  

 

Basic SI units are given in parentheses. 

 

cʹ effective cohesion (kPa) 

Cc coefficient of curvature (dimensionless) 

Cu coefficient of uniformity (dimensionless) 

D  maximum particle size (mm) 

D10 effective diameter (mm) 

D50 average grain size (mm) 

E modulus of elasticity (kPa) 

e void ratio (dimensionless) 

emax maximum void ratio (dimensionless) 

emin minimum void ratio (dimensionless) 

Cs specific gravity (dimensionless) 

𝐺𝑠𝑐
 specific gravity of cement (dimensionless) 

𝐺𝑠𝑓
 specific gravity of tyre fibres (dimensionless) 

𝐺𝑠𝑠
 specific gravity of sand (dimensionless) 

n Talbot’s grading value (dimensionless) 

pʹ (ʹ1 + ʹ3)/2 (kPa) 

pc cement content (%) 

Pf tyre fibre content (%) 

qʹ (ʹ1 − ʹ3)/2 (kPa) 

S degree of saturation (dimensionless) 

UCS unconfined compressive strength (kPa) 

w water content (dimensionless) 

Wc weight of cement (N) 

Wf weight of tyre fibres (N) 

wopt optimum water content (dimensionless) 

Ws weight of dried soil (N) 

ZAV zero air void (kN/m3) 



 ix 

 

εa axial strain (dimensionless) 

 d dry unit weight (kN/m3) 


𝑑𝑚𝑎𝑥

 maximum dry unit weight (kN/m3) 

 w unit weight of water (kN/m3) 

ʹ𝑓 effective normal stress at failure (kPa) 

ʹ1 effective major principal stress (kPa) 

ʹ3 effective minor principal stress (kPa) 
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CHAPTER 1 

 

INTRODUCTION  

 

 

 

1.1 General  

Perth, located on the west coast of Australia, is the capital of Western Australia (WA). It 

amounts to a third of the area of Australia, with a total area of more than 2,500,000 square 

kilometres (Geoscience Australia, 2012). WA is divided into five regions; the Kimberley, the 

North West, South West, the Interior, and the Wheat Belt. The majority of the population live 

along the beautiful white sandy beaches of the West Australian coast. The Perth region, with a 

population of more than 2 million, has the majority of WA’s population, which is nearly 2.5 

million (Australian Bureau of Statistics, 2012). As WA, and especially Perth is improving in 

several aspects such as economy and tourism, there is a growing need for reliable and suitable 

infrastructures that call for use of civil and geotechnical engineering principles and practices 

to be employed. 

 

Over the last few years, developing alternative materials have been able to help to 

environmental and economic problems. The improved geotechnical materials would be 

obtained by using the useful techniques of soil stabilization and soil reinforcement through 

either the addition to soil of cementing agents (lime, Portland cement, asphalt, etc.) or the 

inclusion of oriented or haphazardly gave out segregated materials such as fibres and tire chips. 

Use of fibre-shaped waste materials is one of the most incentive techniques in this area. Amount 

of waste materials such as polyethylene terephthalate (PET) plastic bottles are abundantly and 

extensively increasing. Engineering applications have been tried to use such materials, but the 

overwhelming majority of them have been placed in storage or disposal sites (Consoli et al., 

2002). 

 

Geotechnical engineering basically deals with the soils and rocks; consequently, the first step 

of a project is identifying the soil/rock type on which the work will be done. The soil in Perth 
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and its surrounding area is mainly sand, although other types of soil can be found (Stephenson 

and Hepburn, 1955). Sands are defined as a group of soils having particle sizes between 

0.075mm and 2.36 mm (Standards Australia, 1993).  

 

In a construction project, encountering weak or unsuitable soils can be expected; therefore, the 

most efficient and cost-effective solutions need to be found in such situations. Several remedial 

solutions are available when a construction project is planned for locations where weak and 

unsuitable soils are encountered. One of the effective and reliable techniques for improving 

soil behaviour is soil reinforcement. The technique is used in many structures and projects,  

such as retaining structure, earthwork, embankment and subgrade stabilization beneath footing 

and pavement (Gray et al., 1983). In this chapter, a brief introduction of soil stabilisation and 

reinforcement methods are presented along with objectives and organisation of this thesis. 

 

1.2 Soil stabilisation and reinforcement  

Stabilisation and reinforcement are two of the most conventional methods to improve the 

desired properties of soil. Stabilisation can be defined as improving the important natural 

characteristics of the soil (increase in fertility) by means of special scientifically substantia ted 

methods.  

 

The properties of a soil can be improved by changing mechanical or chemical it or mixing it 

either with another soil or with cement, lime and bitumen (Terrel et al., 1979). One of the 

common stabilisation practices is Cement stabilisation which can be used in different road 

construction applications such as subgrades, select fill, base and subbase (Wilmot, 2006). 

However, suitable materials should be used for cement stabilisation. Table 1.1 presents material 

criteria suitable for cement stabilisation (AustStab, 2012), table 1.2 presents major cement 

types and composition (AS 3972, 2010). 

 

Soil reinforcement is defined as an application of mixing natural or combinatorial materia ls 

such as fibres, cement or geosynthetics to soil to ameliorate shortage caused by the general low 

tensile and shear strength of soils (Hejazi et al., 2012). The technique of reinforcing soils has 

been used since ancient times for purposes like reinforcing mud blocks by straw and hay 

(Hejazi et al., 2012). However, modern soil reinforcement method has been introduced in 1966 

by Henry Vidal (Shukla et al., 2009). Nowadays, different reinforcement materials are being 
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pursued as natural materials such as coconut fibre or palm fibre, and geogrids, polypropylene 

fibres or glass fibres, as synthetic materials (Hejazi et al., 2012).  

 

Table 1.1. Guide to property limits for effective cement stabilization  

Property  Limit  

Particle size  

Maximum particle size  75 mm * 

Passing 4.75mm >50% 
Passing 425 µm >15%  
Passing 75 µm ˂ 50% 

Finer than 2 µm ** ˂ 30% 

Plasticity 

Liquid limit ˂ 40 % 

Plastic limit ˂ 20 % 

Plasticity index ˂ 20 % 

* Depends on mixing plan 

** At upper limit may need pre-treatment with lime 

 

Notes:  

1. If Type GB cement consists of Type GP and amorphous silica only, the proportion of Type GP shall be 

90% or above. 

2. For Type GP the 'mineral additions' may comprise limestone, fly ash or slag, or a combination of these 

materials, at the discretion of the cement manufacturer. 

3. The 'minor additional constituents' addition forms part of the allowable amount of 'mineral addition' in 

the cement. 

4. Type GB cement may contain supplementary cementitious materials (SCMs) comprising either or both 

fly ash and slag at combined levels above 7.5% and amorphous silica at a level not exceeding 10%. 

 

 

 

Table 1.2. Major cement types and composition 

Cement 

type 

Portland 

cement 

Type GP  

(Note 1) 

Mineral addition and minor additional 

constituents (7.5% combined 

maximum for Type GP and 20% 

combined maximum for Type GL) 

Supplementary 

cementitious materials 

(SCM) (Note 4) 

Mineral additions 

(Note 2) 

Minor 

additional 

constituents 

(Note 3) 

Fly ash 

and/or 

slag 

Amorphous 

silica 

Fly ash 

or slag 

limestone 

Type GP 92.5 to 100  - 0 to 7.5 0 to 5  -  - 

Type GL 80 to 92  -  -   0 to 5  -  - 

Type GB  - <92.5  -  -  - >7.5 0 to 10 
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1.3  Waste tyres and disposal problems 

Recently, waste materials such as waste tyres have attracted attention to be used in soil 

reinforcement. Of the approximately 240 million tires traded in each year, almost 70% or 170 

million tires are disposed of directly into the environment. The most common disposal end 

point is privately and publicly owned stockpiles, which account for around 100 million tires 

annually. Approximately 28 million tires are disposed of in landfills, and 38 million tires are 

randomly dumped on roadsides or in rural areas. While these estimates alone are quite large, 

they do not include the huge backlog of scrap tires from previous years. The stock of tires from 

past stockpiling has been estimated to be over 2.4 billion (GIA, 2013). In Western Australia. 

Around 48.5 million equivalent passenger unit (EPU) waste tyres were produced in 2009-2010 

(Brindley et al., 2012). Consequently, waste tyres are occupying a considerable amount of 

valuable space in landfill sites, resulting in severe environmental consequence and an 

increasing need for new landfill sites (Fig.1.1). Therefore, reuse of waste tyres should be 

seriously considered.  

 

 

Fig. 1.1. This 75,000-tones tyre dump near Madrid has presented Spanish authorities with a big problem (BBC 

NEWS, 2016) 

 

There are six major tire disposal end points which are representative of the total disposal mix: 

landfills, stockpiles, random dumps, retreads, asphalt mixtures, and energy feeds. The first 

three end points account for a significant portion of disposed tires. Asphalt mixtures and energy 

feeds represent the most economical and technically feasible options that could absorb a 

significant portion of the tires being disposed. There are also some applications of the waste 

tyres in civil engineering such as in embankment construction or drainage layers in landfills 
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(Balunaini et al., 2014). However, considering the ongoing increase in the amount of waste 

tyres, more studies are required to find other applications for theses wastes. Waste tyres can be 

used in different forms such as whole tyres or tyre fragments. The tyre fragments are 

categorised in Table 1.3 according to their sizes (ASTM, 2012). Waste tyres also can be used 

in different shapes such as tyre shreds and tyre chips which are shown in Fig.1.2. Like other 

additives to be used in soil improvement technics, tyre derived aggregates should be used with 

a proper host material. Edil and Bosscher (1994) stated that waste tyre additives can be mixed 

with sandy and clayey soils. Albeit, there may be some difficulties in mixing theses additives 

with clay, and at the same soil: tyre additive proportion, better performance is observed for 

sandy soils. 

 

Table 1.3. Types of waste tyre fragments based on size (ASTM, 2012) 

Fragment type Powdered 

rubber 

Ground rubber Granulated 

rubber 

Tyre chips Tyre shreds 

Size range 

(mm) 

≤ 0.425 0.425 - 2 0.425 - 12 12 - 50 50 - 305 

 

 

Fig. 1.2. Different processed tyre waste types (Edincliler et al., 2010) 

 

Much research has been conducted previously to investigate the effect of stabilising sand with 

cement (Abdulla and Kiousis, 1997; Schnaid et al., 2001; Consoli et al., 2007; Consoli et al., 

2010; Consoli et al., 2012), reinforcing sand with fibres (McGown et al., 1978; Gray and 

Ohashi, 1983; Maher and Gray, 1990; Ranjan et al., 1994; Ranjan et al., 1996; Santoni et al., 
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2001; Shukla et al., 2010; Li and Zornberg, 2013; Nataraj and McManis, 1997; Consoli et al., 

2002; Chandra et al., 2008; Tingle et al., 2002; Foose et al., 1996; Edincliler and Cagatay, 

2013; Al-Refeai and Al-Suhaibani, 1998; Attom, 2006; Edincliler and Ayhan, 2010; ), or the 

combination of these (Consoli et al., 1998; Consoli et al., 2002;  Kalantari et al., 2012; Mousavi 

and Wong, 2015). However, it seems that more investigation is required since the behaviour of 

cement-stabilised sand reinforced with tyre fragments has not been investiga ted 

comprehensively before. In order to develop an overview, and to find the gap in the literature 

review and possible limitations of the research area, previous notable studies and efforts have 

been comprehensively and critically reviewed to define the research problems.   

 

1.4 Objectives and scope of the present work  

The Perth region in WA is generally surrounded by sandy soils (Stephenson and Hepburn, 

1955), and these vastly available materials can be utilised in civil projects. For example, 

crushed rock combined with 2% general purpose (GP) cement is used for constructing base 

course layers for highways in WA (Main Road WA, 2012). This means extra costs for 

transporting crushed rocks to construction sites where large amounts of sand are present. 

Therefore, using sand as widely accessible materials for pavement layers, would be cost-

effective.  

 

Approximately 1.8 million tyres were sold in 2005 in Western Australia (WA), and this number 

is increasing every year (Andrich, 2005). Occupying a considerable amount of valuable apace 

in landfill sites, these waste tyres are causing a growing need for new landfil l sites. In addition, 

waste tyres can lead to severe environmental problems such as sea pollution and fires that result 

in emission of toxics (Fig.1.3). Consequently, it is both economically and environmenta l ly 

advantageous to use waste tyres in some applications such as civil engineering, which can be 

an effective approach to solve the problems associated with waste tyre disposal.  
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Fig. 1.3. Waste tyres causing environmental problems (Discard Studies, 2011) 

 

This research will contribute at finding a method to use the waste tyre fibres with Perth sand in 

geotechnical applications such as pavement layers. In order to find economic and ecologica lly 

friendly methods, considering the problems stated in the previous sub-section, the objectives 

of this study are as follows: 

 

 Finding Perth sand characteristics, namely particle-size analysis, specific gravity and 

compaction parameters 

 Investigating the effect of adding tyre chips on CBR values of Perth sand 

 Assessing the effect of adding cement on CBR values of Perth sand  

 Evaluating the effect of adding tyre chips together with cement on different CBR values 

of Perth sand 

 Checking the feasibility of using the proposed method and its compliance with the 

standards 

 Proposing analytical and numerical solutions 

 Comparing test results with proposed analytical and numerical solutions to check their 

conformity 

 

1.5 Publications Based on the Present Work 

1. Bazazorde, S.M.A., Shukla, S.K., and Vu, H., (2018). Compaction and Strength 

Behaviour of Perth Sandy Soil Reinforced with Waste Tyre Fibres and Cement . 

Journal of Materials in Civil Engineering, ASCE (under preparation). 
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2. Bazazorde, S.M.A., Shukla, S.K., and Vu, H., (2018). CBR Behaviour of Perth 

Sandy Soil Reinforced with Waste Tyre Fibres and Cement. Journal of Materials 

in Civil Engineering, ASCE (under preparation). 

 
1.6       Organisation of the Present Work 

In this chapter (Chapter 1), the research area is introduced and basic information of the 

concerned subject is described. A critical review of the previous studies on cement stabilisa t ion 

and soil reinforcement is presented in Chapter 2. Chapter 3 describes the characteristics of the 

materials used in this study, along with the methodology of the study. In Chapters 4 and 5, the 

compaction tests and unconfined compression tests, respectively, conducted on different 

mixtures of sand, tyre fibres and cement, and the results and comprehensive discussion are 

presented. Chapter 6 describes the CBR tests conducted on sandy soil and different mixtures 

of tyre fibre-reinforced soil together with the results and discussion. The summary of the 

conducted work in the thesis and the conclusions and further research problems are presented 

in Chapter 7. 
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CHAPTER 2 

 

LITERATURE REVIEW  

 

 

  

2.1 General  

The Perth region in Western Australia has different soil types. According to Stephenson and 

Hepburn (1955), four basic types of soil, namely gravel, sand, silt and clay, occur in the 

metropolitan region of Perth and Fremantle cities of WA. However, the majority of the soils 

are sandy. Fig. 2.1 illustrates the distribution of soil types in Perth and its surrounding areas. It 

is noticed that most parts of the region are marked grey as deep grey sands, dark yellow as 

excessively drained deep yellowish sand or light yellow as well-drained brownish sands of 

variable depth overlying coastal limestone. Thus, it can be stated that most areas are covered  

by sand differing in colours.  

 

According to McPherson and Jones (2005),  having already developed a regolith thickness map 

for the Perth study area based on the initial 604 explained perforations, the categorized regolith 

data was used to cross-check the thicknesses and assess the spatial distribution of the prevailing 

regolith material types. 

 

Sands and calcareous deposits (limestone and secondarily cemented calcareous sands) are the 

regolith materials of the Swan Coastal Plain, with areas in the east closer to the Darling Range 

characterised by significant deposits of mud (silts and clays) (Tables 2.1, 2.2a and 2.2b). Given 

the general dominance of these broad regolith material types across the Perth study area, 

classification of bore records on the basis of material dominance within each profile was 

undertaken to refine this distribution (McPherson and Jones, 2005).  

 

This chapter demonstrates previous studies relating to improving the enginee r ing 

characteristics of sandy soils using cement and/or waste tyre fibres. 
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     Fig. 2.1. Soil types distribution in Perth and its surrounding areas (after DOA, 2002) 
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Table 2.1. Summary of simplified regolith classes, dominant materials and number of records attributable to  

each class from the Perth study (McPherson and Jones, 2005) 

Material class  Identifier  Description  No. of records  % of records  
Not logged  0 No record for the materials in the 

specified depth range. 

54 

 
0.5 

Sand 1 Sand; silty sand; gravel; other coarse 

unconsolidated materials. 
7696 63.1 

 

Mud 2 Silt; sandy silt; clay; sandy clay; 

mud. 
1611 13.2 

 

Limestone 

 
3 Limestone and any materials  

indurated by calcareous cements, 

including secondarily cemented 

calcareous sands. 

2030 16.6 

 

Consolidated 

 
4 Materials indurated by non-

calcareous cements such as 

secondarily silicified sands; iron-

oxide indurated materials 

(ferricrete); bedrock. 

554 4.5 

 

Coffee rock 

 
5 Generally sands (occasionally 

muds) partly or completely 

indurated by organic complexes and 

iron-oxides. 

203 

 
1.6 

 

Other 6 Rubble, fill and construction 

materials; refuse; organic matter 

(e.g. peat); other ‘items’ from the 

drillers logs not readily attributable 

to any other material class (e.g. 

slime, soup, seaweed). 

55 0.5 

 

 

 

Table 2.2. Regolith materials - (a) > 50% and (b) > 75% of total hole depth for the 2717 logged profiles in the 

Perth study area (McPherson and Jones, 2005) 

(a)      

Dominant 

material  

Profiles of 50% 

of material  

% of profiles  Material thickness (m) 

   Minimum  Maximum Average  

Limestone  464 53 5 87 35 

Mud 227 30 1 45 18 

Sand 1931 73 1 201 24 

TOTAL 2622 96.5    

 

(b)      

Dominant 

material  

Profiles of 50% 

of material  

% of profiles  Material thickness (m) 

   Minimum  Maximum Average  

Limestone  230 26 5 87 36 

Mud 81 11 1 45 19 

Sand 1580 60 1 78 23 

TOTAL 1891 69.5    
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2.2 Cement stabilisation  

Since 1950s, the changes in the engineering behaviour of soil by adding cement have been 

under investigation and the findings have been published in detail in different references and 

are widely available nowadays. In order to prevent the repetition of known findings and 

focusing on the new ones, this section will present some of the most significant recent studies.  

 

According to Consoli et al. (2010) different parameters that affected the UCS and the splitting 

tensile strength (
tq ) of a sand treated with cement have been investigated by performing 

unconfined compression and splitting tensile tests and measuring the matric suction. They 

collected nonplastic sand from the region of Porto Alegre in southern Brazil, and with the 

following properties: ,65.2sG ,9.1uC ,2.1cC ,16.050 mmD  9.0max e  and 6.0min e . 

Specimens were mixed with cement content of 1, 2, 3, 5, 7, 9 and 12 % (by weight) of a type 

III Portland cement and 0.64, 0.7 and 0.78 void ratios, then compacted in the cylindrical mould 

with 50 mm diameter and 100 mm height. Specimens were cured for 7 days. Based on the 

results, they reported that compressive and tensile strength of the samples were improved by 

decreasing the porosity. They also reported that UCS and tq  of a cemented sand were related 

to cement content having a power function. In addition, it was perceived that UCS and tq were 

decreased when the ratio of voids/cement increased.  

 

According to Szymkiewicz et al. (2012) different parameters, including particle-size 

distribution, the content of cement and affecting the strength of cemented sandy soils were 

investigated by performed unconfined compression tests on six granular soils mixed with 

cement. The soils, according to the USCS, were SP, with a 21.050 D  mm and uniform 

gradation; SP, with a 32.050 D mm and widely spread gradation; SW, with a 39.050 D

mm and widely spread gradation and ML, with a 022.050 D mm and widely spread gradation. 

They stated two types of soil were used namely: SF50-SilicaF50 and SF75-SilicaF25 

comprising 50 and 75% of the first SP soil and 50 and 25% of the SM soil respectively. A 

Portland blast-furnace cement was used as the cementing agent with a wide content range of 

4.2, 8.4, 12.7, 16, 19.4 and 24.2% (by weight). Specimens were prepared in a cylindrical mould 

with the diameter of 52 mm and were cured for 7, 14, 21, 28, 56 and 90 days. Based on the 

results, Szymkiewicz et al. (2012) reported that maximum strength of a sand mixed with 

cement is always twice the compression strength after 7 days of curing ( 7uq ) or more. In 
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addition, one of the key parameters for strength improvement after the seventh day was cement 

content. High cement contents (more than 15%) neutralised the effect of particles having a 

well-graded distribution and resulted in less improvement in strengths achieved after the 

seventh day.  

  

Singh and Kalita (2013) investigated California bearing ratio on specimens of untreated soil, 

fly ash, soil-fly ash mixes, and cement treated soil mixes in both unsoaked and soaked 

conditions. Two type of soils were used in the study: a fine grained residual lateritic soil and 

granular riverbank sand. The lateritic soil was sample from a nearby hilly area. The sand was 

collected from the bank deposits of the nearby Brahmaputra River. This sand is classified as 

SP (poorly graded fine sand). Cement addition was varied up to 3% of the dry weight of the 

soil. The addition of cement increased the CBR continuously for both the soil mixes for 

example addition of 2% cement to the sand caused the CBR to increase from 11.0 to 27.4. This 

is because hydration of cement forms calcium silicate hydrate gel which binds the soil particles 

and contributes to the development of strength.  

 

2.3 Soil reinforcement   

Soil reinforcement, as a technique to improve the strength and stiffness of in situ soil, is widely 

used to stabilize artificial slopes, retaining walls, and embankments. Through inclusion of 

fibres, geosynthetics, or soil nails into the soil mass, the stability of geostructures can be 

significantly enhanced. The interaction between the soil and the reinforcement is a key factor 

affecting the performance of reinforced soil structures (Zhang et al., 2014). Fig. 2.2 illustra tes 

the mechanism of reinforcement, which works by the mobilisation of tensile forces in the 

reinforcing agent and accordingly, improving the soil characteristics (Gray and Ohashi, 1983). 

 

Shukla et al. (2009) classified soil reinforcement into two basic groups: systematica l ly 

reinforced soils, and randomly distributed fibre-reinforced soils. The first group refers to soil 

reinforcement using geosynthetic sheets or galvanised steel strips oriented deliberately. The 

second group refers to soil reinforcement by adding and mixing discrete fibres, either natural 

or synthetic, with soil, a process in which the fibres will be oriented randomly. However, 

recently, more attention has been paid to randomly distributed fibre-reinforced soils due to its 

benefits such as simple preparation and offering strength isotropy and limiting potential planes 

of weakness in comparison to the former group. 
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Fig. 2.2. Mechanism of soil reinforcement (after Gray and Ohashi, 1983) 

 

2.4 Fibre reinforcement   

Reinforcement of soil with fibres is possibly one of the most effective technique for increasing 

soil strength. There has been a great deal of research on reinforcing soil with fibres in the past. 

Here, some of the most notable studies are discussed. 

 

According to Zhange et al., (2014) conventional reinforcement materials in geotechnica l 

engineering come with certain shortcomings. For instance, steel bar reinforcements have a risk 

of corrosion in aggressive soil environments. Geosynthetics, normally made of polymeric 

materials, are also found to deteriorate over time (Sawicki and Kazimierowicz-Frankowska, 

1998). Fibre-reinforced polymer (FRP) materials, with several advantages over conventiona l 

materials, are able to address these problems. Glass fibre-reinforced polymer (GFRP) and 

carbon fibre-reinforced polymer (CFRP) are two commonly used FRP materials for 

construction. Compared with steel, FRP materials enjoy a number of benefits, such as better 

corrosion resistance, lighter weight, easier site manoeuvring, and the ability to maintain similar 

or even better material strengths (Zhang et al., 2014). 

 

Frost and Han (1999) found in their experiments that the FRP-sand interface behaviour is 

influenced by a number of factors, such as the interface surface roughness, mean grain size of 

granular materials, and normal stress.  

 

Gray and Ohashi (1983) used a simple model in addition to performing direct shear tests to 

evaluate the behaviour of sand by adding fibres. The theoretical model was according to the 

force limiting equilibrium derived from Figure 2.3. A dry sand, collected from a beach in 

Muskegon, Michigan, was used with 20% and 100% relative densities and the following 
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properties: 23.050 D mm, Cu = 1.5, 73.0max e  and 5.0min e . Four types of fibres 

including reed, plastic (PVC), palmyra and copper (wire) fibres with lengths between 2 and 25 

cm and diameters of 1-2 mm were used for tests. Fibres were intentionally oriented and were 

used with area ratios (fibre section area to shear plane area) of 0.25-1.67%. Vertical confining 

stresses of up to 144 kN/m2 were applied for the strain controlled test. The test results and the 

predictions based on the model matched properly. Gray and Ohashi (1983) inferred that fibres 

improved the maximum shear strength and reduced the strength decrease after failure, and it 

was almost the same for loose and dense sand; however, with larger shear strains for loose 

sands. In addition, more length and area ratios of fibres led to more improvement of shear 

strength. It was observed that the maximum improvement belonged to the fibre inclusion with 

the initial angle of 60° with respect to the shear plane. A pull-out of fibres was also noticed 

below a specific vertical confining stress. 

 

Fig. 2.3. Fibre reinforcement: (a) perpendicular orientation to shear surface; (b) fibre oriented at angle (i) to 

shear surface (Gray and Ohashi, 1983; Shukla, 2017) 

 

According to Nataraj and McManis (1997), California Bearing Ratio tests were conducted on 

reinforced and unreinforced clay specimens at maximum dry densities and moisture contents. 

The preliminary test results for specimens with various fibre contents are shown in Fig. 2.4. 

The CBR value of 8.44 for the unreinforced clay specimen increases to approximately 12.6 for 

specimens with a 0.3% fibre content. This is a 48% increase in the CBR value for the 

unreinforced clay specimen.  
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Fig. 2.4. California Bearing Ratio values for reinforced clay specimens with  different fibre content (Nataraj and 

McManis, 1997) 

 

Lawton and Fox (1992) demonstrated that sand reinforced with multioriented geosynthet ics  

results in to the highest ultimate strength in terms of its CBR. Tingle et al. (2002) observed that 

geo-fibre stabilization of medium sand improves the CBR by about sixfold. This improvement 

was attributed to the confinement of sand particles by discrete fibres. Paradani et al., (2017) 

examined the CBR of the subgrade soil reinforced with coconut, jute, and nylon fibres at 

various percentages and reported an overall increase in CBR by 60%. 

 

2.5 Waste tyres  

Waste tyres are occupying a considerable amount of valuable space in landfill sites, resulting 

in severe environmental consequences and an increasing need for new landfill sites. So, using 

waste tyres in some applications such as civil engineering would be very advantageous. 

Therefore, in the recent years, since early 1990s, several researchers have been making 

attempts to find methods to use these mass-produced wastes that can be an efficient solution to 

waste tyre disposal problems. Some of the most important studies on utilising waste tyres in 

geotechnical applications are presented here. 

 

According to Foose et al. (1996), direct shear tests were applied on a sand reinforced with waste 

tyre shreds to realise whether tyre shreds could be used as a reinforcement material for sand. 

They also used the model presented by Maher and Gray (1990) to calculate the shear strength 
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of sand reinforced with tyre shreds. The sand, called Portage sand, had particle sizes of 0.2-0.8 

mm and the following specifications: 68.2sG  , 1uC  and 1cC . Waste tyre shreds they 

were used with lengths of less than 5 cm (named 5-cm shreds), 5 to 10 cm (named 10-cm 

shreds) and between 10 to 15 cm (named 15-cm shreds) and with contents of 0, 10, 20 and 30% 

(by volume of specimens). Samples were prepared in a shear ring of 6.35 mm diameter with 

sand specific weight of 14.7, 15.7 and 16.8 kN/m3 and normal pressures of 7-70 kPa were 

applied during the tests. Foose et al. (1996) reported that inclusion of tyre shreds improved the 

shear strength of sand, and normal stress, tyre shred content and sand specific weight controlled 

the shear strength of sand reinforced with shredded tyres. In addition, mixtures with sand 

specific weight of 16.8 kN/m3 presented a non-linear strength envelope, while the other two 

mixtures had almost a linear strength envelope.  

 

The feasibility of reinforcing sand with strips of high-density polyethylene (HDPE) was 

investigated by Benson and Khire (1994). They suggested that strips cut from reclaimed HDPE 

might prove useful as soil reinforcement in highway and light-duty geotechnical applications. 

Al-Refeai and Al-Suhaibani (1998) reported that the inclusion of fibres increased the CBR 

values of dune sand, and the improvement in the CBR values was maintained over a larger 

penetration range than with unreinforced sand. The researches of Benson and Khire (1994) and 

Al-Refeai and Al-Suhaibani (1998) show that adding fibres to the sand will increase the bearing 

capacity of the soil. 

 

Edincliler and Ayhan (2010) studied the sand shear strength affected by adding tyre fibres. For 

their research, they conducted two series of direct shear tests including standard and large-scale 

tests. A uniform and well-graded sand with a 74.2sG was used, and two types of waste tyre 

reinforcement were used namely: tyre crumbs (TC), which were granular, and tyre buffing 

(TB), which were fibre-shaped. The TCs had particle sizes of 1-3 mm with the aspect ratio of 

1, and the TBs were divided into two groups of TB1 and TB2. The length, thickness and aspect 

ratio range for the TB1 group were 8-10 mm, 2-4 mm and 2-5 respectively. The ranges, in the 

same order, were 10-50 mm, 4-5 mm and 2-12.5 for the TB2 group. First, sand with different 

TC contents of 0, 15, 25, 40, 50, 75 and 100% were tested by conducting standard direct shear 

tests with the normal pressures of 25, 50 and 100 kPa. These tests were done to have an idea 

of the optimum tyre content for shear strength improvement to use in the second direct shear 

test series in which a large-scale device was used. In the 300 mm by 300 mm test cell, sand 
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with TC, TB1 and TB2 (separately) were tested with tyre contents of 0, 10, 20, 30 and 100% 

under 20, 40 and 80 kPa normal pressures. The test results indicated that mixing waste tyre 

reinforcements with sand increased its shear strength. In addition, shear strength improved with 

the increase of normal pressures and length and aspect ratio of the inclusions. 

 

According to Edincliler and Cagatay (2013), the addition of buffing rubber increased the CBR 

value of the mixture, but the addition of granulated rubber decreased it. The addition to sand 

of 30% buffing rubber by weight having an aspect ratio of 8 increased the CBR value from 8 

to 16, which is a 100% increase, and the addition of buffing rubbers having an aspect ratio of 

4 resulted in a 44% increase, increasing the CBR value from 8 to almost 12. The use of buffing 

rubbers with a higher aspect ratio resulted in a higher CBR value in all of the experiments. 

 

2.6 Fibre reinforcement and cement stabilisation  

The behaviour of unreinforced, fibre reinforced and cemented sands has been widely 

investigated and reported in many research works (Shukla, 2017). The most important studies 

on combinations of reinforcing soil with fibres and stabilising it with cement are presented 

here. 

 

Park (2011) investigated the unconfined compressive strength (UCS) and ductility of a 

cemented sand reinforced with polyvinyl alcohol (PVA) fibres. The fibres were 12 mm long 

and 0.1 mm thick. The cement was standard Portland cement and the soil was a poorly graded 

sand (SP) according to the USCS, sampled from Nakdong river in South Korea, with the 

following specification: 28.050 D mm, 75.1uC , 65.2sG . Cement was used in three 

different contents of 2, 4 and 6% (by weight of soil) and fibres in contents of 0, 0.3, 0.6 and 

1% (by weight of soil). After mixing soil, cement and water, the blend was divided into five 

portions, each of which was mixed manually and randomly with the specified fibre content. 

The materials then were compacted in five equal layers, and the 70 mm in diameter by 140 mm 

in height samples were cured for 7 days. From the results, it was noticed that UCS at maximum 

strength was significantly influenced by adding the fibres. In the specimens with 2% cement 

ratio, the most enhancement of UCS was observed, to the extent that with 1% inclusion of fibre, 

UCS was increased 3.5 times.  

 

Kutanaei and Choobbasti (2014) conducted compaction and unconfined compression tests on 

mixtures of sand, fibre and cement to investigate the changes in mechanical behaviours. They 
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used an SP sand (as per the USCS), collected from the coastal area of Caspian Sea in Babolsar, 

north of Iran, with the following properties: 78.2sG , 13.2uC , 32.1cC , 22.050 D mm, 

8.0max e and 53.0min e . Polyvinyl alcohol fibres were used having lengths of 12 mm and 

diameters of 0.1 mm. For the standard compaction tests, cement contents were 0, 2, 4, and 6% 

(by weight), and fibre contents were 0, 0.3, 0.6 and 1% (by weight). For the unconfined 

compression tests, specimens had a diameter of 38 mm, a height of 83 mm, cement contents of 

0.5 and 6% and fibre contents of 0, 0.3, 0.6 and 1%, and the load was applied with a rate of 1 

mm/min. The test results indicated adding cement increases the maximum dry density and 

decreases the optimum water content, while addition of fibre resulted in a reduction in both 

parameters. Furthermore, UCS and modulus of elasticity, and consequently, the brittle 

behaviour, were notably increased by adding cement. Conversely, adding fibres to the cement-

treated sand caused an increase in UCS but a decrease in the modulus of elasticity, and 

accordingly, caused a more ductile behaviour.  

 

According to Kalantari et al. (2012), peat samples stabilized with cement with/without fibres 

were tested for unconfined compressive strength (UCS) and California bearing ratio (CBR). In 

order to evaluate the strength of peat stabilized with cement only, both UCS and CBR tests 

were carried out on undisturbed peat samples and also on peat stabilized with different amounts 

of cement. The amount of cement used for the UCS test was 5 and 15%, and for the CBR test 

it was 5, 10, 15, 20, 30 and 50% by weight of peat weighed at its optimum moisture content.  

The amount of fibre to be used was decided based on the results of CBR test. Fig.2.5 shows 

the results of the CBR tests carried out on peat stabilized with 5, 15 and 25% cement and 0.1, 

0.15, 0.2 and 0.5% fibre and air curing the samples for 90 days. The results show that fibre 

content of 0.15% gives the highest CBR values. 
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Fig. 2.5. Precent increase and actual CBR vs. amount of cement and fibre (Kalantari et al., 2012) 

 

Based on the results, they indicate that as the curing period increases, the CBR values increase 

as well. With the increase in cement content from 0 to 50%, the CBR values are also increasing. 

Further, an addition of 0.15% fibres to the cement stabilized peat samples increases the CBR 

values over samples without fibres. The results show that the CBR increases from 0.8% for 

undisturbed peat to 145% for peat stabilized with 50% cement and 0.15% fibre. This increase 

in CBR values can be attributed to the OMC at which the samples were compacted and to the 

cement and fibres for increasing the strength of the samples. It is observed that the cement 

(15%) and fibre (0.15%) increased significantly the UCS and CBR values by a factor 13.5 and 

79, respectively and hence, it is obvious that fibres can be used to increase the strength of peat. 

It appears that the randomly distributed fibres limit the potential planes of weaknesses and also 

prevent the formation and the development of the cracks upon loading and thus increasing the 

UCS and CBR. Cement and fibres can be used effectively to improve the strength of base 

course for the pavement construction (Kalantari et al., 2012). 

 

According to Mousavi and Wong (2015), the effect of stabilization of soft clay at optimum 

moisture content and maximum dry density with cement and kaolin on CBR value is shown in 

Fig.2.6. The results of laboratory investigation indicate an increase in the shear strength, CBR 

value and unconfined compressive strength of the treated soil with binder composition of OPC 

(Ordinary Portland Cement) 8%, K (Kaolin) 2% and SS (Silica Sand) 5%. Besides, it was 

proven that engineering characteristics of stabilized soil with binder composition of OPC 8%, 

K 2% and SS 5% are superior to those stabilized with lower percentages (i.e., less than 2%) of 
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kaolin. As for the CBR value, it was found that the CBR value of stabilized clay increased 

slightly in comparison with the CBR of untreated soil specimen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6. Effect of stabilization on CBR of the soil (Mousavi and Wong, 2015) 

 

2.7 Conclusions   

According to the literature review, engineering behaviour of sandy soil mixed with cement, 

fibres or their combination has been evaluated in previous research works. Moreover, the effect 

of shredded waste tyre inclusion in sandy soil has been investigated in different aspects.  

Different characteristics of sandy soil have been improved by adding cement, fibres and both 

cement and fibres, as research works have presented. Therefore, it is expected that there will 

be improvement in the engineering behaviour of sandy soils stabilised with cement and 

reinforced with tyre fibres, and that has to be investigated. So, consideration of enginee r ing 

behaviour of sandy soil would be very important especially for Perth sandy soil as no 

comprehensive research works have been done so far.  
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CHAPTER 3 

 

MATERIALS AND METHODS   

 

 

 

3.1 General  

This chapter contains the description of materials used in this study and their characterist ics. 

In addition, the methodology of the research is also explained. 

 

3.2 Materials and equipment  

3.2.1 Soil 

The soil used in this study is sandy soil that was obtained from a quarry in north of Perth in 

Western Australia. Geotechnical tests including sieve analysis test (Standards Australia, 2009), 

specific gravity test (Standards Australia, 2006) and relative density test (Standards Australia, 

1998a) were conducted to specify the properties of the soil. As per the Unified Soil 

Classification System (USCS) and based on the test results, the soil was classified as poorly 

graded sand (SP) (ASTM, 2011). The properties of the soil are presented in Table 3.1, and the 

particle-size distribution is illustrated in Fig. 3.1 and Fig. 3.2. 

 

 

Fig. 3.1. Materials used: tyre fibres; sandy soil 
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Table 3.1. Properties of Perth soil  

Properties  Value 

Liquid limit (%) - 

Plasticity index (%) NP 

Specific gravity of soil solids (𝐺𝑠 ) 2.64 

Mean particle diameter (𝐷50 ) (mm) 0.38 

Coefficient of uniformity (𝐶𝑢) 2.48 

Coefficient of curvature (𝐶𝑐) 1.18 

Maximum void ratio (𝑒𝑚𝑎𝑥 ) 0.76 

Minimum void ratio (𝑒𝑚𝑖𝑛 ) 0.45 

Soil group as per the USCS SP 

Maximum dry unit weight (kN/m3) 17.26 

Optimum water content (%)  11.77 

 

 

Fig. 3.2. Soil particle-size distribution curve 

 

3.2.2 Cement  

The general purpose (GP) cement (Standards Australia, 2010) was used in this study. It had the 

initial and final setting times of 135 and 195 minutes, respectively (Cockborn Cement, 2008). 

 

3.2.3 Tyre fibres 

The tyre fibres without any metal wire and thread have been selected from a local company in 

Perth. They have length rate 1 to 38 mm, sG of 1.12 and water absorption of 0.8% as per 
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Standards Australia (2000). According to ASTM (2012), the fibres fall into the granula ted 

rubber and tyre chips category and they are referred to as tyre fibre in this study. A specific 

ratio (the ratio of length to diameter) for tyre fibres could not be defined as tyre fibres had 

various length and diameters. However, Fig. 3.1 shows the tyre fibre used in this study.   

 

3.3 Methodology  

In order to analyse the effect of cement content and tyre fibres on the california bearing ratio 

(CBR), unconfined compressive strength (UCS) and compaction test value of sandy soil, the 

values were measured by changing cement content and tyre fibres and all the experimenta l 

results were illustrated by tables, figures and graphs for an easy understanding and critical 

discussion.   

 

3.3.1 Mix design  

The effect of different parameters such as cement content ( cp ) and tyre fibre content ( fp ) is 

one of the objectives of this study. Therefore, forty-two specimens for compaction test, 

seventy-eight specimens for UCS and thirteen specimens have been prepared containing of 

different cp and fp . The range of cement content ( cp ) in soil are 0, 1, 3 and 5% based on dry 

mass of soil. It is defined as follows:  

 

100(%) 
s

c
c

w

w
p                     (3.1) 

where cw  = weight of cement, and sw = weight of dried soil. 

 

The range of cement content was selected in view of the fact that the Main Roads WA currently 

recommends the cement content of 2 ± 0.1% to produce the hydrated cement treated crushed 

rock base (HCTCRB) for pavement construction (Main Roads WA, 2012). In addition, 

although the cement has great benefits in terms of strength improvement, its production has 

environmental and economic concerns. Therefore, the use of cement should be controlled to be 

in low contents provided the project requirements permit. 

 

According to Edincliler et al. (2012) having fp of more than 5% in sand-waste tyre additive 

mixtures resulted in a reduction in the shear strength. In addition, the use of tyre derived 



Chapter 3: Materials and methods   
 

25 

 

aggregates with a content of less than 5% in soil has received limited attention. Therefore, in 

the present study, fp in soil mixtures are 0, and 1% of the dry mass of soil. It is defined as 

follows: 

 

100(%) 
s

f

f
w

w
p                                                                                                                    (3.2) 

 

where fw = weight of tyre fibres. Table 3.2 presents the several mixtures, with different 

compositions of soil, cement and tyre fibre, which were prepared for the experiments. 

 

 
Table 3.2. Details of soil mixtures 

Mixture Cement content (%) Tyre fibre (%)  Curing period (days) 

Sand  0 0 0 

Sand+Cement  1, 3, 5 0 0 

Sand+Cement+Curing day 1, 3, 5 0 3, 7, 14, 28 

Sand+Cement+Tyre fibre  1, 3, 5 1 0 

Sand+Cement+Tyre fibre+Curing day 1, 3, 5 1 3, 7, 14, 28 

 

3.3.2 Mixture preparation   

To prepare the mixtures of soil with additives prior to compaction in moulds, a specific mass 

of oven-dried soil was taken, and then the required percentage of tyre fibre and/or cement, 

based on the dry mass of soil, was weighed and mixed with the soil. Cement was passed through 

a 1.18-mm sieve to remove probable existing lumps. For samples without cement, water was  

added to the mixture and mixed until a uniform mixture was obtained and then cured for a 

minimum of two hours in plastic bags as per AS 1289.5.1.1-2003 for compaction test 

(Standards Australia, 2003). Generally, any mixture having GP cement should be cured for 2-

3 hours before compaction (Standards Australia, 2008); Therefore, for samples containing 

cement, after adding water, the mixture was mixed for ten minutes, kept cured in plastic bags 

for 165 minutes, and then mixed for about 5 minutes prior to compaction to eliminate the 

energy absorption of bonded particles due to initial setting of cement as recommended by West 

(1959).  

 

 



Chapter 3: Materials and methods   
 

26 

 

3.3.3 Compaction test   

Maximum dry unit weight ( maxd ) and optimum water content ( optw ) have been investigated 

by standard compaction tests and the effect of adding cement and tyre fibres on these 

parameters also have been considered. The standard compaction tests were conducted as per 

the Australian standard AS 1289.5.1.1- 2003 (Standards Australia, 2003). The mould of 105 

mm diameter and 115.5 mm height was used to compact the mixtures in three layers after 

preparing, curing and remixing them each layer was compacted by a rammer with 2.7 kg of 

mass and a drop height of 300 mm (Fig. 3.3). 

 

 

Fig. 3.3. Compaction mould with compacted sample 

 

3.3.4 Unconfined compression test 

Unconfined compression tests were done on mixtures of soil, cement and/or tyre fibres to 

evaluate the change in strength and deformation characteristics of sandy soil. The tests were 

conducted following the guidelines of the Australian standard AS 5101.4-2008 (Standards 

Australia, 2008). The mould with 50 mm diameters and 100 mm height have been used to place 

the mixtures in for UCS tests (Fig. 3.4). Specimens have been prepared based on the maxd and

optw  of each mixtures result from the standard compaction tests. Although the size of mould 

has an effect on test results (Ahmed 1993; Edil and Bosscher 1994), and standards set a 
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limitation for maximum particle size for specimen preparation, mould size effect was ignored 

for simplicity. Each mixture was included three specimens to be tested and average result has 

been calculated.  

 

 

Fig. 3.4. The unconfined compression test equipment; the specimen with cement and tyre fibre content; 

automatic loading machine   
 

3.3.5 California bearing ratio 

The CBR test is mostly used in the assessment of granular materials in base, subbase and 

subgrade layers of road and airfield pavements. Although California bearing ratio (CBR) values 

have not commonly been used recently in mechanical design, they are good indicators of 

strength and bearing capacity of a subgrade soil, subbase, and base course material for use in 

road and airfield pavements. Owing to heavy traffic loads, base and subbase layers of pavement 

structures are subjected to large tensile stresses The tests were conducted following the 

guidelines of the Australian standard AS 1289.6.1.1:2014 (Standards Australia, 2014). After 

the mixtures were cured and remixed prior to specimen preparation, as described earlier, they 

were placed in a 152 mm by 178 mm split (Fig. 3.5). 
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Fig.3.5. CBR equipment and loading machine   

 

In order to improve the reproducibility of the test, the following apparatuses shall be used:  

 

a) Cylindrical metal mould (Fig. 3.6) of known volume, with an internal diameter of 

152±1 mm, height of 178±1 mm and wall thickness of at least 5 mm, provided with a 

metal extension collar and a perforated metal baseplate (Standards Australia, 2014). 

 

b) Metal spacer disc (Fig. 3.7) of 150.0±0.5 mm diameter and 61.00±0.25 mm high, fitted 

with a removable handle for lifting the disc from the mould (Standards Australia, 2014).  

 

c) Compaction apparatus, including the compaction block, complying with the 

requirements of AS 1289.5.1.1 or AS 1289.5.2.1, as applicable (Standards Australia,  

2014). 

 

d) Metal stem and perforated plate with a mass of 1000±25 g (Fig. 3.8) (Standards 
Australia, 2014). 

 

e) Metal surcharges, each surcharge having a mass of 2250±25 g, a diameter of 150.0±0.5 

mm and a centre hole od 55±1 mm diameter (Fig. 3.9). At least one surcharge shall be 

annular; the others may be annular or slotted (Standards Australia, 2014). 
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Fig. 3.6. Mould (Standards Australia, 2014) 

 

 
Fig. 3.7. Spacer disc and handle (Standards Australia, 2014) 
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Fig. 3.8. Stem and plate (Standards Australia, 2014) 

 

 

 

Fig. 3.9. Surcharges (Standards Australia, 2014) 

 

The CBR test involves relatively slow penetration rates (1 mm/min) so that the load on the 

plunger is unlikely to be related directly to any dynamic properties of the soil, but is likely to 

be determined by static strength and stiffness. A further correlation-between dynamic and static 

stiffness-must also be inferred from the use of the CBR in pavement design (Hight and Stevens, 

1982). 
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3.4 Conclusions  

An experimental program was undertaken to investigate the changes in the enginee r ing 

behaviour of a sandy soil being affected by inclusion of different amounts of cement and/or 

waste tyre fibre. The conducted tests were standard compaction, UCS, and CBR tests. The 

curing time for cemented samples was 3, 7, 14 and 28 days, and the applied force in CBR test 

were maximum 50 kN.
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CHAPTER 4 

 

COMPACTION BEHAVIOUR  

 

 

 

4.1 General  

Having the best performance of the material in field in terms of strength will require two 

essential parameters, the maximum dry unit weight ( maxd ) and optimum water content                  

( optw ), which are resulted from standard/modified compaction test in geotechnical engineer ing. 

According to Consoli et al. (2011), one of the most significant parameters affecting the 

properties of cemented soil is the level of compaction. Moreover, other research works, such 

as Foose et al. (1996) and Attom (2006), indicated that unit weight of soil and tyre chip mixture 

had a significant effect on the shear strength of the mixture. Results of standards compaction 

tests on different mixtures of 0, 1, 3, and 5% of cement content ( cp ) with or without 1% tyre 

fibre content ( fp ) and the change in void ratio (e ) and degree of saturation (S) are discussed 

in this chapter.  

 

4.2 Compaction characteristics of sandy soil 

Fig. 4.1 indicates that the compaction curve for Perth sandy soil indicating that maxd  and optw

are 17.26 kN/m3 and 11.77%, respectively. Fig. 4.2 shows the similar curves for several other 

mixtures to determine the maxd and optw  of each mixture. 
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Fig. 4.1. Compaction and zero air void (ZAV) curves for Perth soil 

 

Fig. 4.2. Compaction and zero air void (ZAV) curves for Perth soil for cp = 1, 3 and 5% and/or fp = 1% 
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4.3 Effect of cement and tyre fibre on the compaction characteristics of the mixture 

 
4.3.1 Maximum dry unit weight  

The dry unit weight-moisture content relationship for different compaction efforts are 

presented in Fig. 4.2. These curves indicate that the increase in the compaction effort resulted 

in an increase in the maximum dry unit weight ( maxd ) and a decrease in the optimum moisture 

content ( optw ). 

 

Fig. 4.3 shows the gradual increase in dry unit weight values for the cemented soil specimens 

with cement rate 0, 1, 3, and 5%. The dry unit weight increases by adding 1% tyre fibres and 

1, 3, and 5% cement to sandy soil. It is noticed from Fig. 4.3 that for %1fp  , maxd  increases 

with increasing cp value, but there is much significant increase for 1cp  and 3%, whereas 

maxd slightly decrease with 5cp %. This variation occurs because cement consists of much 

finer particles and has higher sG  than soil and tyre fibres, thus resulting in a dense mixture with 

cement occupying more voids initially, and then with higher content contributing more unit 

weight to the mixture due to higher sG . In the past, a similar trend of variation was reported by 

some researchers in case of soil stabilised with cement (Al-Aghbari, 2009; Kutanaei and 

Choobbasti, 2014), and fines, up to specific amount, being added to soil and fine/coarse-gra ined 

soils (Deb et al., 2010; Isik and Ozden, 2013).  

 

The decrease of maxd by adding shredded rubber tyre to sand, sand-cement mixtures, fly ash-

lime-gypsum or claylime mixtures was reported earlier (Youwai and Bergado, 2003; Cabalar, 

2011; Chan, 2012; Guleria and Dutta, 2012; Edincliler and Cagatay, 2013; Balunaini et al., 

2014; Cabalar et al., 2014). This is mainly because sG  of the tyre fibre is less than that of soil 

and cement. Additionally, tyre fibres have the ability to absorb the compaction energy due to 

being flexible (Edil and Bosscher, 1994; Özkul and Baykal, 2006).  

 

4.3.2 Optimum water content  

Fig. 4.4 indicates the variation of optimum water content with cement content ( cp ) varying 

from 0 to 5% with tyre fibre content ( fp ) as 0 and 1%. It is observed that adding tyre fibres to 

soil generally causes a reduction in optw . A similar consideration was reported for addition of 
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Fig. 4.3. Variation of maximum dry unit weight with different cement contents  and fibre 

 

tyre derived aggregates to clay and clay-lime mixtures (Özkul and Baykal, 2006; Kalkan, 2013; 

Cabalar et al., 2014). However, it may be noted that as fp increases to 1%, a decrease in optw

takes place whereas the cemented specimens without tyre fibres shows slight increase in optw

with 1 and 3% cement content and decrease in optw  with 5% cement content. Similar results 

were observed earlier when polyvinyl alcohol fibres were added to sand (Kutanaei and 

Choobbasti, 2014. Al-Aghbari and Dutta, 2013. Al-Aghbari et al., 2009. Dutta .R .K., 2011). 

When adding tyre fibres to sand, there are some factors such as water absorption, specific 

surface area and particle size of materials that tend to affect optw . Since tyre fibres have 

negligible water absorption (0.8%) and a large specific surface area, when they are added to 

sand, lower optw values are obtained (Kalkan, 2013). On the other hand, tyre fibres particles are 

generally larger than sand particles; therefore, adding tyre fibres to sand changes the gradation 

in a way that more voids are created to be occupied by water. These factors counteract each 

other and affect optw so that adding more tyre fibres make an insignificant change to optw  for fp

=1%. Similar phenomenon was observed in compaction behaviour of sand-cement kiln dust 

(Baghdadi and Rahman, 1990), sand-incinerator ash (Mohamedzein et al. 2006), sand-plastic 

and non-plastic fines (Deb et al., 2010), lateritic soilfly ash (Singh and Goswami, 2012), 

increasing fines in different soils (Isik and Ozden, 2013) when additives were increased up to 

a specific amount, and sand-cement mixtures (Kutanaei and Choobbasti, 2014). The sand-

cement-fibre mixtures show the same trend as cemented sand mixtures. However, initia l ly, 
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optw increases with adding 1% and 3% cement due to the change in gradation caused by tyre 

fibre, and then with further addition of cement optw decreases because of the phenomenon 

explained for the cemented soil mixtures. 

 

Fig. 4.4. Variation of optimum water content with different cement contents and fibre  

 

4.3.3 Void ratio and degree of saturation at maximum dry unit weight 

According to Edil and Bosscher (1994) the mechanical behaviour of tyre chip-soil mixtures 

may be more dependent on the volume of voids in the mixture rather than maxd . An important 

factor in cement bonding which can be an indication of the level of contact between the 

particles is the volume of voids (Consoli et al., 2010a). In addition, the amount of water 

surrounding the particles plays an important role in the engineering behaviour of mixtures, 

especially when cement is added. Therefore, the void ratio (e) and degree of saturation (S) at 

the maxd will be investigated in this section.  

 

In order to obtain the e values at the maxd for the mixtures, their specific gravity ( sG ) values 

were calculated by getting the weighted average of the sG values of the materials in the mixture 

from the following equation: 
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where sW = weight of dried soil; ssG = specific gravity of soil; sfG = specific gravity of tyre 

fibres; and scG = specific gravity of cement. 

 

By having maxd , optw and sG values of the mixtures, e values were calculated using the 

following equation: 

 


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
                                                                                                        (4.2) 

 

where w = unit weight of water; and d = dry unit weight of the materials. 

 

Fig. 4.5 shows the variation of e at the maxd with tyre fibre content ( fp ), respectively, for 

cement content ( cp ) varying from 0 to 5%. It is noticed from the graphs that generally, adding 

cement to the mixtures results in slightly lower e values; however, a decrease in maxd caused 

a significant variation of e which have been observed by adding 1% of tyre fibre to soil. This 

may be because of adding tyre fibre changes the gradation of mixtures in a way that more voids 

will be created. According to Youwai and Bergado (2003) the rearrangement of particles in 

addition to the compressibility of the tyre fibre can change in e values. In general, soil plus 5% 

of cp  has the lowest e value of 0.38. 

 

The values of degree of saturation ( S ) at the maxd were calculated using the following 

equation: 

 

sGwSe                                                                                                                            (4.3) 

 

where w  = water content of the materials. 
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Fig. 4.5. Variation of void ratio at the maximum dry unit weight with tyre fibre content for different cement 

contents: mixtures of sand, tyre fibres and cement 

 

 

 

Fig. 4.6. Variation of degree of saturation at the maximum dry unit weight with tyre fibre content for different 

cement contents: mixtures of sand, tyre fibres and cement 

 

Figs. 4.6 presents the variation of degree of S at the maxd with fp for tyre fibres 0 and 1%, 

respectively for cp varying from 0 to 5%. The results show that adding 1% tyre fibres generally 

decreases S . The reason for this reduction is that, by adding tyre fibres, as discussed earlier, 

the void ratio e  increases, while water content ( w ) decreases, resulting in a lower S  because 

S  is the ratio of volume of water to void volume. It is also noticed from Figs. 4.6 that adding 

cement to soil results in higher S at first that is attributed to the considerable reduction ofe . 
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However, adding more cement does not change S significantly, at least for the cp values in this 

study. Generally, soil plus 3% of cp  has the highest S  value of 73.18%. 

 

4.4 Conclusions 

The following general conclusions have been made from this chapter: 

 Adding cement and/or tyre fibre to sandy soil generally reduces the optimum water 

content    ( optw ). 

 The addition of cement to soil results in an increase of maximum dry unit weight                

( maxd ); while adding tyre fibre to cemented sand mixtures decrease maxd . 

 Void ratio ( e ) at the maximum dry unit weight slightly decreases in mixture of 

cemented soil with or without tyre fibres. 

 Adding tyre fibre leads to lower degree of saturation ( S ) values. Conversely, adding 1 

and 3% of cement increases S at maximum dry unit weight.
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CHAPTER 5 

 

 

UNCONFINED COMPRESSIVE STRENGTH BEHAVIOUR 

 

 

 

5.1 General 

Unconfined compression test is a simple laboratory testing method to assess the mechanica l 

properties of soils. It provides a measures of the undrained strength and the stress-strain 

characteristics of the soil. The unconfined compression test is often included in the laboratory 

testing program of geotechnical investigations. According to several researchers, such as 

Consoli et al. (2010), Park (2011) and Szymkiewicz at al. (2012), the unconfined compression 

test is by far the most popular method of soil shear testing because it is one of the fastest and 

cheapest methods of measuring shear strength. The specimens were prepared based on the 

maximum dry unit weight ( maxd ) and optimum water content ( optw ) as per the Australia 

standard AS 5101.4-2008. 

 

This chapter presents the procedure and test results of unconfined compression tests conducted 

on different soil mixtures containing 0, 1, 3 and 5% of cement content ( cp ) and 0, and 1% tyre 

fibre content ( fp ). 

 

5.2 Unconfined compressive strength of sand 

The unconfined compressive test is mainly conducted on cohesive and reinforced sandy soil 

mixtures to find out any effect on the unconfined compressive strength (UCS) of the sandy soil. 

The mixtures were compacted in three layers into the mould with 50-mm diameter and 100-

mm height. Three specimens were prepared to be tested for each mixture. The moulds were 

removed after compaction and cemented specimens were kept in plastic bags for curing. To 

study the results of soil-cemented-fibre on UCS, both cemented soil specimens and cemented 

soil with fibres specimens were tested after being cured 0, 3, 7, 14, and 28 days. For testing 

specimens, using an automatic loading machine controlled by a computer, a load cell and a 

displacement cell. According to Standards Australia International 2008, a 1-mm/min rate of 
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displacement was selected. The machine was connected to a desktop computer with the 

relevant software to read the test data and calculate the outputs results. The average of the 

stress-strain curves of the three specimens tested for the soil was obtained and is shown in Fig 

5.1 that indicates the UCS of the soil is 9.45kPa which used only for comparison purposes. For 

the several other mixtures detailed in Table 3.2, the average stress-strain curves were produced 

similarly. The corresponding UCS values were read from the average stress-strain curve of 

each mixture and for the simplicity of comparison, the results are presented in figures. 

  

 

Fig. 5.1. Unconfined compression strength curve for Perth sand 

 

5.3 Effect of cement and tyre fibre on the unconfined compressive characteristics of 

the mixture 

 

5.3.1 Unconfined compressive strength 

It has been noticed that as expected the cement content and tyre fibres have a great effect on 

the strength of these sand-tyre-cement mixtures. A small difference in cement content has a 

significant impact on the performance of the specimens. Specimens from the mould were 

extracted carefully and were placed in sealed plastic bags for 3, 7, 14, and 28 days. Figure 5.2 

shows variation of unconfined compression strength curves for Perth soil with/without cement 

content ( fp ) and tyre fibre content ( cp ). The variation of UCS values with cement content    

1-5% and tyre fibre content 1% is shown in Table 5.1.  

 

Table 5.1 also indicates that the compressive strength increase with an increase in the cement 

content for the fibre-reinforced and non-reinforced materials. The table also illustrates that 
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adding tyre fibres to cemented soil increase UCS. Adding 1% of tyre fibres to soil increases 

the UCS of the soil approximately 10-70% for fresh specimens. According to Zorenberg et al. 

(2004) and Santoni et al. (2001) adding different types of fibres to six various sandy soils causes 

an increase in UCS results, this increase is due to the effect of reinforcement caused by the tyre 

fibre in soil. This also may be because tyre fibres have larger aspect ratios, leading to higher 

pull-out resistance, and thus have more reinforcing effect (Zornberg et al. 2004). Increasing 

tyre fibre content leads to slightly increase in UCS, similar observations were reported earlier 

by adding tyre fibre to soil (Akbulut et al., 2007; Kalkan, 2013; Maher and Ho, 1993; Consoli 

et al., 1998, 2002, 2010a; Park, 2011; Hamidi and Hooresfandi, 2013; Kutanaei and 

Choobbasti, 2014). However, the rate of increase was not the same for different types of fibres 

indicating the importance of fibre characteristics such as stiffness or surface smoothness. 

Furthermore, fibre length has been reported as being both effective and ineffective with regards 

to UCS variations in different fibre reinforced mixtures (Consoli et al., 2002; Akbulut et al., 

2007). 

 

 

Fig. 5.2. Variation of unconfined compression strength curves for Perth sand with fibres content ( fp ) and 

cement content ( cp ) without curing days. 
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5.3.2 Effect of curing period on UCS 

To study the effects of curing time on UCS, both cement-improved soil specimens and cement-

fibre-improved specimens were tested after being cured 3, 7, 14, and 28 days. The UCS of 

treated soil increased significantly over curing time with increasing percentage of 

cement content and tyre fibres. Specimens were cured in plastic bags for 3, 7, 14 and 28 

days. The USC of each specimens was measured on the day of curing and the results are 

compared as shown in Fig. 5.3(a), Fig. 5.3(b), Fig. 5.4(a) and Fig. 5.4(b). 

 
Table 5.1. Summary of Test Condition and Results 

Test ID Cement 

ratio (%) 

Tyre fibres 

ratio (%) 

Curing 

Period 

(days) 

Dry unit 

weight 

(kN/m3) 

Water 

content (%) 

UCS 

(kPa) 

Axial strain 

(%) 

SS0CC0FC0 0 0 0 17.26 11.77 9.45 1.22 

SS0CC0FC1 0 1 0 17.18 11.31 10.41 1.71 

SS0CC1FC0 1 0 0 17.5 13.59 11.24 1.46 

SS3CC1FC0   3     50.78 1.55 

SS7CC1FC0   7   62.04 1.87 

SS14CC1FC0   14   116.95 1.62 

SS28CC1FC0   28   112.96 1.79 

SS0CC1FC1 1 1 0 17.89 11.04 10.59 1.31 
SS3CC1FC1   3   83.36 1.38 

SS7CC1FC1   7   85.97 1.46 

SS14CC1FC1   14   90.24 1.71 

SS28CC1FC1   28   127.36 1.46 

SS0CC3FC0 3 0 0 17.95 13.86 11.86 1.63 
SS3CC3FC0   3   232.71 1.22 

SS7CC3FC0   7   306.06 1.22 

SS14CC3FC0   14   324.49 1.38 

SS28CC3FC0   28   424.22 0.90 

SS0CC3FC1 3 1 0 18.24 10.47 11.97 1.62 
SS3CC3FC1   3   254.9 1.3 

SS7CC3FC1   7   310.58 1.38 

SS14CC3FC1   14   385.73 1.79 

SS28CC3FC1   28   527.76 1.22 

SS0CC5FC0 5 0 0 18.73 10.63 14.901 1.22 
SS3CC5FC0   3   895.45 1.54 

SS7CC5FC0   7   1082.51 0.98 

SS14CC5FC0   14   1213.86 1.14 

SS28CC5FC0   28   1478.82 1.63 

SS0CC5FC1 5 1 0 18.43 10.34 16.01 1.31 
SS3CC5FC1   3   952.03 0.9 

SS7CC5FC1   7   1090.66 1.47 

SS14CC5FC1   14   1539.37 1.62 

SS28CC5FC1   28   1877.93 1.54 
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(a) UCS of cemented soil without tyre fibres 

 

 

(b) UCS of cemented soil with 1% tyre fibres  

Fig. 5.3. UCS variation due to curing time: (a) without tyre fibres; (b) with 1% tyre fibres  

 

In Fig. 5.3 and Fig. 5.4, the relationships between UCS and curing time for cement-improved 

and cement-fibre- improved specimens are presented. Also, the effects of cement content, tyre 

fibres and curing periods are clearly exhibited in Fig. 5.3(a), Fig. 5.3(b), Fig. 5.4(a) and Fig. 

5.4(b) as amounts of cement contents were increased and the curing periods were extended 

from 3 to 28 days. However, the UCS values for treated soil cured at three days was lower than 

that of the samples cured at 28 days. The values of USC for cemented specimens ( cp = 1, 3 and 

5%) without tyre fibres cured at three days ranged between 50.78 and 895.45 kPa. It also was 
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noticed as tyre fibre content increased from 0 to 1%, the treated specimens ( cp =1, 3 and 5%) 

cured at 3 days indicated by higher UCS values of 83.36 and 952.03 kPa, respectively.  

 

From the test results, the UCS of both cemented and cement-fibre-improved specimens 

increased with curing time. By using the UCS at a 3-day curing time as a reference, the UCS 

at a 28-day curing time could increase about 15-122% for both cemented and cement-fib re-

improved specimens. As the curing progresses, reaction occur between the soil particles and 

the cement particles. These reaction generally result in an increase in the stiffness of the 

cement-treated soil. Chang and Woods (1992) performed a series of electron microscopy tests 

on different treated soils with various kinds of cement agent. They indicated that the 

mechanism by which the decrease in porosity of mixture influences the unconfined 

compressive cement strength of cement-treated soil is related to the existence of a larger 

number of interparticle contacts. Therefore, the specimens with a high percentage of cement 

has higher unconfined compressive strength. It was also noticed that the unconfined 

compressive strength increase with increase of the curing time. According to Kutanaei and 

Choobbasti (2017), the reason can be inferred to be the elimination of micro-cracks in the 

cement part of the specimens and hydration development when the sample gets older. 

 

 

(a) Without tyre fibres  
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(b) With 1% tyre fibres 

 

Fig. 5.4. Effect of cement, tyre fibre and curing periods on UCS: (a) without tyre fibres; (b) with 1% tyre fibres  

 

 

 

Table 5.2. Variation of secant tangent modulus of elasticity  

Test ID 
sUCS)( , (kPa) Strain , s  Secant modulus of elasticity, sE (kPa) 

SS0CC1FC0 30 0.005 6000 

SS3CC1FC0 32 0.005 6400 

SS7CC1FC0 32 0.005 6400 

SS14CC1FC0 32 0.005 6400 
SS28CC1FC0 32 0.005 6400 

SS0CC1FC1 34 0.005 6800 

SS3CC1FC1 48 0.005 9600 

SS7CC1FC1 44 0.005 8800 

SS14CC1FC1 47 0.005 9400 
SS28CC1FC1 46 0.005 9200 

SS0CC3FC0 32 0.005 6400 

SS3CC3FC0 45 0.005 9000 

SS7CC3FC0 50 0.005 10000 

SS14CC3FC0 48 0.005 9600 
SS28CC3FC0 45 0.005 9000 

SS0CC3FC1 34 0.005 6800 

SS3CC3FC1 44 0.005 8800 

SS7CC3FC1 45 0.005 9000 

SS14CC3FC1 44 0.005 8800 
SS28CC3FC1 45 0.005 9000 

SS0CC5FC0 34 0.005 6800 

SS3CC5FC0 35 0.005 7000 

SS7CC5FC0 50 0.005 10000 

SS14CC5FC0 45 0.005 9000 
SS28CC5FC0 50 0.005 10000 

SS0CC5FC1 32 0.005 6400 

SS3CC5FC1 46 0.005 9200 

SS7CC5FC1 45 0.005 9000 

SS14CC5FC1 44 0.005 8800 
SS28CC5FC1 42 0.005 8400 
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5.3.3 Modulus of elasticity (Initial tangent modulus)    

Stiffness and ductility capacity of the materials used in geotechnical applications are of high 

importance. Various structures have different strength and deformation requirements based on 

the application. Therefore, understanding the stiffness behaviour of the mixtures used in the 

current work is beneficial. From the average stress-strain curves of different mixtures, the axial 

strain 0.5% values were obtained, and their variation with tyre fibre content ( fp ) is presented 

in Table 5.1 and 5.2 for cement content ( cp ) of 0 and 1 to 5%, respectively. In order to 

investigate the stiffness of the sandy soil affected by adding cement and/or tyre fibre, the secant 

tangent modulus of elasticity ( sE ) for each mixture was calculated from the average stress-

strain curves using the following equation and presented in Table 5.2. 

 

s

s

UCS
E 











                                                                                                                                (5.1) 

 

where UCS = the unconfined compressive strength and  = axial strain. 

 

Figs. 5.5 shows the variation of sE with cp = 1, 3 and 5% for samples with or without tyre 

fibres, respectively. The results indicate that adding 1% tyre fibre to the soil does not have any 

significant influence on the sE of the mixtures with 1 to 5% cement content, thus the stiffness 

of the soil does not change significantly by adding the tyre fibre as observed earlier (Chan, 

2012). It can be concluded that adding tyre fibre to cemented soil increases the flexibility of 

the mixture and prevents an abrupt and brittle failure. An increase in the flexibility of cemented 

soil by fibre reinforcement was reported earlier (Consoli et al., 1998; Chan, 2012; Hamidi and 

Hooresfandi, 2013; Kutanaei and Choobbasti, 2014). The lower density of the mixtures induced 

by the inclusion of tyre fibre in addition to the initial deformation required to mobilise the 

tensile strength in the extensible tyre fibre may be the reasons of this ductility that delays the 

failure (Nicholson, 2014; Kutanaei and Choobbasti, 2014). 
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Fig. 5.5. Variation of secant modulus of elasticity with tyre fibre content 1% and/or cement contents of 0 to 5% 

 

In addition, it is observed from Fig. 5.5 that inserting tyre fibre in the soil-cement mixtures has 

more influence on the E value when cp is higher, which is due to the counteraction of cement 

and the tyre fibre effects as explained before. Furthermore, Figs. 5.5 shows that sE increases 

with adding cement to the soil and soil-fibre mixtures, and the trend is similar to that of UCS 

as there is insignificant variation in the axial strain at failure ( a ) by changing the cp . This 

increase indicates that the addition of cement increases the stiffness of the mixture, with cement 

dominating the improvement at large cp , as reported earlier (Abdulla and Kiousis, 1997; 

Consoli et al., 1998, 2009; Park, 2011; Chan, 2012; Kutanaei and Choobbasti, 2014). In 

addition to the effect of cement hydration on the stiffness improvement, inserting cement in 

the mixtures increases the maxd , and the density enhancement results in the increase of stiffness 

(Nicholson, 2014). 
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5.4 Conclusions    

A series of UCS tests on cement-improved soils and cement-fibre- improved soils were 

conducted. Special attention was paid to the effects of curing time on UCS tests. Some 

conclusions can be drown as follows:  

 The UCS and axial strain at failure ( a ) increase with the addition of cement and tyre 

fibre while specimens get older, moreover, no significant change is observed in secant 

modulus of elasticity (
sE ).  

 The test results consistently show that UCS of the cement-soil mixture keeps increasing 

with curing time which can be increased by approximately 15-122%.  

 The general stiffness loss due to the addition of tyre fibre to the soil-cement mixtures 

is compensated by the change in the brittle behaviour of mixtures to a ductile one. 

 

 

 

 

 

 

 

 

 



Chapter 6: California bearing ratio 
 

50 

 

CHAPTER 6 

 

CALIFORNIA BEARING RATIO 

 

 

 

6.1 General  

The California bearing ratio (CBR) test is a simple strength test that compares the bearing 

capacity of a material. It is primarily intended for, but not limited to, evaluating the strength of 

cohesive materials having maximum particle sizes less than 19 mm. It was developed by the 

California Division of Highways around 1930 and was subsequently adopted by numerous 

states, counties, U.S. federal agencies and internationally.  

 

This chapter presents the procedure and results of CBR tests conducted on different soil 

mixtures containing 0, 1, 3 and 5% of cement content ( cp ) and 0, and 1% tyre fibre content (

fp ) for both soaked and non-soaked condition. 

 

6.2 California bearing ratio 

The test most frequently used to characterize the subgrade soil in pavement design is the CBR 

test. The importance of the CBR test emerged from the following two facts: (1) for almost all 

pavement design charts, unbound materials are basically characterized in terms of their CBR 

values when they are compacted in pavement layers; and (2) the CBR value has been affilia ted 

with some constitutive properties of soils, such as plasticity indices, grain-size distribution, 

bearing capacity, modulus of subgrade reaction, modulus of resilience, shear strength, density, 

and molding moisture content(Al-Amoudi et al., 2002). 

 

Although the CBR test is only valid for uniform materials, it can show the qualitative benefit 

of geogrid reinforcement to the material resistance under the same conditions of test and hence 

can be used for comparing the results. Therefore, CBR tests were conducted on selected soils 

unreinforced and reinforced with a single layer of the two types of geogrid (Kamel et al., 2004). 

The strength and stiffness of soils are specified by factors such as drainage conditions, initia l 

effective stress state, water content, structure, loading direction and loading rate. When the 
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CBR test is performed on fine-grained soils, neither drainage conditions nor the effective stress 

state of the soil sample can be controlled. This represents a serious shortcoming of the test and 

means that the relationship between CBR and static strength and stiffness cannot be 

investigated directly (Hight and Stevens, 1982). 

 

According to Kamel et al., (2004), it is clear that there is a considerable amount of increase in 

the CBR value of a soil with the geogrid reinforcement. The amount of increase depends upon 

both the type of soil and geogrid stiffness. For example, in the case of soil A, the CBR value 

increases from 4.15 percent for unreinforced soil to 5.83 percent when geogrid-1 (of higher 

stiffness) was placed at 50mm from the top and to 4.99 percent when geogrid-2 (of lower 

stiffness) was placed at similar level (Table 6.1). The percent increase in CBR value was 

however, more with geogrid-1, which was of higher stiffness indicating that the stiffness of the 

grid also has considerable effect on the bearing capacity of the reinforced soil. Table 6.1 shows 

results of the CBR tests on three types of soil reinforced with geogrid. 

 

Table 6.1. Results of CBR tests for different position of geogrids (Kamel et al., 2004) 

Type of grid Position from top(%) of height Soaked CBR percent Percent change with respect 

to unreinforced sample 
Soil A Soil B Soil C Soil A Soil B Soil C 

No Grid  - 4.15 1.1 1.05 - - - 

Grid – 1 20 (2.5 cm) 5.25 1.52 1.26 27 38 20 

 40 (5.0 cm) 5.83 1.84 1.52 40 67 45 

 60 (7.5 cm) 6.46 2.24 1.84 56 104 75 

 80 (10 cm) 6.83 2.52 2.15 65 129 105 

Grid - 2 20 (2.5 cm) 4.62 5.25 1.41 11 28 5 

 40 (5.0 cm) 4.99 5.83 1.7 20 66 25 

 60 (7.5 cm) 5.83 6.46 1.97 40 79 50 

 80 (10 cm) 6.3 6.83 2.23 52 103 75 

 

 

6.3 Effect of cement and tyre fibre on the California bearing ratio of the mixture 

For each selected moisture content and compactive effort, three CBR specimens were prepared 

by compacting the wetted soil in three layers to achieve a dry unit weight equivalent to that of 

the compaction test at the selected compactive effort. At each moisture content, three 

specimens were immediately loaded under a surcharge of 4.5 kg and subjected directly to the 
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CBR penetration test. In the case of soaked condition, additional CBR specimens were deferred 

until they had been soaked in water for 4 days under the same surcharge of 4.5 kg. The CBR 

test was conducted at a loading rate of 1.2 mm/min. To determine the CBR value from the load 

penetration curves, the loads at penetrations of 2.50 mm and 5.00 mm were determined. 

Because the CBR is defined as the ratio of the force required to penetrate a circular piston, 

respectively this ratio was determined as follows: 

 

%100
forceStandrad

forceMeasured








CBR                                               (6.1) 

 

The higher of these two values is reported as the CBR value for that specimen (Al-Amoudi et 

al., 2002). 

 

Standard unsoaked CBR tests were performed on soil specimens containing 0, 1, 3 and 5% 

cement content with or without 1% tyre fibres. These tests were conducted to study the 

improvement in the CBR value because it is the most frequently used test method for 

characterizing the subgrade soil in pavement design.  The unsoaked CBR test results for soil 

reinforced with various amounts of cement and tyre fibres are shown in figure 6.1. It was 

noticed from the test results that the CBR value for Perth sandy soil was 11.74. The unsoaked 

CBR value of 11.74 for the unreinforced soil specimen increase to approximately 13.53 for 

specimens with a 1% tyre fibres content which is a 15.2% increase in the CBR value. For 

cemented-soil specimens with 1% cement, the CBR value increases to 17.12 which shows a 

45.82% increase. In addition, the unsoaked CBR value of 19.31 for specimen with 5% cement 

has been noticed which is a 64.4% increase in the CBR value. The results show that the 

unsoaked CBR value of 18.58 for fibre-cement-soil specimens with cement content as 5% and 

tyre fibre content 1% which increase approximately 58.4%.  
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Fig. 6.1. The unsoaked CBR test results for sand reinforced with various amounts of cement and tyre fibres  

 

Standard soaked CBR tests were performed on soil specimens containing 0, 1, 3 and 5% cement 

with or without 1% tyre fibres.  The compacted soil specimens at the optimum moisture content 

are soaked for 96 hours in a water bath to get the soaked CBR value of the soil as shown in 

Figure 6.2. The results of soaked CBR has been presented in Figure 6.3 and the percent of 

increasing in the soaked and unsoaked CBR is shown in Table 6.2. Much researches have been 

conducted previously to investigate the effect of cement and/or tyre fibres on soaked CBR and 

higher values of soaked CBR have been presented by previous research studies (Black, 1961; 

Joel and Agbede, 2011; Baghdadi et al., 1995). 

 

 

Fig. 6.2. The compacted soil specimen is soaked for 96 hours in a water bath 
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Fig. 6.3. The soaked CBR test results for sand reinforced with various amounts of cement and tyre fibres  

 

 

Table 6.2. Summery of the CBR values for both soaked and unsoaked specimens   

 Test ID Cement 

ratio (%) 

Tyre fibres 

ratio (%) 

Dry unit 

weight 

(kN/m3) 

Water 

content (%) 

CBR 

(%) 

Percent of increasing 

in CBR, (%) 

 

 

 

 

Unsoaked 

SS0CC0FC0 0 0 17.26 11.77 11.74 - 

SS0CC0FC1 0 1 17.18 11.31 13.53 15.24 

SS0CC1FC0 1 0 17.5 13.59 17.12 45.82 

SS0CC1FC1 1 1 17.89 11.04 15.16 29.13 

SS0CC3FC0 3 0 17.95 13.86 17.57 49.65 

SS0CC3FC1 3 1 18.24 10.47 17.02 44.97 

SS0CC5FC0 5 0 18.73 10.63 19.31 64.48 

SS0CC5FC1 5 1 18.43 10.34 18.58 58.26 

 

 

 

 
Soaked 

SS0CC0FC0 0 0 17.26 11.77 11.74 - 

SS0CC0FC1 0 1 17.18 11.31 13.78 17.78 

SS0CC1FC0 1 0 17.5 13.59 45.9 290.9 

SS0CC1FC1 1 1 17.89 11.04 48.38 312.1 

SS0CC3FC0 3 0 17.95 13.86 120.83 929.2 

SS0CC3FC1 3 1 18.24 10.47 152.95 1202.8 

SS0CC5FC0 5 0 18.73 10.63 363.63 2997.3 

SS0CC5FC1 5 1 18.43 10.34 266.89 2173.3 

 

 

6.4 Conclusions 

The main conclusions that can be drawn from the current chapter are as follows: 

 The addition of cement increased the unsoaked CBR value of the mixture. The addition 

of 1 to 5% cement to soil increased the unsoaked CBR value from 17.12 to 19.31, which 
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is a 12.8% increase. Whereas, the addition of 1 to 5% cement increased the soaked CBR 

value of the mixture from 45.9 to 363.63, which is a 692% increase.  

 Adding 1% tyre fibre increase the CBR value for both soaked and unsoaked mixtures. 

 The results indicate that the use of cement and tyre fibres additive will improve the 

performance of soil.  
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CHAPTER 7 

 

SUMMARY AND CONCLUSIONS 

 

 

 

7.1 Summary  

Soil stabilization and reinforcement are the processes of altering some soil properties by 

different methods, mechanical or chemical in order to produce an improved soil material which 

has all the desired engineering properties. Soils are generally stabilized to increase their 

strength and durability or to prevent erosion and dust formation in soils. The main aim is the 

creation of a soil material or system that will hold under the design use conditions and for the 

designed life of the engineering project. Various materials have been studied and/or used as 

stabilising agent, such as cement, lime and bitumen, and as reinforcing agent, such as 

geosynthetics and natural or synthetic fibres. Recently, as the amount of waste materials such 

as tyres and carpets is dramatically increasing, attentions have been drawn to the reuse of these 

materials to reduce the environmental consequences associated with these wastes. Currently, 

waste tyres are being used in some applications such as energy production or safety mat or 

flooring manufacturing. They are also being utilised in some civil engineering applications 

such as in embankment construction or drainage layers in landfills (Balunaini et al., 2014). 

In the past, some research works have been made to investigate the enginee r ing 

behaviour of mixtures reinforced with waste tyre (Ahmed, 1993; Edil and Bosscher, 1994; 

Foose et al., 1996; Youwai and Bergado, 2003; Zornberg et al., 2004; Attom, 2006; Edincliler 

and Ayhan, 2010; Edincliler et al., 2012; Balunaini et al., 2014). Nevertheless, the attempts 

seem to be inadequate. In addition, limited attention has been paid to the study of using waste 

tyre with cement to improve the engineering properties of sandy soils. Therefore, this research 

aims at investigating the changes in engineering behaviour of the sandy soil available in Perth 

by adding cement and fibres produced from waste tyres. 

The majority of the natural available soil is sandy in Western Australia so the tyre fibre -

reinforced cement-stabilised soil may probably be used as a material in road construction 

projects. Hence, a critical review of the standards around the world was conducted to 

investigate the current practices in the construction of the base course layers of highways 
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worldwide. As the result of the review, and following a series of analyses, a universal gradation 

curve is developed for the materials used in the base course of highways.  

The poorly graded sand (SP), as per the Unified Soil Classification System (USCS) 

(ASTM, 2011), has been collected for the experimental study. The cement which has been used 

in this study was general purpose (GP) cement. It is a commonly cement to use in construction 

projects in Western Australia. This cement was used as the stabilising agent with contents of 

0, 1, 3 and 5%.  The tyre fibres were collected from a local company in Perth and contents were 

0 and 1%. First, basic geotechnical tests, such as sieve analysis and specific gravity test, were 

conducted to determine the properties of the materials used. Then, in order to investigate the 

effect of adding cement and tyre fibres to soil on its engineering behaviour, standard 

compaction, unconfined compression and California bearing ratio tests were conducted on 

different mixtures, and the results were analysed and scientifically discussed. 

 

7.2 Conclusions  

Based on the results of the study presented in the previous chapters, waste tyre fibres are 

suitable materials to improve the engineering characteristics of sandy soils and cemented sandy 

soils, and so they can be utilised in civil engineering applications. The following conclus ions 

are made: 

 

1. The maximum dry unit weight ( maxd ) of the pure soil and soil-cement mixtures is 

slightly reduced by adding the tyre fibres ( %1fp ). Conversely, the addition of 

cement to soil only and soil-tyre fibre mixtures increases the maxd ; the highest and 

lowest maxd  values are observed for soil with 5% cement (18.73 kN/ 3m ) and soil with  

1% tyre fibre and 5% cement (18.43 kN/ 3m ), respectively. 

2. The addition of tyre fibres and/or cement to soil generally decreases the optimum water 

content ( optw ). However, an insignificant decrease in optw  is observed for the mixtures 

of soil plus 1% of tyre fibre content ( fp ). Soil plus 3% cement with a value of about 

13.86% shows the highest optw  , and sand with 1% tyre fibre and 5% cement had the 

lowest optw  of 10.34. 

3. Void ratio (e) at the maximum dry unit weight is decreased by adding cement and/or 

tyre fibre to pure soil.  
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4. Adding cement and/or tyre fibre to the mixtures decreases the degree of saturation (S) 

at maximum dry unit weight. The S values in soil cemented mixture increase when 

cement is added at 1 and 3% of dry weight of soil, but increasing cement content (
cp ) 

beyond 3% decreased the value of S. 

5. The unconfined compressive strength (UCS) increased in soil with the addition of 

cement and/or tyre fibre, while no significant change is observed in the secant modulus 

of elasticity (
sE ). The addition of cement to soil and TF-reinforced soil increases the 

UCS and E significantly in a non-linear way. 

6. The highest improvement occurs when 1% tyre fibre is added to soil with 5% cement 

with 28 days curing time. Furthermore, adding tyre fibre to the cemented soil improves 

the ductility by increasing the  and decreasing the sE .  

7. Generally, including TF in cemented soil reduces stiffness. However, the improvement 

in the ductile behaviour and prevention of sudden brittle failure compensates for the 

loss in stiffness. 

 

Considering the overall outcomes of the experimental study, the use of waste tyre fibres in 

soil, with or without cement, is beneficial in civil applications such as slope stabilisat ion, 

backfills and embankments by providing a lighter mixture, improving the strength and causing 

a ductile behaviour that prevents abrupt failure of the structures. In addition, it is an efficient, 

cost-effective and ecologically friendly strategy to reduce and possibly eliminate the waste tyre 

disposal problems, while saving natural soil materials. 

 

7.3 Recommendations for future work 

The findings of this research suggest an effective solution to the disposal problems associated 

with waste tyres and show that waste tyre fibres can be used as reinforcing materials in soil and 

cemented soil in civil engineering projects. Based on the promising results of this study, as 

well as its limitations, further investigation is recommended on the following aspects: 

 

 Using tyre fibres in lower content increments, such as 0.25 or 0.5%, especially at 

contents of below 1%. 

 Effect of gradation, by using coarser or finer graded soils, on the engineering behaviour 

of cement-stabilised and tyre fibre-reinforced soil mixtures. 

 Effect of water content on the UCS and CBR fibre-reinforced-cemented soil.  
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 Effect of compaction effort on the UCS and CBR of the soil reinforced with tyre fibre 

and stabilised with cement. 
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