Edith Cowan University [Research Online](https://ro.ecu.edu.au/)

[Research outputs 2022 to 2026](https://ro.ecu.edu.au/ecuworks2022-2026)

12-1-2023

Key communication technologies, applications, protocols and future guides for IoT-assisted smart grid systems: A review

Md Ohirul Qays Edith Cowan University

Iftekhar Ahmad Edith Cowan University

Ahmed Abu-Siada

Md Liton Hossain

Farhana Yasmin Edith Cowan University

Follow this and additional works at: [https://ro.ecu.edu.au/ecuworks2022-2026](https://ro.ecu.edu.au/ecuworks2022-2026?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Computer Sciences Commons](https://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages)

[10.1016/j.egyr.2023.01.085](http://dx.doi.org/10.1016/j.egyr.2023.01.085)

Qays, M. O., Ahmad, I., Abu-Siada, A., Hossain, M. L., & Yasmin, F. (2023). Key communication technologies, applications, protocols and future guides for IoT-assisted smart grid systems: A review. Energy Reports, 9, 2440-2452. <https://doi.org/10.1016/j.egyr.2023.01.085> This Journal Article is posted at Research Online. https://ro.ecu.edu.au/ecuworks2022-2026/2152

Contents lists available at [ScienceDirect](https://www.elsevier.com/locate/egyr)

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

Review article Key communication technologies, applications, protocols and future guides for IoT-assisted smart grid systems: A review

Md. Ohirul Q[a](#page-1-0)ys ^{a,*}, Iftekhar Ahmad ª, Ahmed A[b](#page-1-2)u-Siada ^b, Md. Liton Hossain ^b, Farhana Yasmin [a](#page-1-0)

a *School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia* ^b *Discipline of Electrical and Computer Engineering, Curtin University, Kent Street, Bentley, Perth 6102, Australia*

A R T I C L E I N F O

Article history: Received 18 August 2022 Received in revised form 10 January 2023 Accepted 19 January 2023 Available online xxxx

Keywords: Internet of things Interoperability IoT protocols Layered models Smart grids

a b s t r a c t

Towards addressing the concerns of conventional power systems including reliability and security, establishing modern Smart Grids (SGs) has been given much attention by the global electric utility applications during the last few years. One of the key advantageous of SGs is its ability for twoway communication and bi-directional power flow that facilitates the inclusion of distributed energy resources, real time monitoring and self-healing systems. As such, the SG employs a large number of digital devices that are installed at various locations to enrich the observability and controllability of the system. This calls for the necessity of employing Internet of Things (IoT) to achieve reliable integration of all digital devices and proper tracing of various apparatuses in the grid. In this paper, the communication technology, architectural design, cutting-edge applications, and protocols of IoTassisted SG systems are comprehensively reviewed. The main concerns, future challenges, and research gaps of IoT-assisted smart grid systems are highlighted in detail. Based on this review, key findings are concluded to pave the path for further research directions on IoT-assisted SG systems. © 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

Contents

Corresponding author.

E-mail address: moakash@our.ecu.edu.au (M.O. Qays).

<https://doi.org/10.1016/j.egyr.2023.01.085>

2352-4847/© 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license [\(http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/)).

1. Introduction

Traditional power grids are centrally controlled to warrant a balance between supply and demand while maintaining system stability. A substantial energy waste is endured in the current power grids [\(Deng et al.](#page-11-0), [2015](#page-11-0)) that exhibit few challenges such as continuous increase in load demand [\(Tonyali et al.,](#page-13-0) [2016;](#page-13-0) [Buswig et al.,](#page-11-1) [2019](#page-11-1)), interoperability of devices made by different manufacturers, increased penetration level of renewable energy sources (RESs) and aging of critical assets. With the aim of addressing these challenges, converting conventional grids into smart grids (SGs) has been given much attention by worldwide electricity grids operators ([Yaacoub and Abu-Dayya](#page-13-1), [2014;](#page-13-1) [Yigit](#page-13-2) [et al.,](#page-13-2) [2014](#page-13-2)).

Nevertheless the main challenge of SGs is the necessity for real-time tracing of all installed components within the grid via high speed, encyclopaedic and co-operative modern communication systems to facilitate full observability and controllability of various grid components [\(Yang](#page-13-3), [2019\)](#page-13-3). In contrast, Internet of things (IoT) is a network of physical devices that are coupled by the internet. This configuration helps sensing, analyzing, and controlling, all components within the grid. IoT technique is able to assist smart grids by associating multiple system purposes for the energy production, transmission, storage, distribution, and usages by integrating advanced devices to facilitate connectivity, automation, and real-time tracking [\(Saleem et al.](#page-13-4), [2019](#page-13-4); [Affam](#page-10-9) [et al.](#page-10-9), [2021\)](#page-10-9). Few surveys on IoT-assisted SG systems can be found in the literatures. As an example, [Collier](#page-11-2) [\(2015\)](#page-11-2) presented the main challenges for the inclusion of IoT technology into existing grids. Advanced Metering Infrastructure (AMI) and smart metering are presented in [Al-Turjman and Abujubbeh](#page-11-3) [\(2019\)](#page-11-3) without covering other vital features of IoT-aided SG systems, such as architecture, utilization, and prototypes. [Gupta et al.](#page-11-4) ([2019\)](#page-11-4) investigated the security and complexity of IoT-assisted smart grid systems. As displayed in [Fig.](#page-3-4) [1,](#page-3-4) several kinds of economical areas have partaken with the global application of IoT projects, however industrial sector is mostly rated for the last few years [\(Anon,](#page-11-5) [2022b\)](#page-11-5). The bidirectional data flow of IoT-assisted SG systems was discussed in [Akkad et al.](#page-11-6) ([2022\)](#page-11-6). The research focused on the internet-based cybersecurity threats by modeling 45 security controls. Reported results recommended the necessity of developing a formal template for maintaining and verifying the information flow. IoT platform was implemented in [Hildén](#page-12-0) [et al.](#page-12-0) [\(2022\)](#page-12-0) to collect data of building appliances integrated with SG systems. A data collector installed with a photovoltaic (PV) battery integrated system was employed to analyze and control

the system. The paper concluded the economy of energy market consideration for the industrial applications.

The application of IoT for economic and sociological operation of power systems is presented in [Bedi et al.](#page-11-7) [\(2018a\)](#page-11-7). [Reka and](#page-13-5) [Dragicevic](#page-13-5) [\(2018](#page-13-5)) presented the technical operational merits of the IoT-assisted smart grid systems. Another review published in [Sohraby et al.](#page-13-6) ([2017\)](#page-13-6), focuses on the satellite services for the SG systems. A brief survey on individual SG technologies, IoT and energy management is presented in [Jain et al.](#page-12-1) ([2014](#page-12-1)). Although a conceptual model of SG combined with IoT setting was presented in [Motlagh et al.](#page-12-2) [\(2020](#page-12-2)), the main concern was given to the communication layer of the SG system.

A number of review papers on IoT outlines, implementations, challenges and structures can be found in the literatures [\(Al-](#page-11-8)[Fuqaha et al.,](#page-11-8) [2015;](#page-11-8) [Nitti et al.](#page-12-3), [2016](#page-12-3); [Granjal et al.,](#page-11-9) [2015;](#page-11-9) [Sicari](#page-13-7) [et al.](#page-13-7), [2015\)](#page-13-7). However, most of these papers are focused on IoT safety and security cloud computation and social issues. IoT based software defined networking (SDN) including data mining ([Sood](#page-13-8) [et al.,](#page-13-8) [2016](#page-13-8); [Tsai et al.](#page-13-9), [2014\)](#page-13-9), and Long Term Evolution (LTE) scheduling ([Mehaseb et al.](#page-12-4), [2016\)](#page-12-4) have been also presented in the literature. The standard form of IoT is presented in [Palat](#page-12-5)[tella others](#page-12-5) [\(2013](#page-12-5)) and [Sheng et al.](#page-13-10) ([2013\)](#page-13-10) while [Gluhak et al.](#page-11-10) ([2011\)](#page-11-10) focuses on conducting various tests of IoT. In addition, some books such as [Sinclair](#page-13-11) ([2015](#page-13-11)), [Rossman](#page-13-12) [\(2016](#page-13-12)) and [Kranz](#page-12-6) ([2016\)](#page-12-6) presented the IoT in depth. Applications of IoT platforms were investigated in [Panduman et al.](#page-12-7) ([2022a\)](#page-12-7) to integrate data synchronization and communication. It studied five real-time projects using Message Queuing Telemetry Transport (MQTT) device and machine learning. There were, however, some problems associated such as parallelism, distributed network, and multi-rule optimization.

[Ma et al.](#page-12-8) [\(2013\)](#page-12-8) presented the general outline of challenges and standardization accomplishments for SGs while the implementations and structures are elaborated in [Al-Anbagi et al.](#page-11-11) ([2016\)](#page-11-11) and [Erol-Kantarci and Mouftah](#page-11-12) [\(2015\)](#page-11-12). Information handling technologies for SG systems are reviewed in [Liang et al.](#page-12-9) ([2014\)](#page-12-9) while SGs security issues are reviewed in [Komninos et al.](#page-12-10) ([2014\)](#page-12-10) and [Yan et al.](#page-13-13) ([2012](#page-13-13)), and the confidentiality metering is presented in [Finster and Baumgart](#page-11-13) ([2015\)](#page-11-13). Energy efficiency of SGs is discussed in [Sun et al.](#page-13-14) [\(2016\)](#page-13-14) and [Hernandez others](#page-12-11) [\(2014\)](#page-12-11), load-balancing is discussed in [Hossain et al.](#page-12-12) ([2016\)](#page-12-12) and [Rahman](#page-13-15) [et al.](#page-13-15) [\(2014\)](#page-13-15), pricing and optimization approaches are proposed in [Vardakas et al.](#page-13-16) [\(2015](#page-13-16)), and the impact of RESs is investigated in [Reddy et al.](#page-13-17) ([2014](#page-13-17)). Recently, cloud-aided security for IoT-based SCADA systems has been surveyed in [Sajid et al.](#page-13-18) [\(2016](#page-13-18)).

Based on the above discussion and to the authors' best knowledge, a comprehensive state-of-the-art review on IoT-assisted

smart grid systems covering aspects such as application, communication techniques, and architecture has not been published yet. This claim can be noticed from [Table](#page-4-0) [1](#page-4-0) that summarizes the recent published research papers in this field in a comparable way.

An outline of this article is shown in [Fig.](#page-4-1) [2.](#page-4-1) The overview of IoT technique, smart grid systems as well as their integrations and standardization are presented in Section [1](#page-2-1). The current implementations and architectures of IoT-assisted smart grid systems are covered in Sections [2](#page-3-1) and [3](#page-5-6); respectively. Afterwards, different kinds of IoT protocols utilized in SGs are discussed in Section [4.](#page-5-7) Section [5](#page-6-4) presents the analysis of available prototypes, large data management and communication technologies for IoTassisted smart grid systems. Section [6](#page-8-3) highlights the future challenges and guidelines for IoT-assisted smart grid systems. Finally, a brief conclusion of this paper is drawn in Section [7](#page-9-2).

Fig. 1. IoT applications for different global projects [\(Anon](#page-11-5), [2022b\)](#page-11-5).

2. Overview of IoT and SG systems

2.1. Internet of things

Internet of Things is a concept based on a protocol that enables entities to be connected through the internet. It exchanges information amongst numerous smart devices in order to monitor, track and control system's operation [\(Zanella et al.](#page-13-19), [2014](#page-13-19)). In the last decade, IoT-aided technology has mechanized the maneuvers of several systems, relevant to medical technology, transport, military, smart home appliances, and power grids. This technology employs smart devices and systems such as sensors, actuators, Global Positioning System (GPS) as well as various communication techniques, including WiFi, Bluetooth, and ZigBee [\(Al-kahtani](#page-11-14) [et al.,](#page-11-14) [2022](#page-11-14)).

2.2. Smart grids

The term "Smart Grid" refers to a new era of electricity that utilizes information technology to generate, deliver, and consume electricity. Smart grid has been identified as a possible solution to reduce electrical energy waste by addressing the challenges that traditional power grids face in terms of effectiveness, stability, security, power quality and the day-to-day increase of the electrical energy demand ([Tonyali et al.](#page-13-0), [2016;](#page-13-0) [Buswig et al.](#page-11-1), [2019\)](#page-11-1). A typical smart grid topology is shown in [Fig.](#page-5-8) [3](#page-5-8) that comprises power flow and power system sectors. The two sectors are further bonded by power production, transmission, distribution and prosumption which can consume or generate electrical power independently.

2.3. Iot integration in SG systems

In case of conventional grid systems and due to the lack of real-time monitoring systems, some abnormal events and service interruption need to be reported by the end user. In contrast, SG employs IoT technology with unique IP addresses to monitor all components of the grid in real time. Moreover IoT technology plays a critical role for identifying SG data, supportive-network's structure, procedure, data storage security, and measurement ([Atasoy et al.](#page-11-15), [2015](#page-11-15)). Additionally, IoT can be employed for all components of the SG including power production, transmission, distribution and consumption [\(Hu and Li](#page-12-13), [2013;](#page-12-13) [Viani et al.,](#page-13-20) [2013\)](#page-13-20). IoT technology has been utilized for supervising and maintaining the energy production and consumption, energy storage, handling the distributed power plants, and RESs ([Wu](#page-13-21), [2011;](#page-13-21) [Wang](#page-13-22) [et al.](#page-13-22), [2012](#page-13-22); [Basit et al.](#page-11-16), [2017](#page-11-16)). It can also be used to monitor

Table 1

A brief summary of published papers on IoT and Smart Grid technology.

Fig. 2. Outline of the article.

Fig. 3. Representing SG architecture for power flow and power systems.

Fig. 4. Typical SG architecture.

transmission lines and substations ([Wu,](#page-13-21) [2011;](#page-13-21) [Wang et al.](#page-13-22), [2012\)](#page-13-22). As an end user application, IoT is applied for smart homes, charging/discharging batteries of electrical vehicles (EVs), load control, and energy management.

3. Current applications of IoT-assisted smart grid systems

A typical IoT-assisted smart grid topology is shown in [Fig.](#page-5-9) [4](#page-5-9) that comprises power production, transmission, distribution and prosumption as well ([Saleem et al.,](#page-13-4) [2019](#page-13-4)). Additionally, it has three networks for proper energy management and control. These are: Home Area Network (HAN), Neighborhood Area Network (NAN) and Wide Area Network (WAN); those are briefly described below ([Hu and Li](#page-12-13), [2013](#page-12-13); [Viani et al.,](#page-13-20) [2013](#page-13-20)).

3.1. Applications of HAN

The first layer in [Fig.](#page-5-9) [4](#page-5-9) is to manage the users' energy through the HAN which is directly involved with various household smart appliances [\(Khan et al.,](#page-12-20) [2016](#page-12-20); [Ahmed et al.](#page-11-22), [2021;](#page-11-22) [Mukhopadhyay](#page-12-21) [and Mukhopadhyay,](#page-12-21) [2016](#page-12-21)), electrical vehicles (EVs) ([Qays et al.,](#page-12-22) [2020c,](#page-12-22)[a](#page-12-23), [2019](#page-12-24)), and residential RESs [\(Jaradat et al.](#page-12-25), [2014](#page-12-25)) such as rooftop photovoltaic and micro turbine systems ([Qays and](#page-12-26) [Yasmin,](#page-12-26) [2020;](#page-12-26) [Yonis Buswig et al.,](#page-13-27) [2020;](#page-13-27) [Qays et al.](#page-13-28), [2020d;](#page-13-28) [Ohirul Qays et al.](#page-12-27), [2020](#page-12-27); [Qays et al.](#page-12-28), [2020b](#page-12-28)). Such network is attached with the IoT technology, which employs sensors to gather real-time meteorological data that aids for projecting the energy accessibility in the near future.

3.2. Applications of NAN

The second layer of SG network is known as NAN which consists of smart meters pertaining with multiple HANs. It assembles the service information from the installed HANs and transfers the data to WAN, the third layer. The NAN application is mainly implemented in smart distribution ([Ma et al.](#page-12-29), [2016\)](#page-12-29) and smart patrolling sectors ([Anon,](#page-11-23) [2021b](#page-11-23)). By the support of IoT technique, it detects the climate conditions and resolve the influences.

3.3. Applications of WAN

WAN acts as the backbone for communication activity between power generation and transmission systems. The power transmission employs a WAN network along with IoT-assisted smart grid to safeguard the transmission system from infrastructural destruction caused by looting the apparatuses, unusual calamities, and improper development [\(Chen et al.,](#page-11-24) [2012](#page-11-24); [Zhen](#page-13-29) [et al.](#page-13-29), [2012](#page-13-29)). Several kinds of sensors such as leaning/vibration sensor, and video cameras in an IoT-assisted transmission tower produce early alerts for any abnormal event, allowing for swift remedial action. Any type of signal from the sensors is accepted by the sink node which is further converted to data, and shipped off the observation unit via internet or some other correspondence arrangement.

4. IoT-assisted smart grid systems' structures

The SG architectures show how domains interact with one another at different levels of information controlling. The IoT clients comprise end users and electricity producers in hierarchical regions for administrating the electrical progressions ([Trefke et al.,](#page-13-30) [2013\)](#page-13-30). This is an architectural reference with the goal of illustrating SG usages from a structural perspective ([Gottschalk et al.,](#page-11-25) [2017\)](#page-11-25). Different kinds of interoperable layers are included in the architectures to handle the business-related aspects, information functionalities, and installed devices as explained below.

4.1. Structure of Three-layered model

As shown in [Fig.](#page-6-5) [5,](#page-6-5) three individual layers are included in three-layered structure [\(Khattak et al.,](#page-12-30) [2019](#page-12-30); [Song et al.](#page-13-31), [2015\)](#page-13-31). Firstly, the perception layer aims to sense and collect the data through several sorts of devices such as cameras, RFID tags, WSN, GPS, and M2M. Secondly in the network layer internet is accountable as the core network for routing and transmitting the information by accessing other telecommunication networks. Public and industry-specific communication networks are also relied on this network. It maps the information collected from perception layer by IoT components [\(Song et al.](#page-13-31), [2015\)](#page-13-31)

Fig. 5. IoT-assisted Three-layered Structure for Smart Grid systems ([Khattak](#page-12-30) [et al.](#page-12-30), [2019\)](#page-12-30).

Table 2

IoT-assisted four-layered Structure for Smart Grid systems.

and transmits it to the third layer namely; application layer. The next layer's role is to process the data continuously and troubleshoots IoT components for SG problems. It is utilized in numerous types of web-servers relevant with home automation, EVs, and power transmission to achieve information exchange at the highest security level.

4.2. Structure of Four-layered model

As shown in [Table](#page-6-6) [2,](#page-6-6) this architecture consists of four different layers ([Banga et al.](#page-11-26), [2021;](#page-11-26) [Wang et al.,](#page-13-22) [2012\)](#page-13-22). The first terminal layer deals with the IoT components installed in remote terminal units (RTUs), and controls the advanced devices. Afterwards, data are collected from IoT devices in the field layer and are processed based on the type of IoT device. The communication layer can be either wired or wireless and is consisting of a number of communication systems. It offers internet access conductivity, e.g. optical networks for wired network as well as LTE for wireless networks. This structure is further served as a middleware among IoT components and the next master station layer. The last layer controls and copes with all of the SG functionalities and therefore it is measured as an interfacing model to the IoT-assisted smart grid systems.

4.3. Structure of Cloud-based model

DHTG The fundamental energy consumption data saving, and rescue facilities are provided in this cloud architecture along with the maximum computation-intensive modeling. The cloud also contains an application layer to manage the user-friendly web interfacing systems. As shown in [Fig.](#page-6-7) [6](#page-6-7), the cloud-based architecture contains a tree-like assembly control plane that includes a few layers of energy saving policies at a number of levels such as rooms of building, departments, and so on ([Pan et al.](#page-12-31), [2015\)](#page-12-31). In here, smartphones or PCs are well-appointed with various networking interfaces, like Wi-Fi, 3G, LTE, Bluetooth, and GPS

Fig. 6. IoT involvement for advanced position-based automatic energy control [\(Pan et al.,](#page-12-31) [2015](#page-12-31)).

Fig. 7. Web-enabled smart grid architecture ([Mohanty et al.,](#page-12-32) [2014\)](#page-12-32).

which aids to attain exact location positioning. The energy saving policies can be dynamically modified by the consumers through their smartphones after a preliminary verification and approval. The location data from cell phones is used to create automatic control rules that may turn on or off energy-consuming items in homes and offices.

4.4. Structure of Web-based model

The web of things includes a number of web services as illustrated in [Fig.](#page-6-8) [7.](#page-6-8) The web browser performs the likewise interfacing way for these web services [\(Mohanty et al.,](#page-12-32) [2014\)](#page-12-32). In this architecture, the energy resources are linked to modern energy meters that are in charge of collecting data on residential energy uses. IoT gateways that routinely interface with these meters receive meter readings from energy supplies. Data from IoT gateways are collected and updated on a regular basis, and the server delivers web services on top of specific IoT devices. The household appliances are linked via the SG, to enable the management of power sources by altering source controllers distantly via IoT devices.

5. Iot protocols of SG applications

The foremost challenge of SG application can be found in the communication protocols of heterogeneous and distributed elements. Middleware works assist the interfacing of heterogeneous substances, data collection security trade, and circumstance assessments. Though IEC 61850 data model is applied in SG systems

Table 3

Characteristics of IoT protocols.

Fig. 8. Popularity of different kinds of protocols [\(Aloufi and Alhazmi,](#page-11-27) [2020](#page-11-27)).

for the last few years ([Kumar et al.,](#page-12-33) [2022\)](#page-12-33), the main challenging issue can be found in communication duration. To overcome this factor, different kinds of IoT protocols approached in SG usages are described in [Tightiz and Yang](#page-13-23) ([2020\)](#page-13-23) and [Wytrębowicz et al.](#page-13-32) ([2021\)](#page-13-32). Herewith, [Fig.](#page-7-8) [8](#page-7-8) displays the popularity of several IoT protocols in percentage while [Table](#page-7-9) [3](#page-7-9) compares the IoT protocols by considering several categories such as data security, complexity, and message structure.

5.1. HTTP

It is the most popular IoT protocol that is used in the application layer. HTTP establishes www and hypertexts that facilitate easy access to users. HTTP/2 is another resourceful web server of HTTP which was published in 2015 to support maximum web browsers. Utilization of lower memory is the principal merit of HTTP due to fewer simultaneous networks. However, optimization is not possible for mobile devices.

5.2. CoAP

CoAP demonstrates reliability by continuously issuing an acknowledgment message until the approval message is received from the other communication partner. It is a slow network and does not include encrypted features. However, it can support numerous asynchronous messages/languages.

5.3. AMQP

The architecture of AMQP was standardized in 2011 by OASIS and it includes three individual elements: data exchange, queue

and binding. The messages are sent from exchange as a broker to a queue by prioritizing them. Several sorts of schemes such as direct, and fanout are defined in binding. Albeit this protocol facilitates wide message structures/broadcasts, it is not appropriate for resource constrained usages.

5.4. MQTT

This protocol was firstly introduced in 1999 as an appropriate candidate for distributed sensors. Usually, three levels of QoS are found among which level zero is the fastest and lowest part as the message confirmation is not involved. Level one and level two confirm a minimum of one or more messages delivery to the controlling sector; respectively. It is a lightweight protocol and easy to implement, but it contains limited scalability due to the broker.

5.5. XMPP

This is an open standard protocol that supports not only the synchronous model but also the asynchronous model as well. In here, XML streaming model converts the XML stanza messages to data. Although this is a stable protocol and highly customizable for SG applications, it is not suitable for constrained devices.

5.6. CORBA

In this protocol, both client and server can be acted as object by the contact of ORB and facilitating the platform-free interconnection. While a request is sent from a client, it is received by the server via DSI that can map the object references in ORB. Since it supports a vast number of languages, it cannot work in a speedy mode.

5.7. ZeroMQ

It is an asynchronous protocol where a queue is provided to share the messages. In a high volume of data throughputs and duration, ZeroMQ is a proper application. This is a broker-less protocol, but it outfits for the constrained devices.

5.8. DDS

DDS is a non-intermediate information exchanging protocol with no risk of bottleneck disappointment. All applications such as data readers/writers/publishers/subscribers can communicate and interact through a domain. DDS has the advantages of eliminating the need for participants' information by using discovery methods along with the DCPS procedure. It is also suitable for extended QoS and large systems.

5.9. OPC UA

OPC is resulted from the combinational works of automation industries without sharing the device's information to the participants. It contains two models in its architecture namely transport and data. When clients are contacted with the transport model, the data model guides the servers for depicting the objects. Resource constrained practices are generally applicable in this protocol. Nevertheless, it requires firewall configurations.

5.10. DPWS

DPWS characterizes two individual sorts of services namely hosting and hosted services. The hosting services help the devices to discover any process and control the functionality of hosted services. The main advantage of DPWS is resource constrained implementations whereas some security concerns can be found in services.

6. Analysis of existing prototypes, Big data management and communication technologies

6.1. Existing prototypes

Prototypes are vital in the creation of large systems since they allow the producers to examine different system's features and validate its performance under different operating conditions before going live with the final product. Amongst the obtainable prototypes for IoT-assisted smart grid systems, energy conditional prototype is a smart gadget attached with a position sensor that broadcasts its location to two servers into two different locations at specified intervals. The distance is calculated between the smart devices by the servers ([Pan et al.](#page-12-31), [2015\)](#page-12-31). Two sorts of software packages are required in this prototype. As shown in [Fig.](#page-8-7) [9,](#page-8-7) one of them is in charge of GPS data capturing and sending it to the server in NMEA 0183 format. Another one is the Wi-Fi router configuration and administration software that includes a mapping of ports facility to communicate the server from outside of the network address translation. Another available prototype is the renewable and non-renewable energy resources which is offered for IoT-aided home application via HAN architecture ([Mohanty et al.](#page-12-32), [2014\)](#page-12-32). The application comes with a Graphical User Interface (GUI) for managing user accounts and accessing web services. After the verification of user's registration, the consumers will be able to monitor their home power consumption, and arrange the timetable of power resources [\(Iannaccone](#page-12-34) [and Iannaccone,](#page-12-34) [2006\)](#page-12-34). The LPC1768 CPU is connected to an Ethernet connection RJ45 in order to include the internet in this prototype. The LwIP protocol is used to create an internet connection by mapping MAC along with the IP address [\(Spanò et al.,](#page-13-33) [2015,](#page-13-33) [2013](#page-13-34)). Additionally in Switzerland, an online prototype of a medium-grid voltage monitoring system [\(Pignati et al.,](#page-12-35) [2015\)](#page-12-35) was introduced to estimate network state using a Phasor Measurement Unit (PMU). This prototype can provide information about load demand, integrated power, heat producing units, as well as injections of active power. Three main components were used for this system including a devoted PMU that is coupled to the medium-grid voltage substation, a communication network to support duration constraints, and state estimation processes for actual nursing conditions that take phasor-data concentration into account.

6.2. Big data management

Owing to the necessity of instantaneous information as well as the large volume of analyzed data, management of big data

Fig. 9. Automated energy regulation based on smart location framework [\(Pan](#page-12-31) [et al.](#page-12-31), [2015\)](#page-12-31).

Fig. 10. Structure of cloud computing and fog computing ([Atlam et al.,](#page-11-28) [2018](#page-11-28)).

is ideal for IoT-assisted smart grid systems. For the inclusion of IoT skills along with smart grids, managing large amounts of data comes at a cost, including storage and processing on a regular basis. This issue includes energy consumption, sophisticated metering records, power line failures, and so on ([Shobol et al.](#page-13-35), [2019\)](#page-13-35). In this regard, cloud computing and fog computing as shown in [Fig.](#page-8-8) [10](#page-8-8) provides a service-oriented approach to deliver endcustomers a ready-to-use implementation [\(Atlam et al.,](#page-11-28) [2018\)](#page-11-28). It is a sharing service that allows to access the data instantly via internet and facilitates the reduction of the operational cost and distance which is essential to travel in the network-systems. Utility businesses gain a variety of benefits as a result of this, including lower maintenance costs, improved collaboration, and lower energy costs [\(Markovic et al.,](#page-12-36) [2013\)](#page-12-36). MapReduce ([Lu et al.,](#page-12-37) [2018\)](#page-12-37) and Stream processing ([Carvalho et al.,](#page-11-29) [2017](#page-11-29)) techniques divide large data sets into smaller ones and runs them on numerous machines at the same time implementing identical codes for maintaining great fault scalability and reliability.

6.3. Communication technologies

For smart grids, a variety of IoT and non-IoT communication methods comprising unique features, advantages and disadvan-tages are briefly discussed in this sub-section. [Fig.](#page-9-3) [11](#page-9-3) denotes the condition of IoT and non-IoT techniques in terms of their data rates, covering distance as well as power consumption factors ([Reda et al.](#page-13-36), [2018](#page-13-36); [Anon](#page-11-30), [2022a\)](#page-11-30). A summary is further provided in [Table](#page-9-4) [4](#page-9-4) for each communication technology in details.

6.3.1. IoT communication

Several types of wireless IoT techniques are available, for instance 5G, Z-Wave, 6LowPAN, and ZigBee. Amongst them from [Fig.](#page-9-3) [11](#page-9-3), 5G [\(Karipidis et al.](#page-12-38), [2021](#page-12-38)) provides the highest data range whilst LoRaWAN ([Schroder Filho et al.,](#page-13-37) [2016](#page-13-37)) is the lowest. On the other hand, NB-IoT ([Li et al.,](#page-12-39) [2018\)](#page-12-39) covers maximum distance than others. A wireless IoT-assisted SCADA system was proposed in [Qays et al.](#page-13-38) [\(2022](#page-13-38)) to monitor the operation of RESs. A Wind–Photovoltaic-Battery hybrid model was simulated using

Table 4

Smart grid communication technologies.

Fig. 11. Situation of IoT and Non-IoT Communication Technologies.

Simulink software and experimented in the laboratory environment through Wonderware Intouch software. The real-time data was further monitored by the ThingSpeak website. However, the discrimination between sending and receiving data was seen to

be mainly caused by the wifi speed which is another principal factor in IoT communication technique.

6.3.2. Non-IoT communication

The Non-IoT communication techniques make sure the utmost data rate and coverage distance e.g. optical communication ([Jianming et al.](#page-12-44), [2011;](#page-12-44) [Ancillotti et al.,](#page-11-43) [2013](#page-11-43)) and cellular communication [\(Hossain et al.](#page-12-41), [2012](#page-12-41)). In the remote and challenging areas, this technique outperforms over other ones. Nevertheless, the complexity of physical infrastructures diminishes its proper efficiency.

7. Future challenges and guidelines

Despite the fact that IoT techniques are commonly used in smart grids, they may present a plethora of security flaws for further challenges and research guidelines. Because IoT-assisted SG systems are monitored and regulated through the open internet, less protection against cyber-attacks than more established mobile and permanent networks is provided. After manipulating data, generated by smart devices or transferred from the utility, an attacker can disrupt the real-time balance of energy output and consumption by inflicting significant financial losses to the utility and power assets [\(Bekara](#page-11-44), [2014](#page-11-44); [Ciavarella et al.,](#page-11-45) [2016\)](#page-11-45). Hence, employment of practical elements as a roadmap of future trends for IoT-assisted SGs are demonstrated in [Fig.](#page-10-10) [12](#page-10-10) whereas

the security contemplation for IoT-assisted smart grid systems is discussed below.

7.1. Resource limitation

Numerous devices and things are resource restricted in an IoTaided SG system, particularly those are arranged for excessive quantities. Such type of stuffs are not able to offer complex security algorithms due to the limited measurement and storage sizes. This restriction creates more difficulties in terms of implementing the classical security measures [\(Bekara](#page-11-44), [2014](#page-11-44)). When developing security solutions for IoT-assisted smart grid systems, more caution is required to ensure that IoT devices with limited resources can manage the anticipated security solution.

7.2. Authentication

The smart meters must be authorized by the energy suppliers for billing issues ([Dalipi and Yayilgan,](#page-11-46) [2016](#page-11-46)). Since establishing a trustworthy relationship between smart devices is easy to make, it is more difficult when they are maintained by different entities. In contrast, the uniqueness of IoT components in smart grid system is confirmed once again so as to escape any misapplication of the system. Only the certified employer or scheme should be accredited towards accomplishing the deeds to admit the resources [\(Bekara,](#page-11-44) [2014\)](#page-11-44).

7.3. Cyber attacks

The SG system involves a range of physical assets, such as AMI, and transformers, which are operated by IoT. As a result, cyberattacks on the smart grid are posing a threat to the regulation and causing indirect damage to these assets ([Gunduz and Das,](#page-11-47) [2020;](#page-11-47) [Mesbah,](#page-12-45) [2018](#page-12-45)). The higher the number of IoT-assisted smart grid applications are produced, the greater the need to guard against cyber-attacks. In this regard, code of practice such as IEEE 802.15 ([Chhaya et al.](#page-11-36), [2017](#page-11-36)), Security for IoT consumers ([Anon,](#page-11-48) [2020\)](#page-11-48), and Electrical Equipment Safety System ([Harkin et al.,](#page-12-46) [2022\)](#page-12-46) should be followed strictly under the federal-law.

7.4. Interoperability

In order to meet the diverse requirements of IoT-assisted SG systems, heterogeneous communication methods are required. In contrast to conventional telecommunication standards, the modern communication standards of IoT-assisted smart grid systems need interoperability among interfaces, message and workflows. Interoperability is also necessary for effective business rules, which poses a significant challenge due to the problems associated with multiple vendors and legacy systems ([Noura et al.,](#page-12-16) [2019;](#page-12-16) [Reddy et al.](#page-13-41), [2022](#page-13-41)). As such, instead of focusing on one specific communication technology for IoT-assisted SG systems, a consensus must be reached on the use and interpretation between different technologies (even non-IoT) and standards.

8. Conclusion

Future smart grids are capable of resolving the issues of traditional one-directional information and power flow networks including the continuous increase of the energy consumption, and interoperability of various devices within the network. The IoT technology aids smart grid by supplying advanced IoT-devices towards monitoring, analyzing and controlling the entire system. This refers to the Internet of Things-assisted smart grid system, which supports and develops several network utilities in the

Fig. 12. Relationship of effective elements with IoT-assisted SG systems.

power sector. A comprehensive state-of-the-art review of IoTassisted SG systems, along with a number of issues that must be solved through extensive research and prototyping has been presented in this paper. Main challenging and research gap points can be drawn as below:

- Regarding the communication techniques, lack of data consistency creates the complexity of IoT-assisted SG systems. Hence, it is necessary to measure the device-configuration utilized for IoT-assisted SG systems.
- From the viewpoint of applications, a little attention was given to the applications of IoT-assisted smart grid systems. Subsequently, development of remaining applications is essential.
- After the analysis of architectures, the present designs place a strong focus on generic layered structure, which are primarily modeled for remote household appliances and do not cover all components of power system networks. Thus, the designing of a new reference architecture is needed for IoT-assisted smart grid systems.
- A few quantity of published prototypes are available for IoTassisted smart grid systems, which are not easily accessible for open-source test-beds and simulation tools towards enabling the performance assessment. This calls for more effort in developing various prototypes to assess the performance of the system under different operating conditions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgment

This research work is supported by Edith Cowan University Higher Degree by Research Scholarship (ECUHDRS), Joondalup 6027, Western Australia, Australia.

References

Affam, A., Buswig, Y.M., Othman, A.-K.B.H., Bin Julai, N., Qays, O., 2021. A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems. Renew. Sustain. Energy Rev. 135 (2020), 110186. <http://dx.doi.org/10.1016/j.rser.2020.110186>.

- Ahmadi, S., 2011. Introduction to mobile broadband wireless access. Mob. WiMAX 1–31. <http://dx.doi.org/10.1016/B978-0-12-374964-2.10001-3>.
- Ahmed, M.M., Qays, M.O., Abu-Siada, A., Muyeen, S.M., Hossain, M.L., 2021. Costeffective design of IoT-based smart household distribution system. Designs 5 (3), 55–73. <http://dx.doi.org/10.3390/designs5030055>.
- Akkad, A., Wills, G., Rezazadeh, A., 2022. An information security model for an IoT-enabled smart grid. In: Proceedings of the 7th International Conference on Internet of Things, Big Data and Security 2022, vol. 105. pp. 157–165. [http://dx.doi.org/10.5220/0011042200003194.](http://dx.doi.org/10.5220/0011042200003194)
- Al-Anbagi, I., Erol-Kantarci, M., Mouftah, H.T., 2016. A survey on cross-layer quality-of-service approaches in WSNs for delay and reliability-aware applications. IEEE Commun. Surv. Tutorials 18 (1), 525–552. [http://dx.doi.org/](http://dx.doi.org/10.1109/COMST.2014.2363950) [10.1109/COMST.2014.2363950.](http://dx.doi.org/10.1109/COMST.2014.2363950)
- Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M., 2015. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17 (4), 2347–2376. [http://dx.doi.org/](http://dx.doi.org/10.1109/COMST.2015.2444095) [10.1109/COMST.2015.2444095.](http://dx.doi.org/10.1109/COMST.2015.2444095)
- Al-kahtani, M.S., Khan, F., Taekeun, W., 2022. Application of internet of things and sensors in healthcare. Sensors 22 (15), 5738. [http://dx.doi.org/10.3390/](http://dx.doi.org/10.3390/s22155738) [s22155738](http://dx.doi.org/10.3390/s22155738).
- Al-Turjman, F., Abujubbeh, M., 2019. IoT-enabled smart grid via SM: An overview. Futur. Gener. Comput. Syst. 96, 579–590. [http://dx.doi.org/10.1016/](http://dx.doi.org/10.1016/J. FUTURE.2019.02.012) [J.FUTURE.2019.02.012.](http://dx.doi.org/10.1016/J. FUTURE.2019.02.012)
- Aloufi, K., Alhazmi, O., 2020. Secure IoT resources with access control over RESTful web services. Jordan J. Electr. Eng. 6 (1), 1. [http://dx.doi.org/10.5455/](http://dx.doi.org/10.5455/jjee.204-1581015531) [jjee.204-1581015531](http://dx.doi.org/10.5455/jjee.204-1581015531).
- Amjad, A., Azam, F., Anwar, M.W., Butt, W.H., 2021. A systematic review on the data interoperability of application layer protocols in industrial IoT. IEEE Access 9, 96528–96545. <http://dx.doi.org/10.1109/ACCESS.2021.3094763>.
- Ancillotti, E., Bruno, R., Conti, M., 2013. The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Comput. Commun. 36 (1665), 17–18–1697. [http://dx.doi.org/10.1016/J.COMCOM.](http://dx.doi.org/10.1016/J. COMCOM.2013.09.004) [2013.09.004](http://dx.doi.org/10.1016/J. COMCOM.2013.09.004).
- Androcec, D., Vrcek, N., 2016. Thing as a service interoperability: Review and framework proposal. In: Proc. - 2016 IEEE 4th Int. Conf. Futur. Internet Things Cloud, FiCloud 2016. pp. 309–316. [http://dx.doi.org/10.1109/FICLOUD.2016.](http://dx.doi.org/10.1109/FICLOUD.2016.51) [51](http://dx.doi.org/10.1109/FICLOUD.2016.51).
- Anon, 2020. A. government and d. of home affairs, code of practice, securing the internet of things for consumers. [Online]. Available: [https://www.pmc.gov.](https://www.pmc.gov.au/government/commonwealth-coat-arms) [au/government/commonwealth-coat-arms.](https://www.pmc.gov.au/government/commonwealth-coat-arms)
- Anon, 2021a. The design of insulation online monitoring system based on bluetooth technology and IEEE1451.5 | IEEE conference publication | IEEE Xplore. <https://ieeexplore.ieee.org/document/4510224> (Accessed 06 December 2021). Anon, 2021b. Applications of Internet of Things on smart grid in China | IEEE
- Conference Publication | IEEE Xplore. Anon, 2021c. 6LoWPAN: transmission of ipv6 packets over ieee 802.15.4 networks — model library. [https://www.nsnam.org/docs/models/html/](https://www.nsnam.org/docs/models/html/sixlowpan.html) [sixlowpan.html](https://www.nsnam.org/docs/models/html/sixlowpan.html) (Accessed 08 December 2021).
- Anon, 2021d. Home area network technology assessment for demand response in smart grid environment | IEEE conference publication | IEEE xplore. <https://ieeexplore.ieee.org/document/5710729> (Accessed 06 December 2021).
- Anon, 2021e. Better and safer smart homes are built on Z-wave - Z-wave. <https://www.z-wave.com/> (Accessed 08 December 2021).
- Anon, 2021f. Homepage - LoRa alliance®. <https://lora-alliance.org/> (Accessed 08 December 2021).
- Anon, 2021g. Wireless mesh networking - an update on short range wireless technology. [https://www.mouser.fr/applications/short_range_wireless_](https://www.mouser.fr/applications/short_range_wireless_technology/) [technology/](https://www.mouser.fr/applications/short_range_wireless_technology/) (Accessed 06 December 2021).
- Anon, 2022a. (8) (Pdf) an input amplifier for body-coupled communication. [https://www.researchgate.net/publication/309013270_An_Input_Amplifier_](https://www.researchgate.net/publication/309013270_An_Input_Amplifier_for_Body-Coupled_Communication) [for_Body-Coupled_Communication](https://www.researchgate.net/publication/309013270_An_Input_Amplifier_for_Body-Coupled_Communication). (Accessed 14 March 2022).
- Anon, 2022b. Top 10 IoT applications in 2020 - which are the hottest areas right now?. [https://iot-analytics.com/top-10- iot-applications- in-2020/](https://iot-analytics.com/top-10-iot-applications-in-2020/) (Accessed 29 April 2022).
- Atasoy, T., Akinc, H.E., Ercin, O., 2015. An analysis on smart grid applications and grid integration of renewable energy systems in smart cities. In: 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015. pp. 547–550. [http://dx.doi.](http://dx.doi.org/10.1109/ICRERA.2015.7418473) [org/10.1109/ICRERA.2015.7418473.](http://dx.doi.org/10.1109/ICRERA.2015.7418473)
- Atlam, H., Walters, R., Wills, G., 2018. Fog computing and the internet of things: A review. Big Data Cogn. Comput. 2 (2), 10. [http://dx.doi.org/10.3390/](http://dx.doi.org/10.3390/bdcc2020010) [bdcc2020010.](http://dx.doi.org/10.3390/bdcc2020010)
- Banga, A., Ahuja, R., Sharma, S.C., 2021. Accurate detection of electricity theft using classification algorithms and internet of things in smart grid. Arab. J. Sci. Eng. 1–17. [http://dx.doi.org/10.1007/S13369-021-06313-Z/TABLES/9.](http://dx.doi.org/10.1007/S13369-021-06313-Z/TABLES/9)
- Basit, A., Sidhu, G.A.S., Mahmood, A., Gao, F., 2017. Efficient and autonomous energy management techniques for the future smart homes. IEEE Trans. Smart Grid 8 (2), 917–926. <http://dx.doi.org/10.1109/TSG.2015.2504560>.
- Bedi, G., Venayagamoorthy, G.K., Singh, R., Brooks, R.R., Wang, K.C., 2018a. Review of internet of things (IoT) in electric power and energy systems. IEEE Internet Things J. 5 (2), 847–870. [http://dx.doi.org/10.1109/JIOT.2018.](http://dx.doi.org/10.1109/JIOT.2018.2802704) [2802704](http://dx.doi.org/10.1109/JIOT.2018.2802704).
- Bedi, G., Venayagamoorthy, G.K., Singh, R., Brooks, R.R., Wang, K.-C., 2018b. Review of internet of things (IoT) in electric power and energy systems. IEEE Internet Things J. 5 (2), 847–870. [http://dx.doi.org/10.1109/JIOT.2018.](http://dx.doi.org/10.1109/JIOT.2018.2802704) [2802704](http://dx.doi.org/10.1109/JIOT.2018.2802704).
- Bekara, C., 2014. Security issues and challenges for the IoT-based smart grid. Procedia Comput. Sci. 34, 532–537. [http://dx.doi.org/10.1016/J.PROCS.2014.](http://dx.doi.org/10.1016/J. PROCS.2014.07.064) [07.064](http://dx.doi.org/10.1016/J. PROCS.2014.07.064).
- Buswig, Y.M., Affam, A., Albalawi, H., Julai, N., Hj, A., Qays, O., 2019. Development and modelling of three phase inverter for harmonic improvement using sinusoidal pulse width modulation (SPWM) control technique. Int. J. Recent Technol. Eng. 8 (4), 1897–1902. [http://dx.doi.org/10.35940/ijrte.c4624.](http://dx.doi.org/10.35940/ijrte.c4624.118419) [118419.](http://dx.doi.org/10.35940/ijrte.c4624.118419)
- Carvalho, O., Roloff, E., Navaux, P.O.A., 2017. A distributed stream processing based architecture for IoT smart grids monitoring. In: UCC 2017 Companion - Companion Proc. 10th Int. Conf. Util. Cloud Comput.. pp. 9–14. [http:](http://dx.doi.org/10.1145/3147234.3148105) [//dx.doi.org/10.1145/3147234.3148105](http://dx.doi.org/10.1145/3147234.3148105).
- Chen, X., Liu, J., Li, X., Sun, L., Zhen, Y., 2012. Integration of IOT with smart grid. In: IET Conf. Publ., 2011 no. 586 CP. pp. 723–726. [http://dx.doi.org/10.1049/](http://dx.doi.org/10.1049/CP.2011.0763) [CP.2011.0763](http://dx.doi.org/10.1049/CP.2011.0763).
- Chhaya, L., Sharma, P., Bhagwatikar, G., Kumar, A., 2017. Wireless sensor network based smart grid communications: Cyber attacks intrusion detection system and topology control. Electron 2017, 6. [http://dx.doi.org/10.3390/](http://dx.doi.org/10.3390/ELECTRONICS6010005) [ELECTRONICS6010005](http://dx.doi.org/10.3390/ELECTRONICS6010005).
- Ciavarella, S., Joo, J.Y., Silvestri, S., 2016. Managing contingencies in smart grids via the internet of things. IEEE Trans. Smart Grid 7 (4), 2134–2141. [http:](http://dx.doi.org/10.1109/TSG.2016.2529579) [//dx.doi.org/10.1109/TSG.2016.2529579](http://dx.doi.org/10.1109/TSG.2016.2529579).
- Collier, S.E., 2015. The emerging enernet: Convergence of the smart grid with the internet of things. In: Pap. Present. Annu. Conf. - Rural Electr. Power Conf., 2015-May. pp. 65–68. <http://dx.doi.org/10.1109/REPC.2015.24>.
- Dalipi, F., Yayilgan, S.Y., 2016. Security and privacy considerations for iot application on smart grids: survey and research challenges. In: Proc. - 2016 4th Int. Conf. Futur. Internet Things Cloud Work. W-FiCloud 2016. pp. 63–68. [http://dx.doi.org/10.1109/W-FICLOUD.2016.28.](http://dx.doi.org/10.1109/W-FICLOUD.2016.28)
- De La Torre Parra, G., Rad, P., Choo, K.K.R., 2019. Implementation of deep packet inspection in smart grids and industrial internet of things: Challenges and opportunities. J. Netw. Comput. Appl. 135, 32–46. [http://dx.doi.org/10.1016/](http://dx.doi.org/10.1016/J.JNCA.2019.02.022) [J.JNCA.2019.02.022.](http://dx.doi.org/10.1016/J.JNCA.2019.02.022)
- Deng, R., Yang, Z., Chow, M.Y., Chen, J., 2015. A survey on demand response in smart grids: Mathematical models and approaches. IEEE Trans. Ind. Inform. 11 (3), 570–582. <http://dx.doi.org/10.1109/TII.2015.2414719>.
- Erol-Kantarci, M., Mouftah, H.T., 2015. Energy-efficient information and communication infrastructures in the smart grid: A survey on interactions and open issues. IEEE Commun. Surv. Tutor. 17 (1), 179–197. [http://dx.doi.org/10.1109/](http://dx.doi.org/10.1109/COMST.2014.2341600) [COMST.2014.2341600](http://dx.doi.org/10.1109/COMST.2014.2341600).
- Feng, C., Wang, Y., Chen, Q., Ding, Y., Strbac, G., Kang, C., 2021. Smart grid encounters edge computing: opportunities and applications. Adv. Appl. Energy 1, 100006. [http://dx.doi.org/10.1016/J.ADAPEN.2020.100006.](http://dx.doi.org/10.1016/J.ADAPEN.2020.100006)
- Finster, S., Baumgart, I., 2015. Privacy-aware smart metering: A survey. IEEE Commun. Surv. Tutor. 17 (2), 1088–1101. [http://dx.doi.org/10.1109/COMST.](http://dx.doi.org/10.1109/COMST.2015.2425958) [2015.2425958](http://dx.doi.org/10.1109/COMST.2015.2425958).
- Frenzel, L.E., 2018. Networking: Wired and wireless: All devices talking to one another. Electron Explain 217–242. [http://dx.doi.org/10.1016/B978-0-](http://dx.doi.org/10.1016/B978-0-12-811641-8.00009-6) [12-811641-8.00009-6](http://dx.doi.org/10.1016/B978-0-12-811641-8.00009-6).
- Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., Razafindralambo, T., 2011. A survey on facilities for experimental internet of things research. IEEE Commun. Mag. 49 (11), 58–67. [http://dx.doi.org/10.1109/MCOM.2011.](http://dx.doi.org/10.1109/MCOM.2011.6069710) [6069710](http://dx.doi.org/10.1109/MCOM.2011.6069710).
- [Gottschalk, M., Uslar, M., Delfs, C., 2017. The Smart Grid Architecture Model –](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb44) [SGAM. Springer, Cham, pp. 41–61.](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb44)
- Granjal, J., Monteiro, E., Sa Silva, J., 2015. Security for the internet of things: A survey of existing protocols and open research issues. IEEE Commun. Surv. Tutor. 17 (3), 1294–1312. <http://dx.doi.org/10.1109/COMST.2015.2388550>.
- Guainella, E., et al., 2007. Wimax technology support for applications in environmental monitoring, fire prevention and telemedicine. In: 2007 IEEE Mob. WiMAX Symp.. pp. 125–131. <http://dx.doi.org/10.1109/WIMAX.2007.348690>.
- Guenach, M., Louveaux, J., Vandendorpe, L., Whiting, P., Maes, J., Peeters, M., 2009. Performance analysis of the signal-to-noise ratio assisted crosstalk channel estimation for DSL systems. IEEE Int. Conf. Commun. [http://dx.doi.](http://dx.doi.org/10.1109/ICC.2009.5199317) [org/10.1109/ICC.2009.5199317](http://dx.doi.org/10.1109/ICC.2009.5199317).
- Gunduz, M.Z., Das, R., 2020. Cyber-security on smart grid: Threats and potential solutions. Comput. Netw. 169, 107094. [http://dx.doi.org/10.1016/J.COMNET.](http://dx.doi.org/10.1016/J. COMNET.2019.107094) [2019.107094.](http://dx.doi.org/10.1016/J. COMNET.2019.107094)
- Güngör others, V.C., 2011. Smart grid technologies: Communication technologies and standards. IEEE Trans. Ind. Inform. 7 (4), 529–539. [http://dx.doi.org/10.](http://dx.doi.org/10.1109/TII.2011.2166794) [1109/TII.2011.2166794](http://dx.doi.org/10.1109/TII.2011.2166794).
- Gupta, A., Anpalagan, A., Carvalho, G.H.S., Khwaja, A.S., Guan, L., Woungang, I., 2019. RETRACTED: Prevailing and emerging cyber threats and security practices in IoT-enabled smart grids: A survey. J. Netw. Comput. Appl. 132, 118–148. [http://dx.doi.org/10.1016/J.JNCA.2019.01.012.](http://dx.doi.org/10.1016/J.JNCA.2019.01.012)
- Harkin, D., Mann, M., Warren, I., 2022. Consumer IoT and its under-regulation: Findings from an Australian study. Policy & Internet 14 (1), 96–113. [http:](http://dx.doi.org/10.1002/poi3.285) [//dx.doi.org/10.1002/poi3.285.](http://dx.doi.org/10.1002/poi3.285)
- Hernandez others, L., 2014. A survey on electric power demand forecasting: Future trends in smart grids microgrids and smart buildings. IEEE Commun. Surv. Tutor. 16 (3), 1460–1495. [http://dx.doi.org/10.1109/SURV.2014.032014.](http://dx.doi.org/10.1109/SURV.2014.032014.00094) [00094.](http://dx.doi.org/10.1109/SURV.2014.032014.00094)
- Hildén, A., et al., 2022. A data collection and supplementary control platform of a modern building for smart energy applications. Sustain. Energy, Grids Netw. 32, 100928. <http://dx.doi.org/10.1016/j.segan.2022.100928>.
- [Hossain, E., Han, Z., Poor, H.V., 2012. Smart grid communications and networking.](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb54) [p. 481.](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb54)
- [Hossain, E., Zawad, M., Rakibul Islam, K.H., Akash, M.Q., 2016. Design a novel](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb55) [controller for stability analysis of microgrid by managing controllable load](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb55) [using load shaving and load shifting techniques; and optimizing cost analysis](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb55) [for energy storage system. Int. J. Renew. Energy Res. 6 \(3\).](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb55)
- Hu, Q., Li, F., 2013. Hardware design of smart home energy management system with dynamic price response. IEEE Trans. Smart Grid 4 (4), 1878–1887. <http://dx.doi.org/10.1109/TSG.2013.2258181>.
- [Iannaccone, G., Iannaccone, G., 2006. Fast prototyping of network data mining](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb57) [applications. In: Passiv. Act. Meas. Work. \(PAM 2006\). INTEL Res..](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb57)
- Jain, S., Vinoth, K.N., Paventhan, A., Kumar Chinnaiyan, V., Arnachalam, V., Pradish, M., 2014. Survey on smart grid technologies-smart metering, IoT and EMS. In: 2014 IEEE Students' Conf. Electr. Electron. Comput. Sci. SCEECS 2014. [http://dx.doi.org/10.1109/SCEECS.2014.6804465.](http://dx.doi.org/10.1109/SCEECS.2014.6804465)
- Jaradat, M., Jarrah, M., Jararweh, Y., Al-Ayyoub, M., Bousselham, A., 2014. Integration of renewable energy in demand-side management for home appliances. In: Proc. 2014 Int. Renew. Sustain. Energy Conf. IRSEC 2014. pp. 571–576. <http://dx.doi.org/10.1109/IRSEC.2014.7059843>.
- Jianming, L., Bingzhen, Z., Zichao, Z., 2011. The smart grid multi-utility services platform based on power fiber to the home. In: CCIS2011 - Proc. 2011 IEEE Int. Conf. Cloud Comput. Intell. Syst. [http://dx.doi.org/10.1109/CCIS.](http://dx.doi.org/10.1109/CCIS.2011.6045024) [2011.6045024](http://dx.doi.org/10.1109/CCIS.2011.6045024).
- Karipidis, K., Mate, R., Urban, D., Tinker, R., Wood, A., 2021. 5G mobile networks and health—a state-of-the-science review of the research into low-level RF fields above 6 GHz. J. Expo. Sci. Environ. Epidemiol. 2021, 31. [http:](http://dx.doi.org/10.1038/s41370-021-00297-6) [//dx.doi.org/10.1038/s41370-021-00297-6](http://dx.doi.org/10.1038/s41370-021-00297-6).
- Khan, M., Silva, B.N., Han, K., 2016. Internet of things based energy aware smart home control system. IEEE Access (4), 7556–7566. [http://dx.doi.org/10.1109/](http://dx.doi.org/10.1109/ACCESS.2016.2621752) [ACCESS.2016.2621752.](http://dx.doi.org/10.1109/ACCESS.2016.2621752)
- Khan, M.F., et al., 2021. A review of big data resource management: Using smart grid systems as a case study. Wirel. Commun. Mob. Comput. 2021, 1–18. [http://dx.doi.org/10.1155/2021/3740476.](http://dx.doi.org/10.1155/2021/3740476)
- Khattak, H.A., Shah, M.A., Khan, S., Ali, I., Imran, M., 2019. Perception layer security in internet of things. Futur. Gener. Comput. Syst. 100, 144–164. [http://dx.doi.org/10.1016/J.FUTURE.2019.04.038.](http://dx.doi.org/10.1016/J. FUTURE.2019.04.038)
- Kizer, G., 2013. Digital microwave communication: Engineering point-to-point microwave systems. Digit. Microw. Commun. Eng. Point-To-Point Microw. Syst. <http://dx.doi.org/10.1002/9781118636336>.
- Komninos, N., Philippou, E., Pitsillides, A., 2014. Survey in smart grid and smart home security: Issues challenges and countermeasures. IEEE Commun. Surv. Tutorials 16 (4), 1933–1954. <http://dx.doi.org/10.1109/COMST.2014.2320093>.
- Kranz, M., 2016. Building the internet of things implement new business models, disrupt competitors. Transform Your Industry 272, [Online]. Available: [https://www.wiley.com/en-sg/Building+the+Internet+of+Things%](https://www.wiley.com/en-sg/Building+the+Internet+of+Things%3A+Implement+New+Business+Models%2C+Disrupt+Competitors%2C+Transform+Your+Industry-p-9781119285663) [3A+Implement+New+Business+Models%2C+Disrupt+Competitors%2C+](https://www.wiley.com/en-sg/Building+the+Internet+of+Things%3A+Implement+New+Business+Models%2C+Disrupt+Competitors%2C+Transform+Your+Industry-p-9781119285663) [Transform+Your+Industry-p-9781119285663](https://www.wiley.com/en-sg/Building+the+Internet+of+Things%3A+Implement+New+Business+Models%2C+Disrupt+Competitors%2C+Transform+Your+Industry-p-9781119285663). (Accessed 05 December 2021).
- Kumar, S., Abu-Siada, A., Das, N., Islam, S., 2022. Reverse blocking over current busbar protection scheme based on IEC 61850 architecture. IEEE Trans. Ind. Appl. 1–8. <http://dx.doi.org/10.1109/TIA.2022.3220727>.
- Kuzlu, M., Pipattanasomporn, M., Rahman, S., 2016. Review of Communication Technologies for Smart Homes/Building Applications, Proc. 2015 IEEE Innov. Smart Grid Technol. - Asia, ISGT ASIA 2015. [http://dx.doi.org/10.1109/ISGT-](http://dx.doi.org/10.1109/ISGT-ASIA.2015.7437036)[ASIA.2015.7437036](http://dx.doi.org/10.1109/ISGT-ASIA.2015.7437036).
- Lewis, R.P., Igic, P., Zhou, Z., 2009. Assessment of communication methods for smart electricity metering in the U.K.. In: 1st IEEE-PES/IAS Conf. Sustain. Altern. Energy, SAE 2009 - Proc.. [http://dx.doi.org/10.1109/SAE.2009.](http://dx.doi.org/10.1109/SAE.2009.5534884) [5534884](http://dx.doi.org/10.1109/SAE.2009.5534884).
- Li, Y., Cheng, X., Cao, Y., Wang, D., Yang, L., 2018. Smart choice for the smart grid: Narrowband internet of things (NB-IoT). IEEE Internet Things J. 5 (3), 1505–1515. <http://dx.doi.org/10.1109/JIOT.2017.2781251>.
- Liang, H., Tamang, A.K., Zhuang, W., Shen, X.S., 2014. Stochastic information management in smart grid. IEEE Commun. Surv. Tutorials 16 (3), 1746–1770. <http://dx.doi.org/10.1109/SURV.2014.020614.00115>.
- Lu, Z., Wang, N., Wu, J., Qiu, M., 2018. IoTDeM: An IoT big data-oriented MapReduce performance prediction extended model in multiple edge clouds. J. Parallel Distrib. Comput. 118, 316–327. [http://dx.doi.org/10.1016/J.JPDC.](http://dx.doi.org/10.1016/J.JPDC.2017.11.001) [2017.11.001](http://dx.doi.org/10.1016/J.JPDC.2017.11.001).
- Ma, R., Chen, H.H., Huang, Y.R., Meng, W., 2013. Smart grid communication: Its challenges and opportunities. IEEE Trans. Smart Grid 4 (1), 36–46. [http:](http://dx.doi.org/10.1109/TSG.2012.2225851) [//dx.doi.org/10.1109/TSG.2012.2225851](http://dx.doi.org/10.1109/TSG.2012.2225851).
- Ma, Y., Liu, F., Zhou, X., Gao, Z., 2016. Key technologies of smart distribution grid. In: 2016 IEEE Int. Conf. Mechatronics Autom. IEEE ICMA 2016. pp. 2639–2643. <http://dx.doi.org/10.1109/ICMA.2016.7558983>.
- Markovic, D.S., Zivkovic, D., Branovic, I., Popovic, R., Cvetkovic, D., 2013. Smart power grid and cloud computing. Renew. Sustain. Energy Rev. 24, 566–577. [http://dx.doi.org/10.1016/J.RSER.2013.03.068.](http://dx.doi.org/10.1016/J.RSER.2013.03.068)
- Mehaseb, M.A., Gadallah, Y., Elhamy, A., Elhennawy, H., 2016. Classification of LTE uplink scheduling techniques: An M2M perspective. IEEE Commun. Surv. Tutorials 18 (2), 1310–1335. <http://dx.doi.org/10.1109/COMST.2015.2504182>.
- Mesbah, W., 2018. Securing smart electricity meters against customer attacks. IEEE Trans. Smart Grid 9 (1), 101–110. [http://dx.doi.org/10.1109/TSG.2016.](http://dx.doi.org/10.1109/TSG.2016.2545524) [2545524](http://dx.doi.org/10.1109/TSG.2016.2545524).
- Minoli, D., Sohraby, K., Occhiogrosso, B., 2017. IoT considerations, requirements, and architectures for smart buildings-energy optimization and next-generation building management systems. IEEE Internet Things J. 4 (1), 269–283. <http://dx.doi.org/10.1109/JIOT.2017.2647881>.
- Mohanty, S., Panda, B.N., Pattnaik, B.S., 2014. Implementation of a web of things based smart grid to remotely monitor and control renewable energy sources. In: 2014 IEEE Students' Conf. Electr. Electron. Comput. Sci. SCEECS 2014. <http://dx.doi.org/10.1109/SCEECS.2014.6804466>.
- Motlagh, N.H., Mohammadrezaei, M., Hunt, J., Zakeri, B., 2020. Internet of things (IoT) and the energy sector. Energies 13 (2), 1–27. [http://dx.doi.org/10.3390/](http://dx.doi.org/10.3390/en13020494) [en13020494.](http://dx.doi.org/10.3390/en13020494)
- Mukhopadhyay, R., Mukhopadhyay, I., 2016. Home automation and grid mapping technology using IoT. In: 7th IEEE Annu. Inf. Technol. Electron. Mob. Commun. Conf, IEEE IEMCON 2016. [http://dx.doi.org/10.1109/IEMCON.2016.](http://dx.doi.org/10.1109/IEMCON.2016.7746255) [7746255](http://dx.doi.org/10.1109/IEMCON.2016.7746255).
- Muleta, N., Badar, A.Q.H., 2021. Study of energy management system and IOT integration in smart grid. In: ICPEE 2021-2021 1st Int. Conf. Power Electron. Energy. [http://dx.doi.org/10.1109/ICPEE50452.2021.9358769.](http://dx.doi.org/10.1109/ICPEE50452.2021.9358769)
- Nitti, M., Pilloni, V., Colistra, G., Atzori, L., 2016. The virtual object as a major element of the internet of things: A survey. IEEE Commun. Surv. Tutor. 18 (2), 1228–1240. [http://dx.doi.org/10.1109/COMST.2015.2498304.](http://dx.doi.org/10.1109/COMST.2015.2498304)
- Noura, M., Atiquzzaman, M., Gaedke, M., 2019. Interoperability in internet of things: Taxonomies and open challenges. Mob. Networks Appl. 24 (3), 796–809. <http://dx.doi.org/10.1007/S11036-018-1089-9/FIGURES/5>.
- Ohirul Qays, M., Buswig, Y., Hossain, M.L., Abu-Siada, A., 2020. Active charge balancing strategy using the state of charge estimation technique for a PV-battery hybrid system. Energies 13 (13), 1–17. [http://dx.doi.org/10.3390/](http://dx.doi.org/10.3390/en13133434) [en13133434.](http://dx.doi.org/10.3390/en13133434)
- Palattella others, M.R., 2013. Standardized protocol stack for the internet of (important) things. IEEE Commun. Surv. Tutorials 15 (3), 1389–1406. [http:](http://dx.doi.org/10.1109/SURV.2012.111412.00158) [//dx.doi.org/10.1109/SURV.2012.111412.00158](http://dx.doi.org/10.1109/SURV.2012.111412.00158).
- Pan, J., Jain, R., Paul, S., Vu, T., Saifullah, A., Sha, M., 2015. An internet of things framework for smart energy in buildings: Designs prototype, and experiments. IEEE Internet Things J. 2 (6), 527–537. [http://dx.doi.org/10.](http://dx.doi.org/10.1109/JIOT.2015.2413397) [1109/JIOT.2015.2413397](http://dx.doi.org/10.1109/JIOT.2015.2413397).
- Panduman, Y.Y.F., Funabiki, N., Puspitaningayu, P., Kuribayashi, M., Sukaridhoto, S., Kao, W.-C., 2022a. Design and implementation of SEMAR IoT server platform with applications. Sensors 22 (17), 6436. [http://dx.doi.org/10.3390/](http://dx.doi.org/10.3390/s22176436) [s22176436](http://dx.doi.org/10.3390/s22176436).
- Panduman, Y.Y.F., Funabiki, N., Puspitaningayu, P., Kuribayashi, M., Sukaridhoto, S., Kao, W.-C., 2022b. Design and implementation of SEMAR IoT server platform with applications. Sensors 22 (17), 6436. [http://dx.doi.org/10.3390/](http://dx.doi.org/10.3390/s22176436) [s22176436](http://dx.doi.org/10.3390/s22176436).
- Pereira, F., Correia, R., Pinho, P., Lopes, S.I., Carvalho, N.B., 2020. Challenges in resource-constrained IoT devices: Energy and communication as critical success factors for future IoT deployment. Sensors 2020 20 (6420), [http:](http://dx.doi.org/10.3390/S20226420) [//dx.doi.org/10.3390/S20226420](http://dx.doi.org/10.3390/S20226420).
- Pignati, M., et al., 2015. Real-time state estimation of the EPFL-campus mediumvoltage grid by using PMUs. In: 2015 IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf. ISGT 2015. <http://dx.doi.org/10.1109/ISGT.2015.7131877>.
- Qays, O., Buswig, Y., Anyi, M., 2019. Active cell balancing control method for series-connected lithium-ion battery. Int. J. Innov. Technol. Explor. Eng. 8 (9), 2424–2430. [http://dx.doi.org/10.35940/ijitee.i8905.078919.](http://dx.doi.org/10.35940/ijitee.i8905.078919)
- Qays, O., Buswig, Y., Hossain, M.L.H., Abu-Siada, A., 2020a. Recent progress and future trends on state of charge estimation methods to improve batterystorage efficiency: A review. CSEE J. Power Energy Syst. 1 (1), 1–12. [http:](http://dx.doi.org/10.17775/CSEEJPES.2019.03060) [//dx.doi.org/10.17775/CSEEJPES.2019.03060.](http://dx.doi.org/10.17775/CSEEJPES.2019.03060)
- Qays, O., Yasmin, F., 2020. Renewable energy production based on solar power and magnetic field prototype in Bangladesh. Int. J. Appl. Power Eng. 8 (1), 29–35. [http://dx.doi.org/10.11591/ijape.v8.i1.pp29-35.](http://dx.doi.org/10.11591/ijape.v8.i1.pp29-35)
- Qays, O., Yasmin, F., Kamal, H.A., 2020b. A review on improved performance for solar photovoltaic cells by various cooling methods. J. Therm. Energy Syst. 5, 1–19. [http://dx.doi.org/10.5281/zenodo.3625329.](http://dx.doi.org/10.5281/zenodo.3625329)
- Qays, O., et al., 2020c. Active cell balancing control strategy for parallel connected LiFePO4 batteries. CSEE J. Power Energy Syst. 1–8. [http://dx.doi.org/](http://dx.doi.org/10.17775/CSEEJPES.2020.00740) [10.17775/CSEEJPES.2020.00740.](http://dx.doi.org/10.17775/CSEEJPES.2020.00740)
- Qays, O., et al., 2020d. An intelligent controlling method for battery lifetime increment using state of charge estimation in PV-battery hybrid system. Appl. Sci. 10 (24), 1–13. [http://dx.doi.org/10.3390/app10248799.](http://dx.doi.org/10.3390/app10248799)
- Qays, M.O., et al., 2022. Monitoring of renewable energy systems by IoT-aided SCADA system. Energy Sci. Eng. 10 (6), 1874–1885. [http://dx.doi.org/10.1002/](http://dx.doi.org/10.1002/ese3.1130) [ese3.1130](http://dx.doi.org/10.1002/ese3.1130).
- Rahman, A., Liu, X., Kong, F., 2014. A survey on geographic load balancing based data center power management in the smart grid environment. IEEE Commun. Surv. Tutorials 16 (1), 214–233. [http://dx.doi.org/10.1109/SURV.](http://dx.doi.org/10.1109/SURV.2013.070813.00183) [2013.070813.00183](http://dx.doi.org/10.1109/SURV.2013.070813.00183).
- Reda, H.T., Daely, P.T., Kharel, J., Shin, S.Y., 2018. On the application of IoT: Meteorological information display system based on LoRa wireless communication. IETE Tech. Rev. 35 (3), 256–265. [http://dx.doi.org/10.1080/02564602.](http://dx.doi.org/10.1080/02564602.2017.1279988) [2017.1279988](http://dx.doi.org/10.1080/02564602.2017.1279988).
- Reddy, G.P., Kumar, Y.V.P., Chakravarthi, M.K., 2022. Communication technologies for interoperable smart microgrids in urban energy community: A broad review of the state of the art challenges, and research perspectives. Sensors 22 (15), 5881. [http://dx.doi.org/10.3390/s22155881.](http://dx.doi.org/10.3390/s22155881)
- Reddy, K.S., Kumar, M., Mallick, T.K., Sharon, H., Lokeswaran, S., 2014. A review of integration, control, communication and metering (ICCM) of renewable energy based smart grid. Renew. Sustain. Energy Rev. 38, 180–192. [http:](http://dx.doi.org/10.1016/J.RSER.2014.05.049) [//dx.doi.org/10.1016/J.RSER.2014.05.049](http://dx.doi.org/10.1016/J.RSER.2014.05.049).
- Reka, S.S., Dragicevic, T., 2018. Future effectual role of energy delivery: A comprehensive review of internet of things and smart grid. Renew. Sustain. Energy Rev. 91, 90–108. <http://dx.doi.org/10.1016/J.RSER.2018.03.089>.

[Rossman, J., 2016. The Amazon way on IoT : 10 principles for every leader from](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb105) [the world's leading internet of things strategies. p. 158.](http://refhub.elsevier.com/S2352-4847(23)00093-8/sb105)

- Sajid, A., Abbas, H., Saleem, K., 2016. Cloud-assisted IoT-based SCADA systems security: A review of the state of the art and future challenges. IEEE Access 4, 1375–1384. [http://dx.doi.org/10.1109/ACCESS.2016.2549047.](http://dx.doi.org/10.1109/ACCESS.2016.2549047)
- Saleem, Y., Crespi, N., Rehmani, M.H., Copeland, R., 2019. Internet of thingsaided smart grid: Technologies architectures, applications, prototypes, and future research directions. IEEE Access 7 (c), 62962–63003. [http://dx.doi.org/](http://dx.doi.org/10.1109/ACCESS.2019.2913984) [10.1109/ACCESS.2019.2913984.](http://dx.doi.org/10.1109/ACCESS.2019.2913984)
- Schroder Filho, H.G., Pissolato Filho, J., Moreli, V.L., 2016. The adequacy of LoRaWAN on smart grids: A comparison with RF mesh technology. In: IEEE 2nd Int. Smart Cities Conf. Improv. Citizens Qual. Life, ISC2 2016 - Proc.. <http://dx.doi.org/10.1109/ISC2.2016.7580783>.
- Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., McCann, J., Leung, K., 2013. A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wirel. Commun. 20 (6), 91–98. [http://dx.doi.org/10.](http://dx.doi.org/10.1109/MWC.2013.6704479) [1109/MWC.2013.6704479.](http://dx.doi.org/10.1109/MWC.2013.6704479)
- Shobol, A., Ali, M.H., Wadi, M., Tur, M.R., 2019. Overview of big data in smart grid. In: 8th Int. Conf. Renew. Energy Res. Appl. ICRERA 2019. pp. 1022–1025. <http://dx.doi.org/10.1109/ICRERA47325.2019.8996527>.
- Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A., Security, 2015. Privacy and trust in internet of things: The road ahead. Comput. Netw. 76, 146–164. <http://dx.doi.org/10.1016/J.COMNET.2014.11.008>.
- Sinclair, B., 2015. IoT Inc. : how your company can use the internet of things to win in the outcome economy, 275.
- Sohraby, K., Minoli, D., Occhiogrosso, B., Wang, W., 2017. A review of wireless and satellite-based M2M/IoT services in support of smart grids. Mob. Networks Appl. 234 23 (4), 881–895. [http://dx.doi.org/10.1007/S11036-017-](http://dx.doi.org/10.1007/S11036-017-0955-1) [0955-1.](http://dx.doi.org/10.1007/S11036-017-0955-1)
- Song, Y.E., Liu, Y., Fang, S., Zhang, S., 2015. Research on applications of the internet of things in the smart grid. In: Proc. - 2015 7th Int. Conf. Intell. Human–Machine Syst. Cybern. IHMSC 2015, vol. 2. [http://dx.doi.org/10.1109/](http://dx.doi.org/10.1109/IHMSC.2015.131) [IHMSC.2015.131](http://dx.doi.org/10.1109/IHMSC.2015.131).
- Sood, K., Yu, S., Xiang, Y., 2016. Software-defined wireless networking opportunities and challenges for internet-of-things: A review. IEEE Internet Things J. 3 (4), 453–463. <http://dx.doi.org/10.1109/JIOT.2015.2480421>.
- Spanò, E., Di Pascoli, S., Iannaccone, G., 2013. An intragrid implementation embedded in an internet of things platform. In: 2013 IEEE 18th Int. Work. Comput. Aided Model. Des. Commun. Links Networks, CAMAD 2013. pp. 134–138. [http://dx.doi.org/10.1109/CAMAD.2013.6708104.](http://dx.doi.org/10.1109/CAMAD.2013.6708104)
- Spanò, E., Niccolini, L., Di Pascoli, S., Iannaccone, G., 2015. Last-meter smart grid embedded in an internet-of-things platform. IEEE Trans. Smart Grid 6 (1), 468–476. [http://dx.doi.org/10.1109/TSG.2014.2342796.](http://dx.doi.org/10.1109/TSG.2014.2342796)
- Sun, Q., et al., 2016. A comprehensive review of smart energy meters in intelligent energy networks. IEEE Internet Things J. 3 (4), 464–479. [http:](http://dx.doi.org/10.1109/JIOT.2015.2512325) [//dx.doi.org/10.1109/JIOT.2015.2512325.](http://dx.doi.org/10.1109/JIOT.2015.2512325)
- Tightiz, L., Yang, H., 2020. A comprehensive review on IoT protocols' features in smart grid communication. Energies 13 (11), 2762. [http://dx.doi.org/10.](http://dx.doi.org/10.3390/en13112762) [3390/en13112762](http://dx.doi.org/10.3390/en13112762).
- Tonyali, S., Cakmak, O., Akkaya, K., Mahmoud, M.M.E.A., Guvenc, I., 2016. Secure data obfuscation scheme to enable privacy-preserving state estimation in smart grid AMI networks. IEEE Internet Things J. 3 (5), 709-719. [http:](http://dx.doi.org/10.1109/JIOT.2015.2510504) [//dx.doi.org/10.1109/JIOT.2015.2510504.](http://dx.doi.org/10.1109/JIOT.2015.2510504)
- Trefke, J., Rohjans, S., Uslar, M., Lehnhoff, S., Nordström, L., Saleem, A., 2013. Smart grid architecture model use case management in a large European smart grid project. In: 2013 4th IEEE/PES Innov. Smart Grid Technol. Eur. ISGT Eur. 2013. <http://dx.doi.org/10.1109/ISGTEUROPE.2013.6695266>.
- Tripathi, S., Verma, P.K., Goswami, G., 2020. A review on SMART GRID power system network. In: Proc. 2020 9th Int. Conf. Syst. Model. Adv. Res. Trends, SMART 2020. pp. 55–59. [http://dx.doi.org/10.1109/SMART50582.](http://dx.doi.org/10.1109/SMART50582.2020.9337067) [2020.9337067](http://dx.doi.org/10.1109/SMART50582.2020.9337067).
- Tsai, C.W., Lai, C.F., Chiang, M.C., Yang, L.T., 2014. Data mining for internet of things: A survey. IEEE Commun. Surv. Tutorials 16 (1), 77–97. [http:](http://dx.doi.org/10.1109/SURV.2013.103013.00206) [//dx.doi.org/10.1109/SURV.2013.103013.00206](http://dx.doi.org/10.1109/SURV.2013.103013.00206).
- Vardakas, J.S., Zorba, N., Verikoukis, C.V., 2015. A survey on demand response programs in smart grids: Pricing methods and optimization algorithms. IEEE Commun. Surv. Tutorials 17 (1), 152–178. [http://dx.doi.org/10.1109/COMST.](http://dx.doi.org/10.1109/COMST.2014.2341586) [2014.2341586](http://dx.doi.org/10.1109/COMST.2014.2341586).
- Viani, F., Robol, F., Polo, A., Rocca, P., Oliveri, G., Massa, A., 2013. Wireless architectures for heterogeneous sensing in smart home applications: Concepts and real implementation. Proc. IEEE 101 (11), 2381–2396. [http://dx.doi.org/](http://dx.doi.org/10.1109/JPROC.2013.2266858) [10.1109/JPROC.2013.2266858](http://dx.doi.org/10.1109/JPROC.2013.2266858).
- Wang, Y.F., Lin, W.M., Zhang, T., Ma, Y.Y., 2012. Research on application and security protection of internet of things in smart grid. In: IET Conf. Publ. vol. 2012 no. 636. CP, [http://dx.doi.org/10.1049/CP.2012.2311.](http://dx.doi.org/10.1049/CP.2012.2311)
- Wang, Y.P.E., et al., 2017. A primer on 3GPP narrowband internet of things. IEEE Commun. Mag. 55 (3), 117–123. [http://dx.doi.org/10.1109/MCOM.2017.](http://dx.doi.org/10.1109/MCOM.2017.1600510CM) [1600510CM.](http://dx.doi.org/10.1109/MCOM.2017.1600510CM)
- Wu, S.W., 2011. Research on the key technologies of IOT applied on smart grid. In: 2011 Int. Conf. Electron. Commun. Control. ICECC 2011 - Proc. pp. 2809–2812. <http://dx.doi.org/10.1109/ICECC.2011.6066418>.
- Wytrębowicz, J., Cabaj, K., Krawiec, J., 2021. Messaging protocols for IoT systems—A pragmatic comparison. Sensors 21 (20), 6904. [http://dx.doi.org/](http://dx.doi.org/10.3390/s21206904) [10.3390/s21206904](http://dx.doi.org/10.3390/s21206904).
- Yaacoub, E., Abu-Dayya, A., 2014. Automatic meter reading in the smart grid using contention based random access over the free cellular spectrum. Comput. Netw. 59, 171–183. [http://dx.doi.org/10.1016/J.BJP.2013.10.009.](http://dx.doi.org/10.1016/J.BJP.2013.10.009)
- Yan, Y., Qian, Y., Sharif, H., Tipper, D., 2012. A survey on cyber security for smart grid communications. IEEE Commun. Surv. Tutor. 14 (4), 998–1010. <http://dx.doi.org/10.1109/SURV.2012.010912.00035>.
- Yang, Q., 2019. Internet of things application in smart grid: A brief overview of challenges, opportunities, and future trends. Smart Power Distrib. Syst. Control. Commun. Optim. 267–283. [http://dx.doi.org/10.1016/B978-0-12-](http://dx.doi.org/10.1016/B978-0-12-812154-2.00013-4) [812154-2.00013-4](http://dx.doi.org/10.1016/B978-0-12-812154-2.00013-4).
- Yi, P., Iwayemi, A., Zhou, C., 2011. Developing ZigBee deployment guideline under WiFi interference for smart grid applications. IEEE Trans. Smart Grid 2 (1), 110–120. [http://dx.doi.org/10.1109/TSG.2010.2091655.](http://dx.doi.org/10.1109/TSG.2010.2091655)
- Yigit, M., Gungor, V.C., Baktir, S., 2014. Cloud computing for smart grid applications. Comput. Netw. 70, 312–329. [http://dx.doi.org/10.1016/J.COMNET.2014.](http://dx.doi.org/10.1016/J. COMNET.2014.06.007) [06.007](http://dx.doi.org/10.1016/J. COMNET.2014.06.007).
- Yonis Buswig, Y.M., et al., 2020. Designing a control system based on SOC estimation of BMS for PV-solar system. Int. J. Integr. Eng. 12 (6), 148–157. <http://dx.doi.org/10.30880/ijie.2020.12.06.017>.
- Zahoor, S., Mir, R.N., 2021. Resource management in pervasive internet of things: A survey. J. King Saud Univ. - Comput. Inf. Sci. 33 (8), 921–935. [http://dx.doi.org/10.1016/J.JKSUCI.2018.08.014.](http://dx.doi.org/10.1016/J.JKSUCI.2018.08.014)
- Zainab, A., Ghrayeb, A., Syed, D., Abu-Rub, H., Refaat, S.S., Bouhali, O., 2021. Big data management in smart grids: Technologies and challenges. IEEE Access 9, 73046–73059. <http://dx.doi.org/10.1109/ACCESS.2021.3080433>.
- Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M., 2014. Internet of things for smart cities. IEEE Internet Things J. 1 (1), 22–32. [http://dx.doi.org/10.](http://dx.doi.org/10.1109/JIOT.2014.2306328) [1109/JIOT.2014.2306328](http://dx.doi.org/10.1109/JIOT.2014.2306328).
- Zhen, Y., Li, X., Zhang, Y., Zeng, L., Ou, Q., Yin, X., 2012. Transmission tower protection system based on internet of things in smart grid. In: ICCSE 2012 - Proc. 2012 7th Int. Conf. Comput. Sci. Educ.. pp. 863–867. [http:](http://dx.doi.org/10.1109/ICCSE.2012.6295205) [//dx.doi.org/10.1109/ICCSE.2012.6295205.](http://dx.doi.org/10.1109/ICCSE.2012.6295205)