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ABSTRACT 

 

Engineered lining systems are often designed for waste containment facilities, such as landfills, 

leachate ponds, tailing dams, red mud ponds, sump wells, etc. to prevent soil and groundwater 

contamination. Although the integrity of liners during their intended lifespan is critical, harsh 

physico-chemical operating conditions and poor installation practices generally cause defects 

in the liners. These defects result in the leakage of leachates which contaminate the underlying 

liner base soil. The use of a suitable leak detection system for the prevention and mitigation of 

pollution due to the lining system failures is integral to the proper management of waste 

containment facilities. A detailed review of the literature shows that in the current practice, 

there are several conventional methods for leak detection; however, these methods are limited 

in their usefulness as they are generally time-consuming and expensive. Therefore, there is a 

huge scope for an innovative method of leak detection which can detect leakages at the onset. 

In the present research, an attempt has been first made to assess the current state of 

landfilling in Australia with a focus on the lining practices and leak detection methods. Based 

on the survey and the information available on the public domain, it has been observed that 

different landfill sites practice non-uniform set of directives for waste classification, siting, 

design, operation and rehabilitation. Majority of the facilities have been found to be publicly 

owned. Further, various leak detection methods to detect liner defects have been scrutinised. 

The need for the online monitoring of lining systems for the proper management of waste 

containment facilities has been discussed. The use of groundwater monitoring wells for leakage 

detection is more prevalent, while the use of sensor-beds for real-time monitoring of liners is 

found to be very limited.  

In this thesis, an effort has been made to characterise the lining materials using the electrical 

resistivity method, so that later this property can be utilised to detect liner leakages in leak 

detection systems. The results of an investigation into the effect of the state of compaction on 

the electrical resistivity of sand-bentonite mixtures, with the bentonite content varying from 0 

to 100%, have been presented. The resistivity values of mixtures at their different states of 

compaction have been investigated. The resistivity of the lining mixture decreases as the water 

content increases, but the rate of decrease is reduced significantly above specific water content 

for each mixture. Furthermore, this specific water content is noted to be on the wet-side of the 

optimum for sand-bentonite mixtures and on the dry-side of the optimum for pure sand and 

pure bentonite. Increasing the bentonite content over 20% demonstrates an insignificant impact 
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on resistivity. It is observed that at higher water contents, the bentonite addition has negligible 

effect on resistivity. Correlations applicable to the sand, bentonite and pore fluid used in this 

study have also been presented.  

In addition, this thesis also presents a new technique based on the electrical resistivity 

method to detect the leakage of leachates through defects in liners by the simulation of lining 

system as used in actual practice. The design of this innovative system as developed for the 

detection and localization of leaks in geomembrane liner placed over soil has been detailed. A 

new leak detection system is developed by pairing a resistivity sensing technique with a four-

probe ground resistance testing equipment to measure the resistivity profile. The guidelines 

given by the Australian Standard AS 1289.4.4.1-1997 are used for the design of the soil box, 

which was used as the resistivity sensing system. The box was designed to represent an actual 

waste containment site with a geomembrane (GMB) liner placed on top of a soil layer. The box 

with an internal dimensions of 500 mm length, 200 mm width and 400 mm height, was 

fabricated using 12-mm thick non-conducting perspex sheet. It was installed with two brass 

current plate electrodes of dimensions 200 mm by 200 mm, and 16 brass potential measuring 

pins of 4 mm diameter. On one side of the box, sixteen holes were made, through which the 

potential pin electrodes could be inserted into the box after filling it with the soil specimen. 

Soil was filled into the box, overlain with the GMB and covered with a standing head of 

leachate. Leak was introduced intentionally in the GMB liner. Controlled leakage through the 

liner was then established to study the resistivity profile of the soil layer, in order to detect the 

liner leak.   

Furthermore, to show the efficacy of the innovative leak detection system, the results from 

the experimental demonstration using water, have been presented. The leak was introduced 

intentionally in the geomembrane and the resulting changes in the electrical resistivity of the 

underlying soil were observed. The resulting resistivity profiles for Perth soil in Australia were 

obtained at an interval of 10 min. The resistivity of soil was found to be in the range of 90-100 

Ωm. The electrical resistivity decreases with an increase in the leakage duration. The resistivity 

was found to increase with an increase in the distance/depth from the leak point. The electrode 

sensing system that is the closest to the liner was found to have better ability to detect leakage. 

The resistivity values recorded using the sensors at a depth of 120 mm and above, showed 

insignificant variation with distance and leakage duration. This method is found to be effective 

in detecting and locating liner leakage issues within 30 min from the instant when the defect 

develops.  
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Additional tests were conducted using municipal solid waste (MSW) landfill leachates to 

evaluate the performance of the new technique by use of controlled leakage. Leachates for the 

test were procured from actual landfill sites in Perth metropolitan region. A sharp decrease of 

resistivity of soil is noticed with an increase in the leakage duration, irrespective of the leachate 

composition. However, the effect of distance/depth on the soil resistivity is negligible at 

leakage duration greater than 60 min for Leachate #1 and 160 min for Leachate #2. The 

resistivity of soil ranges from 7-15 Ωm for Leachate #1 to 20-50 Ωm for Leachate #2. The 

resistivity decreases with an increase in the proximity to the leak point. Furthermore, the 

resistivity values obtained with water were nearly 10 times the values observed with landfill 

leachate as the leaching liquid. Based on the resistivity profiles of soil as observed at different 

time intervals, the method is found to be effective in determining leakages in the liner. 

The test results have also been presented for the leakage of Bayer liquor obtained from 

aluminium manufacturing company in Western Australia. The resistivity values were found to 

range from 1 to 3 Ωm. A similar trend in the resistivity values was found with distance/depth 

for Bayer liquor contamination as observed with other leachates. Therefore, the installation of 

this innovative detection system below the liners in the aluminium industry can enable the 

effective monitoring of the lining systems and in case of failures, to take timely action for 

hazard mitigation.   

Finally, based on the leak detection test results, empirical correlations and analytical 

modelling have been developed and presented for the relationship between resistivity, leakage 

duration and distance/depth. These can be used to predict the velocity of flow of leachate at 

any point within a liner base soil specimen. A numerical model for the seepage analysis of the 

leak detection test has been developed using the SEEP/W software. The flow velocity obtained 

from this model has then been used in conjunction with the new correlations to generate 

resistivity profiles for any specific soil type and leachate, in the leak detection test. Any other 

suitable seepage analysis software (e.g. GGU-SEEP, GGU-SS-FLOW2D, GGU-SS-

FLOW3D, etc.) can be used by practicing engineers to predict resistivity, and therefore, to 

design a suitable lining system for waste containment facilities. 

This research work is particularly useful in generating awareness about the state of 

landfilling and will help various environmental protection agencies in making informed 

decisions for the development of rules and regulations to govern landfills. It is demonstrated 

that this system can be used to effectively detect and locate the liner leaks by simulating the 

field condition. The newly developed innovative diagnostic technique can be useful in 

designing the monitoring systems for waste storage and handling facilities, subbase 
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contamination detection, liner leak detection, development and placement of sensors, soil and 

corrosion studies and so on, in Australia as well as worldwide.  
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k    coefficient of permeability of soil (m/s) 

1k   coefficient of permeability of soil using Leachate #1 (m/s) 

2k   coefficient of permeability of soil using Leachate #2 (m/s) 

K    absolute permeability of soil (m2) 

*k   permeability (m2) 

sk     soil hydraulic conductivity (m/s) 

satk   saturated hydraulic conductivity (m/s) 

PK 4   four probe conductivity (S/m) 

)(SEK  electrical conductivity of saturation (S/m) 

)5:1(K electrical conductivity for 1:5 extracts (S/m) 

Kx   )(SEK  or )5:1(K  (S/m) 

L   length of specimen (m) 

bm   mass of dry bentonite (kg)  

sm   mass of dry sand (kg) 

    viscosity of leachate (Pas or Ns/m2) 

1   viscosity of Leachate #1 (Pas or Ns/m2) 

2   viscosity of Leachate #2 (Pas or Ns/m2) 

*n   efficient porosity (dimensionless) 

p   percentage of clay fraction in soil (dimensionless) 
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bp  bentonite content (dimensionless) 

lp  leachate content (dimensionless) 

Q    rate of leachate migration through the geomembrane defect (m3/s) 

r    radial distance between an electrode pair (mm) 

R   electrical resistance (ohm, ) 

'R    radius of geomembrane defect (m) 

S    degree of saturation (dimensionless) 

rS   degree of saturation (dimensionless) 

t  duration for which the leakage through liner was allowed/leakage duration 

(min) 

v  velocity of flow of leachate (m/s) 

1v  velocity of flow of Leachate #1 (m/s) 

2v  velocity of flow of Leachate #2 (m/s) 

V  electrical potential difference between the two inner electrodes (V) 

V   potential difference across the outer conductors/ input voltage (V) 

w   gravimetric water/fluid content (dimensionless) 

kw   water content at minimum hydraulic conductivity (dimensionless) 

lw   liquid limit (dimensionless) 

pw   plastic limit (dimensionless) 

optw   optimum water content (dimensionless) 

Tw  specific value of water content at which the trend of the resistivity curve changes 

(dimensionless) 

x   distance of the mid-point of a pair of electrodes (mm) 

lx   distance of the liner leak (mm) 

   total unit weight (kN/m3) 

maxd   maximum dry unit weight (kN/m3) 

mind   minimum dry unit weight (kN/m3) 

dry   dry unit weight (kN/m3) 
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l    unit weight of leachate (kN/m3) 

1l   unit weight of Leachate #1 (kN/m3) 
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wet   wet unit weight (kN/m3) 

z   depth of the mid-point of a pair of electrodes (mm) 

lz   depth of the liner leak (mm) 

   volumetric water content (dimensionless) 

w   volumetric water content (dimensionless) 

   electrical resistivity of the soil specimen (Ωm ) 

'   electrical resistivity of unsaturated soil (Ωm ) 

0   soil resistivity (Ωm ) 

w   resistivity of free water (Ωm ) 

   bulk conductivity of soil (S/m) 

w   pore water conductivity (S/m) 

   resistivity correction factor (dimensionless)  

 , e , f   various constants (dimensionless) 
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CHAPTER 1 

 

INTRODUCTION 

 

 

This chapter explains the problem being considered in this thesis and the importance of 

finding sustainable solution to address it. It includes the aim and the specific objectives of the 

thesis. This is followed by the scope and an explanation of how this thesis has been structured 

for easy understanding and convenience of the reader. 

 

 

1.1 General 

Lining systems are installed in waste storage and disposal facilities, such as landfills, sump 

wells, red mud ponds, tailing dams, leachate ponds and fly-ash collection pits for the control 

of soil and groundwater contamination. Figure 1.1 shows the use of a geosynthetic clay liner 

(GCL) at a landfilling facility. Figure 1.2 shows a typical geomembrane liner used at a 

landfilling facility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Geosynthetic liner (Courtesy: Millar road landfill and recycling facility, City of 

Rockingham, Perth, WA). 

Geosynthetic clay liner 

(GCL) 



2 
 

Engineered containment systems are essential to minimise the impact of effluents on the 

environment and human health. Hence, the integrity of these liners materials is critical 

(Daniel, 1984). However, the performance of these liners over intended design life cannot be 

established due to their harsh operating conditions and inadequate installation techniques 

(Rowe et al., 2004; Oh et al., 2008). Defects and subsequent contaminant leakage issues often 

ensue resulting in the contamination of the subbase soil layer (Nosko and Touze-Foltz, 2000).  

 

 

Figure 1.2:  Leachate collection pond at Millar road landfill and recycling facility, Perth, WA, 

Australia. 

 

Subsurface contamination detection methods such as resistivity cone penetration test 

(RCPT), ground penetrating radar (GPR) and time domain reflectometry (TDR) are used at 

sites suspected to contamination. However, for such cases the sites might have been 

extensively contaminated already and the cost of remediation would be very high (Oh et al., 

2008). Hence, an early detection and monitoring system should be designed and put in place 

to ensure timely leakage detection (Oh et al., 2008; Ben Othmen and Bouassida, 2013). The 

Geomembrane (GMB) liner 
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early detection of leaks can ensure that timely control is taken, and proper mitigation 

measures are implemented (Harrop-Williams, 1985). 

Several technologies such as electrical methods, tracer methods, diffusion hoses, intrinsic 

fiber optic sensor, electro-chemical sensing cables, cable network sensors and geosynthetic 

membrane monitoring systems have been used for contamination detection in sublayers (Hix, 

1998). Of these methods, the electrical resistivity method is more prevalent because of its 

ease of operation and cost-effectiveness (Oh et al., 2008). 

 

1.2 Basic Concept of Electrical Resistivity Method 

The electrical resistivity method is based on the well-established fact that the electrical 

resistivity of any subbase/sublayer/subgrade/foundation geomaterial is much higher than the 

electrical resistivity of water, leachates, or any liquid effluents which may permeate the 

foundation material (McCarter, 1984; Yoon and Park, 2001; Munoz-Castelblanco et al., 2012; 

Yan et al., 2012; Kuranchie et al., 2014; Pandey et al., 2015; Pandey and Shukla, 2017). The 

presence of even traces of contaminants leads to a significant change in the resistivity of soils. 

This change can be easily detected to locate subbase contamination (Fukue et al., 1999; Yoon 

and Park, 2001; Munoz-Castelblanco et al., 2012). 

The electrical resistivity ( R  in ohm ( )) of a soil is determined by providing a known 

current ( i  in ampere (A)) across a pair of electrodes and recording the subsequent voltage drop 

(V in volt (V)). The soil electrical resistivity is then measured using the Ohm’s law as: 

 

iRV                       

(1.1) 

 

However, the resistance is not a true material property as it also depends on the dimensions 

of the sample being tested. Hence, it is used to calculate electrical resistivity (   in Ohm-m (

m )), which is an intrinsic property of the material, using the following equation: 

 

A

L
R


                     (1.2) 

 

where A  is the cross-sectional area (m2) and L  is the length (m). The variations in estimated 

soil resistivity can then be used to effectively determine the leachate contamination of subbase 
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material (AS 1289.4.4.1, 1997; ASTM D6431-99, 2010). Hence, many leakage detection 

techniques such as, water puddle method (ASTM D7002 - 16), conductive geomembrane spark 

test (ASTM D7240 - 06(2011)), water lance method (ASTM D7703 - 16), arc testing method 

(ASTM D7953 - 14) and electrode grid method (ASTM D6747 − 15), are based on the concept 

of the electrical resistivity method. 

 

1.3 Waste Management Practices in Australia 

Australia is an island continent with a population of nearly 25 million people and a land mass 

of 7.692 million km². Waste production in Australia was 2.2 tonnes per capita in 2010–11 

alone. As per DEWHA (2010), the waste production increased by 170% in the period of 1996-

2015, at a compound growth rate of 7.8% per annum. 60% of this generated waste was either 

recovered or recycled, with the rest 40% sent for disposal to landfills (DEE, 2013). These solid 

wastes consisted of commercial and industrial wastes (C&I), construction and demolition 

wastes (C&D) and municipal solid wastes (MSW). In Australia, MSW has the lowest recovery 

rate out of the three main waste streams. From the 14 million tonnes of MSW generated in 

2010-11, 49% could not be recovered and was sent for disposal. Most of the waste production 

is focused in the major urban areas (DEE, 2010). 

The dumping of wastes to landfilling facilities is the major waste disposal method practiced 

in Australia. Figure 1.3 shows the location of various waste management facilities in Australia 

as per Geoscience Australia (2017). 

Large amounts of wastes are also handled and stored by various waste containment facilities 

in industries such as red mud ponds, tailing dams, Bayer liquor storage facilities, sump wells, 

etc. Different combinations of natural clay liners, compacted clay liners (CCL), HDPE 

geomembranes, geosynthetic clay liners (GCL), geotextiles and geonets are being used in the 

landfills (Dixon, 2013). However, there is a lack of uniform code of practice for ground 

preparation and lining methods. The most popular method of leak detection in practice is the 

use of groundwater monitoring wells to monitor the groundwater quality upstream and 

downstream of landfills. Hence, the issue of proper handling and management of wastes in 

landfilling facilities is extremely relevant for Australia, as well as globally.  

Landfills are often developed in old quarries as it is a cost-effective method of rehabilitating 

used quarries. However, due to geographical and geological constraints, difficulty in obtaining 

approval for a new site, etc., there is a scarcity of available space. Furthermore, if the landfills 

are situated far off from the metropolitan areas, the cost of transportation and disposal of wastes 
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is very high. Therefore, although Australia has a huge land mass, the siting, design, operation, 

and proper maintenance of landfilling facilities is a major concern (WMAA, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Waste management facilities in Australia (Geoscience Australia, 2017). 

 

1.4 Significance of the Current Research 

Lining systems are an essential component for contamination control in waste storage and 

disposal facilities (Nosko and Touze-Foltz, 2000). Ascertaining the integrity of the liners over 

their designed life is critical for the prevention of soil and groundwater pollution (Daniel, 

1984). However, due to the intense physicochemical environment in which they operate, 

defects often arise in liners ((Rowe et al., 2004; Oh et al., 2008).  

Contamination is found to increase with the passage of time, subsequently resulting in 

intensified adverse impact on the environment and higher mitigation costs (Oh et al., 2008; 

Ben Othmen and Bouassida, 2013). Hence, early detection of leakage is imperative for 

contamination control (Harrop-Williams, 1985).  

Although many methods are used for contamination detection such as electrical methods, 

tracer methods, diffusion hoses, intrinsic fiber optic sensor, electro-chemical sensing cables, 
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cable network sensors and geosynthetic membrane monitoring systems (Hix, 1998); the 

electrical resistivity method is the most researched. The electrical resistivity method is used 

more because of its low input cost and ease of operation (Oh et al., 2008). 

This method makes use of the well-established fact that the resistivity of the dry subbase 

geomaterials which are placed below liners, is very high compared to the resistivity of 

contaminants and even water (Rhodes et al., 1976; McCarter, 1984; Yoon and Park, 2001; 

ANZS, 2007; Munoz-Castelblanco et al., 2012; Yan et al., 2012; Kuranchie et al., 2014; 

Pandey et al., 2015). Therefore, the addition of even small amounts of fluids results in changes 

in the electrical resistivity of the geomaterials (Yoon and Park, 2001; Pandey et al., 2015). 

These changes can be detected easily to determine liner defects (Fukue et al., 1999; Yoon and 

Park, 2001; Munoz-Castelblanco et al., 2012). 

Hence, there is a huge scope for the laboratory-based study of the electrical resistivity 

changes produced in subbase/sublayer/subgrade geomaterials due liner defects. This entails 

the characterisation studies for clay and sand-clay subbase materials, investigation of the 

effects of properties of leachate, the effect of leakage duration, as well as the impact of changes 

in the leak type, size, area, number, shape, etc.  

This study aims to characterize the subbase/subgrade/sublayer liner material using the 

electrical resistivity method. During the course of the research work, an innovative system was 

developed for the detection and location of leakages by simulating actual liners. The research 

presents database, correlations, empirical equations, design charts and numerical models for 

use by practicing design engineers for anomaly detection, contamination and leakage detection, 

preliminary liner material selection, corrosion and salinity studies, etc. The research outcome 

can be useful for further research work into leak location systems and sensor development. 

Based on the discussions in the previous sections, the specific topics and the objectives of 

this research are listed under Section 1.5.  

 

1.5 Scope and Objectives of the Research 

As defined by the problem statement above, contamination detection and leakage location are 

pressing issues that require in-depth research. The following specific objectives have been 

chosen for further investigation: 

 

• Characterisation of bentonite and sand-bentonite liner subbase/sublayer/subgrade material 

using electrical resistivity method. 

• Study of the effect of varying sand-bentonite ratios on the resistivity of sublayer material. 
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• Development of a new experimental setup for the study of leakage detection by simulating 

an actual liner. 

• Investigation of the effect of changing leachate composition and type on the resistivity of 

subgrade material using the newly developed leak detection test. 

• Scrutiny of the effect of time on the electrical resistivity of the subbase component. 

• Analytical and numerical modeling for the prediction of the electrical resistivity profiles of 

liner base materials. 

 

1.6 Publications Based on the Present Work 

Attempts were made during the progress of the research to prepare the thesis as research papers 

for submission to peer-reviewed international journals and conference proceedings to be 

considered for publication. The details of the published/accepted or submitted papers are as 

follows: 

 

International Journals 

1.    Pandey, L.M.S. and Shukla, S.K. (2019). Development of an innovative liner leak 

detection technique. Geotechnical Testing Journal, ASTM, USA, Vol. 42, No. 5, pp. 1-14, 

DOI: 10.1520/GTJ20170292. 

2.    Pandey, L.M.S. and Shukla, S.K. (2018). Effect of state of compaction on the electrical 

resistivity of sand-bentonite materials. Journal of Applied Geophysics, Netherlands, Vol. 

155, No.1, pp. 208-216, DOI: 10.1016/j.jappgeo.2018.06.016. 

3.    Pandey, L.M.S., Shukla, S.K.  and Habibi, D. (2017). Resistivity profiles of Perth soil in 

leak detection test. Geotechnical Research, UK, Vol. 4, No. 4, pp. 214-221, 

DOI:10.1680/jgere.17.00014. 

4.  Pandey, L.M.S. and Shukla, S.K. (2018). An insight into waste management in Australia 

with a focus on detecting landfill liner leaks. Journal of Cleaner Production. (under review). 

5.  Pandey, L.M.S. and Shukla, S.K. Detection of leakage of MSW landfill leachates through 

a liner defect. Surveys in Geophysics. (under review). 

  

 Conference Proceedings 

6.    Pandey, L.M.S and Shukla, S.K. (2019). Use of an innovative technique to detect the 

leakage of Bayer liquor through a liner defect. Proceedings of the Sustainable Waste 

Management through Design, Editors: H. Singh, P. Garg and I. Kaur, 2-3 November 2018, 

Ludhiana, Punjab, India, pp. 1-7, DOI: 10.1007/978-3-030-02707-0_1. 
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7.    Pandey, L.M.S., Shukla, S.K.  and Habibi, D. (2018). Leak detection through 

geomembrane liner using electrical resistivity method. Proceedings of the 

11th International Conference on Geosynthetics, Seoul, South Korea, 16-21 September 

2018, Paper No.: PP-K-02, pp. 1-6. 

8.    Pandey, L.M.S. and Shukla, S.K. (2018). Leak detection practices in Australia for 

sustainable landfill management. Proceedings of the International Conference on 

Environmental Geotechnology, Recycled Waste Materials and Sustainable 

Engineering (EGRWSE), 29-31 March 2018, Jalandhar, India, Paper No.: 105. 

 

1.7 Structure and Organisation of the Thesis 

This introduction chapter is followed by the rest of the chapters in the thesis with each chapter 

aiming to achieve a specific objective as stated previously. Chapter 2 is the general overview 

of significant, current and selected literature which is relevant to this study. This helped to 

identify the limitations in literature and what needs to be done in order to bridge the knowledge 

gaps. Parts of this chapter are based on two papers accepted for presentation and publication 

in the following conference proceedings: 11th International Conference on Geosynthetics, 16-

21 September 2018, Coex, Seoul, Korea, and International Conference, Environmental 

Geotechnology, Recycled Waste Materials and Sustainable Engineering, 29-31 March 2018, 

Jalandhar, Punjab, India. 

Chapter 3 specifically analyses the literature and uses results from an extensive survey to 

develop an insight into the current state of waste management in Australia, with a focus on 

detecting landfill liner leaks. This chapter, except with limited modifications in layout for 

consistency in the thesis, has been submitted to the Journal of Cleaner Production, of 

Elsevier/ScienceDirect Publication and is currently under review. 

In chapter 4, the effect of state of compaction on the electrical resistivity of sand-bentonite 

lining materials has been studies using experimental investigation. Except with limited 

modifications in layout for consistency in the thesis, this chapter has been based on the Journal 

of Applied Geophysics, of Elsevier/ScienceDirect Publication. 

Chapter 5 presents the detailed design for the development of an innovative liner leak 

detection technique. This chapter has been submitted to the Geotechnical Testing Journal, of 

American Society of Testing Materials (ASTM) publication and has been accepted for 

publication. The details presented here are the same, except some changes in the layout in 

order to maintain a consistency in the presentation throughout the thesis. 

Chapter 6 is a practical laboratory investigation to obtain the resistivity profiles of Perth 
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soil in leak-detection test using water as the leachate. Except with limited modifications in 

layout for consistency in the thesis, this chapter has been based on the paper in Geotechnical 

Research of ICE Publication. 

Chapter 7 is the detailed investigation of the resistivity profiles obtained by the leakage of 

municipal solid waste landfill leachates through a liner defect. This chapter has been submitted 

to Surveys in Geophysics, of Springer Publication and is currently under review. 

In chapter 8, experimental results of the use of the newly developed leak detection 

technique to detect the leakage of Bayer liquor through a liner defect, have been presented. 

This chapter has been based on the conference proceeding of the 8th Sustainable Waste 

Management Through Design, 2-3 November 2018, Ludhiana, Punjab, India. 

Based on the leak detection test results, in Chapter 9 empirical correlations and analytical 

modelling have also been developed and presented for the relationship between resistivity, 

leakage duration and distance/depth. These can be used to generate a resistivity profile for any 

specific soil type and leachate, in the leak detection test. Further, new equations have been 

given to predict the velocity of flow of leachate at any point within a soil specimen, if the 

resistivity is measured at a given time. A numerical model has been designed using SEEP/W 

for the seepage analysis in leak detection test. The generated velocity data is then used to 

obtain reistivity profile for the liner base material, to demonstrate the application of the newly 

developed correlations.  

Chapter 10 briefly summarises the research and outlines the general conclusions from the 

previous chapters. This chapter also highlightes the contributions to knowledge through this 

research and suggests potential future research paths. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

This chapter details the excerpts from relevant literature. Published research works have been 

collated to reflect the existing and current practices in the relevant research area. Parts of this 

chapter are based on two papers accepted for presentation and publication in the following 

conference proceedings: 11th International Conference on Geosynthetics, 16-21 September 

2018, Coex, Seoul, Korea, and International Conference, Environmental Geotechnology, 

Recycled Waste Materials and Sustainable Engineering, 29-31 March 2018, Jalandhar, 

Punjab, India; as listed in Section 1.6.  

 

 

2.1 Introduction 

Globally a huge amount of waste is generated every year and a major portion of this ends up at 

landfill sites (Ministry for the Environment, New Zealand, 2001; Productivity Commission, 

2006; EC, 2008; Lopes et al., 2012; USEPA, 2012; Department of the Environment and 

Energy, Australia, 2013; Esteban-Altabella et al., 2017; Geoscience Australia, 2017; Jovanov 

et al., 2017). As per Hoornweg and Bhada-Tata (2012), 1.3 billion tonnes of municipal solid 

waste (MSW) are generated per annum. China has the fastest rate of MSW growth, followed 

by other parts of East Asia, parts of Eastern Europe, and the Middle East. A similar trend for 

waste generation is observed in Australia, with waste production increasing by 170% in the 

period of 1996-2015 at a compound growth rate of 7.8% per annum. Additionally, the rate of 

growth of MSW is greater than the rate of growth of urbanization (DEWHA, 2010).  

The major portion of wastes is produced by domestic households (55 to 65%), followed by 

commercial and institutional locations (35 to 45%). The contribution by industrial sector is 

comparatively small due to recycling, reuse, or self-disposal practiced by industrial waste 

landfills (USEPA, 2011).  

Figure 2.1 summarises the various MSW disposal techniques practiced globally (Hoornweg 

and Bhada-Tata, 2012). It can be observed that landfilling is the predominant method of waste 

disposal. 
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Waste containment facilities deal with a variety of pollutants.  The leachates generated by 

the decomposition of these wastes are hazardous for the environment (Sharma and Reddy, 

2004; Daniel and Koerner, 2007; Aboyeji and Eigbokhan, 2016; Esteban-Altabella et al., 

2017). Therefore, the issues of appropriate handling and management of wastes in landfilling 

facilities become critical. Hence, the regulatory authorities around the world have 

recommended that the lining systems used in landfilling facilities must be engineered, 

constructed and frequently monitored, such that the complete isolation of all contaminants from 

soil and groundwater can be ascertained over their intended design life (Shukla, 2016; Jovanov 

et al., 2017; Parastar et al., 2017).  

 

 

Figure 2.1: Municipal solid waste disposal methods. 

 

Liners are engineered systems with low permeability, designed to control the movement of 

liquid effluents out of waste containment units. Although the liners are constructed to be intact 

during their design life, various factors lead to the eventual failure of the lining systems. Their 

integrity is frequently compromised (Giroud, 1984; Daniel and Koerner, 2007; Shukla, 2016) 

and the leachates tend to leak, resulting in the contamination of soil and groundwater (Oh et 

al., 2008; Aboyeji and Eigbokhan, 2016). Subsequently, “all liners leak” (Giroud, 1984).  

Figure 2.2 is a photograph of a leachate collection pond lined with geosynthetic clay liner 

(GCL) in Perth, Western Australia, Australia. It can be noticed that defects have developed in 

the liner over time. It is imperative to detect the leakage issues as early as possible, to ensure 
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that suitable remedial measures are taken (Lopes et al., 2012). Consequently, waste 

impoundment facilities use different leak detection techniques for the management and control 

of contaminants.  

It is also interesting to note that over 85% of Australians live in urban areas and nearly 70% 

live in the capital cities. Despite having a huge land mass, Australia’s habitable land area is 

only about 10% of the actual land mass, with 90% being deemed uninhabitable. Majority of 

the population resides in the eight capital cities which have a combined population density of 

378 people per km2. Therefore, most of the waste production is focused in these major urban 

areas. If the landfills are situated far off from the metropolitan areas, the cost of transportation 

and disposal becomes extremely high. Hence, although Australia has a huge land mass, the 

siting, design, operation, and proper maintenance of landfilling facilities is a major concern. 

 

 

Figure 2.2: Photograph of a leachate collection pond lined with geosynthetic clay liner (GCL). 

 

Table 2.1 lists various leachate barrier systems which are currently being used in Australia 

(Dixon, 2013). In general, the composite liner system consisting of compacted clay and 

geomembrane, is used in Australian landfill facilities.  

There are various leak detection methods, such as groundwater monitoring wells, lysimeters, 

diffusion hoses, capacitance sensors, tracers, electro-chemical sensing cables, resistivity cone 

penetration test (RCPT), ground penetration radar (GPR), time domain reflectometry (TDR), 

etc. (Oh et al., 2008). Groundwater monitoring wells are the more extensively used leak 
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detection technique in Australia. The monitoring well system relies on detecting contamination 

in the groundwater. A major drawback of this method is that by the time the leakage issue is 

detected, a substantial amount of soil and groundwater is already contaminated (Mohamed et 

al., 2002). 

 

Table 2.1: The leachate barrier systems used in Australia. 

 

State/Territory Minimum requirements 

New South 

Wales (NSW) 

• 90 cm compacted clay with in-situ 

permeability less than 10-9 m/s 

• Geomembrane might be used over the 

compacted clay 

Northern 

Territory (NT) 

• Single clay, geomembrane (GMB) or 

geosynthetic clay liner (GCL) 

• Composite liner for MSW 

• Double liners with leak detection for 

hazardous wastes 

Queensland 

(QLD) 

• Liner chosen based on the risk 

assessment of the site 

South Australia 

(SA) 

• Composite liner with geomembrane 

Tasmania (TAS) • Engineered clay liner for MSW 

landfills 

• GCL for secure landfills 

Victoria (VIC) • Seepage < 10 L/ha/day for MSW 

landfill 

• Seepage < 100 L/ha/day for secure 

landfill 

 

Furthermore, the field diagnostic techniques which involve on-site sampling and laboratory 

analysis, generally prove to be time and cost intensive. Hence, the use of the electrical leak 

detection methods such as water puddle method (ASTM D7002 - 16), conductive 

geomembrane spark test (ASTM D7240 - 06(2011)), water lance method (ASTM D7703 - 16), 
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arc testing method (ASTM D7953 - 14), electrode grid method (ASTM D6747 − 15), etc., has 

become predominant. Electrical methods are easy to install and operate, and have low costs 

(Oh et al., 2008; Ben Othmen and Bouassida, 2013; Pandey et al., 2015; Pandey and Shukla, 

2017). Hence, there is a significant scope for the development of a new diagnostic technique 

based on the electrical resistivity method, which can investigate subsurface contamination at 

the onset and therefore, detect leaks across liners. However, the use of this method in field 

diagnostic techniques is limited by a lack of understanding of the behavior of soils under leak 

detection tests. Furthermore, the electrical resistivity of a soil shows a close relationship with 

its geotechnical parameters (Pandey et al., 2015; Pandey and Shukla, 2017). Hence, a 

comprehensive literature survey has been conducted and presented, to reflect the existing and 

current practices in the relevant research area. 

 

2.2 Electrical Resistivity for Soil Characterisation 

This section summarises eminent research work involving the measurement of the electrical 

properties of soil and the study of its relationship with the hydraulic and geotechnical 

properties. Table 2.2 lists the typical resistivity values for sand and sand-clay mixtures, 

obtained at different water contents (AS/NZS 1768-2007).   

 

Table 2.2: Variations in soil resistivity with water content (AS/NZS 1768-2007 Lightning 

protection standards) 

 

Gravimetric 

water content 

(%) 

Typical Resistivity (Ohm-m) 

Clay mixed with 

sand 

Silica based 

sand 

0 10,000,000 - 

2.5 1,500 3,000,000 

5 430 50,000 

10 185 2,100 

15 105 630 

20 63 290 

30 42 - 
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2.2.1 Sands 

Archie (1942) evaluated the electrical resistivity of multiple soil specimens obtained from 

various sand formations. The porosity of these specimens was found to range from 10 to 40%. 

The samples were prepared by mixing soil specimens with a brine solution of salinity 20,000 

to 100,000 mg/l. Resistivity values of the specimens were determined at different degree of 

saturation ( rS ). Based on the obtained results the following empirical equations were 

suggested: 

 

c

w

n  )(0




                                          (2.1)  

 

for saturated soils and 

 

d

rS  )(
'

0


                                 (2.2) 

 

for unsaturated soils, where, 

rS = degree of saturation 

' = electrical resistivity of unsaturated soil 

0 = soil resistivity 

w = resistivity of free water 

n = soil porosity 

c  and d = soil parameters. 

 

Gupta and Hanks (1972) proposed a method for rapid soil salinity determination. The 

changes in the electrical conductivity of soil produced by varying its water content were 

scrutinised. Two soil samples were used for the study. Soil samples were prepared with 

different water and salt (potassium chloride, KCl) content and their bulk densities were 

measured. The relationship between the conductivity and salinity of these soil specimens was 

investigated. Eight replicate readings were taken for each sample. The cell constant 
cK  was 

determined using a solution of known electrical conductivity. Four probe conductivity ( PK 4 ), 
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electrical conductivity of saturation ( )(SEK ) and electrical conductivity for 1:5 ( )5:1(K ) 

extracts was noted. Based on the results, the following relation was proposed:  

 

feW
Kx

PK


4
                                         (2.3) 

 

Here Kx  is )(SEK  or )5:1(K  and e , f  are constants from regression analysis. A limitation 

of this method is that the water content must be established independently.  

Kalinski and Kelly (1993) assessed the relationship between soil electrical resistivity and its 

hydraulic parameters. Circular four probe resistivity cells were used to measure the resistivity 

of soil specimen. Specimens were prepared by soaking the fine-grained soil in water and 

adjusting with sodium chloride (NaCl) or potassium chloride (KCl). Pressure membrane 

apparatus was used to adjust the volumetric water content ( ).    was varied and specimen 

resistance and weight were noted. Gravimetric water content ( w ) and dry density was 

calculated. Based on the obtained results, the following equation for the bulk soil electrical 

conductivity
oEC  was proposed: 

 

)09.004.1(  wso ECECEC                             (2.4) 

 

where, wEC  is the pore water electrical conductivity and sEC  is the apparent soil-particle-

surface electrical conductivity. This research work concludes that provided the pore-water 

conductivity of a soil is known, its in-situ volumetric water content can be estimated using the 

relationship between the electrical resistivity and  . 

Kuranchie et al. (2014) studied the electrical resistivity (  ) changes of dry Perth sand by 

varying its relative density. The effect of the electrode depth and the electrode spacing was also 

examined. The Wenner array experimental set up was used to measure the resistivity. Relative 

density was varied from 0 to 100%. The electrode depth was varied from 100 to 300 mm and 

the electrode spacing was varied from 100 to 180 mm. The simulation software COMSOL was 

used. The resistivity values were found to range from 60,606 for very dense condition to 

142,857 m  for very loose condition. The resistivity was found to be inversely proportionalto 

electrode depth and relative density. However, electrode spacing was found to be directly 

proportional to resistivity. The following equation was developed for resistivity  : 



20 
 

)(2
I
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z


                                                (2.5) 

 

where, V = electrical potential difference in volts (V) between the two inner electrodes, I = 

induced electric current in amperes (A) in the medium between outer electrodes, and = 

resistivity correction factor. 

For this particular set up,  of 0.46 was obtained. This study concluded that the resistivity 

correction factor is independent of soil type. 

Pandey et al. (2015) evaluated the effect of various geotechnical parameters (water content 

and relative density of the soil, and the type of water used in the experimentation) and electrical 

factors (AC input voltage and frequency) on the electrical resistivity of Perth sandy soil. 

Specimens were prepared by mixing the sand sample with various amounts of the two types of 

water as permeating fluids (namely distilled water and tap water). Electrical resistivity tests 

were conducted using resistivity boxes (fabricated as per AS 1289.4.4.1-1997) and an AEMC 

6471 ground resistance tester). Two types of boxes were used for the tests. One was fitted with 

brass electrodes and the other with stainless steel electrodes to determine the effect of electrode 

material. The water content ( w ) was varied from 4 to 20% (at an increment of 4%).  Relative 

density ( rD ) of soil specimen was varied from 0 to 100% (at an increment of 25%). Resistivity 

readings were taken at different AC input voltages (16 and 32 V) and AC input frequencies 

(55, 92, 110, 119, 128 and 513 Hz) for representative combinations of w  and rD pertaining to 

both types of water. Based on these results, an AC input of 16 V and 128 Hz was selected for 

further experimentation. Keeping w  constant and varying rD , readings were obtained for 

resistivity. The same tests were conducted for distilled water and tap water. Similar tests were 

done for both resistivity boxes. The study found that Perth sandy soil was independent of the 

AC input voltage and frequency for the tested range. Resistivity was observed to be inversely 

proportional to relative density and water content. However, the effect of water content was 

more significant. The effect of electrode was insignificant while the permeating fluid had a 

considerable effect. The study also proposed correlations for the electrical resistivity (  ) of 

Perth sandy soil based on obtained results as given below: 
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                  (2.6)
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for the distilled water, and 

 

258.1)(
100

6.4732 








 w

Dr                   (2.7) 

 

for the tap water, where, 

 

 = resistivity of the sandy soil ( m )  

rD  = relative density (%)  

w  = water content (%)  

 

Pandey and Shukla (2017) investigated the effects of water and/or leachate content of soil, 

and composition of leachate on the electrical resistivity of Perth landfill base soil. The 

experimental setup given by Pandey et al. (2015) was used for resistivity measurements. Three 

leachates were used for the test. A mixture of water and leachates in varying concentration was 

used as the contaminating fluid. The changes to the resistivity arising from changes to the fluid 

content were observed to be more significant than the effect of varying the leachate content or 

type within any specific mixture of water and leachate. Newly developed correlations between 

the resistivity and the geotechnical properties of the soil infiltrated with leachates, have also 

been proposed. The correlation is as follows: 
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where,  = resistivity ( m ), 
rD = relative density (%), lp = leachate content (%), and w = 

fluid content (%) for the sandy soil. Here
1c ( m ), 

2c (dimensionless), and 3c (dimensionless) 

are specific constants corresponding to a particular soil type and pore fluid, and 0C

(dimensionless) is a variable dependent on the composition of the pore fluid. 
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2.2.2 Clays 

McCarter (1984) investigated the relationship of electrical resistivity of two types of clay with 

degree of saturation using two-electrode method, keeping their water content constant. It was 

noted that decreasing the degree of saturation resulted in an increase in electrical resistivity of 

the clay samples. The gradient of resistivity versus degree of saturation curve reduces with a 

rise in the water content. Change in resistivity with increase in the degree of saturation becomes 

negligible at water content around plastic limit. 

McCarter and Desmazes (1997) used soil electrical properties for the demarcation of soils. 

A modified consolidation cell of 66 mm internal diameter and 65 mm height was fitted with 

top and bottom plates along with six circumferential electrodes. Conductivity measurements 

were taken for diagonally opposite pairs as well as for vertical plate electrodes. The sample 

with 71% initial water content was subjected to standard incremental load odometer testing 

with 48 hours for each load increment. The void ratio and the conductivity were found to 

decrease with increase in effective stress. The sample was found to be of anisotropic nature. 

The study proposed the following relationship for porous systems:  

 

FF

d
k

2*
* 
                     (2.9) 

 

Here, *k = permeability, FF  = formation factor, *d = critical pore diameter, and  = constant 

for a particular type of clay.  

Fukue et al. (1999) studied the electrical resistivity of three clay specimens (two commercial 

and one natural). A model was developed to understand the soil structure, taking to account the 

solid, liquid and gaseous phase. The device to measure the resistivity was developed from a 

conventional consolidation apparatus. Based on the electrical resistivity test results, the 

following equations were proposed to calculate the electrical resistivity of a cylindrical sample 

of soil with electrical resistivity (
0  ) and radius ( 'r  ): 
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where 
satF  is the structural coefficient at saturated condition. 

Giao et al. (2003) compared the electrical resistivity measured in field and obtained in the 
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laboratory. Four sited were chosen for the study. 2D electric imaging was carried out to map 

the clay deposits. RES2DINV software was used for data analysis. 50 cylindrical shaped 

samples (75 mm diameter and 110 mm length) were prepared. Resistivity was recorded using 

the four-electrode method. Additionally, the resistivity values for 20 other natural clay samples 

collected worldwide were obtained and compared. The layers below the depth of 27 m could 

not be mapped by the electrical imaging. The study found that the resistivity values of the clay 

specimen measured in field and in laboratory are comparable. The resistivities were found to 

vary from 1 to 12 m . It was concluded that if the maximum dipole spacing is kept three times 

the depth of the clay bed, the electrical resistivity parameter could be effective for mapping 

clay deposits. It was also deduced that improved ground strength would lead to higher electrical 

resistivity. One limitation of the study is that it does not establish a correlation between 

electrical resistivity and geotechnical parameters. For the laboratory tests, the depth of 

electrode penetration and the specimen geometry had insignificant effect on the resistivity.  

Sreedeep et al. (2004) measured the resistivity (  ) of clayey soil using a resistivity probe 

and a resistivity box. Specimens for the box were prepared by mixing oven-dried soil with KCl 

and NaCl solutions to make different water contents. Samples were kept in airtight containers 

for 24hrs and compacted to achieve different dry density values. After each resistivity test with 

box, the probe was inserted to take another reading. Based on the results the following 

correlation was proposed. 
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e                  (2.11) 

 

where rS  is the degree of saturation of the soil specimen. 

Kibria and Hossain (2012) assessed the relationship of soil electrical resistivity with its 

water content, unit weight, degree of saturation, specific surface area (SSA), pore space and 

ion composition. Six highly plastic clay (CH) specimens were used in the study. The structure, 

pore distribution and composition of clay samples were determined using high energy X-ray 

fluorescence tests and scanning electron microscopy (SEM). Electrical resistivity 

measurements were made using Super Sting IP resistivity equipment. Resistivity was found to 

be inversely proportional to water content. However, its effect was found to decrease at water 

contents above 40%. Unit weight and resistivity were found to be inversely proportional for 

water content less than 30%. Electrical resistivity of soil was observed to be less sensitive to 
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unit weight compared to the water content. Increase in degree of saturation resulted in 

decreased resistivity. Increase in resistivity was observed with increase in SSA and percentage 

of Calcium at water contents below 30%. At low water contents the electrical resistivity of soil 

showed an increase and then a decrease with increase in pore space.  

Gingine et al. (2016) investigated the changes in electrical resistivity of a clay sample 

compacted with different void ratios and molding water content. Wenner four-pin method was 

used on Kaolin clay specimen. The effect of the structural changes in the clay, produced due 

to compaction, on its electrical resistivity have been discussed. 

Naghibi et al. (2016) measured the electrical resistivity of clays undergoing consolidation. 

A modified odometer cell was used to measure the resistivity of the test specimen. The results 

were used to develop general calibration equations.  

 

2.2.3 Sand-clay mixtures 

Kibria and Hossain (2014) investigated the changes in the electrical resistivity of sand- 

bentonite mixes produced by varying the bentonite content. Ten soil samples were prepared by 

mixing different amounts of sodium and calcium bentonite with sand. Dry unit weight and 

water content were varied from 11.8 to 14.9 kN/m3 and 10 to 40%, respectively. Corresponding 

resistivity was recorded. Tests were done for particle-size distribution, Atterberg limits, 

specific gravity and cation exchange capacity (CEC) along with scanning electron microscopy 

(SEM) and energy dispersive spectroscopy (EDS). Decrease in bentonite content resulted in a 

linear increase in index properties. Considerable decrease in resistivity was observed at high 

mineral contents. The results indicated that bentonite type and content have significant impact 

on the soil resistivity. The effect of mineral content, CEC and plasticity indices on resistivity 

is not very significant at higher degree of saturation. 

 

2.2.4 Compacted clay liners (CCL) and geosynthetic clay liners (GCL) 

Abu-Hassanein et al. (1996) investigated the relationship of resistivity with compaction 

conditions, index properties and hydraulic conductivity. It was found that the resistivity 

decreased with increase in compactive effort. The resistivity was found to decrease rapidly with 

increase in molding water content, dry of optimum water content. Wet of optimum, the 

molding-water content had insignificant effect. At optimum water content, resistivity is 

inversely proportional to temperature, index properties, percentage fines and clay content. 

However, the study failed to develop correlation between hydraulic conductivity and electrical 

resistance. There is a scope for further research of the effect of anisotropy, electrical anomalies, 
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composition and liner boundaries. 

 

2.3 Hydraulic Conductivity Studies for Soil 

The presence of interstitial fluids is a major contributing factor for the flow of electricity in 

geomaterials. Hence, the hydraulic conductivity studies for soils have been reviewed which are 

relevant to the soil parameters being investigated in this research. 

Chapuis (1990) investigated the permeability of 45 sand-bentonite mixtures used as landfill 

lining material. The hydraulic conductivity ( k ) did not exhibit a correlation to porosity, 

bentonite content or total fines content individually. However, k  was found to possess a 

correlation to the efficient porosity ( *n ). 

Kenney et al. (1992) scrutinized the hydraulic conductivity changes of bentonite-sand 

mixtures due to content, compaction water content and system chemistry. The hydraulic 

conductivity was found to be inversely proportional to bentonite-sand ratio (B/S).  

Van Ree et al. (1992) calculated the permeability values for natural clay and sand-bentonite 

liners. The study identifies the optimum for sand-bentonite liners as 10% bentonite. Original 

water content and cell type had insignificant effect while the degree of saturation had 

significant effect on permeability. The study suggested that permeability tests be carried out at 

complete saturation and without disturbing the sample for optimum results. 

Mollins et al. (1996) developed a design model based on the clay void ratio, the sand 

porosity and tortuosity to estimate the hydraulic conductivity of a sand-bentonite mixture. For 

a uniform mixture, low bentonite content resulted in higher hydraulic conductivity than 

estimated. The study deduces that for a bentonite with known properties, the hydraulic 

conductivity of a sand-bentonite mixture can be predicted from the bentonite content, sand 

porosity and tortuosity and the vertical effect stress. 

Alston et al. (1997) assessed various sand-bentonite mixtures to test their suitability as lining 

material. Based on results the 75:25 (sand to silt aggregate ratio) with 5.5% bentonite was 

chosen for liner construction.  

Stewart et al. (1999) gave a model to predict the swelling and hydraulic conductivity ( k ) of 

bentonite-sand mixtures using water and salt solutions. The k  exhibited a direct relationship 

with bentonite content and bentonite void ratio. Initial water content affected the volumetric 

shrinkage significantly while the bentonite content had a less significant effect.  

Kodikara and Rahman (2001) scrutinized the use of optimum water content (OMC) to 

specify the field water content for compacted clay liner (CCL) systems. Dry unit weight was 
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calculated using the equation; 

 

drywet w  )1(                              (2.12) 

 

Curves were plotted for wet unit weight (
wet ), dry unit weight (

dry ) and saturated 

hydraulic conductivity (
satk ) against water content ( w ). Additionally, water content at 

minimum hydraulic conductivity (
kw ) was plotted against optimum water content (

optw ) and 

water content at maximum wet unit weight, to obtain the linear regression for each. The study 

puts forth that the minimum hydraulic conductivity shows a better correlation than OMC. 

Frempong and Yanful (2005) evaluated the suitability of two soils for their use as landfill 

liner materials. Two soil samples from Ghana were used for the study while leachate was 

obtained from a landfill site in Ontario. Fixed- wall permeameter method was used. The acidity 

of both soils was found to decrease after permeation with alkaline leachate. The organic content 

and CEC increased while the glycol retention values decreased. Both soil samples proved to be 

suitable for use as lining material. 

 

2.4 Studies to Determine Optimum Sand-Clay Ratios 

The following Table 2.3 depicts the different bentonite-sand ratios used by various researchers 

in their published work. It has been developed from the literature discussed in the previous 

sections 2.2.3 and 2.3. The studies pertaining to sodium bentonite have been listed.  

 

Table 2.3: Various bentonite-sand ratios. 

 

Journal article Bentonite-sand ratios used for experimentation (%) 

Alston et al. (1997) 0, 5, 5.5, 6 

Chapuis (1990) 0, 2, 2.5, 3, 4, 4.7, 5, 5.8, 6, 6.4, 7, 7.5, 8, 10, 20, 25, 33.3 

Iizuka et al. (2003) 0, 1, 3.1, 5.3, 11.1, 17.7 

Kenney et al. (1992) 0, 4, 8, 12, 16, 20, 24, 28, 32 

Kibria and Hossain (2014) 20, 40, 60, 80, 100 

Mollins et al. (1996) 5, 10, 20 

Stewart et al. (1999) 10, 20 

Van Ree et al. (1992) 5, 6, 8 
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The ratio of bentonite addition ( ) is given as: 

 

100
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m

m
                   (2.13) 

 

where bm  is the mass of dry bentonite and  sm  is the mass of dry sand. 

 

2.5 Detection of Leakage 

In this section, the literature pertaining to leakage detection in lining systems has been 

reviewed. 

 

2.5.1 Conventional methods of leak detection 

Table 2.4 gives the various conventional methods used for leak detection. These methods are 

mostly redundant due to their low accuracy, limited applicability, post-contamination detection 

and high remediation costs.  

Giroud et al. (1989) evaluated the rate of leakage through a composite liner constituted of a 

geomembrane and a layer of low-permeability soil. They proposed the following equations 

based on their study: 

 

74.01.09.021.0 sow kahQ 
                 (2.14) 

 

for the case of good contact, and,  

 

74.01.09.015.1 sow kahQ 
                 (2.15) 

 

for the case of poor contact, where Q  is the rate of leakage, wh  is the depth of water on top of 

the geomembrane, oa  is the geomembrane hole area and sk  is the soil hydraulic conductivity. 

 

2.5.2 Electrical resistivity methods for leak detection 

Oh et al. (2008) evaluated the applicability of grid-net system for contamination detection in 

landfill subbase layer. The schematic diagram of the experimental setup used in laboratory 
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testing is as shown by Figure 2.1. The detection is based upon the variation of electrical 

conductivity of soil due to leachate contamination. 

 

 

Table 2.4: Conventional leak detection methods (National Network for Environmental 

Management Studies (NNEMS) Report, 1998). 

 

Leak detection 

method 

Advantage Disadvantage 

Groundwater 

monitoring wells 

detects contaminant plumes doesn’t prevent groundwater 

contamination, expensive, can only 

detect plumes that pass by the line 

of wells 

Lysimeter detects contamination requires laboratory testing, high 

operating cost, cannot pinpoint the 

location of the leak 

Diffusion hoses widely available components, 

automatic, low operational cost 

ineffective if leachate does not 

produce vapor 

Capacitance sensors readily available, automatic measures all moisture, not 

specifically leachates 

Tracers can be used at any stage of 

landfilling, leachate 

composition not required 

operational cost high due to 

manual collection and testing, does 

not locate exact leak point 

Electro-chemical 

sensing cables 

widely available detects very narrow range of 

contaminants, site specific, must 

be installed during construction 

phase 

 

 

Laboratory measurements indicated that the grid-net system could identify the release of 

landfill leachates with accuracy. One limitation of the method is that it cannot be used for 

existing landfills. Also, the species and quantity of the contaminant cannot be identified by this 

method. 
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Figure 2.3: Schematic diagram of grid-net electrical conductivity measurement system (Oh et 

al., 2008). 

 

Ben Othmen and Bouassida (2013) developed a new electrical method for defect detection 

in landfill liners. This study proposed the electrical circuits method (ECM) to detect leakages 

in geomembranes (GMB). This method involved the placement of large parallel electrical 

circuits below the geomembrane at landfill facilities. This method was found to be very cost 

effective for GMB liner defect location. However, the system fails to predict the number and 

size of defects.  

Panthulu et al. (2001) delineated potential seepage paths in earth dams using electrical 

resistivity and self-potential (SP) methods. Boreholes were made on predetermined profile 

lines along two saddle-dams and filled with water 5-6 hours before measuring SP data. Reading 

were taken 2-3 times for SP of each profile using two non-polarizing electrodes. Electrical 

profiling (EP) was done for multi electrode spacing using Schlumberger array method. It was 

found that weathering occurred for upto 6-m depth, while the deeper strata showed less 

weathering.  

Sirieix et al. (2013) detected defects in geosynthetic clay liner (GCL) by using DC electrical 

methods. An experimental site of 1.5-m depth and 12×11 m2 surface area was prepared. The 

lining system was constructed using 1-m thick clay layer, 6-mm thick GCL, 300-mm thick 
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artificial gravel layer and 150-mm thick top soil layer, from bottom to top. Defects were 

engineered in the GCL. Humidity and temperature were monitored at the depth of 0.7 m below 

the GCL. Weather was also monitored near the test site. Electrical resistivity tomography 

(ERT) surveys was conducted using two arrays (dipole-dipole and Wenner - Schlumberger). 

Compared to Wenner – Schlumberger array, dipole-dipole array was more effective. The GCL 

resistivity was found to drop ten times after 21 months due to chemical damage and ageing of 

liner.  

 

2.6 Conclusions 

Based on the literature review, the following research gaps have been identified, which require 

further investigation: 

 

• Characterisation of liner subbase soil using electrical resistivity method. 

• Absence of specific correlations for different geotechnical parameters of soil with 

electrical resistivity of clay and sand-clay mixtures. 

• Study of variation of soil resistivity with changing sand-clay ratios.  

• Effect of type and quantity of leachate on the electrical resistivity of liner subbase 

material.  

• Determination of effective methods of contamination detection and leakage location for 

pre-existing landfill sites and other contaminant containment systems. 

• Scope of innovative methods for the early detection of contaminant release in liner 

subbase.  

• Development of new leakage detection systems for liners installed at pollutant 

containment facilities. 

• Effect of liner leak size, number and type on the electrical resistivity of liner subbase 

material. 

• Changes in the electrical resistivity of subbase material with time. 

• Method to predict the number and size of leaks in liners. 
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CHAPTER 3 

 

FIELD INVESTIGATION OF AUSTRALIAN WASTE 

MANAGEMENT AND LEAK DETECTION PRACTICES 

 

 

This chapter is based on the paper submitted to the Journal of Cleaner Production, Elsevier, 

as listed in Section 1.6. The details presented here are the same, except some changes in the 

layout in order to maintain a consistency in the presentation throughout the thesis. 

 

 

3.1 Introduction 

Despite being the least favoured option for waste disposal, landfilling is still widely prevalent 

globally (Ministry for the Environment, New Zealand, 2001; Productivity Commission, 2006; 

EC, 2008; Hoornweg and Bhada-Tata, 2012; Lopes et al., 2012; USEPA, 2012; Department of 

the Environment and Energy, Australia, 2013; Esteban-Altabella et al., 2017; Geoscience 

Australia, 2017; Jovanov et al., 2017). Every year 1.3 billion tonnes of municipal solid waste 

(MSW) are generated worldwide (Hoornweg and Bhada-Tata, 2012) and a majority of this ends 

up in landfills. Furthermore, globally, the rate of growth of MSW is greater than the rate of 

growth of urbanization. China has the fastest rate of MSW growth, followed by other parts of 

East Asia, parts of Eastern Europe, and the Middle East.  Domestic households account for the 

major MSW production (55 to 65%). Commercial and institutional locations generate 35 to 

45% of the total MSW. The contribution by industrial sector is comparatively small due to 

recycling, reuse, or self-disposal practiced by industrial waste landfills (USEPA, 2011). The 

waste production trend reported in Australia, also shows a similar pattern.  As per the DEWHA 

(2010), the waste production registered an increase of 170% in the period of 1996-2015, at a 

compound growth rate of 7.8% per annum.  

Figure 3.1 gives the various municipal solid waste (MSW) disposal techniques practiced 

globally (Hoornweg and Bhada-Tata, 2012). It can be noticed from the figure that the dumping 

of wastes to landfilling facilities is the principal method of waste disposal. Therefore, the issue 

of appropriate handling and management of wastes in landfilling facilities becomes extremely 

important.  
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Landfills often deal with very putrescible and at times, hazardous wastes. Hence, the 

leachates generated by the aerobic and anaerobic decomposition of these wastes consist of a 

variety of pollutants, and are hazardous for the environment (Aboyeji and Eigbokhan, 2016; 

Esteban-Altabella et al., 2017). In fact, the landfill leachates are one of the most difficult wastes 

to handle due to variations in their composition and flow rates, seasonal variation in the amount 

of precipitation, type and age of the facility, and so on (Zolfaghari et al., 2016; Brennan et al., 

2017). The landfills produce leachates during their active operation period and continue to do 

so for many years even after decommissioning (Brennan et al., 2017). To address this problem, 

the Environmental Protection Authorities around the world have recommended that the lining 

systems used in landfilling facilities must be engineered, constructed and frequently monitored, 

such that the complete isolation of all contaminants from soil and groundwater can be 

ascertained over their design life (Shukla, 2016; Jovanov et al., 2017; Parastar et al., 2017). 

However, it is disturbing to note that developing countries still practice uninhibited waste 

disposal to non-engineered open dumps (Hoornweg and Bhada-Tata, 2012; Jovanov et al., 

2017). This is a highly unhygienic and non-sustainable practice which will lead to organic, 

inorganic and microbial pollution of soil and groundwater (Aboyeji and Eigbokhan, 2016). 

This necessitates that all landfills be constructed using suitable lining systems. 

 

 

Figure 3.1: Municipal solid waste (MSW) disposal techniques practiced globally. 
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Interestingly, although the liners are constructed to be intact during their working life, severe 

operating conditions and poor placement assurance lead to the eventual failure of the lining 

systems. Their integrity is often compromised (Giroud, 1984) and consequently, the landfill 

leachates are found to leak, resulting in the contamination of underlying soil and groundwater 

(Oh et al., 2008; Aboyeji and Eigbokhan, 2016). The extent of contamination and the adverse 

effects of leachate leakages on the surrounding environment, intensifies with passing time. 

Additionally, as time lapses, the cost of repair and remediation also increases manifold. 

Therefore, it becomes imperative to detect the leakage issues as soon as possible so that suitable 

remedial measures can be taken (Lopes et al., 2012; Pandey et al., 2017). Consequently, in an 

attempt to achieve timely detection of leakages, different landfilling facilities use various leak 

detection techniques for the control and management of contaminants.  

It is critical that appropriate measures of waste handling and management should be 

practiced by all landfilling facilities. Government agencies and Environmental Protection 

Authorities around the world need to work in tandem to create and execute explicit regulation 

to achieve the same. It is also essential to generate an awareness about these issues among the 

general public so that the proper implementation of the rules and regulations can be ensured. 

Therefore, in the present work, an extensive study has been conducted to investigate the current 

state of landfilling in Australia with particular attention to the lining practices and leak 

detection methods currently in application. Table 3.1 lists the details of the landfilling facilities 

which participated in the study. This paper presents the complete details of the investigation. 

It also proposes a new method of leak detection by simulation of landfill liner, which is being 

developed and investigated by the Geotechnical and Geoenvironmental Research Group at 

Edith Cowan University with a view to its application in the design of lining systems for 

effective contamination control. 

 

3.2 Waste Management Practices in Australia 

Australia is an island continent with a population of nearly 25 million people occupying 7.692 

million km² of land mass and a waste production of 2.2 tonnes per capita in 2010–11 alone. 

60% of this generated waste was either recovered or recycled, with the rest 40% sent for 

disposal to landfills. The solid wastes consisted of commercial and industrial wastes (C & I, 

construction and demolition wastes (C & D) and municipal solid wastes (MSW).  Out of all 

these, municipal solid wastes (MSW) has the lowest recovery rate among the three main waste 

streams. MSW generally consist of food scraps, composite products, paper and paperboard, 

wood, plastics, metals, textile, yard trimmings, glass, rubber, leather, miscellaneous inorganic 
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wastes, and mixed categories (USEPA, 2014). From the 14 million tonnes of MSW generated 

in 2010-11, 49% could not be recovered and was sent for disposal (DEWHA, 2010; DEE, 

2013).  

 

Table 3.1: Details of the participating landfill facilities. 

 

Landfill 

number 

State Operator type Name of the 

company (or 

operator) 

Name and address of the 

landfill facility 

L1 New South 

Wales 

Public Newcastle City 

Council 

Summerhill Waste 

Management Centre, 141 

Minmi Rd, Wallsend 

NSW 2287 

L2 New South 

Wales 

Private SUEZ Australia Lucas Heights Landfill 

(Sydney), New Illawarra 

Rd, Lucas Heights NSW 

2234 

L3 Victoria Public City of Greater 

Geelong 

Drysdale landfill, Becks 

Rd, Drysdale VIC 3222 

L4 Victoria Private SUEZ Australia Hallam Road Landfill, 

274 Hallam Rd, 

Hampton Park VIC 3976 

L5 Western 

Australia 

Public City of Cockburn Henderson Waste 

Recovery Park, 920 

Rockingham Rd 

Henderson WA 6166 

L6 Western 

Australia 

Public City of Armadale Armadale Landfill and 

Recycling Facility, Lot 

600 Hopkinson Road 

Hilbert WA 6112 

L7 Western 

Australia 

Public Eastern 

Metropolitan 

Regional Council 

Red Hill Waste 

Management Facility, 
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1094 Toodyay Road, 

Red Hill WA 6056 

L8 Western 

Australia 

Private SUEZ Recycling 

and Recovery 

North Bannister 

Resource Recovery Park 

– 6364 Albany Hwy, 

North Bannister WA 

6390 

 

Figure 3.2 displays the different types of waste management facilities in Australia. For the 

municipal solid waste (MSW) management, most of these facilities follow the pattern of 

separation of waste, recycling, aerobic composting and landfilling. It can be observed that the 

majority of the waste ends up in landfilling facilities (Geoscience Australia, 2017).  

It is interesting to note that more than 85% of the Australian population is currently living 

in urban areas. Even though Australia has a huge land mass, the habitable land area is only 

about 10% and the rest is deemed inhabitable for humans. Australia has 8 states and 8 federal 

territories. The majority of the population resides in the 8 capital cities of the 8 states (nearly 

70%), which have a population density of 378 people per square kilometre. Among the 8 

Australian territories, 2 are currently uninhabited and 3 do not have any waste management 

facility (DEE, 2010). The Norfolk Island has 3 landfilling facilities, while the Christmas Island 

and Cocos (Keeling) Islands have 1 landfilling facility each. As a result, most of the waste 

production is focused in the major urban areas.  

Figure 3.3 shows the distribution of landfilling facilities in Australia by state (Geoscience 

Australia, 2017). It can be noticed that New South Wales (NSW) has the maximum number of 

landfill sites, followed by Western Australia (WA), Queensland (QLD) and Victoria (VIC) at 

2nd, 3rd and 4th position, respectively. The Australian Capital Territory has the lowest number 

of landfill sites, specifically only two. Furthermore, it is interesting to observe that as per the 

Australian Bureau of Statistics (2017) report, ACT has the highest population density followed 

by Victoria and NSW. WA is at 7th position, followed by the Northern Territory (NT) at the 

last place.  Considering the land area, WA is at the 1st place with 32.89% of Australia’s land 

mass. Queensland, NT and South Australia (SA) are at 2nd, 3rd and 4th position, respectively, 

followed by NSW at 5th, Victoria at 6th and Tasmania (TAS) at the 7th position. ACT has the 

smallest land mass, only about 0.03% of Australia (Geoscience Australia, 2017). 
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Figure 3.2: Different types of waste management facilities in Australia. 

 

 

Figure 3.3: Distribution of landfilling facilities in Australia by state. 
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Construction of new landfill sites is time consuming due to several procedures such as siting, 

design and construction, planning and appeal processes, and so on. In addition, commencing 

new landfills is generally not supported by the local population. Therefore, Australian landfills 

are often developed in old quarries as it is a cost-effective method of rehabilitating used 

quarries. Additionally, more material is removed from quarries than the amount of waste 

generated to fill it. Hence, sufficient quarry space is available for use in landfilling. However, 

owing to geographical and geological constraints, difficulty in obtaining approval for a new 

site, etc., there is a scarcity of available space. Furthermore, if the landfills are situated far off 

from the metropolitan areas, the cost of transportation and disposal of wastes becomes 

extremely high. Hence, although Australia has a huge land mass, the siting, design, operation, 

and proper maintenance of landfilling facilities is a major concern (WMAA, 2013). 

Figure 3.4 is the distribution of ownership for different waste management facilities. Public 

sector includes cities, counties/parishes, regional authorities, state governments, and the federal 

government owned landfills. Private sector entities are privately owned businesses ranging in 

size from very small to large (USEPA, 2014). A significant percentage of the landfill facilities 

as well as the transfer stations are operated by public owned companies (Figure 3.4). 

Comparatively, only a small portion of the landfill facilities and the transfer stations are 

managed by private companies (13% and 11%, respectively). In contrast, reprocessing facilities 

fall mostly under private ownership, specifically 87.4% (Geoscience Australia, 2017). Similar 

observation can be made from the Figure 5 which presents the ownership details of the 

participating landfill facilities. It can be seen that the majority of the landfills involved in the 

study are owned by the public entities. This appears to be a general trend in other major 

countries such as the USA as well. As per the USEPA (2014), 64 percent of MSW landfills 

were owned by public companies while 36 percent were owned privately in 2004. Keeping in 

mind the threat posed by landfilling facilities to the environment, the motivation behind the 

predominance of public entities’ ownership of landfills could be the concern that privately-

operated landfills might limit the community's degree of control over its operations.  

Figure 3.6 has been developed from the research data and details the amount of waste 

generated at different landfill facilities. As per the Department of Environment and 

Conservation (1996), landfills are classified as small, medium or large based on the annual 

tonnage of waste received by them. A landfill is classified as small if the waste is less than 

10,000 tpa. If the waste is greater than 100,000 tpa, the landfill is termed as large. For annual 

tonnage between 10,000 to 100,000 tpa, the landfill is classified as medium sized. Based on 

the above classification, 37.5% of the landfills are of medium size and 62.5% are large. 
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3.3 Lining Systems Practiced in Australian Landfills 

Depending on the type of waste to be handled onsite, lining systems are constructed with a 

combination of different natural and man-made products (Rowe et al., 2004; Shukla, 2016; 

Parastar et al., 2017). Interestingly, different states in Australia have different landfill 

classifications (DEE, 2010). For example, in Western Australia, landfills are classified as Class 

I, II, III, IV or V depending on the type of waste that is permitted to be disposed to that 

particular landfill. The lining system to be uses is also varied accordingly.  

 

 

 Figure 3.4: Distribution of ownership for different waste management facilities. 

 

As per the classification given by DEC (1996), three of the participating landfills given in 

Figure 3.6, are classified as Class II (Putrescible landfill), four are Class III (Putrescible 

landfill) and one is a combination of Putrescible landfill (Class III) and Secure landfill (Class 

IV). Design of the lining system is determined based on the landfill classification. 

Figure 3.7 gives a typical single composite liner system for waste containment facilities. A 

leak detection/recovery layer ( k ~10-1 m/s) forms the bottom, where k is the permeability of 

soil. It is overlain by a compacted clay layer ( k ~10-9 m/s) covered with high-density 

polyethylene (HDPE) geomembrane (GMB), and at the top is a leachate collection layer with 

high hydraulic conductivity ( k ~10-1 m/s). A GMB is a synthetic sheet with very low 
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permeability, used to control contaminant flow. Single (also referred to as simple), composite, 

or double liner can be used at landfill site, based on the type of waste to be stored (Shukla, 

2016). 

Figure 3.5: Ownership details of participating landfill facilities. 

Figure 3.6: Amount of waste generated at various landfilling facilities. 
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Table 3.2 gives a list of the various leachate barrier systems currently used in Australia 

(Dixon, 2013). It can be observed that the Australian landfilling facilities generally consist of 

compacted clay and geomembrane (GMB) layers. Additionally, a geosynthetic clay liner 

(GCL) is also used. It is made by sandwiching a layer of clay between two geotextiles (Shukla, 

2016). 

 

 

 

Figure 3.7: A typical single composite liner system for waste containment facilities. 

 

Table 3.3 presents the details of various lining practices in the participating waste 

management facilities. It is interesting to note that while landfills in New South Wales and 

Victoria follow the guidelines laid down by their respective environmental protection agencies, 

the landfill sites in Western Australia do not comply with any one guideline unanimously. 

Similar discrepancy is observed for the implemented ground preparation methods. Most of the 

landfills are situated in old quarries and only basic ground preparation by compaction is 

followed (Table 3.3). There seems to be a lack of standardized methods in practice. 

It can further be noticed from Table 3.3 that while all the landfill facilities use suitable lining 

systems for preparation of landfills, there are no set regulations or unifying code of practice. 

Different combinations of natural clay liners, compacted clay liners (CCL), HDPE 

geomembranes, geosynthetic clay liners (GCL), geotextiles and geonets are being used in the 

landfills. In general, the majority of large landfills have some form of lining while most of the 
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small landfills are constructed without any engineered lining system, Victoria being the only 

exception where all landfills have some sort of liner in place (DEE, 2010). 

  

Table 3.2: Leachate barrier systems used in Australia. 

 

State/Territory Minimum requirements 

New South Wales (NSW) 90 cm thick layer of compacted clay with permeability 

less than 10-9 m/s should be used. The compacted clay 

might be covered with geomembrane (GMB). 

Northern Territory (NT) A single liner of either clay, geomembrane (GMB) or 

geosynthetic clay liner (GCL) to be used. Composite 

liners should be used for municipal solid wastes (MSW) 

landfills. In case of hazardous wastes, double liners with 

leak detection system should be used. 

Queensland (QLD) The lining system to be used is determined by the risk 

assessment of the site. 

South Australia (SA) A composite liner with geomembrane (GMB) should be 

used. 

Tasmania (TAS) Engineered clay liner to be used for municipal solid 

wastes (MSW) landfills and geosynthetic clay liner 

(GCL) to be used for secure landfills. 

Victoria (VIC) Lining system should be engineered so that the seepage 

is less than 10 L/ha/day for municipal solid wastes 

(MSW) landfills and is less than 100 L/ha/day for secure 

landfills. 

 

The Department of the Environment and Energy (2010) has reported that Tasmania, NSW 

and Victoria have the highest level of compliance with the design and construction 

requirements, in the given order. In comparison, WA demonstrates the poorest compliance. 

Ideally, there should be a unique set of laws and regulations for siting, design, operation and 

rehabilitation to govern all Australian landfill facilities. 
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Table 3.3: Lining practices in the participating waste management facilities. 

 

Landfill 

number 

Standards used Ground preparation Lining 

system 

Lining system 

in use 

L1 NSW EPA Solid Waste 

Landfill Guidelines 

Geotechnical 

assessment is 

undertaken on the 

underlying strata and 

any engineered 

corrections or 

compensations are 

made. Batters are laid 

back to a minimum of 

4:1 m gradient. 

Yes 1-2 m thick 

CCL, 6 mm 

thick GCL, 2 

mm thick 

HDPE, 4.5 mm 

thick Geotextile 

L2 Site licence and NSW 

EPA Solid Waste 

Landfill Guidelines 

- Yes Ground water 

drainage, 900 

mm of 

engineered clay, 

2.5 mm HDPE 

geomembrane, 

Geotextile 

L3 EPA Victoria "Best 

Practice Environmental 

Management (BPEM) 

Siting, Design, 

Operation and 

Rehabilitation of 

Landfills, 2015. 

Ground is compacted, 

and proof rolled 

Yes Compacted clay 

liner and HDPE 

plastic liner 

L4 EPA Victoria "Best 

Practice Environmental 

Management (BPEM) 

Siting, Design, 

Operation and 

- Yes Ground water 

drainage 

system, 500 

mm engineered 

clay, GCL, 2 



48 
 

Rehabilitation of 

Landfills, 2015. 

mm HDPE, 

Geotextile 

L5 Department of 

Environmental 

Regulation 

Cells are constructed in 

a former limestone 

quarry.  The base is 

excavated 8 m above 

the water table so the 

base is a compacted 

limestone material. 

Yes 2 HDPE liners 

(2 mm thick) 1 

Geotextile liner 

L6 Licence conditions, 

groundwater 

monitoring and pest 

control 

No new cells being 

developed 

Yes Natural clay 

lining 

L7 EPA Victoria "Best 

Practice Environmental 

Management (BPEM) 

Siting, Design, 

Operation and 

Rehabilitation of 

Landfills, 2015. 

Landfill cell and 

leachate pond 

foundation surfaces are 

cut with clean blades 

and shaped according 

to the design drawings. 

All foundation surfaces 

are maintained at the 

natural moisture 

content until covered. 

The foundation 

surfaces are compacted 

before the clay liner is 

constructed. If the 

construction of 

foundations involved 

thickness of more than 

200 mm then the 

compaction is done by 

Yes 500 mm of 

compacted clay, 

1 has 1000 mm 

of CCL. 1-2 

mm HDPE liner 

in 4. Geonet, 

geotextile and 

GCL in 1. 
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lifts not exceeding 200 

mm. 

L8 EPA Victoria "Best 

Practice Environmental 

Management (BPEM) 

Siting, Design, 

Operation and 

Rehabilitation of 

Landfills, 2015. 

Prepared with survey 

set out and Civil 

equipment. 

Yes 2 mm HDPE 

Membrane, 

GCL and clayey 

subgrade. 300 

mm aggregate 

over the top. 

 

Courtesy Sheen (2016) for L1, Jones (2017) for L2 and L4, Middleton (2016) for L3, Haynes 

(2016) for L5, Wallrodt (2017) for L6, Maslen (2017) for L7, Olman (2017) for L8. 

 

3.4 Current Practices of Leakage Detection 

As discussed in preceding sections, “all liners leak” (Giroud, 1984). Consequently, it is 

essential for landfill facilities to use proper leak detection systems to ensure adequate leachate 

containment. Different methods of leakage detection are practiced by landfilling sites, such as 

capacitance sensors, diffusion hoses, electro-chemical sensing cables, ground penetration radar 

(GPR), groundwater monitoring wells, lysimeters, resistivity cone penetration test (RCPT), 

tracers, time domain reflectometry (TDR), etc. (Hix, 1998; Oh et al. 2008; ASTM D6431-

99(2010); Lopes et al., 2012). Methods which involve on-site sampling and laboratory analysis 

are cost and time intensive. In addition, electrical leak detection methods, such as water puddle 

method (ASTM D7002 - 16), conductive geomembrane spark test (ASTM D7240 - 06(2011)), 

water lance method (ASTM D7703 - 16), arc testing method (ASTM D7953 - 14), electrode 

grid method (ASTM D6747 − 15), etc., are also used extensively because of low costs and ease 

of operation (Oh et al. 2008). These methods use the changes in the electrical properties of the 

liner subbase produced due to its leachate contamination, to detect lining system defects 

(Pandey and Shukla, 2017).  

Table 3.4 details the leak detection techniques being practiced by landfills as recorded by 

the study. Except one landfill site in Victoria, all others are currently using some method of 

leak detection. The most popular method in practice is the use of groundwater monitoring wells 

to monitor the groundwater quality upstream and downstream of landfills. In fact, 87.5% of the 

facilities have monitoring wells onsite. This method detects leachate contamination of 
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groundwater to determine contaminant plumes, and thereby identifies leakage issues in liners. 

While this method has certain advantages such as low installation and operation costs, and ease 

of operation, it also has some major limitations. The use of this method does not prevent 

groundwater and soil contamination. Furthermore, it can only detect plumes that pass by the 

line of wells and the leak is detected after a considerable lapse of time (Hix, 1998; Oh et al., 

2008). Hence, the use of a permanent monitoring system which makes use of the electrical 

resistivity method, is highly desirable and is therefore, gaining more prevalence. However, it 

can be noticed from Table 4 that only one of the landfill facilities is currently using pre-laid 

sensor beds in seven landfill cells. One important reason behind this is that the electrode grid 

sensing system has high capital cost and can only be laid down in new landfill cells. It cannot 

be used for pre-existing cells. In spite of these drawbacks, the sensor beds are still a lucrative 

option because of their ease of operation, ability to constantly monitor lining system without 

onsite presence, and capability to detect leakage issues at the onset. 

 

3.5 Proposed Method of Leakage Detection 

It can be observed from Table 3.4 that among the various conventional methods of leakage 

detection, the monitoring wells are used most frequently. However, this method proves to be 

ineffective because by the time the leakage issue is detected, a substantial amount of soil and 

ground water is already contaminated (Hix et al., 1998; Oh et al., 2008; Pandey et al. 2017). 

For proper contamination control, it is important that the leak detection method used is both 

time and cost effective. It has been noted in previous research work that the use of electrical 

resistivity method for leakage detection is very prevalent owing to its operational and cost 

benefits (Oh et al. 2008; Pandey and Shukla, 2017). Specifically, the use of electrode grids 

below lining systems is highly desirable for newly constructed landfills, for the detection of 

leakages at their onset (ASTM D6747 – 15; Pandey et al., 2017). However, such a method is 

limited by a thorough understanding of the parameters controlling the resistivity of that specific 

soil such as various soil parameters, the type of defects and the type of contaminants. Hence, 

to address these needs, the Geotechnical and Geoenvironmental research group at Edith Cowan 

University (ECU), Perth, Australia has been actively working in the direction of developing an 

innovative leak detection system, by simulating an actual lining system. The detailed design of 

this new technique has been presented by Pandey et al. (2017). Figure 3.8 gives the conceptual 

design of the experimental setup for the leak detection technique. 
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Table 3.4: Leak detection techniques being practiced by landfills. 

Landfill 

number 

Leak 

detection 

method used? 

Current method of detection Use of 

sensor 

beds 

L1 Yes Environmental Monitoring - including 

groundwater, surface water and leachate 

characterisation, undertaken on a quarterly 

basis. 

No 

L2 Yes Ground water monitoring bores upstream and 

downstream of landfill 

No 

L3 No None No 

L4 Yes Ground water monitoring bores upstream and 

downstream of landfill 

No 

L5 Yes Series of bores and nested wells (11) that are 

tested by an independent consultant as part of 

our landfill licence conditions on a 6-monthly 

basis. 

No 

L6 Yes Groundwater monitoring reports No (old 

site) 

L7 Yes 7 cells use electronic leachate leakage 

detection systems. Quarterly groundwater 

monitoring, surface water monitoring, landfill 

gas surveying, odour monitoring, 

rehabilitation of closed cells. Conditions 

monitored around landfill cells as well as in 

and around the leachate ponds. 

Yes. 7 

cells 

L8 Yes Up and down gradient groundwater 

monitoring 

No 

Courtesy Sheen (2016) for L1, Jones (2017) for L2 and L4, Middleton (2016) for L3, Haynes 

(2016) for L5, Wallrodt (2017) for L6, Maslen (2017) for L7, Olman (2017) for L8. 
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Figure 3.8: Conceptual design of leak detection developed at the Geotechnical and 

Geoenvironmental Research Group, School of Engineering, Edith Cowan University, Perth, 

Australia. 

 

The test setup consists of a soil box filled with test specimen and covered with a 

geomembrane (GMB) liner, paired with an AEMC 6471 ground resistance testing machine. 

The GMB is covered with leachate. Leak is then intentionally introduced in the GMB and 

controlled leakage to the subbase soil, is allowed. The ground resistance tester is used at regular 

time intervals, to inject current across outer plate electrodes, and to measure the resultant 

potential drop across each pair of inner potential measuring probes. 12 resistance readings are 

obtained at each test interval for the soil specimen. Based on the variations in these readings, 

the location of the leak in the liner was determined. The developed technique was found to be 

effective in locating leachate leakages through liners. It is expected that the method will find a 

wide application in the design of monitoring systems for waste storage and handling facilities, 



53 
 

contamination detection, liner leak detection, development of sensors, numerical modeling for 

leak detection issues, and so on.   

 

3.6 Conclusions 

A review and quantitative comparison of the waste management in Australia, have been 

conducted to determine the current state of lining practices in landfills. Special emphasis has 

been given to liner design and leakage detection techniques. Based on the results and 

discussions presented, the following general conclusions can be made: 

 

(1) Landfilling is the predominant method of waste disposal. Nearly 51% of the generated 

waste ends up in landfills. New South Wales has the highest number of landfill sites, 

followed by Western Australia.  

(2) Majority of the landfill facilities are owned and operated by public sector entities such as 

cities, counties/parishes, regional authorities, state governments, and the federal 

government. 

(3) Australians landfills generally consist of varying combinations of compacted clay and 

geomembrane liners. However, they do not follow any one unifying guideline for ground 

preparation, siting, design, operation, and rehabilitation.  

(4) Groundwater monitoring wells were found to be the principal method of leakage 

detection practiced by the landfills. The use of pre-laid sensor beds based on electrical 

resistivity method was observed to be marginal. 

(5) The study will be useful in generating awareness about the state of landfilling in Australia 

and will help governing bodies in making informed decisions for the development of 

rules and regulations for landfill facilities. 

(6) The newly presented method can be a good starting point in the development of 

monitoring systems for landfill liners, subbase contamination detection, design of 

sensors, and so on.   
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CHAPTER 4 

 

CHARACTERISATION OF LINING MATERIALS USING 

ELECTRICAL RESISTIVITY METHOD 

 

 

This chapter is based on the paper published in the Journal of Applied Geophysics, Elsevier, 

as listed in Section 1.6. The details presented here are the same, except some changes in the 

layout in order to maintain a consistency in the presentation throughout the thesis. 

 

 

4.1 Introduction 

Lining systems are used widely by waste storage and handling facilities to isolate contaminants 

and ensure that their effect on the environment is negligible (Fityus et al., 1999; Rowe et al., 

2004; Rowe, 2012). The potential impact of the waste handled by a specific site determines the 

type of lining system to be employed (Shah, 2000). The liners are designed such that they have 

a very low hydraulic conductivity (<10-9 m/s). Geosynthetics as the man-made materials, such 

as geomembranes, geotextiles, and geosynthetic clay liners (Shukla, 2016), or natural 

materials, such as compacted clays (Daniel, 1984; Harrop-Williams, 1985; Chapuis, 2002), 

silty soils (Holtz, 1985), mine tailings (Jessberger and Beine, 1981), and sand- bentonite 

mixtures (Chapuis, 1990), can be used to make liners. This paper focusses on the liners made 

from bentonite and sand-bentonite mixtures. 

Undoubtedly, the integrity of liners over their intended lifespan is vital. To guarantee 

adequate performance of liners, it is essential to account for the fact that liners are subject to 

harsh operating conditions, and they are likely to develop defects (Daniel, 1984; Rowe, 2005; 

Oh et al., 2008; Rowe, 2012; Shukla, 2016; Sirieix et al., 2016; Baawain et al., 2018). 

Consequently, the leachates are prone to leak out and contaminate underlying soil and 

groundwater. This necessitates the use of appropriate methods for the early detection of leakage 

and liner defect issues to ensure the timely control and mitigation of contamination. The 

electrical resistivity method, which is cost-effective and easy to use, can assist in solving this 

problem (Oh et al., 2008; Bai et al., 2013; Choo et al., 2016; Merritt et al., 2016; Sirieix et al., 

2016; Wang et al., 2017; Baawain et al., 2018; Chu et al., 2018). This method is based on 
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detecting the changes in the electrical resistivity of geomaterials, produced due to the addition 

of even a small amount of contaminant (Darayan et al., 1998; Yoon and Park, 2001; Pandey 

and Shukla, 2017). Furthermore, the electrical conductivity of soil depends on its properties 

(such as porosity, degree of saturation, composition of pore fluid, etc.), state of compaction, 

mineralogy, structure and temperature (Abu-Hassanein et al., 1996; Mitchell and Soga, 2005; 

Bai et al., 2013) as well as on the composition of the pore fluid (Fukue et al., 1999; Cardoso 

and Dias, 2017).  

Besides their use in liner leak detection, there are additional applications of soil resistivity 

studies in geotechnics and especially in earthworks, such as anomaly detection (Panthulu et al., 

2001), determination of soil state properties (Archie, 1942; McCarter, 1984; Kalinski and 

Kelly, 1993; Abu-Hassanein et al., 1996; Shah and Singh, 2005; Long et al., 2012; Kibria and 

Hossain, 2014; Choo et al., 2016; Merritt et al., 2016; Chu et al., 2018), locating liner leakages 

(Darilek and Parra, 1989; Pandey et al., 2017), soil contamination detection (Oh et al., 2008; 

Pandey and Shukla, 2017), ground water contamination detection (Yochim, 2013), subsurface 

water profiling (Doolittle et al., 2006; Mahmoudzadeh et al., 2012), soil and conductivity 

studies (Rohini and Singh, 2004; Shamal et al., 2016; Wang et al., 2017), near surface soil 

characterisation (Islam and Chik, 2013), and so on. Hence, many previous researchers have 

focussed on developing correlations for electrical resistivity of various soils (Archie, 1942; 

McCarter, 1984; Fukue et al., 1999; Shah and Singh, 2005; Kibria and Hossain, 2012; Yan et 

al., 2012; Pandey et al., 2015).  

The parameters affecting the conductivity of various soil types, differ significantly. For the 

coarse fraction like sand, the conductivity depends on interconnected voids, conductivity of 

interstitial fluid, state of compaction and granular skeleton. However, for clayey soils, the 

conductivity is governed by pore fluid conductivity as well as surface charge of the clay mineral 

(Mitchell and Soga, 2005). Consequently, the bentonite content of soil is known to have a 

significant impact on its electrical resistivity (Abu-Hassanein et al., 1996; Kumar and Yong, 

2002; Kibria and Hossain, 2014). Although many researchers have previously developed the 

relationship between the geotechnical properties of soil and its electrical resistivity, there are a 

limited number of studies to analyse the effect of bentonite content of soil on its resistivity 

(Shah and Singh, 2005). Furthermore, it is well-known that both water content and the degree 

of compaction are essential criteria to determine resistivity of soil (McCarter, 1984; Kalinski 

and Kelly, 1993). Hence, there is a significant scope for the development of correlations for 

the resistivity of soils which incorporate the effect of the state of compaction on the electrical 

resistivity of sand-bentonite liner materials. Therefore, the purpose of this study is to 
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characterize the electrical resistivity of the bentonite and sand-bentonite soil liners, so that later, 

this property could be measured to estimate soil contamination.  

In most research works carried out in the past on investigation of electrical resistivity of 

soils, the dry unit weight 
d  of soils have been kept constant and the effect of changing water 

content on the resistivity has been investigated (McCarter, 1984; Abu-Hassanein et al., 1996; 

Kibria and Hossain, 2012; Bai et al., 2013; Kibria and Hossain, 2014). In this research, the unit 

weight 
d  has been varied such that at each water content, the maximum compaction is 

achieved. The motivation behind this is to replicate actual lining materials, as used in practice. 

Furthermore, the effect of bentonite content of soil and its state of compaction have been 

scrutinized for Australian soils. The focus in this research is to investigate the variation of 

resistivity as a geophysical parameter with the state of compaction, because the soil in field 

projects related to roads, embankments, foundations, and other geotechnical structures in civil 

engineering are regularly compacted. Therefore, the developed figures may work as the design 

charts for practising geotechnical/civil engineers. The results as presented, are highly useful to 

predict the densification of liner based on the non-destructive test that uses the resistivity 

measurement. This new research development can help avoid disturbing the compacted liner 

material at the landfill site, and hence, prevent any disturbance that can increase the infiltration 

of landfill leachate. 

The results obtained from this study will provide a baseline for the detection of liner leakage 

for application in Australia as well as in other parts of the world. In addition, newly developed 

correlations have also been proposed, aiming at their application in liquid impoundment 

facilities, waste storage and handling facilities, contamination detection, liner leak detection, 

development of sensors, soil and corrosion studies, and so on.   

 

4.2 Materials and Methods 

Sand obtained from quarries around Perth, Western Australia (WA) is used for the experiments. 

Table 4.1 gives its various physical properties. Figure 4.1 shows the particle-size distribution 

curve of sand and bentonite. As per the Unified Soil Classification System (USCS), the sand is 

classified as poorly graded (SP) sand, which is a good representation of soil in WA.  

The bentonite specimen used in this study is powdered sodium bentonite, procured from 

Ebenezer mine site in Queensland, Australia. Its various properties are listed in Table 4.2, and 

is classified as the highly plastic clay, also called the fat clay (CH) as per the Unified Soil 
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Classification System (USCS). Table 4.3 shows the composition of the tap water which has 

been used in this study. The tap water has been used as a representation of the groundwater.  

 

 

 

Figure 4.1: Particle-size distribution curve of sand and bentonite. 

 

A total of five soil mixes were prepared for the study by mixing different amounts of oven-

dried sand and bentonite, such that the bentonite in the soil mixtures was varied from 20 to 

100% by weight. Standard Proctor compaction test was conducted for all soil mixtures, in 

accordance to the Australian Standard AS 1289.5.1.1–2003 (Standard Australia, 2003). It is an 

experimental method to determine the optimum water content at which a soil becomes most 

dense and achieves its maximum dry unit weight. The test is performed by compacting a soil 

at known water content into a cylindrical mould using a compaction effort of 596 kJ/m3. The 

soil is compacted in three equal layers, each receiving 25 blows from a rammer. This process 

is repeated for various water contents and the dry unit weights are determined for each. The 

graph for the dry unit weight versus water content is then plotted to get the compaction curve. 

The maximum dry unit weight is obtained from the peak of the curve. The corresponding water 

content is known as the optimum water content. 
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Table 4.1: Physical properties of sand. 

 

Property Value Unit 

Specific gravity, sG  2.68 Dimensionless 

Coefficient of uniformity, uC   2.27 Dimensionless 

Coefficient of curvature, cC   1.22 Dimensionless 

Effective size, 10D  0.15 Mm 

Minimum dry unit weight, mind   14.02 kN/m3 

Maximum dry unit weight, maxd   15.56 kN/m3 

Soil classification as per USCS (Unified 

Soil Classification System) 

Poorly graded sand 

(SP) 

Dimensionless 

 

Table 4.2: Physical properties of bentonite. 

 

Property Value Unit 

Specific gravity, sG  2.66 dimensionless 

Liquid limit, lw   428 dimensionless 

Plastic limit, 
pw  51 dimensionless 

Plasticity index, 
pI   377 dimensionless 

Free swell index  712.5 dimensionless 

Maximum dry unit weight, maxd  11.51 kN/m3 

Optimum water content, 
optw   30.5% dimensionless 

Soil classification as per USCS 

(Unified Soil Classification System) 

Highly plastic clay 

(Fat clay) (CH) 

dimensionless 

 

A total of five soil mixes were prepared for the study by mixing different amounts of oven-

dried sand and bentonite, such that the bentonite in the soil mixtures was varied from 20 to 100 

percent by weight. Standard Proctor compaction test was conducted for all soil mixtures, in 

accordance to the Australian Standard AS 1289.5.1.1–2003 (Standard Australia, 2003). It is an 
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experimental method to determine the optimum water content at which a soil becomes most 

dense and achieves its maximum dry unit weight. The test is performed by compacting a soil 

at known water content into a cylindrical mould using a compaction effort of 596 kJ/m3. The 

soil is compacted in three equal layers, each receiving 25 blows from a rammer. This process 

is repeated for various water contents and the dry unit weights are determined for each. The 

graph for the dry unit weight versus water content is then plotted to get the compaction curve. 

The maximum dry unit weight is obtained from the peak of the curve. The corresponding water 

content is known as the optimum water content. 

 

Table 4.3: Water quality data for tap water (as per Water Corporation, WA). 

 

Parameter Value Unit 

Alkalinity as CaCO3 95 mg/L 

Aluminium 0.02 mg/L 

Calcium 30.5 mg/L 

Chloride 110 mg/L 

Conductivity (at 25 °C) 58.5 mS/ m 

Hardness as CaCO3 105 mg/L 

Iron 0.006 mg/L 

Magnesium 7.5 mg/L 

Manganese <0.002 mg/L 

Nitrite plus nitrate as N 0.76 mg/L 

pH 7.72 pH Units 

Potassium 5.6 mg/L 

Silicon as SiO2 18 mg/L 

Sodium 68 mg/L 

Sulphate 19.5 mg/L 

Total Dissolved Solids (TDS) 385 mg/L 

True colour <1 HU 

Turbidity <0.1 NTU 

Based after Tyl E., Water Corporation, WA, Australia (Personal communication, 2016). 
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For each sand-bentonite mix, a known amount of soil was mixed with a specific amount of 

water to achieve the desired water content. The water content w  was varied from 5% to 45%, 

based on the results reported by previous researchers (McCarter, 1984; Abu-Hassanein et al., 

1996; Kumar and Yong, 2002; Kibria and Hossain, 2014). Each specimen was covered and 

allowed to equilibrate in air-tight bags at room temperature (20 °C) for 24 hours. The swelling 

time of 24 hours was chosen based on past research work (Elsharief and Sufian, 2018), as most 

of the swelling of soil specimen was found to occur within this duration. In this manner, several 

specimens were obtained by preparing each of the sand-bentonite mixes to achieve varying 

states of compaction. 

 

4.2.1 Experimental set-up 

The electrical resistivity tests were conducted as per the Australian Standard AS 1289.4.4.1–

1997 (Standard Australia, 1997). A soil box (Figure 4.2) of 200 mm internal length, 40 mm 

internal width and 30 mm internal depth, was fabricated from 10-mm thick Perspex sheet. The 

box was fitted with two 10-mm thick brass plate electrodes, C1 and C2, of the same cross-

sectional area as the box, and two brass potential measuring pins, P1 and P2. The diameter of 

the pins was 3 mm and the distance between their axes was 120 mm.  

The four-terminal AEMC 6471 ground resistance testing machine (from AEMC 

instruments, USA) was used to measure the electrical resistivity of the soil mixture. 

Connections were made between the box and the AEMC tester as shown in Figure 4.2.  

 

4.2.2 Test procedure 

Figure 4.3 shows the compaction curves obtained for sand, bentonite and various sand-

bentonite mixtures. The dry unit weight d  for each sand-bentonite mixture at a specific water 

content, was obtained from its respective compaction curve, as given by Figure 4.3. Using this 

d  value and known volume of soil box, the amount of specimen to be filled in the box, was 

calculated. The soil mass was filled into the box in three layers, to achieve homogeneity.  

After the soil mixture was filled into the box, connections were made as shown in Figure 

4.2. An AC voltage of 16 V at 128 Hz was applied to the outer electrode plates, C1 and C2, and 

the potential drop across the inner pins, P1 and P2, was measured to determine the resistance R

. This specific input voltage was chosen based on the findings of Pandey et al. (2015).  
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Figure 4.2: Experimental setup for the measurement of electrical resistivity as per AS 

1289.4.4.1–1997. 
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The resistivity   is then obtained from the resistance R  using the following equation: 

 

L

AR
                     (4.1) 

  

where A  is the cross-sectional area and L is the length of the test specimen. In this instance, 

L is the distance between the inner potential measuring pins, P1 and P2. For this test, A  = 1200 

m2 and L = 120 m. Hence, due to the specific geometry of the fabricated soil box (Standard 

Australia, 1997), the Eqn. (4.1) is modified as follows: 

 

100

R
                     (4.2)  

 

The room temperature was maintained at 20 °C to avoid the effect of its fluctuations on the 

electrical resistivity (Kalinski and Kelly, 1993; Bai et al., 2013). 

 

 

Figure 4.3: Compaction curves for all soil mixtures. 
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4.3 Results and Discussion 

The compaction curves obtained for sand, bentonite and various sand-bentonite mixtures are 

shown in Figure 4.3. It can be observed that the dry unit weight 
d  first increases and then 

decreases, with increasing water content w . As the bentonite content in the soil mixture is 

decreased, the compaction curve shifts up and towards left. The maximum dry unit weight 

maxd  increases and the 
optw  decreases, with a decrease in bentonite content in the sand-

bentonite mixture. With an increase in the bentonite content of the sand-bentonite mixture, the 

compaction behaviour of the soil mixture resembles that of bentonite more closely. Similarly, 

at lower bentonite contents, the compaction behaviour of the mixture is closer to that of sands. 

These observations are consistent with past research works, such as by Abramson et al. (1995), 

Kumar and Yong (2002), Shamal et al. (2016), Cardoso and Dias (2017), and so on.  

Figures 4.5 through 4.8 give the variation of electrical resistivity with the state of 

compaction for different sand-bentonite mixtures. Figures 4.4 and 4.9 show the same for the 

sand and bentonite, respectively. The data for the electrical resistivity of the Perth sand has 

been developed after Pandey et al. (2015), for comparison.  

The electrical resistivity value of clayey soils could not be determined at water content w

below 8%. This has also been observed by previous researchers (McCarter, 1984; Abu-

Hassanein et al., 1996; Kumar and Yong, 2002; Kibria and Hossain, 2014).  In contrast, 

resistivity readings could be obtained for water contents as low as 4% for sands. It can be 

explained by the well-established fact that the electrical resistivity of a soil is affected by the 

amount of interstitial pore fluid available in the soil (Yoon and Park, 2001; Cardoso and Dias, 

2017). In case of sands, any liquid added to the soil is freely available in the interstices for 

electrical conduction. However, in a clayey soil, lesser amount of free interstitial water is 

available for conduction due to double layer of electric charges at the clay mineral surface 

resulting in adsorption (Mitchell and Soga, 2005; Cardoso and Dias, 2017).  

Varied trends of the compaction curve and resistivity curve are observed (Figures 4.4 to 4.9) 

for sand-bentonite mixtures. The resistivity curve shows a decrease with increase in water 

content w , while the dry unit weight increases and then decreases with increasing w .  
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Figure 4.4: Electrical resistivity and compaction curves for sand. 

 

Figure 4.5: Electrical resistivity and compaction curves for a mixture of 20% bentonite and 

80% sand. 
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Figure 4.6: Electrical resistivity and compaction curves for a mixture of 40% bentonite and 

60% sand. 

 

It can be observed from Figures 4.4 through 4.9 that the electrical resistivity  decreases 

with an increase in the water content w . This decrease is rapid initially. However, the change in

 becomes insignificant at higher w . Similar trends have been reported by other researchers 

for various soil specimens (McCarter, 1984; Abu-Hassanein et al., 1996; Bai et al., 2013). The 

water content value
Tww , is the specific value of water content above which the decreasing 

trend of resistivity curve changes. The value of 
Tw  was found to be different for each of the 

soil mixtures. It was also seen that 
Tw  increased with increasing bentonite content for the sand-

bentonite mixtures. From Figure 4.4, the 
Tw  value for sand is observed to be about 10%. From 

Figures 4.5 to 4.8, Tw  was found to be nearly 15, 17, 26 and 28% for 20, 40, 60 and 80% 

bentonite content, respectively. For the bentonite, 
Tw  was observed to be approximately 19% 

(Figure 4.9). This observation can be explained by the swelling behaviour of clayey soils due 

to the adsorption of water (Mitchell and Soga, 2005). 
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Figure 4.7: Electrical resistivity and compaction curves for a mixture of 60% bentonite and 

40% sand. 

 

Figure 4.8: Electrical resistivity and compaction curves for a mixture of 80% bentonite and 

20% sand. 
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Figure 4.9: Electrical resistivity and compaction curves for bentonite. 

 

It is interesting to note that 
Tw  occurs on the wet-side of optimum for all sand-bentonite 

mixtures (Figures 4.5 through 4.8). Whereas, for the bentonite (Figure 4.9) and sand (Figure 

4.4), 
Tw  is on the dry-side of the optimum. For a sand-bentonite mix, the available porosity is 

less than that of bentonite or sand alone. As the resistivity of any soil is dependent on the 

amount of interstitial fluid and available porosity (Kibria and Hossain, 2012; Cardoso and Dias, 

2017), hence, the above observation is made. 

Figure 4.10 gives the comparison of the electrical resistivities of sand, bentonite and their 

mixtures for different water contents. It can be noticed that the effect of bentonite addition on 

the electrical resistivity of sand-bentonite mixture is most pronounced at 20%. Negligible 

impact on the resistivity is observed at bentonite contents >20%. A similar trend has been 

reported by Abu-Hassanein et al. (1996) and Kibria and Hossain (2014). 

Interestingly, it can be noticed that the resistivity of sand is lower than the resistivity of 

bentonite at water content w  below 15%. At w  above 15%, the resistivity of the sand is greater 

than that of bentonite (Figure 4.10). These observations can be explained using the well-

established fact that when less water is present in the clayey soil, the thickness of the double-

layer of electric charges formed over the clay mineral surface, is less (Mitchell and Soga, 2005). 

The anions are strongly attracted to the clay particles and therefore, lesser ions are available 
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for the conduction of charge. In contrast, for sands, the conduction is dominated by available 

porosity and conductivity of interstitial fluid only. There is no surface conduction involved. 

Hence, at water contents below 15%, the resistivity of sand is observed to be lower compared 

to bentonite (Figure 4.10) due to availability of more ions for conduction in sand. However, at 

higher water content (>15%), for the clayey soils, double-layer thickness is greater. As a result, 

there are more ions available for conduction in bentonite. In addition to the pore fluid, the clay 

particles have surficial charges (Cardoso and Dias, 2017). Consequently, the resistivity of clay 

is observed to be lower than that of sand.  

 

 

Figure 4.10: Comparison of electrical resistivities of sand, bentonite and their mixtures for 

different water contents. 

 

It can also be noted that at any given value of water content, the resistivity values obtained 

for sand or bentonite alone, are greater than the resistivity of the sand-bentonite mixtures. This 

is as expected because when bentonite is added to sand, it occupies the interstitial pore voids, 

and it helps in conduction due to surficial charges.  

The sand has greater resistivity compared to all other soil mixtures at w  below 35% (Figures 

4.4 to 4.9). Furthermore, the resistivity of bentonite is greater than resistivity of sand-bentonite 

mixtures at w  below 20%. At higher water contents ( w >35% for sand and >20% for bentonite), 
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the effect of bentonite addition on the electrical resistivity of a soil mixture becomes 

insignificant.  

Shah and Singh (2005) proposed the following generalized form of Archie’s law (1942) for 

the bulk conductivity of soil   for fine-grained soils in terms of its pore water conductivity 
w

, volumetric water content   and percentage of clay fraction in soil p : 

m

wc                                            (4.3) 

 

where, c and m are fitting parameters such that, 

 

45.1c  when %5p  and 55.06.0 CLc   when %5p  

25.1m  when %5p  and 2.092.0 CLm  when %5p  

 

Furthermore, Yan et al. (2012) developed the following equation for resistivity   of soil in 

terms of volumetric water content  : 

 

 1214.04.1828  e                    (4.4)  

 

Eqs. (4.3) and (4.4) were used to predict the electrical resistivity values corresponding to 

the sand-bentonite mixtures used in this study. The resistivity values predicted using Eqn. (4.4), 

were found to be closer to the experimentally obtained values compared to the resistivity values 

generated from Eqn. (4.3). The observed difference in resistivity values generated using Eqn. 

(4.4) and the actual values, could be because the equation does not consider the changes in the 

sand-bentonite composition. Therefore, there is a scope for the development of  a correlation 

based on these past research works. It should be kept in mind, however, that Eqns. (4.3) and 

(4.4) (Shah and Singh, 2005; Yan et al., 2012) have been developed for soils that are similar, 

but not the same as the soils used in this study.  

Hence, based on past studies and using regression analysis, a generalized equation for the 

variation of resistivity  (Ωm ), of a sand-bentonite mixture containing both sand and 

bentonite, with volumetric water content   (dimensionless) can be given as: 

 

ba  )(loglog                                                         (4.5) 
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where, a  (Ωm ) and b  (dimensionless) are constants corresponding to a particular soil type and 

pore fluid. For the sand-bentonite mixtures used in this study, a  and b  in terms of bentonite 

content 
bp  (dimensionless) can be given as: 

 

05.404.2991.49
2

 bb ppa                                                   (4.6) 

 

13.022.5  bpb                               (4.7) 

 

Here, bentonite content is: 

 















sb

b
b

mm

m
p                                          (4.8)    

 

where,
bm  (kg) is the mass of bentonite and 

sm (kg) is the mass of sand. 

 

4.4 Conclusions 

The following conclusions summarise the observations made in this study: 

 

• The compaction behaviour of the sand-bentonite mixture was found to resemble that of 

bentonite at higher bentonite contents.  

• The electrical resistivity of each sand-bentonite mixture was found to decrease rapidly with 

an increase in water content. However, after a certain water content, this rate of decrease 

reduced significantly. This specific water content was found to be different for each of the 

sand-bentonite mixtures.  

• At water content below 15%, the resistivity of bentonite was greater than that of sand. This 

reversed at water contents above 15%.  

• The change in decreasing trend of resistivity occurred on the wet-side of the optimum for 

sand-bentonite mixtures and on the dry-side of the optimum for sand and bentonite.  

• The effect of bentonite addition was negligible on the electrical resistivity of sand-bentonite 

mixture at bentonite contents over 20%.  
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It should be noted that the reported findings should be used for sand and bentonite types similar 

to those used in the present study. Further, the new concept as presented here can be used to 

develop correlations between compaction characteristics and resistivity of other lining 

materials.  
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CHAPTER 5 

 

DEVELOPMENT OF AN INNOVATIVE LINER LEAK 

DETECTION TECHNIQUE 

 

 

This chapter is based on the published in Geotechnical Testing Journal, ASTM, as listed in 

Section 1.6. The details presented here are the same, except some changes in the layout in 

order to maintain a consistency in the presentation throughout the thesis. 

 

 

5.1 Introduction 

Lining systems are used in different waste storage and handling facilities, such as landfills, 

leachate collection ponds, underground storage tanks (USTs), sump wells, red mud ponds, 

tailing dams, etc., to control the migration of leachates generated from wastes, and the 

consequent environmental contamination (Bouazza and Impe, 1998). Different natural and 

man-made products are used to make liners (Rowe et al., 2004; Shukla, 2016). The lining 

system is designed based on the type of waste that will be handled at the site (Daniel, 1993; 

Rowe, et al. 2004; Shukla and Yin, 2006). Figure 1 shows a typical landfill site in Perth 

metropolitan region (Western Australia, Australia), installed with a geosynthetic clay (GCL) 

liner.  

Although the liners are engineered to be durable over their intended lifetime, harsh operating 

conditions, poor placement assurance and inadequate construction quality assurance (CQA), 

can result in the failure of the lining systems. This leads to soil and groundwater pollution due 

to leakage of leachates through the liners (Mohamed et al., 2002; Rowe et al., 2004; Oh et al., 

2008; Ben Othmen and Bouassida, 2013; Xie et al., 2015a; Xie et al., 2015b). As per Giroud 

(1984), “All liners leak.”. Hence, to control and minimize the resulting environmental 

pollution, all the lining systems must be monitored.  

There are various methods for the detection of leakages, such as groundwater monitoring 

wells, lysimeters, diffusion hoses, capacitance sensors, tracers, electro-chemical sensing 

cables, resistivity cone penetration test (RCPT), ground penetration radar (GPR), time domain 

reflectometry (TDR), etc. (Oh et al., 2008; ASTM D6431-99(2010)). Of these, the more 
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prevalent conventional monitoring method which is currently being practiced by different 

waste storage and handling facilities, is the use of monitoring wells. However, this method 

proves to be ineffective because by the time the leakage issue is detected, a substantial amount 

of soil and ground water is already contaminated (Mohamed et al., 2002).  

Figure 5.1: Geosynthetic liner at the Millar road landfill and recycling facility, Perth, WA, 

Australia. 

 

Other field diagnostic techniques which have on-site sampling and laboratory analysis, 

prove to be time and cost intensive. Hence, the use of electrical leak detection methods such as 

water puddle method (ASTM D7002 - 16), conductive geomembrane spark test (ASTM D7240 

- 06(2011)), water lance method (ASTM D7703 - 16), arc testing method (ASTM D7953 - 14), 

electrode grid method (ASTM D6747 − 15), etc., has gained prevalence because of their ease 

of installation and operation, and low operating costs (Oh et al., 2008; Ben Othmen and 

Bouassida, 2013). These methods make use of subsurface contamination and electrical 

properties of the liners to detect defects. However, their extensive use is limited by high capital 

costs (Ben Othmen and Bouassida, 2013). Moreover, it is important to detect contamination 

issues as soon as they arise, so that the hazard to the environment can be mitigated early 

(Mohamed et al., 2002). Furthermore, delays in defect detection also result in severe 

contamination issues and greater remediation costs. Hence, there is a significant scope for the 



82 
 

development of new diagnostic techniques which can investigate subsurface contamination at 

the onset and therefore, detect leaks across liners.  

This paper gives a detailed overview of the development of an innovative system for the 

detection and localization of leaks in liners by simulating the field conditions, based on the 

electrical resistivity variations of base soil layer/leakage detection layer. This technique was 

developed with a view to its application in permanent monitoring systems for various waste 

impoundments in order to monitor the entire area below the liners in construction, operation 

and post-closure phases. Trial runs have been conducted and the system was found to be 

effective in ascertaining and locating liner leaks. 

 

5.2 Principle of Operation 

It is a well-established fact that all soils generally have very high electrical resistivity. In 

contrast, leachates generally possess low electrical resistivity. Hence, the addition of even a 

small of amount of contaminating fluid to the soil results in a sharp decrease in its resistivity. 

This change in resistivity can be easily measured to detect contamination of the soil layer (Oh 

et al., 2008; Ben Othmen and Bouassida, 2013; Pandey and Shukla, 2017). This concept forms 

the basis for the development of the new leak detection system (LDS).   

Figure 5.2 shows the schematic profile of a typical single liner system for waste containment 

facilities. The system consists of a leachate collection layer with high hydraulic conductivity (

k ~10-1 m/s), a compacted clay layer ( k ~10-9 m/s) covered with HDPE geomembrane, and 

a leak detection/recovery layer ( k ~10-1 m/s). In case of development of a failure or defect in 

the lining system, leachates generated from the waste, contaminate the underlying soil of the 

leak detection layer. Therefore, the resistivity of this base soil layer is rapidly decreased. 

Alternatively, if the resistivity of the soil in the leak detection layer registers a sharp decrease, 

it can be deduced that these changes may have been produced due to leachate contamination. 

As a result, leakage issues through the liner can be easily determined.  

It can be concluded from the preceding discussion that it is possible to establish a permanent 

monitoring system for liners in waste containment facilities using a suitable sensing technique, 

based on the electrical resistivity of soil, paired with on-line monitoring. Such a system can be 

highly effective in detecting liner defects at their onset, and will therefore aid in the timely 

mitigation of soil and groundwater contamination hazard.  
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Figure 5.2: Schematic profile of a typical single liner system. 

 

5.3 System Design 

The design of the system makes use of the well-known principle of Ohm’s law. The electrical 

resistivity ( R in ohm ( )) of any soil is determined by providing a known current ( i  in 

ampere (A)) across a pair of electrodes and recording the subsequent voltage drop (V in volt 

(V)). The resistance is then computed as follows: 

 

iRV                                 (5.1) 

 

However, resistance is not a true material property as it also depends on the dimensions of 

the sample being tested. Hence, it is used to calculate resistivity (  , m ), which is an intrinsic 

property of the material, using the following equation: 
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A

L
R


                     (5.2) 

 

where A  is the cross-sectional area (m2) and L  is the length (m). 

As previously discussed, it is relatively easy to obtain resistance readings for any soil 

specimen by passing a known current and recording the resulting voltage drop using any 

suitable device. However, to implement the electrical resistivity method into practice for the 

new leak detection system  (LDS), a system geometry had to be devised which would enable 

the conversion of the recorded resistance to the resistivity of the soil. To address this problem, 

the Australian Standard AS 1289.4.4.1-1997 was chosen as a basis to develop the new 

technique.  

The standard AS 1289.4.4.1-1997 describes the method for the testing of a soil specimen to 

determine its electrical resistivity using a four-electrode technique. A schematic diagram of the 

experimental setup, as recommended by AS 1289.4.4.1-1997, is shown in Figure 5.3. As per 

this method, a resistivity box with two outer plate electrodes, C1 and C2, and two inner potential 

measuring pin electrodes, P1 and P2, is used. Connections are made as shown in Figure 5.3. 

Current is injected through the outer plate electrodes and the resulting voltage drop is recorded 

across the inner potential measuring pins. Resistance is calculated using the Eqn. (5.1). 

Alternatively, the resistance reading can be directly obtained using any suitable four-point 

ground resistance testing machine such as AEMC 6471 tester. As the length and the area of the 

cross-sectional are known, Eqn. (5.2) can be used to calculate the resistivity of the soil 

specimen. This test method has been described in detail by Pandey and Shukla (2017). 

Building on the guidelines put forth by the Australian Standard AS 1289.4.4.1-1997, the 

soil box for the leak detection system (LDS) was developed, as shown in Figure 5.4. The box 

was designed to represent an actual waste containment site with a geomembrane (GMB) liner 

placed on top of a soil layer (leakage detection layer). Leak was introduced intentionally in the 

GMB liner. Controlled leakage through the liner was then established to study the resistivity 

profile of the soil layer, in order to detect the liner leak.  

The main concept behind the design was to detect contamination in the soil layer using 

resistivity method, and hence, to determine the liner leak at the beginning of its development. 

It was expected that as the depth or the distance from the introduced liner leak would increase, 

the obtained resistivity of the soil would decrease. 
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Figure 5.3: Schematic diagram of the experimental set-up for the measurement of electrical 

resistivity. 

 

5.4 Materials and Methods 

 

5.4.1 Laboratory setup 

Figure 5.5 is a photograph of the soil box designed for the leak detection system (LDS). The 

box with internal dimensions of 500 mm length, 200 mm width and 400 mm height, was 

fabricated using 12-mm thick non-conducting perspex sheet. All joints were waterproofed.   

Two brass current plate electrodes of dimensions 200 mm by 200 mm, and 16 brass potential 

measuring pins of 4 mm diameter, were installed in the box (Figure 5.5). On one side of the 

box, sixteen holes were made, through which the potential pin electrodes could be inserted into 



86 
 

the box after filling it with the soil specimen. Additionally, on the opposite side of the box, 

sixteen grooves were made corresponding to the centre of each of the pins. 

Figure 5.4: Isometric diagram of the soil box used for the leak detection system. 

 

Figure 5.6 is a close-up of one of the sixteen potential measuring pin electrodes. Each pin 

was fabricated using a brass rod of 4 mm diameter. A piece of 218 mm length was cut from the 

rod. One end was shaped into a cone of 6 mm length, to enable the rod to be easily pushed into 

the compacted soil specimen. Furthermore, the pointed ends were intended to sit in one of the 

sixteen grooves made at the opposite end of the box to ensure that the rods were equispaced 

and remain immovable during the test. On the other end of the pre-cut rod, a knob was fixed, 

which was mounted with a rubber O-ring. This design ensures that no liquid will leak outside 

the soil box. 

A groove of 8 mm diameter was made all around the box, with its centre at a height of 200 

mm from the bottom. The purpose of this groove was to hold the geomembrane (GMB) in place 

over the soil layer. In addition, a gasket of 8 mm diameter was used to secure the GMB and 

therefore to achieve zero leakage.  
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Figure 5.5: Photograph of the constructed soil box used for the leak detection system.  

 

 

 

Figure 5.6: Close-up of one of the sixteen potential measuring pin electrodes. 
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5.4.2 Sample preparation 

As a representation of the leakage detection layer (Figure 5.2), sandy soil was chosen for this 

study. It is widely available in Western Australia, and is extensively used in Perth metropolitan 

areas for various civil engineering projects. The properties of this poorly graded soil (SP) are 

detailed in Table 5.1.  

 

5.4.3 Testing procedure 

The soil was oven dried overnight at 110 °C. A relative density, of 
rD  = 100% was chosen for 

the test, to represent a real-life leakage detection layer of a lining system, as used in practice. 

The mass of oven dried soil to be filled in, was calculated using 
rD  and the known box 

dimensions. This sand was then filled into the soil box in five layers to ensure homogeneity.  

 

Table 5.1: Physical properties of Perth sandy soil. 

 

Properties Values 

Specific gravity of soil solids,   2.68 

Coefficient of uniformity,  
2.27 

Coefficient of curvature,  
1.22 

Effective size,  (mm) 
0.15 

Minimum dry unit weight,  (kN/m3) 
14.02 

Maximum dry unit weight,  (kN/m3) 
15.56 

Soil classification as per USCS (Unified Soil 

Classification System) 

Poorly graded sand (SP) 

 

A 220µ thick geomembrane (GMB) piece, of 550 mm length and 250 mm width, was used 

in this test. A puncture defect was intentionally made in the centre of the GMB with an angular 

gravel-size particle to replicate actual lining conditions. Figure 5.7 shows the pre-cut GMB and 

the gravel-size particle which was used to make the puncture defect at the centre of the GMB. 

The defect was covered initially with a piece of tape and uncovered at the beginning of the test, 
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that is, at time t = 0. Here, the leakage duration, t  (min) is the duration for which the leakage 

through GMB was allowed. It is also the time at which the resistivity of the soil was recorded. 

Then, the prepared leakage detection layer was covered with the pre-cut GMB layer to 

simulate a liner (Figure 5.8). As mentioned before, a rubber gasket (8 mm diameter) was fitted 

into the groove over the GMB layer to hold it in place and to ensure that there are no leakages, 

apart from the leakage through the intentionally introduced defect. 

 

 

Figure 5.7: Pre-cut geomembrane (GMB) liner along with the gravel-size particle used to 

intentionally introduce defect. 

 

A constant head of 100 mm of water, was maintained over the geomembrane for the test. 

After the water was filled in the box over the GMB liner, the tape which covered the defect 

was removed with a pair of tongs and the water was allowed to leak to the underlying soil layer. 

This time was recorded as t = 0. 

The electrical resistance of soil ( R ) was obtained at regular time intervals using AEMC 

6471 ground resistance testing machine. Current was injected through the outer plate electrodes 
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and the resulting potential drop across each pair of pin electrodes was measured to obtain the 

resistance, as shown in Figure 6.8. The resistivity,  was then calculated using Eqn. (5.2). 

Figure 5.9 is a representation of the soil box used in this study. Here, x  (mm) is the distance 

and z  (mm) is the depth of the mid-point of each pair of electrodes, respectively, as indicated 

in Figure 5.4. Twelve resistivity readings were obtained as shown in Figure 5.9. Resistivity 

between each electrode pair was assumed to be situated at the mid-point of the two electrodes, 

for simplicity in the analysis of results.  

 

 

Figure 5.8: Experimental setup designed for liner leak detection. 

 

5.5 Experimental Demonstration 

To demonstrate the efficacy of the system in detecting leaks through liners, sample tests were 

conducted using tap water and municipal solid waste (MSW) landfill leachate as the leaching 

liquids. The properties of the tap water used in this study have been summarised in Table 5.2, 

while Table 5.3 provides the various properties of the landfill leachate used. As can be noticed 

from Table 5.3, in practice, the leachate composition is always a mix of both organic and 

inorganic components at most MSW landfills. As an example, the results obtained at the time 

duration, t = 30 min, have been presented in this paper (Figures 5.10 and 5.11). 
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Figure 5.9: Representation of the soil box and associated resistivities. 

 

5.6 Results and Discussion 

Figures 5.10 and 5.11 give the resistivity profile for the leakage duration t = 30 min for the tap 

water and the landfill leachate, respectively. It can be observed that at a depth ( z ) of 40 mm, 

the resistivity first decreases and then increases with an increase in the distance ( x ) of the mid-

point of electrode pair. This observation has been as per the expectation. The hole in the 

geomembrane (GMB) liner was positioned directly above the potential measuring electrodes, 

P2 and P3. Hence, the amount of water from the liner leakage between P2 and P3, would be 

greater than the amount of water between the other adjacent electrode pairs. Therefore, 32  

was expected to be lower than 
21  and 43 . Similar observations were made for the 

resistivities at a depth of 80 mm from the GMB liner.  

It can be seen from Figures 5.10 and 5.11 that for a given x , the soil resistivity increases with 

an increase in the depth z . This observation also complies with the expectation that with an 

increase in z , the amount of water in soil would decrease, and consequently the resistivity 

would increase. However, at the depths of 120 and 160 mm, the variation of resistivity with x  

and z was found to be insignificant. This observation might differ with increase in the leakage 

duration t .   
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Figure 5.10: Resistivity profile of the leak detection system using tap water. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Resistivity profile of the leak detection system using MSW landfill leachate. 
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Table 5.2: Water quality data for tap water. 

 

Properties Units Values 

Alkalinity as CaCO3 mg/L 95 

Aluminium mg/L 0.02 

Calcium mg/L 30.5 

Chloride mg/L 110 

Conductivity (at 25 °C) mS/ m 58.5 

Hardness as CaCO3 mg/L 105 

Iron mg/L 0.006 

Magnesium mg/L 7.5 

Manganese mg/L <0.002 

Nitrite plus nitrate as N mg/L 0.76 

pH pH Units 7.72 

Potassium mg/L 5.6 

Silicon as SiO2 mg/L 18 

Sodium mg/L 68 

Sulphate mg/L 19.5 

Total Dissolved Solids (TDS) mg/L 385 

True colour  HU <1 

Turbidity  NTU <0.1 

Based after Tyl (2016). 

 

It can be noticed that from Figure 5.11 that for the case where MSW landfill leachate is used 

as the leaching liquid, at a given depth, there is a decrease in resistivity with increase in the 

distance from the leak point. This decrease in resistivity becomes more pronounced with 

increase in depth from 40 mm to 160 mm. Similarly, for the case when tap water is used as the 

leaching liquid (Figure 5.10), at a given depth, there is a decrease in resistivity with increase in 

distance. However, this decrease in resistivity is less significant with increase in the depth. This 

observation can be explained using the well-known fact that with an increase in the distance 

from the leak point, the amount of leaching liquid decreases, and as a result, the electrical 

resistivity is expected to increase. Furthermore, it is known that the resistivity of soil at any 

given point depends upon the amount of leaching liquid at that point, as well as the resistivity 
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of the leaching liquid. The resistivity of the tap water is greater than the resistivity of MSW 

leachate, hence, there is a disparity in the resistivity values observed using tap water and MSW 

leachate as the leaching liquids. 

 

Table 5.3: Chemical composition of the landfill leachate. 

 

Chemical group Chemical name Unit Value 

Total Organic Carbon (TOC) TOC mg/L 1200 

Inorganics COD mg/L 7300 

Acidity and Alkalinity Alkalinity (total as CaCO3) mg/L 5900 

Metals 

Arsenic mg/L 0.21 

Chromium (III+VI) 

(Filtered) 
mg/L 0.37 

Iron mg/L 10 

Manganese (Filtered) mg/L 0.11 

Nickel (Filtered) mg/L 0.17 

Zinc (Filtered) mg/L 0.1 

Major Ions 

Calcium mg/L 41 

Chloride mg/L 3800 

Magnesium mg/L 31 

Potassium mg/L 890 

Sodium mg/L 1800 

Sulphate mg/L 22 

Nutrients 

Ammonia as N mg/L 1600 

Total Kjeldahl Nitrogen mg/L 1900 

Nitrogen (Total) mg/L 1900 

Phosphate total (P) µg/L 3600 

Based after Widenbar (2017). 

 

It can be noticed that with an increase in the distance x  or the depth z  from the hole, the 

resistivity of the soil   generally shows an increase. Therefore, the location of the liner leak 

can be ascertained based on the resistivity profile of the soil obtained from the designed system 

as presented in this paper. In addition, it can be concluded that the newly developed leak 
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detection technique is reasonably effective for detecting and locating leakages through liners 

by simulating actual field conditions. 

It should also be noted that although different soil types have different resistivities, the 

resistivity of any dry soil is generally higher than that of any contaminating fluids. Hence, the 

leak detection technique would be effective for the detection of liner defects, irrespective of 

the soil type. 

 

5.7 Conclusions 

Based on the well-established fact that the investigation of the electrical resistivity of the liner 

base soil is very useful in detecting leakage issues in liners, an innovative leak detection system 

has been developed to determine the electrical resistivity behaviour of soils as a result of 

leachate contamination. The details of this system and its design were presented in this paper. 

Results were also given for the experimental demonstration of the leak detection test for a 

leakage duration of 30 min using the tap water and the MSW landfill leachate. It was found 

that the resistivity of the soil increased with an increase in the depth or the distance, of the mid-

point of the pair of electrodes, from the liner leak. The effect of distance and depth was found 

to be negligible at greater depths, for the leakage duration of 30 min. From these observations, 

it can be concluded that the newly developed system can be used to effectively detect and locate 

leakages in liners. This innovative diagnostic technique can find several applications in 

designing the monitoring systems for waste storage and handling facilities, contamination 

detection, liner leak detection, and development of sensors.  Furthermore, the research work 

can also be useful in various numerical modeling applications for liner leakage issues.  
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CHAPTER 6 

 

RESISTIVITY PROFILES OF LINER BASE WITH WATER 

AS LEACHATE 

 

 

This chapter is based on the paper published in the Geotechnical Research, ICE; as listed in 

Section 1.6. The details presented here are the same, except some changes in the layout in 

order to maintain a consistency in the presentation throughout the thesis. 

 

 

6.1 Introduction 

The global population generates a huge amount of waste every year. The World Bank has 

estimated that the amount of municipal solid waste (MSW) generated worldwide will be 

doubled in the period 2012-2025 (Hoornweg and Bhada-Tata, 2012). In Australia alone, waste 

generation increased by 170% in the period of 1996-2015 at a compound growth rate of 7.8% 

per annum (DEWHA, 2010).  About 42% of this waste went to landfills, while the rest was 

diverted to resource recovery centres. Specifically, in Western Australia (WA), landfilling is 

the usual method of waste disposal (Schollum, 2010). In 2014-15, 58% of the total waste 

generated in WA was sent to landfills (Waste Authority, 2016). These solid wastes consisted 

of commercial and industrial wastes, construction and demolition wastes and MSWs 

(Goldsworthy, 2010; Perryman and Green, 2017). The leachates produced by these wastes, 

contain multiple pollutants (O’Kelly, 2016), which can prove to be potentially harmful to the 

environment (Daniel, 1993; Bouazza and Van Impe, 1998). Therefore, the problems of safe 

handling, storage and disposal of wastes becomes very daunting challenges faced by landfills 

(Hoyos et al., 2015), as well as the other waste containment facilities such as tailing dams, 

leachate collection ponds, sump wells, underground storage tanks, etc. (Sharma and Reddy, 

2004; Shukla and Yin, 2006; Rowe, 2012). To counter these issues, most containment facilities 

use engineered lining systems (Seymour, 1992; Sharma and Reddy, 2004; Rowe, 2012). These 

lining systems are designed to create a barrier for the control of leachate contamination of soil 

and groundwater (Reddy et al., 1996; Shukla, 2016).  
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The type of lining system for the landfill facility is chosen based on the probable hazards of 

the wastes handled by that particular site. Liners can be single (also referred to as simple), 

composite or double (Shah, 2000; Rowe, 2012; Shukla, 2016). Furthermore, the liners might 

be artificial or natural, such as compacted clays (Daniel, 1984; Harrop-Williams, 1985), silty 

soils (Holtz, 1985), mine tailings (Jessberger and Beine, 1981), or sand bentonite mixtures 

(Chapuis, 1990). Figure 6.1 shows the schematic profile of a typical single-liner system which 

consists of a leachate collection layer ( k ~10-1 m/s), a compacted clay layer ( k ~10-9 m/s) 

covered with high-density polyethylene (HDPE) geomembrane (GMB), and a leak 

detection/recovery layer ( k ~10-1 m/s), where k is the hydraulic conductivity (Shukla and 

Yin, 2006).  

While the liners are expected to be intact over their operating lifespan, due to various factors 

such as poor placement assurance, insufficient quality control and harsh conditions of 

operation, it is observed that the integrity of these liners is often compromised (Giroud, 1984; 

Giroud and Bonaparte, 1989; Buss et al., 1995; Hoyos et al., 2015). Defects frequently develop 

in liners, resulting in leachate leakages and consequent contamination issues (Ben Othmen and 

Bouassida, 2013). Figure 6.2 shows the photograph of a typical empty leachate collection pond, 

lined with geosynthetic clay liner (GCL). Leaks have developed in the liner, consequently 

resulting in the leakage of leachates to the soil and groundwater.  

 

Figure 6.1: Schematic diagram profile of a single liner system. 
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In order to prevent the hazardous impacts of leachate contamination from getting magnified, 

it is essential to detect leakages timely and to execute adequate mitigation measures (Oh et al., 

2008; Pandey and Shukla, 2017). Therefore, various methods of leak detection are practiced 

by different waste containment facilities. Table 6.1 lists some of the methods used for the 

detection of leakages through liners. Some conventional methods of leak detection are 

groundwater monitoring wells, lysimeter, diffusion hoses, capacitance sensors, tracers, and so 

on (Hix, 1998; Oh et al., 2008). The geophysical methods used are resistivity cone penetration 

test (RCPT), ground penetration radar (GPR), time domain reflectometry (TDR), etc. (Oh et 

al. 2008; ASTM D6431-99(2010)). Most of these methods are cost and time intensive, and 

hence, prove ineffective (Mohamed et al., 2002). In addition, it is essential to detect leakage 

issues as soon as they arise so that the impact to the environment and the associated costs for 

remediation, can be minimized. Hence, the use of the electrical resistivity method for leak 

detection is widely prevalent for early leakage detection (ASTM D6747 – 15; ASTM D7002 – 

16; ASTM D7240 - 06(2011); ASTM D7703 – 16; ASTM D7953 – 14), because of its ease of 

installation and operation, and relatively low expenditures (Oh et al., 2008; Ben Othmen and 

Bouassida, 2013). This method is based on the electrical resistivity changes produced in soil 

due to its contamination by leachates. 

In this method, a known current ( i ) is passed through a soil specimen. The resulting 

potential drop (V ) is recorded. The resistance ( R ) of the soil is then obtained using the 

Ohm’s law, as given below: 

 

iRV                      (6.1) 

 

It is a well-known fact that although different soil types have different resistivity values, all 

dry soils generally possess resistivity much higher than that of any contaminating fluid, such 

as leachate. Therefore, the addition of even a small amount of leaching liquid to the soil, results 

in a sharp decrease in its resistivity (Fukue et al., 1999; Mitchell and Soga, 2005; Munoz-

Castelblanco et al., 2012; Pandey et al., 2015; Naghibi et al., 2016). These changes can be 

detected easily to determine soil contamination, and therefore, to detect leakage issues 

(Mitchell and Soga, 2005; Ben Othmen and Bouassida, 2013; Pandey and Shukla, 2017).  
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Figure 6.2:  A typical leachate collection pond lined with GCL. 

 

Based on the electrical resistivity method, an innovative leak detection system was 

developed by with a view to its application in the location of leaks in liners, at their onset. This 

system was demonstrated to be effective in leak determination. However, this technique is in a 

relatively nascent stage, and gaps exist in the understanding of the system. There is a significant 

scope for further investigation into the influence of various parameters, such as leakage 

duration and sensor location, on the resistivity profile of soil subjected to leak detection testing. 

Therefore, an attempt has been made in this paper to present an insightful knowledge about the 

same.  This work will assist the practising engineers in the development of an online monitoring 

system for the timely detection and location of leaks in liners. 
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Table 6.1: Leak detection methods. 

 

Leak detection methods Advantages Disadvantages 

Groundwater monitoring 

wells 

Detects contaminant 

plumes 

Time consuming, expensive, 

localised 

Lysimeter Detects contamination Laboratory testing required, high 

operating cost, cannot identify 

leak point 

Diffusion hoses Readily available 

components, automatic, 

low operating cost 

Only useful for leachates with 

vapour 

Capacitance sensors Readily available, 

automatic 

Detects any moisture 

Tracers Effective at any stage of 

landfilling, unaffected by 

leachate composition  

High operating cost, does not 

locate exact leak point 

Electro-chemical sensing 

cables 

Widely available Detects only some contaminants, 

site specific, must be pre-installed  

Geophysical methods  Effective in locating 

contaminated zones 

Not easy to operate, depends on 

detection of post contamination 

plume 

Two electrode methods Useful for detecting leaks 

in pre-existing landfills 

Only indicates existence of a 

leak, cannot be used for active 

landfills 

Electrode grid method Easy to install and operate, 

low operating cost 

High capital cost 

 

6.2 Materials and Methods 

Perth and its surrounding regions comprise mainly of sandy soil (Stephenson & Hepburn, 

1955). The soil used in this study is a good representation of Perth soil. It is extensively 

available throughout Western Australia (WA) and is used widely by practicing Civil engineers.  

The properties of this soil have been presented in Table 6.2. Figure 6.3 gives the scanning 

electron microscopy (SEM) image of this soil. It is classified as a poorly graded sand (SP) and 
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is the foundation material for most waste impoundment systems in Perth metropolitan region. 

It has been used to create the leak detection layer in the designed leak detection system. 

Tap water was used in this study as the leachate. This would enable us to test the system in 

extreme conditions, as any leaching liquid is expected to have conductivity higher than that of 

water (Pandey et al., 2015). So, if water can be detected by the leak detection testing equipment, 

then the system can be demonstrated to have adequate sensitivity to detect leachate 

contaminations. The properties of the tap water used in this study, have been summarised in 

Table 6.3. 

In addition, a 220 μm-thick geomembrane (GMB) liner was used for the test. A piece of 550 

mm length and 250 mm width was pre-cut from the GMB. A leak was intentionally introduced 

in the centre of the GMB piece using a gravel-size particle to simulate a real-life puncture 

defect. Figure 6.4 shows a photograph of the pre-cut GMB beside the gravel-size particle, as 

used in this study. 

 

Table 6.2: Physical properties of Perth sandy soil. 

 

Properties Values 

Specific gravity of soil solids, sG  2.68 

Coefficient of uniformity, uC  2.27 

Coefficient of curvature, cC  1.22 

Effective size, 10D  (mm) 0.15 

Minimum dry unit weight, mind  (kN/m3) 14.02 

Maximum dry unit weight, maxd  (kN/m3) 15.56 

Soil classification as per USCS (Unified Soil 

Classification System) 

Poorly graded sand 

(SP) 

 

 

6.2.1 Laboratory setup 

Figure 6.5 shows the soil box used in the leak detection system to represent the lining system. 

Its design has been based on the four-point soil resistance test method given by the Australian 

standard AS 1289.4.4.1 (Standards Australia, 1997). A waterproof box with internal 
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dimensions of 500 mm length, 200 mm width and 400 mm height, was fabricated from 12 mm 

thick non-conductive perspex sheet. A groove of 8 mm diameter was made in the soil box at 

the height of 200 mm from the bottom. This groove was introduced with the intention to use it 

for securing the geomembrane (GMB) liner over the soil layer. 

Two brass current plate electrodes with dimensions 200 mm by 200 mm, were fitted on 

either side of the soil box. Gaskets were used to waterproof the connections. Sixteen potential 

measuring point electrodes of 4 mm diameter were also fitted in the box, as shown in Figure 

6.5. The experimental design of the leak detection setup is being reported separately in more 

detail. 

 

Table 6.3: Water quality data for tap water. 

 

Properties Units Values 

Alkalinity as CaCO3 mg/L 95 

Conductivity (at 25 °C) mS/ m 58.5 

Hardness as CaCO3 mg/L 105 

pH pH Units 7.72 

Total Dissolved Solids (TDS) mg/L 385 

True colour HU <1 

Turbidity NTU <0.1 

Sodium mg/L 68 

Calcium mg/L 30.5 

Magnesium mg/L 7.5 

Potassium mg/L 5.6 

Aluminium mg/L 0.02 

Manganese mg/L <0.002 

Silicon as SiO2 mg/L 18 

Chloride mg/L 110 

Sulphate mg/L 19.5 

Nitrite plus nitrate as N mg/L 0.76 

Based after Tyl (2016). 
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6.2.2 Sample preparation  

The soil was oven dried overnight at 110 ˚C. This soil was then used to fill the box up to a 

height of 200 mm, to achieve a relative density, 
rD of 100%. The purpose of maintaining 

%100rD  was to simulate a real-life leak detection layer as used in any lining system. The 

box was filled using five lifts/layers to ensure homogeneity. After compacting soil in the first 

layer, four point electrodes were fitted laterally in the box. Then the second soil layer was 

poured in, and so on. Finally, after the fifth layer was placed in, the soil layer was levelled 

using a wooden float before placement of the geomembrane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Scanning electron microscopy image of Perth soil. 

 

The 550 mm by 250 mm pre-cut geomembrane (GMB) with the puncture defect (Figure 

8.4), was kept over the soil. It was then secured over the soil layer using an 8-mm rubber gasket 

fitted into the 8-mm groove. This was done to ascertain that there would be no leakages apart 

from the leak from the intentional puncture defect. This defect was covered initially, while the 

water was filled over the GMB, and then uncovered at the beginning of the test at 0t . Here, 

t  is the duration for which the leakage was allowed. It is also the time at which the resistance 

was recorded. 
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Figure 6.4: Photograph of the pre-cut GMB liner and the gravel-size particle used to make 

puncture defect. 

 

Figure 6.5: Soil box used in the leak-detection system. 
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6.2.3 Testing procedure 

Figure 6.6 shows the experimental setup used in this study. It consists of the filled soil box, 

used to represent the lining system, and the AEMC 6471 machine for the resistance 

measurement. The AEMC 6471 is a standard four-point ground resistance tester. The 

connections were made as indicated in the figure.  

A constant head of 100 mm of water was maintained over the geomembrane for the entire 

test. At the time of the commencement of experimentation, i.e. at 0t , the tape which covered 

the GMB defect was removed. As a result, the water started leaking through the liner to the 

underlying soil.   

The electrical resistance of soil ( R ) was obtained at 10 min time intervals using AEMC 

6471 ground resistance testing machine. The test was concluded at min60t , as the soil was 

observed to reach near saturation condition around this time.  

A current of AC-input voltage 16 V and AC-input frequency 128 Hz, was injected through 

the outer plate electrodes and the resulting potential drop across each pair of point electrodes 

was measured (Figure 6.6). Hence, twelve resistance readings were obtained for each leakage 

duration t . The resistivity (  ) was then calculated as per AS 1289.4.4.1 (Standards Australia, 

1997), using the following equation: 

 

A

L
R


                     (6.2) 

 

where A  is the cross-sectional area (m2) and L  is the length (m) of the test specimen. It may 

be noted that the use of Eqn. (6.2) is justified, because the voltage drop is measured between 

different set of electrodes independently while the area of the plate electrodes remains the same, 

as considered in the derivation of Eqn. (6.2). 

Figure 6.7 is a representation of the soil box. Here, the potential measuring point electrodes, 

P1 through P16, have been indicated along with the associated resistivities. In this figure, x  

(mm) is the distance and z (mm) is the depth of the mid-point of each pair of electrodes, 

respectively. For the ease of analysis, the soil resistivity obtained between a pair of electrodes, 

was assumed to be situated at the mid-point of that electrode pair. 
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Figure 6.6: Experimental set-up of the leak-detection system. 

 

6.3 Results and Discussion 

Figure 6.8(a) gives the variation of the resistivity with leakage duration, for the electrode pairs 

with their mid-points located at the depth mm 40z . Figures 6.8(b) through 6.8(d) show the 

same variation at z = 80, 120 and 160 mm, respectively. The purpose was to observe the impact 

of leakage duration ( t ) as well as the influence of distance ( x ) of the mid-point of electrode 

pair. It was found that steady readings for the electrical resistance were not obtained at leakage 

durations less than 30 min. This can be explained using the fact that the resistivity of dry sand 

is extremely high. Fukue et al. (1999) obtained about 105 m  electrical resistivity for dry 

sands. Another study reported electrical resistivity values from 1010 to 1014 m  for silicates 

(Munoz-Castelblanco et al., 2012). As the standard ground resistance testing equipment used 

in actual field testing generally has a range of 101 to 106 m , readings for the resistance of the 

soil specimen were recorded at min30t . 
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Figure 6.7: Representation of the soil box showing potential measuring point electrodes and 

associated resistivities.  

 

It can be observed from Figure 6.8(a) that the three resistivities,
21 , 32 and 43 , show a 

decrease with an increase in the leakage duration, t . This is as expected, because with an 

increase in t , the amount of water leaked to the soil layer would also increase. Therefore, the 

resistivity would decrease. It is also interesting to note that at any leakage duration ( t ), the 

resistivity 32  is lower than 
21  and 43 . This indicates that the highest amount of water 

from leakage is accumulated in the soil between the inner two electrodes, P2 and P3. This 

experimental finding is consistent with expectations, as it is known that the leak is situated 

directly above the mid-point of P2 and P3. As a result, it is possible to locate the leak in liner at 

any time using this technique. Furthermore, it can be noticed that 
21  and 43  are nearly same 

at any t  as they are equidistant from the introduced leak. 

Similar observations were made for Figure 6.8(b). Resistivity was found to decrease with 

an increase in leakage duration. 
76 is lesser than 

65  and 
87  for any t . However, this 

difference was seen to be more apparent at min30t . For min40t , insignificant difference 

is observed.  

From Figures 6.8(c) and 6.8(d), while the resistivities were generally found to register a 

decrease with increase in t , in contrast, the effect of changing x  was negligible. The electrodes 

at the depth, mm 40z are most sensitive to the leakage detection. These observations 
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indicate that the greater is the proximity of the electrode sensing system to the liner, the better 

is the leakage detection capacity. As the depth z  increases, the effect of distance x  and leakage 

duration t  is found to be negligible. 

(a) 
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(c) 

(d) 

Figure 6.8: Resistivity profiles of electrode pairs located below the GMB liner at depths of 

(a) 40, (b) 80, (c) 120 and (d) 160 mm. 

Figures 6.9(a) through 6.9(c) depict the resistivity profile of the soil specimen with 

variations in the distance of the mid-point of the electrode pairs, x = 150, 250 and 350 mm. It 

can be seen that the resistivity for any particular electrode pair, exhibits a decrease with an 

increase in the leakage duration ( t ). Moreover, it was noticed that the resistivity was lowest at 

mm 40z , irrespective of x . This observed trend is more pronounced at min30t . 

However, for min40t , the variations are less pronounced. This can be attributed to the fact 

that although attempts have been made to fill the soil box homogeneously, the soil is inherently 

neither homogeneous, nor isotropic.  
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(b) 

(c) 

Figure 6.9: Resistivity profile of electrode pairs with their midpoint at distances of (a) 150, 

(b) 250 and (c) 350 mm. 
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6.4 Conclusions 

Based on the results and discussion presented, the following general conclusions can be made: 

 

• The leak detection system was found to be effective in determining leakage in the liner, 

irrespective of the leakage duration.  

• Leaks could be located as early as 30 min within the commencement of leakage.  

• The electrical resistivity across all electrode pairs was found to decrease with increasing 

leakage duration.  

• The resistivity increased with an increase in the distance/depth from the leak point.  

• Electrode sensing system which is closest to the liner has the better ability to detect 

leakage. The resistivities recorded using sensors at the depth of 120 mm and above, 

showed insignificant variation with distance and leakage duration. 

• The findings reported here should not be extrapolated to soil types which differ 

significantly from the soil used in this study.  

• It may be noted that the leak detection system will not be able to detect leakages in the 

liner if the soil is completely saturated. 
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CHAPTER 7 

 

RESISTIVITY PROFILES OF LINER BASE WITH MSW 

LANDFILL LEACHATE 

 

 

This chapter is based on a section of the paper submitted to Surveys in Geophysics, Springer, 

as listed in Section 1.6. The details presented here for this part of the paper are the same, 

except some changes in the layout in order to maintain a consistency in the presentation 

throughout the thesis. 

 

7.1 Introduction 

Municipal solid waste (MSW) landfills generally make use of lining systems as the barriers to 

control the migration of leachate contaminants to underlying soil and groundwater (Koerner, 

Koerner and Martin, 1994; Giroud and Bonaparte, 2001; Misra and Pandey, 2005; Arora et al., 

2007; Shukla, 2016). Figure 7.1 is the photograph of a typical leachate collection pond at a 

landfilling facility in Perth, lined with a geosynthetic clay (GCL) liner.  

The lining systems are engineered to be intact over the lifespan of the landfill. However, 

due to various factors, such as inappropriate seaming practices, puncture defects, aging, harsh 

operating conditions, ultraviolet lights, radiation effects, etc., liners often fail (Giroud and 

Bonaparte, 1989; Shukla, 2016). The liner defects lead to subsequent contamination issues. 

Hence, it is imperative to detect these leaks at the onset, repair them timely, and prevent the 

hazardous impact of the contamination from intensifying (Oh et al., 2008; Pandey and Shukla, 

2017). Therefore, the landfilling facilities currently adopt various leak detection methods for 

the proper management of contaminants (Chen and Wang, 1997; Mohamed et al., 2002; 

Praharaj et al., 2002; Arora et al., 2007; Oh et al., 2008; Ben Othman and Bouassida, 2013; 

Teng et al., 2014; Pandey et al., 2017; Pandey and Shukla, 2018).  

Among the various detection methods, the use of the electrical resistivity technique for leak 

detection is most extensive due to its easy operation and low expenses (Oh et al., 2008; Ben 

Othmen and Bouassida, 2013). This method detects the changes in the resistivity of soil below 

the liner, produced due to its contamination with leachate, to determine the liner failures 

(Mohamed et al., 2002; Munoz-Castelblanco et al., 2012; Pandey et al., 2015; Pandey and 



121 
 

Shukla, 2017). It is furthermore essential that the leak should be determined at the earliest. 

Hence, there is a significant scope for a leak detection technique based on the electrical 

resistivity method, which can be installed below the lining systems as a real-time monitoring 

technique in landfilling facilities (Pandey et al., 2017; Pandey and Shukla, 2018; Pandey and 

Shukla, 2019).  

 

 

Figure 7.1: A typical leachate collection pond lined with geosynthetic clay liner (Red Hill 

Waste Management Facility, Eastern Metropolitan Regional Council, Western Australia). 

 

Though a new technique has been developed by Pandey and Shukla (2019) and has been 

shown to work with water as the leaching liquid, it has not been used to verify how the system 

works with the field leachates. Such a study would be particularly useful for the design of 

suitable monitoring system for a specific landfill site. Further, the results will also serve as a 

baseline, and assist in the detection of leakage using an online monitoring system, for 

predetermined leachate properties. Hence, this paper focuses on the investigation of the leakage 

of field leachates through liners using the innovative leak detection technique, as developed 

Geosynthetic clay liner (GCL) 
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earlier. In the experimental investigation, tests have been conducted by simulating an actual 

liner leak situation. The resulting leachate leakage was ascertained by detecting the changes 

produced in the soil electrical resistivity. Newly developed empirical correlations and 

analytical modelling have also been presented as one of the objectives of the work. An 

understanding of these correlations and models will help practicing engineers to detect 

contamination and liner leakage issues, design and placement of sensor systems, numerical 

modelling, and so on. 

 

7.2 Materials and Methods 

The soil used for this study is a good representation of the foundation soil in Western Australia 

(WA) and was used extensively throughout Perth metropolitan region. The properties of this 

soil are listed in Table 7.1. Figure 7.2 shows the scanning electron microscopy (SEM) image 

and Figure 7.3 is the SEM energy dispersive spectroscopy (EDS) overlay of Perth sandy soil. 

It can be observed that the main constituents of the soil are carbon, silicon, oxygen and 

aluminium. The Leachate #1 used for the experimentation was procured from the North 

Bannister Resource Recovery Facility, SUEZ Australia, and the Leachate #2 was procured 

from Red Hill Landfill Facility. Tables 7.2 and 7.3 give the chemical compositions of the 

leachate specimens. 

 

Table 7.1: Physical properties of Perth soil. 

 

Properties Values 

Specific gravity of soil solids, sG  2.68 

Coefficient of uniformity, uC  2.27 

Coefficient of curvature, cC  1.22 

Effective size, 10D  (mm) 0.15 

Minimum dry unit weight, mind  (kN/m3) 14.02 

Maximum dry unit weight, maxd  (kN/m3) 15.56 

Soil classification as per USCS (Unified Soil 

Classification System) 

Poorly graded sand (SP) 
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Figure 7.2: Scanning electron microscopy (SEM) image of soil. 

 

A 220 μ thick geomembrane (GMB) liner was used for this test. A 550-mm long and 250-

mm wide GMB piece was cut and a leak was intentionally introduced in its centre using a 

gravel-size particle. 

Figure 7.4 shows the soil box used in this study. It was used to replicate an actual lining 

system as used by landfilling facilities. It was fabricated from 12-mm thick non-conducting 

perspex sheet. The inner dimensions of the box were 500-mm length, 200-mm width and 400-

mm height. It was fitted with two brass current plate electrodes (C1 and C2) of 200-mm length 

and 200-mm width, as shown in the figure. In addition, sixteen brass potential measuring pins 

(P1 through P16) were also installed in the box. Furthermore, a groove of 8-mm diameter was 

made in the soil box at a height of 200-mm from the bottom. This groove was used to secure 

the GMB over the soil. The system design is presented with complete details by Pandey and 

Shukla (2018b). 

 



124 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: SEM energy dispersive spectroscopy (EDS) overlay of Perth sandy soil. 

 

Carbon Silicon 

Oxygen Aluminium 
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Table 7.2: Chemical composition of the Leachate #1.  

 

Chemical group Chemical name Unit Value 

BTEXN Benzene µg/L <40 

Toluene µg/L 100 

Ethylbenzene µg/L 150 

Xylene (o) µg/L 120 

Xylene (m & p) µg/L 220 

Xylene Total µg/L 340 

Total Organic Carbon (TOC) TOC mg/L 1200 

Inorganics COD mg/L 7300 

Nitrate and Nitrite (as N) mg/L <5 

Metals Arsenic mg/L 0.21 

Cadmium (Filtered) mg/L <0.001 

Chromium (III+VI) 

(Filtered) 

mg/L 0.37 

Copper (Filtered) mg/L <0.005 

Iron mg/L 10 

Lead (Filtered) mg/L <0.005 

Manganese (Filtered) mg/L 0.11 

Mercury (Filtered) mg/L <0.0005 

Molybdenum (Filtered) mg/L <0.025 

Nickel (Filtered) mg/L 0.17 

Selenium (Filtered) mg/L <0.005 

Zinc (Filtered) mg/L 0.1 

Polycyclic aromatic 

hydrocarbon (PAH) 

PAHs (Sum of total) µg/L 14 

Acidity and alkalinity 

 

Alkalinity (Carbonate as 

CaCO3) 

 

mg/L 

 

<10 

Alkalinity (Hydroxide as 

CaCO3) 

mg/L <10 

Alkalinity (total as CaCO3) mg/L 5900 
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Bicarbonate Alkalinity as 

CaCO3 

mg/L 5900 

Major ions Calcium mg/L 41 

Chloride mg/L 3800 

Magnesium mg/L 31 

Potassium mg/L 890 

Sodium mg/L 1800 

Sulphate mg/L 22 

Nutrients 

 

Ammonia as N mg/L 1600 

Total Kjeldahl Nitrogen mg/L 1900 

Nitrate (as N) mg/L <2 

Nitrite (as N) mg/L <2 

Nitrogen (Total) mg/L 1900 

Phosphate total (P) µg/L 3600 

Based after Widenbar (2017). 

 

Table 7.3: Chemical composition of the Leachate #2.  

 

Chemical group Chemical name Unit Value 

Physical Parameters pH (lab) - 7.6 

Conductivity @ 25°C µS/cm 2600 

CaCO3 (unfiltered hardness) mg/L 490 

TDS mg/L 850 

TSS mg/L 32 

BOD mg/L 120 

Major Cations and 

Anions 

Potassium mg/L 69.7 

Chloride mg/L 128 

Sodium mg/L 92.7 

Magnesium mg/L 25.9 
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Calcium mg/L 152 

Sulphate mg/L <1 

Nutrients Total Nitrogen mg/L 210 

Nitrate mg/L 1.5 

Nitrite mg/L 1.5 

Ammonia mg/L 180 

Total Phosphorous mg/L 1.9 

Reactive Phosphorus mg/L 0.54 

Metals Aluminium mg/L 0.058 

Arsenic mg/L 0.004 

Cadmium mg/L <0.0001 

Chromium mg/L 0.006 

Copper mg/L 0.0009 

Iron mg/L 3.6 

Lead mg/L 0.0004 

Manganese mg/L 0.13 

Mercury mg/L <0.0001 

Nickel mg/L 0.026 

Zinc mg/L 0.08 

Polycyclic aromatic 

hydrocarbon (PAH) 

 

Naphthalene µg/L <1 

Acenaphthene µg/L <1 

Anthracene µg/L <1 

Fluoranthene µg/L <1 

Pyrene µg/L <1 
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Benzo(a) pyrene µg/L <1 

Organochlorine 

Pesticides 

Chlordane µg/L <0.01 

Trans (g-) Chlordane µg/L <0.01 

Oxychlordane µg/L <0.01 

gamma BHC (lindane) µg/L <0.01 

Heptachlor µg/L <0.01 

Heptachlor epoxide µg/L <0.01 

DDT µg/L <0.01 

DDD µg/L <0.01 

DDE µg/L <0.01 

Aldrin µg/L <0.01 

Dieldrin µg/L <0.01 

HCB µg/L <0.01 

Organophosphate 

Pesticides 

Chlorpyrifos µg/L <0.01 

Diazinon µg/L <0.01 

Dimethoate µg/L <0.05 

Fenamiphos µg/L <0.05 

Fenthion  µg/L <0.05 

Malathion  µg/L <0.01 

Parathion  µg/L <0.01 

Demeton-S-methyl µg/L <0.05 

Triazine Herbicides Atrazine µg/L <0.1 

Prometryn  µg/L <0.1 

Terbutryn µg/L <0.1 

BTEXN Benzene µg/L <1 
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Toluene µg/L 2 

Ethyl benzene µg/L <1 

m/p - Xylenes µg/L <2 

o-Xylenes µg/L <1 

Total Recoverable 

Hydrocarbons 

TRH C6-C10 µg/L 300 

TRH C10-C16  µg/L 5700 

TRH C16-C34 µg/L 2600 

TRH C34-C40 µg/L 290 

Other Organic 

Compounds 

Chlorobenzene µg/L <1.0 

1,2 - Dichloro benzene µg/L <1.0 

Simazine µg/L <0.1 

Molinate µg/L <0.1 

2, 4-D µg/L <1 

2,4,5-T µg/L <1 

Total Recoverable 

Hydrocarbons with 

Silica Gel Cleanup 

TRH C6-C10 Silica - 
 

TRH >C10-C16 Silica - 2500 

TRH >C16-C34 Silica - 400 

TRH >C36-C40 Silica - <100 

Radionuclide Testing Gross Alpha mBq/L 130 

Gross Beta mBq/L 170 

Radium-228 - 
 

Radium-226 - 
 

K40 mBq/L 1900 

PFAS PFOS µg/L 0.09 

PFHxS µg/L 0.11 

PFOA µg/L 0.34 

6:2FTS - 0.77 

8:2FTS - <0.001 
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PFBA - 0.091 

PFBS - 0.15 

PFHpA - 0.11 

PFHxA - 0.21 

PFPeA - 0.081 

Other Metals Beryllium mg/L <0.0001 

Cobalt mg/L 0.0042 

Antimony mg/L 0.0009 

Titanium mg/L <0.002 

Thallium mg/L <0.0001 

Vanadium  mg/L 0.003 

Based after Maslen (2018).  

 

 

In Figure 7.4, X and Z axes are shown to report the horizontal distance x  (mm) of the 

electrodes and the vertical distance/depth distance z  (mm) of the mid-point of each pair of 

electrodes. For the analysis, the soil resistivity obtained between a pair of electrodes was 

assumed to be at the mid-point of that electrode pair.  

 

7.3 Experimental Procedure 

Oven dried soil was filled in the soil box up to a height of 200 mm, such that a relative density 

(
rD ) of 100% was achieved. The box was filled in five layers to ensure homogeneity. The pre-

cut geomembrane (GMB) liner with the leak in its centre (Figure 7.5), was installed over this 

soil layer. It was secured using an 8-mm diameter rubber gasket, fixed into the 8-mm groove 

to ensure that the leakage only takes place from the leak which was introduced intentionally. 

The leak in the centre of the GMB was initially kept covered with tape. 
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Figure 7.4: Soil box used in the leak detection technique. 

 

Figure 7.5: Geomembrane liner with leak point.  

Leak point 
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A constant head of 100 mm of the leachate was maintained over the GMB liner. The duration 

for which the leakage was permitted through the liner defect, was denoted as t . At the 

commencement of the test, the leak was uncovered and the time was recorded as 0t . The 

AEMC 6471 ground resistance testing machine was used to measure the resistance of the soil. 

The connections between the soil box and the resistance tester were made as shown in Figure 

7.6. A known current was input through the outer current electrodes and the resulting voltage 

drop across a pair of potential measuring pins was measured to obtain the soil resistance. This 

resistance was then used to compute the resistivity (  , m ) of the soil specimen (Pandey et 

al., 2017, Pandey and Shukla, 2018b) using Eqn. (7.1). Here, A  is the cross-sectional area 

(m2) and L  is the length (m) of the test specimen. Twelve resistivity values were obtained at 

each 10-min time interval. The test run was stopped when the soil was observed to be near 

saturation condition.  

 

A

L
R


                     (7.1) 

 

Figure 7.6: Leak detection system. 
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A test environment of 20 ̊C was maintained for the duration of the leak detection test. This 

was done to eliminate the effect of temperature fluctuations on the resistivity of the soil (Pandey 

et al., 2015).   

 

7.4 Results and Discussion 

Figures 7.7(a) through 7.8(d) show the variation of the electrical resistivity (  ) of the soil 

with an increase in the leakage duration ( t ), for the electrode pairs with their mid-points located 

at the depth z = 40, 80, 120 and 160 mm, respectively. Figures 7.7(a) through 7.7(d) give the 

results for the Leachate #1 while the Figures 7.8(a) through 7.8(d) present the results for 

Leachate #2. It was observed that the resistivity of the soil decreased with an increase in the 

leakage duration, irrespective of the depth ( z ). This is as per the expectation, because the 

resistivity of leachate is much lower than that of the soil. Hence, as the amount of leachate 

infiltrated through the soil increases, soil resistivity should decrease. In other words, the 

decrease in soil resistivity points to an increase in the leachate content of soil, and therefore, 

indicates the development of liner leaks. Consequently, this method was noticed to be effective 

in ascertaining the presence of liner leakages. 

Furthermore, the following relationship is known for permeability of soil medium ( k ) (Das, 

2013; Shukla, 2014): 

Kk l




             (2) 

where k = coefficient of permeability of soil (m/s),  = viscosity of leachate (Pas or Ns/m2), l

= unit weight of leachate (kN/m3), and K = absolute permeability of soil (m2). 

Here, k  depends on properties of both soil and leachate while K  is independent of the 

properties of the leachate. This relationship can be used to explain the observed disparity 

between the resistivity values for leakage tests conducted with both the leachates (Figures 

7.7(a) through 7.8(d)). As per Eqn. (7.2), permeability ( k ) is inversely proportional to the 

viscosity of the leachate ( ). Therefore, the leachate with higher   will have lower k , and hence, 

the observed difference in resistivity readings for the leachate specimens is noted. 

Consequently, it may be inferred that Leachate #1 has higher viscosity as compared to Leachate 

#2. 

In addition, it is seen from Figures 7.7(a) through 7.8(d) that for any given z , the resistivity 

  of the central pair of electrodes was lesser than that of the adjacent pairs, irrespective of the 

leakage duration t . For example, 
32 is lower than 

21  and
43 , for any leachate duration 
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(Figure 7.7(a)). Moreover, it is interesting to note that the leak was positioned directly above 

the mid-point of electrodes with resistivity
32 . As a result, the soil between these two 

electrodes is expected to have more leachate content than the soil between the adjacent pairs at 

the same depth, and hence, 
32  is expected to be lesser than 

21  and 
43 . Based on the 

observations from Figures 7.7(a) through 7.8(d), the system can be shown to be effective in 

determining the location of the leak timely. 

Further, it is noted from Figure 7.7(a) that although 
21  and

43  were equidistant from the 

leak, their readings at a given leakage duration ( t ) were not same. For example, for Leachate 

#1 at min 40t , 
21  is 7.92 m , while 

43  is 7.38 m  (Figure 7.7(a)). However, this 

disparity becomes negligible as the leakage duration increases. Similar observations are made 

from Figures 7.7(b) through 7.7(d). This can be explained by considering the fact that although 

attempts were made to fill the soil box uniformly, the soil was non-homogeneous and 

anisotropic medium.  

It is interesting to note that the resistivity of soil was not obtained at leakage durations less 

than 30 min for Leachate #1 and less than 130 min for Leachate #2. This observation can be 

accounted for using the well-established fact that the resistivity of dry soils is extremely high 

(Munoz-Castelblanco et al., 2012; Pandey and Shukla, 2017) and hence, generally beyond the 

range of standard ground resistance testing equipment used in the field (Pandey et al., 2017; 

Pandey and Shukla, 2018; Pandey and Shukla, 2019). For instance, the AEMC 6471 tester has 

a resistivity range of 101 to 106 m . The addition of leachate lowers the resistivity of the soil, 

and therefore, readings can be obtained when resistivity falls within the range of the test 

equipment. 

Figures 7.9(a) through 7.10(c) give the resistivity profiles of the soil with variations in the 

distance of the mid-point of the electrode pairs, x = 150, 250 and 350 mm, respectively. Figures 

7.9(a) through 7.9(c) are for the readings obtained for Leachate #1 while Figures 7.10(a) 

through 7.10(c) give the results for Leachate #2. The soil resistivity demonstrated a sharp 

decrease with an increase in the leakage duration, irrespective of the position of the potential 

measuring electrode pair.  

Moreover, it may be noticed from Figures 7.9(a) through 7.10(c) that at any given leakage 

duration ( t ), the resistivity of the soil increased with an increase in the depth of the electrodes. 

However, the resistivity profiles obtained for z = 120 and 160 mm, exhibit negligible variance, 

irrespective of t .  
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(a) 

 

 

(b) 
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(c) 

 

 

 

 

 

 

 

 

 

 

 

 

(d) 

Figure 7.7: Resistivity profiles of electrode pairs located below geomembrane liner at the 

depth of: (a) 40 mm; (b) 80 mm; (c) 120 mm; and (d) 160 mm using Leachate #1. 
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(b) 
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(c) 

(d) 

Figure 7.8: Resistivity profiles of electrode pairs located below geomembrane liner at the 

depth of: (a) 40 mm; (b) 80 mm; (c) 120 mm; and (d) 160 mm using Leachate #2. 
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(c) 

Figure 7.9: Resistivity profile of electrode pairs with their mid-point at the distance of: (a) 

150 mm; (b) 250 mm; (c) 350 mm using Leachate #1. 
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(b) 

(c) 

Figure 7.10: Resistivity profile of electrode pairs with their mid-point at the distance of: (a) 

150 mm; (b) 250 mm; (c) 350 mm using Leachate #2. 
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From Figures 7.9(a) through 7.10(c), it can be noticed that the effect of locations in X  and 

Z  directions on the soil resistivity is negligible at t  greater than 60 min for Leachate #1 and 

160 min for Leachate #2. This can be accounted for from the observation that the soil specimen 

was near saturation condition at this time.  

Additionally, it can be observed that with an increase in x  and z , the resistivity of soil also 

increased. Hence, it can be inferred that the resistivity of soil increases with an increase in the 

proximity of the measuring electrodes to the liner leak. Consequently, this observation can be 

used in-field to determine and locate leakages.  

Pandey et al. (2017) summarized the results of leak detection test using the tap water in lieu 

of groundwater as the leaching liquid. Similar resistivity profiles were observed for the leakage 

of tap water and leachate. However, it was noted that the resistivity values obtained with tap 

water was much greater than the values observed with landfill leachate as the leaching liquid. 

As an example, at min 30t , 
76  is 94.92 m  and 8.61 m , for tap water and Leachate #1, 

respectively. This observation can be used during the real-life monitoring to detect whether the 

soil below liner has been infiltrated by groundwater or contaminated by leachates.  

 

7.5 Conclusions 

Based on the results and discussion presented previously, the following can be concluded: 

 

• Resistivity of the soil decreased rapidly with an increase in the leakage duration.  

• The soil resistivity was found to increase with an increase in the depth/distance from the 

liner leak. This observation can be used to localize the leak position in the liner. 

• The innovative leak detection technique was effective in detecting and locating leaks in 

liners, irrespective of the leakage duration. 

• The use of this innovative technique for the monitoring of lining systems can significantly 

aid landfilling facilities to manage and control contamination due to leachate migration. 

• The findings reported here should not be extrapolated to soil and leachate types which 

differ significantly from the soil used in this study.  
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CHAPTER 8 

 

RESISTIVITY PROFILES OF LINER BASE WITH BAYER 

LIQUOR AS LEACHATE 

 

 

This chapter is based on the conference proceedings of the international conference 

Sustainable Waste Management Through Design, 2-3 November 2018, Ludhiana, Punjab, 

India; as mentioned in Section 1.6. The details presented here are the same, except some 

changes in the layout in order to maintain a consistency in the presentation throughout the 

thesis. 

 

 

8.1 Introduction 

The Australian aluminium industry is a significant contributor to the national economy for over 

50 years. This industry consists of 5 bauxite mines, 6 alumina refineries and 4 aluminium 

smelters. Australia is the world’s second largest producer and exporter of alumina, accounting 

for 22% of the global production (Australian Aluminium Council, 2018). As per the Australian 

Aluminium Council (2011), 19.1 million tonnes of metallurgical alumina and nearly 0.5 million 

tonnes of chemical grade alumina, were produced domestically.  

Alumina is extracted from bauxite by digesting it in a severely caustic solution, at high 

temperature and pressure.  This process is known as the Bayer process and the liquid effluent 

generated from this process is called the Bayer liquor. Bayer liquors are challenging leachates 

due to their high dissolved aluminium, sodium carbonate, sodium chloride, sodium sulphate, 

and sodium oxalate content (Bouchard et al., 2009; Busetti et al., 2014).  

Due to the high concentration of contaminants in the Bayer liquor and the threat it poses to 

the environment, its proper handling and storage are of critical importance. In an effort to 

prevent soil and groundwater contamination, highly engineered lining systems are used by 

aluminium manufacturing companies for the containment of Bayer liquor. Although the 

integrity of these liners should ideally not be compromised during their operating period, 

however, due to various factors, the liners often develop defects and tend to fail. Figure 8.1 is 

a photograph of one such liner failure. This leads to subsequent soil and groundwater 
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contamination issues (Pandey et al., 2017). Therefore, the lining systems need to be proactively 

monitored to ensure the early detection of liner defects so that adequate hazard mitigation 

measures can be taken (Pandey and Shukla, 2018). 

 

Figure 8.1: A typical liner failure (Courtesy of Iluka Resources, WA, Australia). 

  

Pandey and Shukla (2018) have developed and presented an innovative method for the 

detection of leakages through liners by simulating actual lining systems. This system was 

further tested and found to be effective in detecting leakages across liners when municipal solid 

waste (MSW) landfill leachate was used as the leaching liquid (Pandey et al., 2017). However, 

the efficacy of this system in detecting leakage issues when Bayer liquor is the leachate, has 

not been examined yet. The current study aims to fill this gap in knowledge by conducting leak 

detection tests in the setup developed by Pandey and Shukla (2018), using the Bayer liquor 

leachate procured from an actual aluminium manufacturing company in Perth, Western 

Australia (WA), Australia. Based on the results from this study, the effectiveness of the use of 

this innovative leak detection technique in Bayer liquor containment systems in the aluminium 

industries can be adjudged. The understanding developed by this study will assist practicing 
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engineers in Australia as well as internationally to detect contamination and liner leakage 

issues, design and placement of sensor systems, numerical modelling, and so on. 

 

8.2 Materials Used 

Sandy soil was used for this study. This soil is a good representation of Perth, WA, Australia, 

and is widely used for engineering works. The properties of this poorly graded sand are 

presented in Table 8.1.  

Bayer liquor was used as the leaching liquid for this test. It was procured from Alcoa, WA, 

Australia. The composition of the liquor is given in Table 8.2. Its pH is 13.8 and the specific 

gravity is 1.25.  

A 220 μm thick geomembrane (GMB) liner was used for the test. A piece of 550 mm length 

and 250 mm width was pre-cut, and a leak was intentionally introduced in the centre of the 

GMB piece using a gravel-size particle, to simulate an actual puncture defect as observed in 

practice. 

 

Table 8.1: Physical properties of sand. 

 

Property Unit Value 

Specific gravity dimensionless 2.68 

Coefficient of uniformity dimensionless 2.27 

Coefficient of curvature dimensionless 1.22 

Effective size mm 0.15 

Minimum dry unit weight kN/m3 14.02 

Maximum dry unit weight kN/m3 15.56 

Soil classification as per USCS 

(Unified Soil Classification 

System) 

dimensionless Poorly 

graded sand 

(SP) 

 

 

8.3 Test Methodology 

The experiments were conducted using the innovative leak detection technique developed by 

Pandey and Shukla (2018). This technique is based on the electrical resistivity. The electrical 



148 
 

resistivity of soil below liner is very high. As soon as leakage occurs, the leachate tends to 

contaminate this soil. Generally, leachates possess much lower resistivity than any soil. Hence, 

in case of even mild leachate contamination, the soil resistivity decreases significantly. This 

change can be easily detected to determine the leakage issue (Pandey et al., 2015, Pandey, 

2017, 2019). Based on this well-established fact, a new leak detection technique was developed 

and presented (Pandey et al., 2017; Pandey and Shukla, 2018).   

 

Table 8.2: Composition of Bayer liquor (Courtesy of Alcoa, WA, Australia). 

 

Chemical Percentage by weight 

Sodium aluminate 5-20 

Sodium hydroxide 2-9 

Sodium carbonate <4 

Sodium oxalate <3.5 

Sodium sulphate <3 

Sodium chloride <2 

Water 64-90 

 

As per this method, a resistivity box as shown in Figure 8.2, was filled with the soil specimen 

and covered with the punctured geomembrane (GMB) liner. Initially the leak was kept covered. 

The Bayer liquor was then filled over this GMB layer and the leak was uncovered to allow 

leakage to the underlying soil. Resistance readings were then taken at various leakage durations 

(t) using the electrodes fitted on the resistivity box using a four-point resistance testing 

machine. Resistivity was obtained between each pair of electrodes. The resistivity profile was 

then generated to locate the leak in the GMB liner. This method has been discussed in greater 

detail by Pandey et al. (2017) and Pandey and Shukla (2018). 

 

8.4 Results and Discussion 

Figures 8.3 and 8.4 give the resistivity profiles for the leakage durations, t = 80 min and 90 

min, respectively, for the Bayer liquor as the leachate.  

It can be observed that at any depth (z), the resistivity first decreases and then increases with 

an increase in the distance (x) of the mid-point of electrode pair. The hole in the geomembrane 
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(GMB) liner was positioned directly above the mid-point of the electrodes, P2 and P3, as given 

in Figure 10.2. Hence, the amount of leachate between these electrodes would be greater than 

the amount of leachate between the adjacent electrode pairs. Therefore, this observation was 

as expected.  

 

 

Figure 8.2: Schematic diagram of the resistivity box used in the leak detection test (Adapted 

from Pandey and Shukla (2018)). 

 

It can be seen from Figures 8.3 and 8.4 that at any given x, soil resistivity decreases with a 

decrease in the depth z. This observation also complies with the expectation that with a decrease 

in z, the amount of leachate in soil would increase, and consequently resistivity would decrease. 

It can be observed from Figures 8.3 and 8.4 that with an increase in the distance/depth from 

the leak, the resistivity of the soil shows an increase. Therefore, the location of the liner leak 

can be determined based on the resistivity profile of the soil.  

In addition, it is interesting to note that the resistivity profiles show a similar trend, 

irrespective of the leakage duration. This indicates that the leakage can be located at any 

leakage duration, using the resistivity profile. 

Based on these observations, it can be concluded that the leak detection technique is 

reasonably effective for detecting and locating leakages through lining systems used in the 

Bayer liquor containment facilities of aluminium manufacturing industry. 
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Figure 8.3: Resistivity profiles at the leakage duration of 80 min. 

 

 

Figure 8.4: Resistivity profiles at the leakage duration of 90 min. 
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8.5 Conclusions 

Results have been given for the leak detection test conducted using Bayer liquor from 

aluminium manufacturing process, for the leakage durations of 80 min and 90 min. The 

resistivity of the soil increased with an increase in the depth/distance, of the mid-point of the 

pair of electrodes, from the liner leak, irrespective of the leakage duration. It was observed that 

the newly developed system can be used by containment systems in aluminium industry to 

effectively detect and locate leakages in liners. Additionally, the system can help the practicing 

engineers in the design and placement of sensors, numerical modelling, leakage detection, and 

so on. 
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CHAPTER 9 

 

ANALYTICAL AND NUMERICAL MODELLING FOR 

ELECTRICAL RESISTIVITY OF LINER BASE 

 

 

A part of this chapter is based on a section of the paper submitted to Surveys in Geophysics, 

Springer; as listed in Section 1.6. The details presented here for this part of the paper are the 

same, except some changes in the layout in order to maintain a consistency in the presentation 

throughout the thesis.  

 

 

9.1 Introduction 

Geotechnical properties of soil have been demonstrated by previous researchers, such as Archie 

(1942), Gupta and Hanks (1972), Kalinski and Kelly (1993), Pandey et al. (2015), Pandey and 

Shukla (2017), Pandey and Shukla (2018a), and so on, to show a close relationship with its 

electrical resistivity. These studies have also developed and presented correlations for the 

relationship between resistivity of soil and its various properties. Such relationships are 

particularly useful for the design and placement of sensor systems for liner leak detection 

techniques using electrical resistivity method (Oh et al., 2008). Therefore, an attempt has been 

made in this chapter to develop similar analytical and numerical models for electrical resistivity 

of liner base which can be used by practicing design engineers in waste containment facilities. 

Based on the leak detection test results presented by Pandey et al. (2017) (see Chapter 6), 

Pandey and Shukla (2019) (see Chapter 5), and Pandey and Shukla (2018b) (see Chapter 7), 

empirical correlations and analytical modelling have been developed. New empirical 

correlations have also been presented for the relationship between resistivity, leakage duration 

and distance/depth. These can be used to generate a resistivity profile for any specific soil type 

and leachate, in the leak detection test. Further, new equations have been given to predict the 

flow velocity of leachate at any point within a soil specimen, if the resistivity is measured at a 

given time.  

A few illustrative examples are also shown in this chapter, to demonstrate the application of 

the newly developed equations. Furthermore, a numerical model for the seepage analysis of 
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the leak detection test, has been developed using GeoStudio SEEP/W. The data obtained from 

this model has been used in conjunction with the new correlations to generate resistivity 

profiles. It was noted that the obtained resistivity trends were similar to the trends reported in 

experimental observations. Therefore, these correlations can be particularly useful for 

practicing engineers in the design of lining systems, as well as for various numerical modelling 

applications in waste containment facilities. Depending on availability, any other suitable 

seepage analysis software, such as DC-Infilt, GFLOW, GGU-3D-TRANSIENT, GGU-SEEP, 

GGU-SS-FLOW2D, GGU-SS-FLOW3D, GGU-TRANSIENT, GGU-UPLIFT, GWDivide, 

Seepage Analysis, SVFlux, etc., can be used by practicing engineers to predict resistivity and 

to obtain resistivity profiles. 

 

9.2 Development of Empirical Correlations and Analytical Modelling 

Permeability of a soil ( k ) is an important parameter. It signifies the ease of flow of a leaching 

liquid through the soil. It depends on the properties of the leachate as well as the soil. The 

following relationship is known for the permeability of soil medium (Das, 2013; Shukla, 2014): 

 

Kk l




                     (9.1) 

 

where k = coefficient of permeability of soil (m/s),  = viscosity of leachate (Pas or Ns/m2), 
l

= unit weight of leachate (kN/m3), and K = absolute permeability of soil (m2). 

Here, k  depends on properties of both soil and leachate while K  is independent of the 

properties of the leachate. 

From the resistivity profiles obtained in Chapters 6 and 7 (Pandey et al., 2017; Pandey and 

Shukla, 2018b), it can be observed that the resistivity (  , m ) of the soil decreases with an 

increase in the leakage duration ( t , min). Furthermore, it is expected that at min 0t ,  

; hence, the following relationship holds true: 

 

1

1

b
ta


                     (9.2) 

 

where 1a  and 1b  are positive constants which depend upon the properties of the soil and the 

leachate composition. It is also known that resistivity of soil decreases with an increase in 

distance/depth from the leak position in the liner. If the soil is assumed to be homogeneous, the 
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flow in all directions will be uniform. Therefore, to implement the simplification, a parameter 

r , which is the radial distance of the mid-point of any electrode pair from the leak position, is 

defined as follows: 

 

22 )()( ll zzxxr                    (9.3) 

 

Here x  is the distance of the mid-point of a pair of electrodes (mm) and z  is the depth of the 

mid-point of a pair of electrodes (mm). Note that (
lx ,

lz ) are the coordinates of the leak 

position. In this case mm 250lx  and mm 0lz .  

From the resistivity profiles presented in Chapters 6 and 7 (Pandey et al., 2017; Pandey and 

Shukla, 2018b), the following relationship was observed for the resistivity (  , m ) of the soil 

measured between an electrode pair with the radial distance ( r , mm) from the leak position: 

 

2

2

b
ra                     (9.4) 

 

where 2a  and  2b  are positive constants which depend upon the properties of the soil and the 

leachate composition. Using curve fitting and regression analysis, the following equation was 

developed for the resistivity (  , m ) of the soil in terms of the leakage duration ( t , min) and 

the radial distance of the mid-point of any electrode pair from the leak position ( r , mm): 

 

cbrat                     (9.5) 

 

where a , b  and c  are positive constants which depend upon the soil properties (such as 

porosity, mineralogy, structure, etc.), the leachate composition and the test environment.  

For the use of the innovative leak detection system for any specific soil type and leachate, a

, b and c  can be defined using a specimen with known values of  , t  and r , so that later the 

developed equation can be used to generate a resistivity profile. Further Eqn. (9.5) can be used 

by practicing engineers to detect contamination and liner leakage issues. This correlation can 

also be useful for engineers in the design and placement of sensor systems. 
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The velocity ( v , m/s) of flow of leachate is defined in terms of the rate ( Q , m3/s) of leachate 

migration through a geomembrane defect and the area (
lA , m2) through which the leachate 

flows: 

 

lA

Q
v                                  

(9.6) 

 

As the soil is assumed to be homogeneous, the flow takes place through a hemispherical 

surface, hence, the following equation holds true: 

 

2

1000
2 




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


r
Al                     (9.7) 

 

where r  (mm) is the radial distance of the mid-point of any electrode pair from the leak 

position.  

From Eqns. (9.6) and (9.7),  
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r

Q
v




                     (9.8) 

 

As per Giroud et al. (1989) and Giroud and Bonaparte (2001), an intimate or good contact 

is important between the liner and the underlying base soil. In the experimental demonstration 

presented by Pandey et al. (2017), Pandey and Shukla (2018b), and Pandey and Shukla (2019), 

the soil bed has been prepared in a manner so that a good contact can be assumed to exist 

between the geomembrane (GMB) liner and the soil. Hence, the rate of flow Q  of leachate 

through a circular defect can be given by (Forchheimer, 1930; Giroud and Bonaparte, 2001): 

 

hkRQ '4                    (9.9) 

 

for an ideal case, where 'R = radius of geomembrane defect (m), h = head of leachate on top of 

the liner (m), and k  = coefficient of permeability of soil (m/s). 

On replacing Q  using Eqn. (9.9), Eqn. (9.8) reduces to 
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r
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                  (9.10) 

 

Additionally, from Eqn. (9.5), 
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Using Eqns. (9.10) and (9.11), 
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Eqn. (9.12) can further be simplified to 
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Furthermore, k  can be replaced using Eqn. (9.1) so that Eqn. (9.13) becomes, 

 





c

b

c

l
c

t

KhRa
v

22

2

6 '102 
   

                   

or, 























c

b

c

l
c

t

KhRa
v

22

2

5 '
1037.6                           (9.14) 

 



158 
 

Let us consider the leak detection tests conducted with Leachate #1 and Leachate #2, as 

presented in Chapter 7. Since the soil specimen is same for both cases, the absolute 

permeability ( K ) is same for both. Eqn. (9.1) changes to: 

 

Kk l

1

1
1




                       (9.15) 

 

for Leachate #1, and, 

 

Kk l

2

2
2




                              (9.16) 

 

for Leachate #2. Here 
1k = coefficient of permeability of soil using Leachate #1 (m/s), 

2k = 

coefficient of permeability of soil using Leachate #2 (m/s), 
1l = unit weight of Leachate #1 

(kN/m3), 
2l = unit weight of Leachate #2 (kN/m3), 

1 = viscosity of Leachate #1 (Pas or 

Ns/m2), and 
2 = viscosity of Leachate #2 (Pas or Ns/m2). 

 Considering similar circular defects in the geomembrane for leak detection tests with 

Leachates #1 and #2, radius of geomembrane defect ( 'R ) is same. Furthermore, the head of 

leachate on top of the liner ( h ) was kept constant for all the tests. Therefore, Eqn. (9.10) 

changes to the following: 
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for Leachate #1, and, 
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for Leachate #2, where 1v = velocity of flow of Leachate #1 (m/s), and 2v = velocity of flow of 

Leachate #2 (m/s). 

From Eqns. (9.17) and (9.18), the following relationship results: 
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Substituting values from Eqns. (9.15) and (9.16) into Eqn. (9.19), 
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9.3 Illustrative Examples 

Consider the leak detection tests conducted with Leachate #1. It is known that 410k m/s,

42.9a  , 3.0b , and 1.0c . Determine the resistivity (  ) and the velocity of flow of 

leachate ( v ), for the following conditions: 

a) 150x  mm, 40z  mm, and 30t  min 

b) 250x  mm, 80z  mm, and 60t  min 

Assume 3105.0' R  m, and 1.0h  m. 

 

Solutions 

a) With 150x  mm, 40z mm, and 30t  min. 

From Eqn. (9.4),  

 

    703.107040250150
22
r  

 

Further, from Eqn. (9.6), for 42.9a , 3.0b , and 1.0c , 

 

422.5703.1073042.9 1.03.0   m  

 

Substituting values into Eqn. (9.14), 
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










v m/s 
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b) With 250x  mm, 80z  mm, and 60t  min. 

 

From Eqn. (9.4),  

 

    408040250250
22
r  

 

From Eqn. (9.6), using 42.9a , 3.0b , and 1.0c , 

 

989.3406042.9 1.03.0   m  

 

Putting values in Eqn. (9.14), 

 

6

1.0
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1.0

2
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2
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60989.3
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

















v m/s 

 

Hence, for a particular soil, if the resistivity (  , m ) is measured at a given time ( t , min), 

the velocity of flow of leachate ( v , m/s) at any point within a soil specimen, can be predicted 

using Eqn. (9.14). Furthermore, the developed correlations can be used with any software that 

deals with seepage analysis and provides the velocity vector at different locations, to predict 

expected resistivity values. As an example, an attempt has been made to develop a numerical 

model using GeoStudio SEEP/W, as presented in the Sections 9.4 and 9.5. The magnitude of 

the xy-velocity vector obtained from the model was then replaced in Eqn. (9.14) to generate 

resistivity values.  

 

9.4 Development of the Numerical Model 

GeoStudio SEEP/W 2007, which is a well-accepted and widely used software, was adopted for 

creating a model to simulate the newly developed leak detection test. The leakage of the 

leachate through geomembrane (GMB) liner and the resulting seepage into the underlying soil 

layer keeps changing with passage of time. Hence, a transient flow pattern was selected for the 

model (Geo-Slope International Ltd., 2012). The leak in the GMB was assumed to be circular, 

and hence, an axisymmetric analysis was chosen. The leakage duration was kept as 90 mins, 

with 10 minute time intervals. The next step was to define material properties.  
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9.4.1 Volumetric water content function for Perth sandy soil 

For the Perth sandy soil, firstly the volumetric water content function was defined. Then based 

on the volumetric water content function, the hydraulic conductivity function was developed 

to completely define the properties of the soil (Geo-Slope International Ltd., 2012).  

To define the volumetric water content function of the sand, the data-point function was 

chosen, and the grain-size data obtained through experiments were used. The data-point 

function was selected as it is most suitable for the soil type being used in the leak detection 

test, which is a poorly graded sand (Geo-Slope International Ltd., 2012). For Perth soil case, 

mm 15.010 D  and mm 34.060 D .  

Relative density ( rD ) is related to the void ratio ( e ) of soil, maximum void ratio (
maxe ) and 

minimum void ratio ( mine ) as follows (Shukla, 2014): 

 

100
minmax

max 















ee

ee
Dr                 (9.21) 

 

For the leak detection test, relative density, %100rD . Putting this value into Eqn. (9.21), 

 

minee                    (9.22) 

 

Further, the following relationship is known for minimum dry unit weight (
mind ), unit 

weight of water (
w ), specific gravity of sand particles (

sG ) and minimum void ratio: 

  

min

min
1 e

G ws
d





                  (9.23) 

Using Eqns. (9.22) and (9.23), 

 











 1

mind

wsG
e




                 (9.24) 

 

For the leak detection test with water, 
sG  is 2.68, 

w  is 9.81 kN/m3 and 
mind  is 14.02 

kN/m3. Putting these values into Eqn. (9.24), 875.0e . Further,  
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nSw                                    (9.25) 

 

where 
w = volumetric water content, n  = porosity, and S = degree of saturation (Geo-Slope 

International Ltd., 2012). In addition, 

 

e

e
n




1
                          (9.26) 

 

Using Eqns. (9.25) and (9.26), 47.0w  at 100% saturation. On inputting these values, the 

volumetric water content function for Perth sandy soil was obtained, which is shown in Figure 

9.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1: Volumetric water content function for Perth sandy soil. 

 

9.4.2 Hydraulic conductivity function for Perth sandy soil 
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Once the volumetric content function is obtained, the next step is to create the hydraulic 

conductivity function for the soil medium.  

A conductivity ratio of 1 was selected as the prepared soil is assumed to be homogeneous 

and hence, the hydraulic conductivity would be same in the X and Y directions. The 

conductivity direction was chosen as 0° as the model has been created using the default X and 

Y axes itself. The conductivity at saturation (
satk ) was assumed to be 10-4 m/s and the residual 

water content was kept 5%. Using Van Genuchten model, the hydraulic conductivity function 

for Perth sandy soil, as shown in Figure 9.2, was obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2: Hydraulic conductivity function for Perth sandy soil. 

 

 

 

9.4.3 Defining material properties for geomembrane liner 

The geomembrane (GMB) liner was taken as two straight lines divided by a gap for the leak, 

and assigned the material model of interface. As the liner is nearly impermeable (Giroud and 
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Bonaparte, 2001), the tangential conductivity as well as normal conductivity is assigned the 

value of 0 m/s.  

 

 

9.4.4 Boundary conditions 

A hydraulic boundary condition was created at the leak position. As the water over GMB has 

been kept constant for the test duration, a constant head was defined as the hydraulic boundary 

(Pandey et al., 2017; Pandey and Shukla, 2018b, 2019).  

Figure 9.3 shows the model developed after leak detection test. The model was then 

executed to achieve several contour curves.  

 

 

Figure 9.3: Model developed after leak detection test method. 

 

9.5 Application of developed model for resistivity prediction 

Figures 9.4 through 9.13 give the contour profiles for pore-water pressure, obtained using the 

developed model in GeoStudio  SEEP/W. The arrows in the figures depict not only the 

direction, but the magnitudes of the velocity vectors as well. The direction of arrow head shows 

where the flow is occuring, while the length of each arrow is a visual representation of the 

magnitude of the actual velocity (Geo-Slope International Ltd., 2012).  
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Figure 9.4: Water flow at 0 min.  

Figure 9.5: Water flow at 10 min.  
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Figure 9.6: Water flow at 20 min.  

Figure 9.7: Water flow at 30 min.  



167 
 

Figure 9.8: Water flow at 40 min.  

Figure 9.9: Water flow at 50 min.  
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Figure 9.10: Water flow at 60 min.  

 

Figure 9.11: Water flow at 70 min.  
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Figure 9.12: Water flow at 80 min.  

 

Figure 9.13: Water flow at 90 min.  
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Using the developed model, the velocity vector ( v ) was obtained at specific Gauss points, 

for different leakage durations ( t ). This velocity value was then substituted into Eqn. (9.14) to 

predict the electrical resistivity (  ). The resistivity values at different Gauss points were 

plotted in graphs to obtain resistivity profiles for the soil. 

To determine the variation of resistivity with leakage duration and distance ( x ), three points 

were selected in the developed model with coordinates as P1 (2.5 m, 3 m), P2 (5 m, 3 m) and 

P3 (7.5 m, 3 m). It should be noted that the centre of the leak was positioned directly above P2, 

at (5 m, 4 m). The xy-velocity magnitude at each of these points was obtained at different 

leakage durations, with 10 min intervals (Figures 9.3 through 9.13). Figure 9.14 shows the 

resistivity variations with time, generated for each of the three points.  

 

 

Figure 9.14: Resistivity profiles generated using the developed model at y = 3 m. 

 

From Figure 9.14, it can be observed that the resistivity shows a decrease with an increase 

in the leakage duration. This observation complies with the expectation that with an increase 

in t , the amount of water in soil due to leakage would increase, and consequently resistivity 

would decrease.  

The rate of decrease of resistivity with leakage duration is rapid intially. However, this rate 

of decrease reduces significantly at leakage durations greater than 35 mins. Furthermore, it can 
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be seen that at any given leakage duration, the resistivities obtained at P1 and P3 are higher than 

the resistivity at P2. This observation is as per the expectation as the hole in the geomembrane 

(GMB) liner was positioned directly above resistance at (5 m. 4 m). Hence, the amount of water 

at P1 and P3 would be greater than the amount of water at P2. Therefore, resistivity at P2 was 

expected to be lower than resistiivty at P1 and P3. 

A similar analysis was conducted to determine the variation of resistivity with leakage 

duration and elevation (y). Three points were selected in the developed model with coordinates 

as P2 (5 m, 3 m), P4 (5 m, 2 m) and P5 (5 m, 1 m). Figure 9.15 shows the resistivity profiles 

obtained for P2 , P4 and P5 using the developed model. 

 

 

Figure 9.15: Resistivity profiles generated using developed model at  x = 5 m. 

 

The electrical resistivity demonstrates a decrease with an increase in the leakage duration, 

irrespective of the position of the point of measurement (Figure 9.15). It can be seen that the 

resistivity increases with an increase in the distance from the leak point. This is as expected, 

and can be attributed to the decrease in water content with increase in distance from leak. 

Hence, it can be concluded that with an increase in the distance/depth from the hole, the 

resistance of the soil shows an increase. Therefore, the location of the liner leak can be 

ascertained based on the resistance profile of the soil. 
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Figure 9.16 shows the variation of the resistance generated using the developed model, for 

leakage durations, t  = 30, 60 and 90 min, at the points P1 (2.5 m, 3 m), P2 (5 m, 3 m) and P3 

(7.5 m, 3 m). It can be noticed that the resistivity first decreased and then increased with an 

increase in the distance of the point of measurement.  

Figure 9.16: Variation of resistivity generated using the developed model.  

 

It is interesting to note that the trend in the resistivity obtained from the developed model, 

is the same as the trend observed in the experimental demonstrations. Therefore, it can be 

concluded that the developed correlations can be used in conjunction with any seepage analysis 

software that provides the velocity vector at different locations in order to predict expected 

resistivity values, and subsequently, to generate resistivity profiles for use by design engineers. 

 

9.6 Conclusions 

New empirical correlations have been developed and presented for the relationship between 

resistivity, leakage duration and distance/depth. In addition, the equations have also been given 

to predict the flow velocity of leachate at any point within a soil specimen, for known resistivity 

at a given time. These correlations can be used with any software that deals with seepage 

analysis and provides the velocity vector at different locations, to predict expected resistivity 
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values. The application of these new relationships has been demonstrated by developing a 

numerical model for seepage analysis using the SEEP/W software. Then, the velocity vector 

generated from this numerical model has been replaced in the developed correlations to obtain 

electrical resistivity. Therefore, the newly developed correlations were demonstrated to be 

useful for practicing engineers in the design of lining systems as well as for various numerical 

modelling applications in the waste containment facilities. 
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CHAPTER 10 

 

SUMMARY AND CONCLUSIONS 

 

 

This chapter summarises briefly the problem being addressed and outlines the methodology 

that was used. Though conclusions have been given at the end of each chapter, the overall key 

findings have been presented in this chapter. It goes further to point out the main novel 

findingsas this research has produced. Finally, it makes some recommendations for future 

research trajectories based on the experience from this research. 

 

 

10.1 Summary 

Every year large quantities of waste are generated, handled and disposed, worldwide. The 

leachates generated from the disintegration and decomposition of these wastes are potentially 

harmful to the environment. Therefore, it is critical for waste management facilities such as, 

landfills, leachate ponds, tailing dams, red mud ponds, sump wells, etc., to follow proper waste 

handling and management practices. This includes the use of suitable engineered lining systems 

for waste containment, and the implementation of efficient leakage monitoring and detection 

systems by waste impounding facilities to prevent the soil and groundwater contamination.  

The liners used in various lining systems are designed to be intact over their operating life. 

However, defects are often found to develop in liners due to the use of inappropriate placement 

practices or severe conditions of operation. Hence, their performance tends to get compromised 

over the intended design life. Subsequent environmental pollution ensues because of such 

defects. Therefore, it becomes critical to detect leakage issues as soon as they arise. These 

defects if not detected timely, can lead to severe environmental pollution. Furthermore, the 

early leak detection of leakage is of vital importance for timely and economical hazard 

mitigation. Thus, the waste management facilities use different leak detection techniques to 

control leachate contamination.  

Many different methods for leak detection are available, however, the electrical resistivity 

method is most feasible owing to its low operational cost and easy operability. Most soils have 

very high electrical resistivity values compared to that of contaminating fluids such as landfill 
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leachates. Consequently, the leakage of even a small amount of leachate may cause significant 

rise in the electrical resistivity of the underlying soil, which can be easily detected. Therefore, 

resistivity measurements can be used as an effective tool to detect contamination. Hence, there 

is a significant scope for an innovative method of leak detection which can detect leakages at 

the onset. 

In this research, an attempt has been made to assess the current state of landfilling in 

Australia with a focus on the lining practices and leak detection methods. An extensive study 

was conducted involving different private and public waste handling and management facilities 

in all the States and territories of Australia.  

In addition, this research also presents the results of an investigation into the effect of the 

state of compaction on the resistivity of sand-bentonite mixtures, with the bentonite content 

varying from 0 to 100%. The resistivity of mixtures at their different states of compaction are 

investigated.  

Further, this study introduces an innovative diagnostic technique for the detection of leaks 

through liners using the changes in the electrical resistivity of base soil. It has been developed 

and investigated by the Geotechnical and Geoenvironmental Research Group at Edith Cowan 

University with a view to applying them in landfilling facilities for leakage monitoring. The 

system design is based on the well-known principles of the electrical resistivity method. A new 

leak detection system is developed by pairing a resistivity sensing technique with a four-probe 

ground resistance testing equipment. The guidelines given by the Australian Standard AS 

1289.4.4.1-1997 are used for the system design. The details for the fabrication of the system 

are presented extensively in this paper. 

Tests were conducted to substantiate the efficacy of the system in determining leakage 

issues through liners. Liner leakage was simulated in the laboratory using the controlled 

leakage of different leachates into the soil layer beneath the liner. Tap water, two leachates 

procured from Western Australian municipal solid waste (MSW) landfill sites, and Bayer 

liquor procured from an aluminium manufacturing company in Perth, Australia, were used as 

the leachates. Resistivity testing was then conducted to evaluate the performance of this 

technique. Various resistivity profiles were obtained at regular time-intervals to investigate the 

effect of leakage duration, leachate composition, and electrode location on the resistivity of 

soil.  

Finally, based on the leak detection test results, newly developed empirical correlations and 

analytical modelling were presented for the relationship between the electrical resistivity of 

liner base material, the leakage duration and the distance/depth of point of measurement.  
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In addition, a numerical model was developed using GeoStudio SEEP/W, for the seepage 

analysis of the leak detection test. The flow velocity obtained from this model was used in 

conjunction with the new correlations to generate resistivity profiles for any specific soil type 

and leachate.  

 

10.2 Conclusions 

Based on the current study, the following general conclusions are made from each of the 

individual research aspects and the analysis of the literature. 

 

1. Landfilling is the predominant method of waste disposal in Australia with nearly 51% 

of the generated waste ending up in landfills.  

2. In Australia, majority of the landfill facilities are owned and operated by public sector 

entities such as cities, counties/parishes, regional authorities, state governments, and 

the federal government. 

3. Australians landfills generally consist of varying combinations of compacted clay and 

geomembrane liners. However, they do not follow any one unifying guideline for 

ground preparation, siting, design, operation, and rehabilitation.  

4. Groundwater monitoring wells were the principal method of leakage detection practiced 

by the Australian landfills.  

5. The use of the electrical resistivity technique for leak detection is proven to be very 

effective in determining leakages.  

6. The compaction behavior of the sand-bentonite mixture resembles that of bentonite at 

higher bentonite contents.  

7. The electrical resistivity of each sand-bentonite mixture decreases rapidly with an 

increase in water content. However, after a certain water content, this rate of decrease 

reduces significantly. This specific water content is different for each of the sand-

bentonite mixtures.  

8. The change in the decreasing trend of resistivity occurs on the wet-side of the optimum 

for sand-bentonite mixtures and on the dry-side of the optimum for sand and bentonite.  

9. The effect of bentonite addition is negligible on the electrical resistivity of sand-

bentonite mixture at bentonite contents over 20%.  

10. The use of pre-laid sensor beds based on electrical resistivity method was observed to 

be marginal. Further, the need for the online monitoring of lining systems for the 

proper management of waste containment facilities in Australia, has been discussed. 
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11. An innovative leak detection technique to determine the electrical resistivity behavior 

of soils as a result of leachate contamination, as developed and used by the Geotechnical 

and Geoenvironmental research group at Edith Cowan University (ECU), is presented.   

12. Results for the experimental demonstration of the leak detection test using the tap water, 

two municipal solid waste (MSW) landfill leachate, and Bayer liquor, are presented.  

13. For leak detection tests using any type of leachate, the resistivity of the soil increases 

with an increase in the depth or the distance, of the mid-point of the pair of electrodes, 

from the liner leak.  

14. The effect of distance and depth is found to be negligible at greater depths, for the 

leakage duration of 30 min, for tests done with tap water as leachate.  

15. For tap water as leaching fluid, the resistivity values are in the range of 90-100 Ωm. 

16. The effect of distance/depth on the soil resistivity is negligible at leakage duration 

greater than 60 min for landfill leachate #1 and 160 min for landfill leachate #2.  

17. The resistivity of soil ranges from 7-15 Ωm for Leachate #1 to 20-50 Ωm for Leachate 

#2.  

18. The resistivity values obtained with water are nearly 10 times the values observed with 

landfill leachates as the leaching liquid. 

19. The resistivity values were found to range from 1 to 3 Ωm when using Bayer liquor as 

leachate. 

20. Resistivity of the soil decreases rapidly with an increase in the leakage duration.  

21. The leak detection system is effective in determining leakage in the liner, irrespective 

of the leakage duration.  

22. Electrode sensing system which is closest to the liner has the better ability to detect 

leakage. The resistivities recorded using sensors at the depth of 120 mm and above, 

showed insignificant variation with distance and leakage duration. 

23. The newly developed system is effective in determining and locating liner leaks at the 

onset. It has further applications in sensor development for real-time monitoring of 

lining systems in waste containment facilities. 

24. This innovative methodology for the testing of the electrical resistivity of soils can be 

adopted as a standard method for soil testing by the Australian government and 

Standards Australia, in accordance to their policies.  

25. The innovative diagnostic technique can find several applications in designing the 

monitoring systems for waste storage and handling facilities, subbase contamination 
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detection, liner leak detection, soil and corrosion studies, anomaly detection, and 

subsurface water profiling and prospecting.  

26. New empirical correlations have been developed and presented for the relationship 

between resistivity, leakage duration and distance/depth. The equations have also been 

given to predict the flow velocity of leachate at any point within a soil specimen, for 

known resistivity at a given time. These correlations can be used with any software that 

deals with seepage analysis and provides the velocity vector at different locations, to 

predict expected resistivity values.  

27. The application of newly developed correlationa has been demonstrated by designing a 

numerical model for seepage analysis using the SEEP/W software. Then, the velocity 

vector generated from this numerical model has been replaced in the developed 

correlations to obtain electrical resistivity.  

28. The newly developed correlations were demonstrated to be useful for practicing 

engineers in the design of lining systems as well as for various numerical modelling 

applications in waste containment facilities. 

29. The findings reported here should not be extrapolated to soil and leachate types which 

differ significantly from the soil used in this study.  

30. It may be noted that the leak detection system will not be able to detect leakages in the 

liner if the soil is completely saturated. 

 

10.3 Contributions to Knowledge 

This research can be particularly useful in generating awareness about the state of landfilling 

and will help various environmental protection agencies in making informed decisions for the 

development of rules and regulations to govern landfills. The newly developed leak detection 

technique was found to be effective in the timely detection and location of liner leakages, 

irrespective of the leakage duration and leachate composition.  

The new technique can be useful in designing the monitoring systems for waste storage and 

handling facilities, contamination detection, liner leak detection, development of sensors, 

development of numerical models, and so on. The use of graphical presentations, empirical 

correlations, analytical expressions and numerical models presented in this research can assist 

in actively monitoring the lining systems and taking timely action for contamination control. 
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10.4 Future Research Trajectories 

The following research trajectories have been identified: 

 

• Further research to identify the feasibility and possible methods of commercialisation 

for these research findings. 

• Investigation of the effect of changing the subbase material on the resistivity profiles 

obtained in leak detection test. 

• Development of numerical model based on the experimental results for the design of 

sensor systems in waste containment facilities. 
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