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ABSTRACT 

 

This study investigated the emission factors (EFs) for inorganic gases (CO2, CO, SO2, NO and NO2), 

carbonyls (formaldehyde, acetaldehyde, acetone, propionaldehyde, butyraldehyde and benzaldehyde), 

volatile organic compounds (VOCs) and particulate matter (PM2.5 and PM10) from laboratory-based fires 

of vegetation from five typical vegetation types of Western Australia. Species burnt were three grasslands 

(Spinifex represented by Triodia basedowii, Kimberley grass represented by Sehima nervosum and 

Heteropogon contortus, and an invasive grass represented by Ehrharta calycina (Veldt grass)), Banksia 

woodland and Jarrah forest under different combustion conditions. Chemical composition (water-soluble 

metals and polycyclic aromatic hydrocarbons – PAHs) and in vitro toxicity of PM2.5 were also measured. 

Vegetation samples were burnt in a ceramic chamber in varying combustion conditions altered by 

controlling the vegetation moisture content (<10%, 12–16% and 20–25%) and the air flow rate (0, 1.25 and 

2.94 m.s-1). Burns of woodland (Banksia) and forest (Jarrah) had significantly higher EFs for CO, SO2 and 

PM2.5 compared with those from grassland (Spinifex). Emissions of temperate grass (Veldt) fires were 

significantly different from those of the tropical grass (Spinifex and Kimberley grasses), with lower EFCO2 

and higher EFs for CO, carbonyls and PM2.5. EFs for SO2, NO and NO2 were variable between different 

vegetation types, indicating variation in the nitrogen and sulphur content of the fuels. The EFs for most 

carbonyls were similar between most vegetation types, with the exception of Veldt grass. Functions which 

may be useful to predict emissions of infrequently measured carbonyls (acetaldehyde, acetone and 

propionaldehyde) from the EF for formaldehyde, a commonly measured and reported substance, were also 

proposed. Fifteen VOCs were identified in the smoke, but concentrations were too low to be quantified. 

Benzene, toluene, styrene and indene were the most frequently detected VOCs.  

 

Moisture content did not strongly influence the modified combustion efficiency (MCE) and EFs for gaseous 

pollutants, but significantly affected the EF for PM2.5 with higher emissions from burns of moister 

vegetation. Increasing the air flow rate significantly increased the emissions of most pollutants. However, 

combustion conditions did not strongly affect the PM2.5 chemical composition. 

 

The MCE, EFs for CO and CO2 results in this study were similar to values reported from field measurements 

for similar vegetation types in Australia, indicating the applicability of these laboratory-based results. 

Emission factors were different to the profiles generated from vegetation fires in other parts of the world.  

 

Toxicity of PM2.5 on human lung epithelial (A549) cells was assessed using cell viability and cytokine 

production measurements. Responses on cell viability were associated with K and Na concentrations in 

PM2.5, whilst the cytokine production of cells was more affected by the PM2.5-bound PAH, Al, Cu and Mn 

concentrations. Toxicity between vegetation types was different, which might be due to the differences in 

chemical composition of PM2.5. PM2.5 emitted from Jarrah burns appeared to have the highest toxicity on 
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epithelial cells, followed by those from Banksia, Veldt grass and Spinifex. The findings of this study on 

toxicity of PM2.5 demonstrate the adverse impact on human health of particulate from bushfires and 

emphasise the importance of vegetation type on toxicological outcomes of bushfire-derived PM2.5. 

 

The EFs obtained in this study can be used in models to estimate the emissions from bushfires in Australia, 

particularly Western Australia. Results on toxicity of PM2.5 provide information for relevant government 

agencies to preliminarily evaluate the risk to human health, especially for firefighters and communities in 

close proximity to bushfire events.     
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 INTRODUCTION 

 

1.1. Background 

Bushfires, also known as vegetation fires or forest fires (including wildfires and prescribed burns), 

along with other types of biomass burning are now considered one of the most significant emission 

sources of pollutants to the atmosphere (Chen et al., 2007; McMeeking et al., 2009; Vicente et al., 

2012). Many studies investigating bushfire emissions have been conducted across the globe, both 

in countries impacted by long-range transport of bushfire-derived pollutants from neighbouring 

territories and those experiencing many and increasing bushfire events.  

Researchers have found that bushfire smoke consists of many compounds, generated in two 

phases: gaseous and particulate (Reisen and Brown, 2009; Weinhold, 2011). The gaseous phase 

includes pollutants such as carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), 

sulphur dioxide (SO2), aldehydes, polycyclic aromatic hydrocarbons (PAHs), volatile organic 

compounds (VOCs) and several other organic and inorganic compounds (Barboni and 

Chiaramonti, 2010; Koppmann et al., 2006; Reisen et al., 2011; Sinha et al., 2003). The particulate 

phase contains different sizes of particulate matter (PM), commonly divided into two categories: 

PM10 – particulates with mass mean aerodynamic diameter of less than 10 µm; and PM2.5 – 

particulates with mass mean aerodynamic diameter of less than 2.5 µm. Particulate matter is an 

aggregate of extremely tiny particles, liquid droplets and many pollutants adhering to the surface 

or absorbed into the particles. The concentration of PM10 in the ambient air has been reported to 

increase 1.2 to 10 times during bushfire smoke-affected periods or locations when compared with 

non-fire conditions (Liu et al., 2014). PM2.5 has been estimated to contribute more than 90% of the 

mass of PM10 generated (McMeeking et al., 2009; Radojevic, 2003).  

Emissions of pollutants from bushfires depend on many factors including fuel type, fuel load, 

weather and topographic conditions (Christian et al., 2003; Gu et al., 2008; Reisen and Brown, 

2009; Youssouf et al., 2014). Many pollutants in bushfire smoke are known to be toxic and/or 

carcinogenic such as CO, formaldehyde, benzene and some PAHs that have been associated with 

health effects (Bell & Adams, 2009). These pollutants can cause adverse impacts to firefighters 

who usually have direct exposure to the smoke (Barboni & Chiaramonti, 2010). Many health 

effects have been associated with these pollutants including short-term effects such as coughing, 

eye irritation, shortness of breath, headaches, fatigue, dizziness and nausea (Reisen and Brown, 

2009; Weinhold, 2011) and long-term respiratory and cardiovascular chronic diseases and cancer 

(Barboni & Chiaramonti, 2010). 
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Rationale for this research  

Australia has millions of hectares of forest, bushland, and grassland which contribute to its unique 

and rich biodiversity, but this also carries a high risk of bushfire during dry seasons because of 

their fire-prone nature. Thousands of natural bushfires occur in Australia annually, in addition to 

thousands of prescribed fires for purposes such as regenerating forests, managing wildlife habitats, 

and reducing the accumulation of flammable litter and understorey fuels to minimise the density 

and frequency of accidental fires (Wain et al., 2009). In Western Australia, there were more than 

60,000 bushfires from 2000 to 2007 which destroyed millions of hectares of vegetation (Bryant, 

2008) and this state experienced more than 3,800 bushfire events in the single season 2012–2013 

(Climate Council of Australia, 2015). In recent years, there has been an increase in the number of 

studies in Australia investigating the effects of bushfire emissions on the air shed and human health 

outcomes as well as characterising bushfire smoke pollutants. These studies have sought to 

determine the relationships between bushfire events and cardiorespiratory diseases and mortality 

risks to members of the community (Henderson and Johnston, 2012; Johnston et al., 2011, 2007, 

2006). Other studies have focused on exposure of firefighters in individual firefighting efforts 

(Reisen and Brown, 2009; Reisen et al., 2011, 2006a). In order to estimate the emissions of 

bushfires to the airshed as well as to predict their potential health effect, emission factors for 

pollutants (defined as mass of pollutants generated from combustion of a mass unit of dry fuel) 

have also been determined for fires of savanna and temperate forests in the northern and south-

eastern regions of Australia, but no such values have been reported for Western Australian 

vegetation (Desservettaz et al., 2017; Guérette et al., 2018; Paton-Walsh et al., 2014, 2005; Smith 

et al., 2014; Wang et al., 2017a). Studies investigating how fuel type influences the composition 

of pollutants in smoke are also limited. McMeeking et al. (2009) in the United States (US) 

identified differences in emission profiles with fuel types, however, the application of these 

measurements to Australian vegetation and conditions may not be appropriate due to differences 

in vegetation type and combustion conditions (De Vos et al., 2009). Furthermore, very few studies 

have been undertaken to identify the toxicity of vegetation fire emissions and the toxicity of 

emissions from different types of vegetation fires remains to be examined (Weinhold, 2011).  

It is predicted that the number and intensity of bushfires in Australia will increase in the future due 

to the effects of a changing climate (Climate Council of Australia, 2015). Climate change has made 

many parts of Australia drier and hence increased the risk of bushfire and this trend is continuing. 

To decrease the risk of natural bushfire, the number of prescribed burns will also increase so as to 

reduce the combustible vegetation load (Hughes and Steffen, 2013). With a projected increase in 
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wildfire and prescribed burns and their subsequent impacts on human health and the environment, 

it is necessary to have a better understanding of the emissions of bushfires from different 

vegetation types and their potential impacts. Hence, this study was conducted to investigate the 

chemical composition and toxicity of emissions from burning different vegetation types in Western 

Australia. The results provide data on the pollutant composition of smoke emitted from burning 

biomass for bushfire management agencies to better target efforts at protecting human health from 

burns in particular types of ecosystems. These data can be used in the development and 

modification of models simulating and estimating the emissions of bushfires as well as the 

development of exposure standards for bushfire smoke emissions. 

 

1.2. Aims of the study 

My study aimed to investigate the chemical composition of emissions (both gaseous and 

particulate phases) from burning typical vegetation types of Western Australia and the effects of 

combustion conditions on the chemical composition and in vitro toxicity of PM2.5 in the smoke.  

This study also aimed to investigate the relationship between in vitro toxicity associated with fuel 

type and PM2.5-bound chemical composition. The study specifically aimed to answer the following 

questions. 

1. How different is the chemical composition of smoke resulting from the burning of different 

vegetation types? 

2. Are the emissions of air pollutants from burning Western Australian typical vegetation 

types similar to those reported in other Australian and international studies? 

3. How much do combustion conditions (fuel moisture and air flow rate) influence the 

chemical composition of smoke?  

4. Is the toxicity of PM2.5 dependent on vegetation type? 

5. Which chemical components of PM2.5 are associated with the toxicity? 

 

1.3. Structure of this thesis 

This thesis consists of seven chapters.  

Chapter 1 provides an introduction to the current knowledge about bushfires and their 

toxicity. A rationale for the study is provided and the questions needed to be answered to address 

the stated aims of the project are given.  
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Chapter 2 is a literature review which summarises knowledge about bushfires, the chemical 

composition of smoke and in vitro toxicity of particulate matter from bushfire smoke. A part of 

this chapter (section 2.3) has already been published. 

The next three chapters focus on the results of emissions testing of different pollutants in 

smoke, including inorganic gases (Chapter 3), volatile and semi-volatile organic compounds 

(Chapter 4), and particulate matter (Chapter 5). These chapters have been prepared as papers, one 

of which has been submitted for publication. The general experimental design and methods of this 

study are outlined in Chapter 3. Specific methodological aspects are outlined in the relevant 

subsequent chapters. 

Chapter 6 discusses the in vitro toxicity of PM2.5 and its measurements depending on the 

vegetation type burned and PM chemical composition. This chapter has been also prepared as an 

article manuscript. 

The final chapter (Chapter 7) is a synthesis of the major findings of this study, a discussion 

of the implications of the research findings and it then goes on to recommend some future research 

needs. 
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 LITERATURE REVIEW 

 

2.1. Factors that influence the combustion of vegetation and emissions of 

pollutants 

Vegetation combustion is defined as the burning of living and dead plant matter (Cole, 2001). 

Combustion of vegetation includes a series of chemical and physical processes and is often divided 

into three stages: ignition, flaming and smouldering (Koppmann et al., 2006; Strezov and Evans, 

2014). In the ignition stage, the drying of the vegetation material occurs and this where most water 

evaporates from the material before the fuel can be ignited. Fuel characteristics including moisture 

content, size and density strongly influence the length of the ignition stage (Koppmann et al., 

2006). Volatilisation of several VOCs also occurs during the drying process (Urbanski et al., 

2009). After that combustion proceeds to the flaming stage, where the main components of 

vegetation including cellulose, hemicellulose, lignin, extractives and trace minerals are burned. 

Pyrolysis and char oxidation are the main processes occurring during the flaming phase, which 

rapidly reduce the fuel volume and thus reduce the flaming, leading to the smouldering phase 

(Urbanski et al., 2009). The smouldering phase mainly involves the combustion of remaining char 

in the absence of flame (Koppmann et al., 2006). The composition of biomass combustion 

emissions varies depending on the different combustion stages (Vicente et al., 2012). Many highly 

volatile organic chemicals are released during the ignition stage, while carbon monoxide is the 

predominant emission in the smouldering stage. During the flaming phase, the major burning 

product in a complete biomass combustion process is carbon dioxide from oxidisation reactions of 

the carbon compounds in the biomass. However, under conditions of oxygen deficiency 

incomplete combustion may occur which generates carbon monoxide and other organic 

compounds (Demirbas, 2007; Koppmann et al., 2006). Particulates are also emitted mostly in the 

flaming phase (Urbanski et al., 2009).  

In the field, the combustion of vegetation is commonly separated into only two stages, namely 

flaming and smouldering (Urbanski et al., 2009). These two combustion stages can be identified 

from calculations of combustion efficiency (CE) or modified combustion efficiency (MCE). CE 

of a fire is calculated by dividing the carbon amount emitted as carbon dioxide (CO2) by the total 

amount of carbon emitted from that fire (Ward and Hardy, 1991). Carbon from a fire is emitted in 

many forms including CO2, carbon monoxide (CO), methane (CH4), non-methane hydrocarbon 

(NMHC) and particulate matter (Koppmann et al., 2006). Since it is hard to identify and measure 

all fire products containing carbon and most of the carbon (>95%) is emitted as CO2 and CO, CE 
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is modifed to MCE which is the ratio of carbon amount emitted as CO2 to the sum of carbon 

emitted as CO2 and CO (Ward and Radke, 1993). CEs or MCEs of more than 0.9 or less than 0.8 

indicate fires dominated by flaming or smouldering phases, respectively. Fires with CEs or MCEs 

from 0.8 to 0.9 are a mixture of flaming and smouldering phases (Sinha et al., 2003).       

The vegetation combustion process is influenced by many factors involving fuel properties 

(composition, size and load) and environmental factors (air distribution, temperature, burning 

time, etc.) Among them, vegetation composition including ash (inorganic material) content, 

moisture content, extractive content (organic combustible component), element content 

(determined by ultimate analysis) and structural content (determined by proximate analysis) are 

the key factors affecting the combustion process (Demirbas, 2007). These factors vary depending 

on species of vegetation and growing conditions (Jenkins et al., 1998). Sami et al. (2001) 

investigated the effects of biomass moisture and ash content on flame temperature and found that 

the higher the moisture and/or ash content, the lower the flame temperature. Air distribution or 

more commonly in the field wind speed is the principal environmental factor that influences the 

biomass combustion process since any increase in air provision may reduce the temperature of 

flame, which affects emissions (Strezov and Evans, 2014). 

 

2.2. Chemical composition of bushfire smoke  

 Major pollutants in bushfire emissions 

Many studies addressing bushfire smoke emissions have been conducted across the globe, 

including in Germany, Finland, France, Portugal, Africa, the United States, South America, 

Singapore, Australia, Indonesia, China and Japan (Andreae and Merlet, 2001; Barboni and 

Chiaramonti, 2010; Chen et al., 2007; Christian et al., 2003; Hänninen et al., 2009; Karthikeyan et 

al., 2006; Koppmann et al., 2006; Miranda et al., 2010; Qin and Xie, 2011; Sinha et al., 2003; 

Takeuchi et al., 2013; Wain et al., 2009). Emission factors (EF), which are defined as mass of a 

pollutant generated from combustion of a mass unit of fuel on a dry basis (e.g. g.kg-1 dry fuel) 

(Ward and Radke, 1993), are commonly reported to quantify emissions of pollutants from 

vegetation fires. Emission factors can be used to estimate emissions from vegetation fires but can 

also be used to compare emissions from different fuel sources (Simões Amaral et al., 2016). Major 

air pollutants from bushfires such as CO2, CO, NOx, SO2, carbonyls, VOCs and PM have been 

measured and reported in many studies and the characteristics of each pollutant are discussed 

below. 
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a) Carbon dioxide (CO2) 

CO2 is the main product of biomass burning due to the high carbon content of biomass. CO2 is 

considered to be a significant contributor to the greenhouse effect (Takeuchi et al., 2013) but is 

not usually considered in terms of its impact on health. It is estimated that 6564 to 9093 Tg of CO2 

are emitted to the atmosphere annually from open biomass burning (Jain et al., 2006). The average 

EF for CO2 generated from vegetation burning has been found to be in the range of 1500 to 1800 

g.kg-1 dry fuel (Akagi et al., 2011; Andreae and Merlet, 2001) and varies slightly depending on 

vegetation type and combustion stage (Chen et al., 2007). 

b) Carbon monoxide (CO) 

CO is a by-product of incomplete combustion and may be present in high concentrations in 

bushfire smoke depending on combustion conditions such as fuel moisture, burning temperature 

and stage of the fire (Koppmann et al., 2006; Reisen and Tiganis, 2007). The emission factor for 

CO from vegetation fires ranges broadly depending on fuel type and is especially dependent on 

the phase of combustion (Andreae & Merlet, 2001; Christian et al., 2003; McMeeking et al., 2009; 

Soares Neto et al., 2011). In a study measuring the emission of pollutants from Australian tropical 

savanna fires, Desservettaz et al. (2017) observed a wide range of EF for CO which varied from 

15 to 147 g.kg-1 dry fuel. Jain et al. (2006) estimated that about 438 to 658 Tg CO.yr-1 are emitted 

from open biomass fires. When inhaled into the body, this colourless and odourless gas can bind 

to, and inhibit, the oxygen-carrying function of haemoglobin (Hb) in the blood (Gerostamoulos et 

al., 2011). This can be harmful to human health due to the reduction of oxygen (human brain 

function can be affected by COHb levels of over 10% in the blood) (World Health Organization – 

WHO, 2010) and may even cause death in cases of extreme exposure (COHb levels in blood of 

over 50%) (Nelson, 1987). CO has been found to be significantly correlated with other pollutants 

generated during the smouldering stage of fires such as aldehydes and VOCs (Koppmann et al., 

2006; Reisen et al., 2006a). Studies on firefighters’ exposure during bushfires have shown that 

firefighters are sometimes exposed to higher concentrations of CO than the regulated occupational 

concentrations for workers (Miranda et al., 2010; Reisen et al., 2011).  

c) Nitrogen oxides (NOx) 

NOx is a family of seven oxides of nitrogen, including nitrous oxide (N2O), nitric oxide (NO), 

dinitrogen dioxide (N2O2), dinitrogen trioxide (N2O3), nitrogen dioxide (NO2), dinitrogen tetroxide 

(N2O4) and dinitrogen pentoxide (N2O5) (US. Environmental Protection Agency – USEPA, 1999). 

Hurst et al. (1994) found that 15 ± 8% of nitrogen in vegetation is emitted in the form of NOx when 

burned. As noted, NOx is a product of the flaming phase of vegetation fires and it is highly 
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correlated with the emission of CO2 (Burling et al., 2010; Lobert et al., 1991). NOx in vegetation 

fire emissions has also been reported to be positively correlated with fuel nitrogen content (Burling 

et al., 2010). Therefore EFs for NOx are highly variable (Akagi et al., 2011; Andreae and Merlet, 

2001; Urbanski et al., 2009). In the NOx group, NO2 is the dominant form in the atmosphere and 

NO is the most abundant form emitted from the combustion of vegetation (Andreae and Merlet, 

2001). NO2 is a primary pollutant and also a component of ozone production, when reacting with 

NMHCs in the presence of sunlight (Jaffe and Wigder, 2012). NO2 is a pulmonary toxicant and 

has been demonstrated to have adverse impacts on lung resistance (WHO, 2010). NO has a similar 

mechanism for absorbing oxygen in blood to carbon monoxide, but is not a significant threat to 

human health (except for infants and very sensitive people) (USEPA, 1999).  

d) Sulphur dioxide (SO2) 

SO2 is also generated from burning the sulphur component of biomass (Andreae and Merlet, 2001). 

Emission of SO2 from vegetation fires is also found to be associated with the flaming phase (Lobert 

et al., 1991). However, some studies have observed negative correlations between SO2 and MCE 

with more SO2 emitted from burns with a higher proportion of the smouldering phase (Burling et 

al., 2010; Sinha et al., 2003). Compared with the other inorganic gases (CO2, CO and NOx), SO2 

is the least reported in studies of emissions from bushfires. Emission factors for SO2 range from 

0.1 to 1.0 g.kg-1 dry fuel depending on the types of vegetation (Andreae and Merlet, 2001; 

McMeeking et al., 2009). The water-soluble nature of SO2 and the formation of sulphuric acid 

explains why SO2 exposure may adversely affect the respiratory system by causing chronic 

bronchitis or asthma symptoms (Bell and Adams, 2009). The reaction of SO2 and other 

atmospheric compounds can form small particles, such that SO2 is considered a major precursor 

of ambient PM2.5 concentration (European Environment Agency, 2014). These particles can 

penetrate deeply into the lungs and cause more serious respiratory diseases (Feng et al., 2016).  

e) Volatile organic compounds (VOCs) and semi-volatile compounds 

VOCs from bushfires are generated during the ignition phase, while drying and low-temperature 

pyrolysis processes occur, and also during the smouldering phase (Urbanski et al., 2009). VOC 

emissions are strongly related to the duration of the different combustion stages, and have been 

identified in significantly higher concentrations in the smouldering stage compared with the 

flaming stage in prescribed burns (Barboni and Chiaramonti, 2010).  Barboni and Chiaramonti 

(2010) reported the concentrations of benzene, toluene, ethylbenzene and xylene of 21±4.2 mg.m-

3 in the flaming stage and 34±4.3 mg.m-3 in the smouldering stage. Yokelson et al.(2007) identified 

emission factors for benzene, toluene, ethylbenzene and xylene compounds from tropical forest 

fires, which were 0.26 g.kg-1, 0.2 g.kg-1, 0.08 g.kg-1 and 0.13 g.kg-1, respectively. VOCs in the 
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troposphere are degraded and transformed under several physical and chemical processes. The 

photochemical transformation of VOCs with the presence of NOx produces more ozone (O3) in the 

atmosphere (Sinha et al., 2003). Benzene is a major VOC detected in bushfire smoke (Reisen et 

al., 2006a) and it is a genotoxic compound which has been associated with increased risk of acute 

myeloid leukaemia and cancer in children (Li et al., 2015).  

Carbonyls are a group of semi-volatile organic compounds for which emissions are associated with 

incomplete combustion conditions in the smouldering stage of fires (Urbanski et al., 2009). 

Formaldehyde and acrolein have been found to be the prominent aldehydes that firefighters are 

exposed to during bushfires (De Vos et al., 2009; Garcia-Hurtado et al., 2014; Reisen et al., 2006a). 

Other studies have shown formaldehyde and acetaldehyde to be dominant in vegetation fire smoke 

(Christian et al., 2003; Vicente et al., 2011; Yokelson et al., 2008). Of the carbonyls, emission 

factors for formaldehyde and acetaldehyde are most commonly reported and they vary depending 

on vegetation types. Formaldehyde is categorised as a carcinogenic substance (Group I) to humans 

by the International Agency for Research on Cancer (IARC, 2012) and it also causes irritation to 

the eyes and upper respiratory tract, asthma and eczema (WHO, 2010). Exposure to high 

concentrations of formaldehyde has been shown to cause nasal tumours in experimental rats 

(Leikauf and Katz, 2005). Formaldehyde emitted from bushfires also has a significant influence 

on the hydroxide (OH-) balance and ozone production in the atmosphere due to the process of 

photolysis (Radojevic, 2003; Sinha et al., 2003). Acetaldehyde has been found to cause cancer in 

rats following inhalation exposure and is categorised as a possible human carcinogen due to its 

ability to interfere with DNA synthesis and repair (IARC, 2010). Acrolein can irritate mucous 

membranes, airways and even skin at high concentrations (Faroon et al., 2008). In a study of 

firefighters’ exposure during prescribed burns in Australia, Reisen et al. (2006) reported that 28% 

of monitored firefighters were exposed to formaldehyde concentrations that exceeded the proposed 

occupational exposure standard.  

g) Particulate matter (PM) 

It is estimated that less than 5% of the carbon in vegetation is emitted in the form of particulate 

matter (PM) when burned (Reid et al., 2005b).  PM10  (particulates with diameter of less than 10 

µm) in smoke from bushfires consists of a high proportion of particulates with diameter of less 

than 2.5µm (PM2.5) which can penetrate deeply into the lungs and impact the health of populations 

and individuals (Alves et al., 2010a; Feng et al., 2016; Reid et al., 2005b). Several epidemiological 

studies have used time-series analysis to investigate the relationship between the increase in 

concentrations of PM10 in ambient air during bushfire events/seasons and the number of patients 

admitted to local hospitals or the number of deaths from diseases associated with air pollution. 



 

10 
 

These diseases includes asthma, chronic obstructive pulmonary disease (COPD), bronchitis, 

emphysema, pneumonia and ischaemic heart disease (Crabbe, 2012; Henderson and Johnston, 

2012; Morgan et al., 2010; Tham et al., 2009). When investigating the hospital admissions for 

respiratory illness in Brisbane, Australia in the period from 1997 to 2000, Chen et al. (2006) found 

that the PM10 level in the ambient air had a positive relationship with the daily number of patients 

admitted and this association was more pronounced during bushfire episodes. On days on which 

bushfires occurred with ambient PM10  concentration exceeding 15 µg.m-3, the number of people 

admitted to hospital due to respiratory issues increased by 9 to 19 % compared with normal 

atmospheric conditions (Chen et al., 2006). A comprehensive time-series study that analysed 

hospital admissions over a period of eight years in Sydney, Australia found that bushfire PM10 had 

greater impacts on COPD admissions of elderly people and asthma complaints in adults compared 

with background PM10 concentrations (Morgan et al., 2010). 

Bushfire particulates are comprised of carbon (50 – 70% mass, separated into organic carbon and 

black carbon), elements associated with carbon compounds including oxygen, hydrogen and 

nitrogen (20 – 30%) and inorganic species (10%). The composition of these components of PM 

varies depending on many factors such as vegetation type, combustion phase, and fire variability 

(Reid et al., 2005b). Average PM10 emission factors from tropical forest fires were measured at 

17.8 g.kg-1 (Yokelson et al., 2007), whilst PM2.5 emission factors were more variable and ranged 

from 5.4 g.kg-1 to 29.4 g.kg-1 depending on vegetation type (Akagi et al., 2011; McMeeking et al., 

2009).   

Polycyclic aromatic hydrocarbons (PAHs) in PM (PM-PAHs): PAHs have been found in 

bushfire smoke with significant fractions of high-molecular PAHs associated with the particulate 

phase. Many PAHs are defined as mutagenic and/or carcinogenic compounds that can cause lung 

cancer (Choi et al., 2010). Alves et al. (2010a) found that the dominant PAHs in shrubland burning 

particles were alkylated compounds, benzo(a)anthracene, pyrene, phenanthrene, fluoranthene and 

chrysene. Higher concentrations of these PAHs were present in finer-sized particulates (Alves et 

al., 2010a). When studying PAH emissions from different firewood types in Australia, Zou et al. 

(2003) reported that most genotoxic PAHs were present in the particulate phase. 

Metals in PM (PM-metal): K and Ca are metals found in bushfire-derived PM and mostly 

are present in the core of particulates, in which K accounts for about 2 to 5% of the PM2.5 mass 

(Reid et al., 2005b). Garcia-Hurtado et al. (2014) found that other major trace metals in PM2.5 

emitted from shrub wildfire in Spain were Cu, Zn, Zr, Pb, Ti, and Ba. A comparison of metals in 

aerosols in Singaporean ambient air under normal conditions and in a period affected by smoke 

from biomass burning was conducted by Pavagadhi et al. (2013). The study showed that higher 
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concentrations of metals including Al, Cr, Fe, Mn, Co, Ni, Zn, Cu, Cd and Pb were observed in 

PM2.5 during the smoke-affected period compared with those in normal conditions. Some first-row 

transition metals such as Fe, Ni, and Cu absorbed in PM have been suggested to produce free 

radicals that may cause oxidative stress when accumulated in the body (Carter et al., 1997; Jiang 

et al., 2014). This phenomenon has negative impacts on human health because it may cause chronic 

illness such as lung damage and cancer (Pham-Huy et al., 2008; Truong-Tran et al., 2001). 

 

 The influence of vegetation type on the emissions of pollutants emitted in smoke 

Each vegetation type has a specific fuel structure and chemical content, thus generating different 

chemical compounds in the smoke when being burned. Some studies have analysed and compared 

the chemical composition of emissions from combusting different types of biomass. Two hundred 

and fifty-five laboratory burns for 33 vegetation species from five specific ecosystems in the US 

were undertaken and the emissions of several gas-phase and particle-phase compounds in the 

emitted smoke (including CO2, CO, CH4, C2-4 hydrocarbons, NH3, SO2, NO, NO2, HNO3, organic 

carbon, elemental carbon, SO4
2-, NO3

-, Cl-, Na+, K+  and NH4
+) were measured (McMeeking et al., 

2009). Emission factors for these compounds were then calculated, providing a comprehensive 

data set on the chemical composition of smoke generated from vegetation fires in the US. Burling 

et al. (2010) conducted a similar laboratory-based study investigating the emissions of wildfire 

fuels from two regions (south-eastern and south-western) of the US. In addition to the gaseous 

compounds that were examined by McMeeking et al. (2009), a study by Burling et al. (2010) 

focused on other trace gases such as carbonyl compounds (formaldehyde, acetaldehyde, acetone), 

acetic acid, furan and nitrous acid. 

Other smaller-scale studies investigating emissions from burning different fuel types were 

conducted for Indonesian, African and Brazilian fuels (Christian et al., 2003; Soares Neto et al., 

2011). Christian et al. (2003) measured 26 compounds in smoke produced from burning 16 

common fuel types, while Soares Neto et al. (2011) burned typical native vegetation species of the 

Amazon forest and evaluated the EFs for CO2, CO, NOx and unburned hydrocarbons.  

In recent years a few studies have been carried out in Australia to determine whether there are 

significant differences in emissions from burning different vegetation types. Possell and Bell 

(2012) compared the EFs of six Australian grass species and found a much higher EF for CO2 

when combusting grasses from the Northern Territory compared with those from the Australian 

Capital Territory. Because the burned species had similar moisture content, this difference might 

be caused by the specific “chemical composition of plant biomass” due to the soil and nutrient 

conditions of each region (Possell and Bell, 2012). A preliminary evaluation of emissions from 



 

12 
 

prescribed burns of some forest fuel types in Australia was conducted by Reisen et al. (2006a) who 

compared firefighters’ exposure to smoke from fires in eucalypt forests, grassland heathland, 

mallee heathland and tropical forests in some Australian states. Higher concentrations of CO, 

respirable particles and formaldehyde were found in smoke from mallee heathland burns whilst 

higher concentrations of VOCs were measured in grassland fire emissions. However, the higher 

emission of VOCs from grassland observed in that study might be attributable to the sampling 

conditions, whereby the grassland samples were collected in denser smoke compared with samples 

from fires of other vegetation types (Reisen et al., 2006a). Another study by Wardoyo et al. (2006) 

investigated the particulate emissions from the combustion of five tree species of Queensland 

including spotted gum, blue gum, bloodwood, iron bark and stringybark. Their study found that 

the EFs for PM2.5 were different between types of fuel, with hard wood burns emitting higher EF 

for particle number than soft wood burns. Differences in EFs were also reported between different 

parts of the trees, with EFs for PM2.5 from burning leaves and branches significantly higher than 

those from wood burns (Wardoyo et al., 2006).   

 

 Influence of combustion conditions on the chemical composition of vegetation fire 

smoke 

Combustion conditions such as fire temperature, wind speed, fuel conditions (age, load and 

moisture) and topological factors have a significant influence on the behaviour of vegetation fires 

and the chemical composition of the resulting smoke (Maleknia et al., 2009; Reisen and Tiganis, 

2007). Some laboratory-based studies have investigated the influence of fuel moisture content and 

air speed on vegetation fires. Chen et al. (2010) examined the effects of moisture content on 

emissions of carbon and nitrogen species in smoke of five types of wildland fuels (including litter, 

duff, soil, leaves and stems) and found that the MCE decreased with an increase in fuel moisture 

content, resulting in higher emissions of pollutants associated with the smouldering phase such as 

CO, organic carbon, NH3 and other particulate nitrogen. Possell and Bell (2013) examined the 

effect of fuel moisture on the chemical composition of smoke generated from burning eucalyptus 

leaves. They also found that the MCE had a negative correlation with fuel moisture, and the 

emission factors for VOCs from burning leaves with greater moisture were higher than those from 

drier leaves. 

Surawski et al. (2015) studied the emissions of greenhouse gases including CO2, CH4 and N2O of 

eucalyptus litter under different wind directions, mimicking three fire spread modes: heading fire 

(move with the wind), flanking fire (at right angles to the wind), and backing fire (against the 

wind). Their study found that flanking and backing fires generated lower EFs for CO2 and CO than 
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did heading fires. Fuel was burned rapidly and the rapid transition of the fires from flaming to 

smouldering combustion was the reason for the higher CO emissions from heading fires (Surawski 

et al., 2015). Zou et al. (2003) investigated PAH emissions from burning firewood using a 

residential woodburner under fast and slow burns generated by different air flows and found that 

the PAH concentrations emitted from slow-burn conditions were higher than those from the fast-

burn conditions. In a study investigating PM2.5 emissions from the combustion of different tree 

species, Wardoyo et al. (2006) found that the influence of wind speed (fast burn – air supplied at 

rate of 20 m.s-1 and slow burn – no air supply) on EF for PM was different depending on fuel type. 

Whilst the wind speed did not affect the EFPM2.5 of hard wood burns, it was found to significantly 

influence the PM2.5 emissions of soft wood combustion (Wardoyo et al., 2006). 

 

 Studies on emissions from bushfires in Australia 

Some of the early studies investigating emissions from bushfires in Australia were conducted by 

Hurst et al. (1994a, 1994b). These studies characterised and reported emissions of trace gases from 

tropical savanna fires using aircraft on-board instruments and Teflon bag grab sampling. In recent 

years, many more studies on bushfire emissions have been conducted (Desservettaz et al., 2017; 

Guérette et al., 2018; Lawson et al., 2015; Paton-Walsh et al., 2014, 2010, 2005; Possell et al., 

2015; Shirai et al., 2003; Smith et al., 2014; Surawski et al., 2015; Wang et al., 2017b; Wardoyo 

et al., 2006). All of them, except for the studies by Wardoyo et al. (2006) and Surawski et al. 

(2015), were also field-based studies which used infrared (IR) and/or solar absorption 

spectroscopy techniques to measure excess mixing ratio of pollutants in the smoke. Trace gases 

emissions were investigated in all these studies. Only two field-based studies examined and 

reported the emission factors for particulate matters and/or their characteristics (Desservettaz et 

al., 2017; Lawson et al., 2015) which was likely due to the difficulty in sampling and measuring 

particulates in the field. Another study which focused on investigating PM emissions was 

laboratory-based (Wardoyo et al., 2006). Most of the studies have focused on emissions from fires 

of the two most common Australian ecosystems: tropical savanna and temperate forest. Only one 

study has reported the emissions of pollutants from coastal heathland and woodland fires (Lawson 

et al., 2015). Furthermore, the majority of these studies have focused on fires occurring in northern 

and south-eastern regions of Australia, with fires in other parts of the country including Western 

Australia yet to be studied in detail (Table 2.1).    

  



 

14 
 

Table 2-1. Summary of information from studies investigating the emissions from bushfires in Australia. Studies are sorted chronologically based on year of 
publication 

Authors Type of vegetation Measured pollutants Type of study 
Sampling 

platform 

Region of 

Australia 

Hurst et al. (1994a) Tropical savanna CO2, CO, CH4, acetylene (C2H2), benzene 

(C6H6), formaldehyde (CH2O), acetaldehyde 

(CH3CHO), NOx, ammonia (NH3), hydrogen 

cyanide (HCN), and acetonitrile (CH3CN) 

Field-based Aircraft Northern 

Hurst et al. (1994b) Tropical savanna CO2, CO, CH4, NMHC, CH3CHO, NOx, NH3, 

N2O, HCN and sulphur (S) 

Field-based Aircraft Northern 

Shirai et al. (2003) Tropical savanna CO2, CO, CH4, NMHC, methyl halides, dimethyl 

sulphide (DMS) 

Field-based Aircraft Northern 

Paton-Walsh et al. (2005) Temperate forest CO, C2H2, ethylene (C2H4), ethane (C2H6), 

formic acid (HCOOH), H2CO, HCN and NH3 

Field-based Ground South-eastern 

Wardoyo et al. (2006) Temperate forest PM2.5 (particle number, particle mass) Laboratory-based NA South-eastern 

Paton-Walsh et al. (2010) Tropical savanna CO, H2CO, HCN, C2H2, and C2H6 Field-based Ground Northern 

Possell and Bell (2012) Tropical and temperate 

grassland 

CO2, CO, VOCs Laboratory-based NA Northern and 

south-eastern 

Paton-Walsh et al. (2014) Temperate forest CO2, CO, CH4, C2H4, C2H6, CH2O, methanol 

(CH3OH), acetic acid (CH3COOH), HCOOH, 

NH3 and nitrous oxide (N2O)  

Field-based Ground South-eastern 

Smith et al. (2014) Tropical savanna CO2, CO, CH4, C2H2, C2H4, C2H6, CH2O, 

CH3OH, CH3COOH, HCOOH, HCN, and NH3 

Field-based Ground Northern 

Possell et al. (2015) Temperate forest CO2, CO, ∑(CH4, NMHC, PM) Field-based Ground South-eastern 

Lawson et al. (2015) Coastal heathland and 

woodland 

NMHCs, PM (size distribution and number, 

black carbon), O3, CH4, CO, hydrogen (H2), CO2, 

C2H6, HCN, CH2O, CH3CN, CH3CHO, HCOOH, 

N2O, furan (C4H4O), C6H6, toluene (C7H8), 

Field-based Ground Southern 
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Authors Type of vegetation Measured pollutants Type of study 
Sampling 

platform 

Region of 

Australia 

phenol (C6H5OH), xylenes (C8H10) , methyl 

chloroform (CH3CCl3), carbon tetrachloride 

(CCl4), methyl halides 

Surawski et al. (2015) Temperate forest CO2, CO, CH4 and N2O Laboratory-based NA South-eastern 

Desservettaz et al. (2017) Tropical savanna CO2, CO, CH4, N2O, PM1 (organic content, SO4
2-

, NO3
-, NH4

+, Cl-) and gaseous elemental 

mercury 

Field-based Ground Northern 

Wang et al. (2017) Tropical savanna and 

sub-tropical forest 

PAHs, semi-volatile organic compounds 

(polychlorinated biphenyls – PCBs, 

polychlorinated naphthalene – PCNs, 

polybrominated diphenyl ethers – PBDEs) 

Field-based Ground Northern and 

south-eastern 

Guérette et al. (2018) Temperate forest CO2, CO, CH4, N2O, C2H2, C2H4, C2H6, 

CH3CHO, acetone(CH3)2CO, CH3CN, C6H6, 

CH2O, ethanol (CH3CH2OH), HCN, CH3OH, 

C7H8 

Field-based Ground South-eastern 

NA: Not applicable  
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2.3. In vitro toxicity of biomass burning emission 

(This section is a review article titled “In vitro assessment of the toxicity of bushfire emissions: A review” 

which has been published in the journal Science of the Total Environment, volumes 603–604, pages 268–

278, year 2017. I wrote and revised the manuscript (70% work load), whilst other co-authors (Hinwood, 

A. L., Callan, A. C., Zosky, G., & Stock, W. D) provided comments and edited the manuscript). 

 

Abstract 

Bushfires produce many toxic pollutants and the smoke has been shown to have negative effects on human 

health, especially to the respiratory system.  Bushfires are predicted to increase in size and frequency, 

leading to a greater incidence of smoke and impacts. While there are many epidemiological studies of the 

potential impact on populations, there are few studies using in vitro methods to investigate the biological 

effects of bushfire emissions to better understand its toxicity and significance. This review focused on the 

literature pertaining to in vitro toxicity testing to determine the state of knowledge on current methods and 

findings on the impacts of bushfire smoke. 

There was a considerable variation in the experimental conditions, outcomes and test concentrations used 

by researchers using in vitro methods. Of the studies reviewed, most reported adverse impacts of particulate 

matter (PM) on cytotoxic and genotoxic responses. Studies on whole smoke were rare.  Finer primary 

particulates from bushfire smoke were generally found to be more toxic than the coarse particulates and the 

toxicological endpoints of bushfire PM different to ambient PM. However the variation in study designs 

and experimental conditions made comparisons difficult. This review highlights the need for standard 

protocols to enable appropriate comparisons between studies to be undertaken including the assessment of 

physiologically relevant outcomes. Further work is essential to establish the effect of burning different 

vegetation types and combustion conditions on the toxicity of bushfire emissions to better inform both 

health and response agencies on the significance of smoke from bushfires.   

Keywords: biomass burning, smoke particulate matter, woodsmoke, in vitro toxicity, cytotoxic, genotoxic 

 

Introduction  

Bushfires, also known as wildfires, vegetation fires or forest fires, along with other types of 

biomass burning are now considered one of the most significant emission sources of pollutants to 

the atmosphere (Chen et al., 2007; McMeeking et al., 2009; Vicente et al., 2012). Many studies 

investigating bushfire emissions have been conducted across the globe, ranging from the countries 

where bushfires usually occur to countries concerned about long-range transport of pollutants from 

neighbouring territories (Jalava et al., 2010; Pavagadhi et al., 2013; Sinha et al., 2003; Vicente et 

al., 2013). Most of these studies have focused on measuring the concentrations of emitted gases 
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and particulate matter (PM) known to have adverse biological effects (Garcia-Hurtado et al., 2014; 

Junquera et al., 2005; Reisen et al., 2006). There has also been considerable effort devoted to 

developing pollutant emission factors for individual pollutants for use in models to forecast and 

predict the potential impact of bushfire smoke on an air-sheds or for population exposure studies 

(Andreae & Merlet, 2001; Chen et al., 2007; Christian et al., 2003; McMeeking et al., 2009). Other 

studies have also investigated the effects of bushfire smoke on human health, especially to the 

respiratory system (Chen et al., 2006; Crabbe, 2012; Henderson & Johnston, 2012; Jalaludin et al., 

2000; Johnston et al., 2007; Liu et al., 2014; Morgan et al., 2010). These studies have focused on 

PM with a number of studies reporting adverse impacts on human health with an increase in the 

number of hospital admissions during bushfire episodes.  

Particulate matter is a major pollutant generated from biomass burning, producing both PM10 

(particulates with a diameter of less than 10 µm) and PM2.5 (particulates with diameter of less than 

2.5 µm), where PM2.5 accounts for most of the particulate matter generated (Alves et al., 2010a; 

Bell & Adams, 2008; Garcia-Hurtado et al., 2014). PM2.5 has adverse impacts on the human 

respiratory system and can penetrate deeply into the lungs (Feng et al., 2016; Xing et al., 2016). 

PM also contains toxicants such as polycyclic aromatic hydrocarbons (PAHs) and metals adsorbed 

onto its surfaces (Cavanagh et al., 2009; Dieme et al., 2012).  

In addition to PM, hundreds of gaseous and volatile chemicals have been identified in vegetation 

fire smoke (Mobley et al., 1976; Weinhold, 2011). In a study summarising the emission 

characteristics of pollutants in biomass burning,  Andreae & Merlet (2001) listed more than 90 

compounds commonly found in the smoke. Among the compounds are some pollutants that have 

been demonstrated to have adverse health impacts in epidemiological and in-vivo experimental 

studies including carbon monoxide (CO), nitrogen oxide (NOx), sulphur dioxide (SO2), aldehydes, 

PAHs and volatile organic compounds (VOCs) (Barboni & Chiaramonti, 2010; Koppmann et al., 

2006; Reisen et al., 2011; Sinha et al., 2003).  

Although the PM derived from bushfires has been demonstrated to adversely impact human health, 

it is unclear whether the cause of the impact is the higher concentration of PM per se, especially 

the higher proportion of fine particulates, or if it is a consequence of the changes in chemical 

composition of bushfire emissions.  

Both in-vivo and in vitro approaches have been used to test the toxicity of smoke and PM from 

bushfire and biomass burning. In-vivo studies on a range of species (e.g. rodents, rabbits, dogs) to 

determine specific biological end points from exposure to the smoke have been used to predict 

human toxicity (Dubick et al., 2002; Nieman et al., 1995; Thorning et al., 1982). In vitro testing 

typically involves cultured immortalised cell lines or primary cells (Franzi et al., 2011; Jalava et 
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al., 2012; Leonard et al., 2007; Nakayama Wong et al., 2011; Verma et al., 2009). These in vitro 

approaches have been widely adopted in recent years to identify the potency of inhaled substances 

(Aufderheide & Scheffler, 2011; Bakand et al., 2006). Owing to the ethical issues associated with 

in-vivo toxicity testing, as well as the higher cost and time consuming nature of this work, the use 

of in vitro methods is predicted to increase, particularly the use of cells and tissues derived from 

humans (U.S. National Research Council, 2007).  

With a predicted increase in bushfire frequency, and intensity, due to the effect of climate change 

(Hughes & Steffan, 2013), there are increasing concerns about the impact of bushfire emissions 

on population health. There is also a need to understand whether emissions under different 

combustion conditions and vegetation types results in differing toxicities. The development of in 

vitro toxicity testing is anticipated to meet the demand for a better understanding of the toxic nature 

of bushfire emissions on human health by making use of different cell types and physiologically 

relevant outcomes which will serve to inform agencies involved in the prevention and management 

of human exposures. 

To summarise what is already known and to identify the knowledge gaps, we reviewed the 

literature to explore the current state of knowledge on cell lines, methodological approaches used 

and the results obtained from in vitro studies that have investigated the toxicity of bushfire smoke.  

 

Approach and methodology 

A literature search was undertaken using various online sources of English journal articles 

including Google Scholar, ScienceDirect, PubMed and Web of Science. The keywords “toxicity”, 

“toxic”, “cytotoxic”, “genotoxic”, “in vitro” and “cell” were used to search papers related to in 

vitro toxicological research together with  the keywords “bushfire”, “wildfire”, “forest fire”, 

“vegetation fires”, and “biomass burning” to indicate the nature of fires. The references listed in 

papers found using this approach were also scanned to find all related studies that were not 

identified by the search engines. 

The initial focus of this review paper was bushfires and biomass burning in open large areas with 

all parts of the plant (leaves, branches, trunks and litter layer) consumed by the fire. However, due 

to the limited number articles on the topic, studies on in vitro toxicity testing of woodsmoke in 

general, were also included in the review.  
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Results 

From the review outlined above, fifteen articles were identified for inclusion with seven studies 

focused on emissions of bushfire and open biomass burning, and eight studies focused on 

woodsmoke. Since PM is a significant emission from bushfires and biomass burning and is 

relatively easy to collect and store for long periods of time, most of the in vitro toxicity studies 

have focused on investigating the impacts of PM. Investigations of the toxicity of whole 

woodsmoke on cells is limited to the single study conducted by Leonard et al. (2000).   

 

PM collection method 

A summary of sampling methods outlined in the studies reviewed is presented in Table 2.2. In 

studies that focused on bushfire and open biomass burning, PM was collected in the ambient air 

of areas that were some distance from the actual bushfire, except for the study by Leonard et al 

(2007). This study examined the toxicity of PM collected in the field close to a prescribed burn at 

a distance determined to be safe by firefighters. Meanwhile, the PM arising from woodsmoke was 

collected directly from the flue gas of experimental burns in furnaces/wood stoves/boilers.  

PM2.5 was the research focus of most of the identified studies (five of the seven studies on bushfire 

and open biomass burning and two of three studies on woodsmoke in which information of PM 

size was available). PM was collected onto filters or other types of substrates such as polyurethane 

foam and steel plate. Among different types of filters, glass fibre and Teflon filters were most 

commonly used (Table 2.2).
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Table 2-2.  Summary of sampling methodology of bushfire smoke and woodsmoke for toxicity testing 

Author Nature of smoke Types of filter/substrate Type of PM 

Bushfire/open biomass burning 

Jalava et al., 2006 Urban ambient air PM during wildfire and non-

wildfire episodes 

Polyurethane foam (PUF) sample substrates and 

glass fibre filters 

PM10–2.5, PM2.5–1, PM1–0.2 and PM0.2

Leonard et al., 2007 PM collected at field during prescribed burns Polyvinyl Chlorine (PVC) filters PM0.042–0.24, PM0.42–2.4 and PM4.2–24 

Verma et al, 2009 Urban ambient air PM during wildfire episode Teflon-coated glass fibre filters PM2.5  

Nakayama Wong et al., 

2011 

Fine rural ambient air during wildfire  Teflon-coated glass fibre filters PM2.1 

Franzi et al., 2011 Coarse rural ambient air PM during wildfire Cascade impactor substrate PM10.2-2.1

Pavagadhi et al., 2013 Urban ambient air during time affected by biomass 

burning from neighbouring country 

Quartz fibre filters and Teflon membrane filters PM2.5 

Alves et al., 2014 PM collected in ambient air of an area affected by 

biomass burning 

Teflon filters PM10 

Woodsmoke 
  

Leonard et al., 2000 Whole smoke from thermolyzing 100g of tree bark 

in a furnace at 400ºC 

Smoke was bubbled through saline  Whole smoke 

Liu et al., 2005 PM from thermal decomposition of 100 g of dry 

wood dust in a furnace at 500ºC 

Glass fibre filters Not specified

Karlsson et al., 2006 PM from burning dry wood/wood pellet in wood 

boilers/pellet burners 

Glass fibre filters Not specified

Kubátová  et al., 2006 PM from burning bulk wood in an airtight wood 

stove 

Not specified Not specified

Danielsen et al., 2011 Fine PM from burning 1kg of beech wood in a wood 

stove 

Steel plates used in an electrostatic precipitator PM4.2
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Author Nature of smoke Types of filter/substrate Type of PM 

Jalava et al., 2010 PM from burning logwood in a masonry heater Polyurethane foam (PUF) and glass fibre filters PM1-0.2 and PM0.2

Jalava et al., 2012 PM from burning pellet/wood chip/log wood in 

different styles of boilers/stoves 

Glass fibre filters PM1

Bølling et al., 2012 PM from burning wood in a small wood stove Polycarbonate filters PM0.1-2.5 and PM2.5-10  
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Toxicity testing methods 

In vitro toxicity endpoints  

Cytotoxicity is a basic assay in in vitro study, and cytotoxicity of a compound is considered as its 

potential to cause cell death (Eisenbrand et al., 2002). Cytotoxicity is used to interpret and assess 

other cellular responses (Mahto et al., 2010). Cytotoxicity can be assessed by using different assays 

such as MTT ((3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide), SRB 

(sulforhodamine B), LDH (lactate dehydrogenase), ATP (adenosine triphosphate). MTT and SBR 

are compounds having ability to react with some components/chemicals in viable cells to make 

the cells stained. Then the number of viable cells can be estimated based on colorimetric 

measurement (Mahto et al., 2010). LDH is an enzyme that is usually secreted when cells are 

damaged and can be used as an indicator of injury or illness (Chan et al., 2013). ATP in cellular 

nucleus plays significant role in energy exchange and takes part in several important cellular 

processes. The cellular ATP level decreases dramatically when the necrosis occurs and therefore 

ATP level can be used as an indirect marker of cytotoxicity (Mahto et al., 2010). Cytotoxicity 

assays using MTT or LDH were applied in the majority of the studies on toxicity of PM derived 

from bushfire smoke or biomass burning conducted to date (Table 2.3). 

In addition to cytotoxicity, the toxicity of a compound at the cellular level can also be determined 

based on other cellular responses such as induction of proteins, generation of oxidative stress, 

changes in gene expression and DNA damage (Eisenbrand et al., 2002).  

Responses and interactions between cells induced by pollutants can be elucidated by using the 

indirect approach of measuring the production of cytokines and other proteins secreted from cells. 

Some of the most commonly measured proteins are the pro-inflammatory cytokines interleukin 

(IL)-6, IL-8, tumour necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-2 

(Eisenbrand et al., 2002). NF-кB is a transcriptional regulatory protein that controls the 

inflammatory gene expression (Sun & Andersson, 2002) while caspase-3 and 7 are proteases 

contributing to the regulation of apoptosis and inflammation (Lamkanfi & Kanneganti, 2010; Wolf 

et al., 1999). 

To identify the generation of oxidative stress in cells, concentration of reactive oxidative species 

(ROS) such as NO, H2O2, O2
-, increase of glutathione (GSH) released, consumption of 

dithiothreitol (DTT) and generation of lipid peroxidation can be used as biomarkers (Danielsen et 

al., 2011; Jalava et al., 2006; Kubátová et al., 2006; Liu et al., 2005; Pavagadhi et al., 2013; Verma 

et al., 2009). GSH is a common antioxidant in cells and can sequester excess ROS generated, in 

an effort to protect cells from injury. Therefore, the increase in the amount of GSH can indirectly 
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indicate an increase of ROS (Pavagadhi et al., 2013). Lipid peroxidation occurs when the 

antioxidant system is overwhelmed and excess ROS degrades the lipids in cell membranes 

resulting in cell damage (Mylonas and Kouretas, 1999; Poljsak et al., 2013). DTT is a cell-free 

assay and when added to PM extract, DTT is oxidized by redox active components in the PM 

extract and the consumption of DTT indicates the oxidative capacity of PM (Charrier & Anastasio, 

2012).  

Genotoxicity of PM can also be determined. Fragmentation of DNA appears to be the most 

frequently measured parameter at the genetic level (Danielsen et al., 2011; Jalava et al., 2012; 

Karlsson et al., 2006; Liu et al., 2005), however other indirect genotoxic endpoints that have been 

used include damage events occurring in genes such as the presence of micronuclei (MCN), 

nucleoplasmic bridges and nuclear buds (Bølling et al., 2012; Fenech et al., 2011). 

A summary of toxicity endpoints used in the reviewed studies is presented in Table 2.3. 

 

Type of cells used 

The main route of exposure of humans to smoke is inhalation and many of the cell types that have 

been used in in vitro toxicity testing of bushfire and biomass burning smoke are from the human 

respiratory system. These include human bronchial epithelial cells – HBE, human lung epithelial 

respiratory cells - A549 and human pulmonary arterial endothelial cells (Table 2.4) (Alves et al., 

2014; Danielsen et al., 2011; Karlsson et al., 2006; Kubátová et al., 2006; Liu et al., 2005; 

Nakayama Wong et al., 2011; Pavagadhi et al., 2013). Epithelial cells of the respiratory tract are 

exposed directly to pollutants when the air/smoke is inhaled into the lung (Bakand et al., 2005, 

2006; Nakayama Wong et al., 2011). Endothelial cells are found inside all blood vessels and have 

a role in selectively exchanging material between the blood and the tissues. These cells also take 

part in other important processes such as vascular volume regulation, angiogenesis, permeability 

and immunity (Félétou, 2011), hence any damage to lung endothelial cells may lead to the 

dysfunction of these cells and cause pulmonary oedema (Liu et al., 2005). 
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Table 2-3. Summary of toxicity endpoints determined in toxicological studies on PM from bushfire and biomass burning 
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

     



    
 

   

Jalava et al., 2006                   

Leonard et al., 2007                   

Verma et al, 2009                   

Nakayama Wong et al., 2011                  

Franzi et al., 2011                   

Pavagadhi et al., 2013                   

Alves et al., 2014                

 

  
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Author 
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Leonard et al., 2000                 

 

Liu et al., 2005                 

 

Karlsson et al., 2006                 

 

Kubátová  et al., 2006                 

 

Danielsen et al., 2011                 

 

Jalava et al., 2010, 2012                 

 

Bølling et al., 2012                 
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Macrophages and their precursor, monocytes, are significant cells in the immune system and 

coordinate the response of the inflammatory system to toxicants (Guastadisegni et al., 2010; Jalava 

et al., 2012). Therefore other in vitro toxicity studies in bushfire and biomass burning smoke have 

used macrophages and monocytes to assess toxicity instead of cells of the respiratory system 

including mouse macrophage cells – RAW.264.7 (Franzi et al., 2011; Jalava et al., 2006; Kubátová 

et al., 2006; Leonard et al., 2007) and human monocytes – THP-1 (Bølling et al., 2012; Danielsen 

et al., 2011). These cells can provide an indication of the reaction of the human immune system 

when exposed to toxicants. 

 

Extraction methods applied to PM samples 

PM collected on filters and other substrates were used to expose cells after being prepared in 

solutions  The toxicity of different components of bushfire or woodsmoke PM have been 

investigated and the specific component investigated was dependent on the extraction methods 

used such as PM suspension, organic extract or water extract (Table 2.4). PM suspension can be 

prepared by simply suspending PM in water and materials used in cell culture (e.g. growth media, 

PBS) (Danielsen et al., 2011; Franzi et al., 2011; Karlsson et al., 2006; Leonard et al., 2007; 

Nakayama Wong et al., 2011). Extracting PM (PM extract) can be undertaken by using chemicals 

or water with the support of extraction enhancing techniques such as sonication or heat and 

pressure. Some studies have investigated the organic extracts of PM by using chemicals to extract 

PM such as dichloromethane (DCM), methanol, ethanol  and dimethyl sulfoxide (DMSO) (Alves 

et al., 2014; Danielsen et al., 2011; Jalava et al., 2006, 2010, 2012; Liu et al., 2005). These are 

organic compounds that can extract the contents in PM more effectively, but they also may have 

adverse effects on cells (Da Violante et al., 2002; Koop, 2006; Treichel et al., 2003; U.S. 

Environmental Protection Agency, 2011). The approach taken is to allow the organic solvent(s) to 

be removed by evaporation prior to exposing the cells (Danielsen et al., 2011; Jalava et al., 2006, 

2012). In some cases PM extracts  were diluted with cell medium (Liu et al., 2005) to minimise 

the potential for toxic effects. Kubátová et al. (2006) investigated water extract of woodsmoke PM 

by using hot pressured water as the extractant. Sonication was applied in most studies to enhance 

the extraction efficiency but extraction time varied considerably between studies (7 minutes to 2 

hours) (Table 2.4).  

 

Exposure methods applied to PM samples 

The most common exposure method was to add PM extract/suspension to cultured cells. There 

was one study (Pavagadhi et al., 2013) which introduced PM2.5 collected onto filters directly to 
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cells by placing the filters upside down and in direct contact with the cells in sample wells for 48 

hours.  

There was considerable variation in the approaches used to expose cells to PM. The majority of 

studies used a range of concentrations of PM solution to obtain a dose response in order to 

determine the dose generating responses (Danielsen et al., 2011; Franzi et al., 2011; Jalava et al., 

2006, 2010, 2012; Kubátová et al., 2006; Liu et al., 2005). Most studies used concentrations of 

greater than 10 µg.mL-1 in order to obtain significant toxicity responses. One exception is the study 

by Alves et al. (2014) where doses  of less than 1 µg.mL-1 of PM extract were added to cultured 

cells. Interestingly, this is also the only study that used organic solvents in both the extraction 

(DCM) and extract preparation (DMSO) steps.  

Cell exposure time varied from 30 minutes to 48 hours depending on the type of toxicological test 

and cell types used, with a common exposure time of 24 hours (Alves et al., 2014; Danielsen et 

al., 2011; Franzi et al., 2011; Jalava et al., 2006, 2010, 2012; Karlsson et al., 2006; Leonard et al., 

2000; Liu et al., 2005). Generally, a shorter exposure time, varying from 30 minutes to 4 hours, 

was applied for testing the generation of ROS and lipid peroxidation (Danielsen et al., 2011; 

Leonard et al., 2000, 2007; Liu et al., 2005; Nakayama Wong et al., 2011). To determine the cell 

viability, production of cytokines, LDH release and DNA fragmentation, longer exposure periods 

were used (12 to 48 hours)  (Bølling et al., 2012; Franzi et al., 2011; Jalava et al., 2006; Liu et al., 

2005; Pavagadhi et al., 2013).  



 

28 
 

Table 2-4. Summary of some main features of the methods used in in vitro toxicological studies on PM derived from bushfire/biomass burning.  

Author Type of cells 
PM 

extraction/suspension 

PM solution 

preparation before 

exposure 

Extraction 

time 
Exposure concentration Exposure time 

Bushfire/open biomass burning     

Jalava et al., 2006 Mouse macrophage 

cell line RAW 264.7 

Filters/substrate were 

sonication extracted in 

methanol, evaporated to 

remove methanol 

The extract was 

resuspended in non-

pyrogenic water using 

a waterbath sonicator 

for 30 min 

2x30 min  12, 50, 150, 300 µg/mL 24 hours 

Leonard et al., 2007 RAW 264.7 mouse 

peritoneal monocytes 

Filters were blended on 

ice into fine slurry in 

phosphate buffer saline 

(PBS), centrifuged to 

separate the smoke 

suspension and PM pellet 

Not specified Not specified 100 µg/mL Based on endpoints: 

- H2O2 measurement: 30 min 

in an incubator at 37ºC 

- Lipid peroxidation: 1 hour 

in a shaking waterbath at 

37ºC; 

- DNA: 30 min in a shaking 

waterbath at 37ºC  

Verma et al, 2009 Rat alveolar 

macrophage (AM) 

cells 

Not specified Not specified  Not specified Not specified 

Nakayama Wong et 

al., 2011 

Human bronchial 

epithelial (HBE) cells 

Ambient PM: Sonication 

in pyrogen-free water for 

1 hour; Wildfire PM: 

suspended in PBS.  

Extracts were diluted 

and dispersed by probe 

sonication 

1 hour 10 µg/mL 3 hours 

Franzi et al., 2011 Murine macrophage 

RAW 264.7 cells 

PM was collected by 

scraping the substrate 

then suspended at 1-2mg/ 

mL in water or in PBS 

Not specified   10 µg 

Dose response test:  

0 - 25μg for wildfire PM,  

0-50 μg for ambient PM 

- 30 min, 1 hour, 2 hours, 4 

hours, 6 hours and 24 hours 

- Dose response: 24 hours 
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Author Type of cells 
PM 

extraction/suspension 

PM solution 

preparation before 

exposure 

Extraction 

time 
Exposure concentration Exposure time 

Pavagadhi et al., 

2013 

Human epithelial 

lung cell line (A549) 

Filters were placed 

upside down and the 

collected PM2.5 contacted 

directly with the layer of 

cells  

   48 hours 

Alves et al., 2014 Human alveolar cells 

A549 

 

Filters was ultrasonically 

extracted in DCM; 

concentrated to 5mL 

The extracts were 

dissolved in DMSO  

3x10 min 0.1, 0.5  and 1.0 µg/mL Cell viability: 24 hours; 

Genotoxic test: 48 hours 

Woodsmoke             

Leonard et al., 2000 RAW 264.7 mouse 

peritoneal monocytes 

Bubbling the smoke into 

10mL saline for 1min 

100 µL of liquid 

sample was mixed with 

DMPO (100 µL), H2O2 

(100 µL) and PBS (700 

µL) 

 50 – 100 µL of mixture Based on endpoints: 

- Lipid peroxidation: 1 hour 

in a shaking waterbath at 

37ºC; 

- DNA damage: 24 hours 

- TNF-α: 12 hours  

Liu et al., 2005 Human pulmonary 

arterial endothelial 

cells 

Filters was soaked in 

DMSO for 30 min then 

the supernatant was 

collected by 

centrifugation and 

filtration 

Diluted with cell 

medium from the stock 

extracts (with the conc. 

of DMSO lower than 

0.5%) 

30 min  10, 20, 30, 40, 50 and 60 

µg/mL 

4 or 24 hours 

Karlsson et al., 2006 Human lung 

epithelial cells A549 

Human macrophages 

PM in filters was 

suspended in Milli-Q 

water by hand shake 

(2min) and sonication 

(5min). Then PM 

collected by freeze-dry  

The particles were 

suspended in Milli-Q 

water by vortex (5min) 

and sonication (15min) 

7 min Epithelial cells: 70µg/mL; 

Macrophages: 100µg/mL 

Epithelial cells: 4 hours 

Macrophages: 18 hours 

Kubátová  et al., 

2006 

Murine macrophage 

RAW 264.7 cells 

Bronchial epithelial 

BEAS-2B cells 

Fractionated by hot 

pressurized water 

The aqueous extracts 

were nitrogen-dried, 

redissolved in DMSO 

(0.25 wt. %) and then 

HBSS. 

Not specified 50µg/mL, 100µg/mL and 

200 µg/mL 

12 hours 
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Author Type of cells 
PM 

extraction/suspension 

PM solution 

preparation before 

exposure 

Extraction 

time 
Exposure concentration Exposure time 

Danielsen et al., 2011 Human lung 

epithelial cells A549  

Human mononuclear 

cells THP-1 

Suspended in Milli-Q 

water, separated by 

lyophilizing 

(Particles with tar: 

extracted with ethanol, 

evaporated to remove 

ethanol).  

PM suspension was 

prepared by sonication 

(8min) in cell media  

Not specified - LDH activity: 0, 2.5, 25, 

and 100 μg/mL  

- ROS production: 1.56, 

3.13, 6.25, 12.5, 25, and 50 

μg/mL  

- DNA damage: 0, 2.5, 25, 

and 100 μg/mL 

- Gene expression: 0, 2.5, 

25, and 100 μg/mL  

Based on endpoints: 

- LDH activity: 24 hours 

- ROS production: measured 

continuously 3 hours after 

exposure 

- DNA damage, gene 

expression: 3 hours 

Jalava et al., 2010, 

2012 

Mouse macrophage 

cells RAW264.7  

Extracted with methanol 

in ultrasonic bath, 

evaporated all methanol 

Ultrasonically 

resuspended in pyrogen 

free water with 0.3% 

DMSO 

30min 15, 50, 150 and 300 µg/mL 24 hours 

Bølling et al., 2012 Co-culture of two 

human cell lines, 

A549 pneumocytes 

and THP-1 

monocytes 

Methanol was used to 

dissolve PM and then 

evaporated. PM was 

suspended at 1mg/mL in 

cell culture medium by 

sonication 

Extracts were vortexed 

for 30 second 

30 min 40 μg/cm2 12 hours and 40 hours 
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In vitro toxicity of bushfire emissions and woodsmoke 

In vitro toxicity of bushfire/open biomass burning emissions 

Franzi et al. (2011) tested the effects on mouse macrophage cells, RAW 264.7 of coarse PM 

(diameter of 2.1–10.2 µm) collected during a severe bushfire in California, USA; and compared 

the results with the toxicity of urban ambient air PM2.1-10.2. The toxicity was evaluated using the 

cell viability and the activation of NF-κB. The urban ambient air PM was collected in the city of 

Fresno during usual ambient air quality conditions without the effects of bushfire emissions. This 

study found that the bushfire PM extract was five times more toxic compared with an ambient PM 

extract not impacted by bushfire smoke. The finding in this study was comparable with the result 

of Wegesser et al. (2009), who tested the toxicity of this bushfire PM in mice. The similar results 

obtained in these two studies, one in vitro and the other in vivo, strongly suggests that PM derived 

from bushfires has toxicity, at least in murine models. 

Similar results were observed by Pavagadhi et al. (2013) who investigated the toxicity of PM2.5 

impacted by bushfire smoke in Singapore with samples collected during periods with and without 

biomass burning using the human epithelial lung cell line A549.  A greater biological response 

was observed in cells treated with PM2.5, specifically decreased cell viability, increased apoptosis 

and GSH reduction, during the biomass burning period compared with the non-exposure period 

(Pavagadhi et al., 2013).  

Nakayama Wong and colleagues (2011) examined the effects of PM2.1 in bushfire-affected area 

on human airway epithelial cells comparing results with urban ambient samples. This study 

analysed the expression of a variety of inflammatory genes in epithelial cells. These genes are 

involved in chronic obstructive pulmonary disease and asthma symptoms in humans (Nakayama 

Wong et al., 2011). When grouping these genes into 3 processes: xenobiotic metabolism (CYP1A1 

and CYP1B1), reactive oxidative stress (HMOX1, PTGS2, DUOX1 and DUOX2) and 

inflammation (GAPDH, CCL20, GM-CSF, IL-1α, IL-1β, IL-8 and TNFAIP3), the study reported 

differences in the up-regulation of gene expression when the cells were exposed to both ambient 

air PM2.1 and bushfire PM2.1. The ambient PM induced predominantly inflammatory and oxidative 

stress genes, while xenobiotic and oxidative stress gene responses were mainly generated when 

cells were exposed to wildfire PM. Differences in the composition of PAHs and trace metals in 

PM, were suggested to explain differences in gene response to the two types of PM tested 

(Nakayama Wong et al., 2011).  

Verma et al. (2009) assessed the toxicological effects of bushfire PM2.5 by measuring the 

generation of reactive oxygen species (ROS) in rat alveolar macrophage cells while measuring 
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urban ambient air during a bushfire event. This study separated the collected PM2.5 into two 

periods: during a bushfire event and after the bushfire. When comparing the toxicity of PM2.5 

collected in these two periods using equal doses for cell exposure, higher concentrations of ROS 

were generated from PM2.5 collected in the period after the bushfire event when there would be 

less bushfire PM generated. However, this finding was contrary to a result which was also found 

in this study using dithiothreitol (DTT) in a cell-free system. Verma et al. (2009) measured higher 

DTT consumption in the extract from PM2.5 collected during the bushfire period compared with 

after the bushfire event, indicating higher concentration of ROS in the bushfire PM. Again the 

authors suggested that these apparently contradictory results were due to the effects of different 

components of PM, with the DTT assay suggested to be affected by polar compounds, e.g. 

oxygenated PAHs, while ROS in cells was mainly affected by the presence of transition metals, 

e.g. Fe, Ni, Cr, and Pb. Furthermore, the measured ROS was generated by the cellular metabolism 

process while DTT measured the redox activity of PM components (Verma et al., 2009). Both the 

studies of Verma et al. (2009) and Nakayama Wong (2011) could not conclude whether PM 

derived from bushfire smoke was more toxic than ambient PM, however they were able to 

demonstrate differences in toxicological endpoints.   

The effects of different sizes of bushfire PM on the generation of free radicals, one type of the 

ROS, causing oxidative stress in cells were investigated by Leonard et al. (2007). PM classified 

into 3 size fractions (ultrafine: 0.042–0.24µm, fine: 0.42–2.4µm and coarse: 4.2–24µm) was 

collected during prescribed burns with the sampling location in close proximity to the fires 

(Leonard et al., 2007). Mouse RAW 264.7 cells were exposed to suspensions of the three size 

fractions and the results showed significant increases in hydrogen peroxide (H2O2) generation and 

lipid peroxidation in cells treated by bushfire ultrafine and fine PM compared with the controls 

with no PM. No similar increases in these parameters were found for the coarse PM fraction 

suggesting that the generation of ROS is related to the size of PM generated by the fire and 

potentially its composition. A similar effect of PM size fractions on the ROS generation was also 

found by  Guan et al. (2016), where the cells exposed to finer PM generated more ROS compared 

with coarser size fractions. Free  radical generation during fires and their association with PM was 

suggested as a possible mechanism of “acute lung injury” from bushfire smoke (Leonard et al., 

2007). 

Jalava et al. (2006) also examined the toxicity on RAW 264.7 cells of four size fractions of PM 

including PM2.5-10, PM1-2.5, PM0.2-1 and PM0.2 under three different ambient conditions related to 

bushfires (bushfire event, mixed – both usual ambient and bushfire affected period and seasonal 

average ambient air quality episodes). This study found that the toxicity effect and endpoint of 
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different size fractions of PM varied. The smallest size fraction induced the highest apoptotic 

activity, while the largest fraction showed the least activity. However, when considering other 

toxicity markers including NO production, cytokines (TNF-α and IL-6) production and cell 

viability, the larger size fractions (PM2.5-10 and PM1-2.5) were found to be more cytotoxic than the 

smaller fractions (PM0.2-1 and PM0.2) (Jalava et al., 2006).  

The discrepancy in toxicity of different size fractions of PM between the studies of Leonard et al. 

(2007) and Jalava et al. (2006) may be due to the difference in type of PM tested. Leonard et al. 

(2007) analysed newly generated PM from prescribed burns, while Jalava et al. (2006) investigated 

PM after long-range transport. Bushfire emission sources in the study by Jalava et al. (2006) were 

from Finland’s neighbouring countries with resultant increases in PM2.5 concentrations in ambient 

air, particularly PM0.2-1 mass concentrations, during bushfire and mixed episodes. PM0.2-1 was 

identified as the size fraction that was mostly associated with long-range transport of bushfire 

aerosols (Jalava et al., 2006). When comparing the toxicity of PM0.2-1 across the different sampling 

periods, it was found that with the same PM dose, the particulates collected during bushfire and 

mixed episodes were less toxic, as assessed using cytokines production assay, than those collected 

during the seasonal average period. The photodegradation of PAHs in PM after long-range 

transport was considered to be a possible explanation for this phenomenon, since concentrations 

of PAHs in this size fraction were lower in the bushfire and mixed episodes compared with 

concentrations in the seasonal average PM0.2-1 (Jalava et al., 2006). Photodegradation is also a 

possible explanation for the findings of Jalava et al. (2006) who found the locally produced coarser 

particulates induced more toxicological effects than the finer particles transported from more 

remote emission sources. 

Alves et al. (2014) compared the cytotoxicity and genotoxicity of PM10 generated from biomass 

burning collected in a Brazilian city in the Amazon region. The viability of A549 cells was 

significantly reduced when they were exposed to PM10 collected during an intense fire period 

(more than 180 burns occurring) compared with PM collected in a lower intensity fire period (5 

burns). At the genetic level, exposure to the intense biomass burning PM10 also caused a 

significantly higher frequency of micronuclei, an indicator of DNA damage, supporting the notion 

that PM10 collected in periods of intense biomass burning induces greater toxicological effects on 

human lung cells than PM10 derived from less intense burning periods (Alves et al., 2014). 

In vitro toxicity of PM derived from woodsmoke 

The in vitro toxicity of woodsmoke has been studied by several researchers to examine the effects 

of emissions generated from residential wood combustion systems (Bølling et al., 2012; Danielsen 

et al., 2011; Jalava et al., 2012, 2010; Karlsson et al., 2006; Kubátová et al., 2006; Leonard et al., 
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2000; Liu et al., 2005). Due to the nature of woodsmoke, which is generated from burning wood 

in a burning device, samples of woodsmoke have been collected from laboratory experiments. As 

a result, the toxicity of woodsmoke in different combustion phases and conditions has been 

examined in many studies.  

Liu et al. (2005) examined cell apoptosis and oxidation stress released by woodsmoke PM in 

human pulmonary artery endothelial cells (HPAECs). Extracts of woodsmoke PM generated from 

burning dry wood dust at 500°C were added to the cells and then intracellular ROS and GSH 

levels, cell viability, apoptosis cells and DNA fragmentation were assessed. Woodsmoke PM 

extracts were found to be cytotoxic with the cell viability decreased to 38% of the control at the 

extract concentration of 40µg.mL-1. HPAECs exposed to woodsmoke released more intracellular 

ROS and less GSH level compared with the control, which might demonstrate that woodsmoke 

induced intracellular oxidative stress. This study also found that the cell apoptosis was accelerated 

and the DNA fragmentation of cells was enhanced when HPAECs exposed to woodsmoke (Liu et 

al., 2005), demonstrating a range of toxicological effects of PM emitted from combustion of wood 

at this temperature. 

Jalava et al. (2010) investigated the biological responses of woodsmoke PM1-0.2 and PM0.2 emitted 

in smouldering combustion and normal combustion conditions (with flue gas temperature of 

around 160°C and 250°C, respectively) in a conventional masonry heater. The smouldering 

combustion condition was produced by eliminating the air supply and overloading the heater with 

smaller sized wood logs compared with normal combustion conditions. RAW 264.7 cells were 

exposed to PM extracts and the toxicity was assessed by the cell viability, cell apoptosis and 

generation of cytokines IL-6, TNF-α and MIP -2. Different sizes of PM were observed to have 

different toxicological effects depending on the size fraction where PM0.2 produced less TNF-α 

but higher MIP-2 than the PM1-0.2. PM from smouldering combustion was found to be more toxic 

than normal combustion conditions with larger MIP-2 response, slightly higher TNF-α production 

and lower cell viability response (Jalava et al., 2010).  

In another study on woodsmoke, Jalava et al. (2012) examined the toxicity of PM1 emitted from 

seven types of heating systems, varied by different types of fuel used (logwood, pellet and wood 

chip), technology applied (old and new) and types of stove (boiler, stove and tiled stove). Using 

the same cell type, testing procedure and toxicity endpoints as the study by Jalava et al. (2010), 

the study found that PM emitted from the old technology logwood boiler caused the highest 

cytotoxicity, and the emissions from old technology combustion generated more MIP-2 than the 

modern device (Jalava et al., 2012). 
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A comparison of the toxicity of woodsmoke PM4.2 generated from two different combustion 

conditions was conducted by Danielsen et al. (2011):  high temperatures (100 – 120°C) with high 

oxygen and much lower temperatures (below 60°C) in a low oxygen condition. A549 and THP-1 

cells were exposed to suspension of PM collected from the two combustion conditions and the 

toxicity of PM was determined by measuring LDH release and ROS generation. For both types of 

cells, the PM from low oxygen combustion generated more ROS than the high oxygen combustion 

derived PM. LDH release did not increase significantly after exposure to either of PM suspensions 

(Danielsen et al., 2011). The study also found that the woodsmoke PM was more toxic than the 

rural ambient air PM, with significant increases in ROS production, DNA damage and oxidative 

gene expression in cells exposed to woodsmoke PM compared with rural ambient air PM 

(Danielsen et al, 2011). 

In a study comparing the toxicity of different types of PM generated by human activities, Karlsson 

et al. (2006) examined PMs emitted from burning wood in old-type and modern wood boilers and 

from burning pellets. A549 cells were exposed to PM suspensions and the toxicity was assessed 

through DNA damage and generation of cytokines IL-6, IL-8 and TNF-α. The woodsmoke PM 

had been discovered to have lower potential inflammatory effects compared with traffic PM. 

Among three types of woodsmoke PM investigated in this study, PM from burning wood and 

pellets had similar effects on DNA damage, while the PM from burning wood in modern boiler 

had the highest IL-6 generation and PM from burning pellets had the highest IL-8 induction. 

Karlsson et al. (2006) concluded that the combustion efficiency of boilers did not determine the 

toxicity of woodsmoke PM generated.  

Bølling et al. (2012) investigated the toxicity of woodsmoke PM0.1-2.5 and PM2.5-10 generated from 

different combustion phases in a cast iron stove. The combustion of biomass is often divided in 

three phases of ignition, flaming and smouldering (Koppmann et al., 2006). These combustion 

phases generate different chemical components which may have different adverse impacts (Alves 

et al., 2010b; Vicente et al., 2012). Bølling et al. (2012) collected samples of PM0.1-2.5 and PM2.5-

10 in smoke from burning a mixture of birch and fir separately in the start-up phase (ignition), the 

burn-out phase (flaming and smouldering) and the whole combustion process (comprising both of 

the two phases). The combustion temperatures of these experiments were measured around 500-

800°C (Bølling et al., 2012). A co-culture of A549 and THP-1 cells was exposed to the PM extract 

to test LDH release and cell viability. No significant differences in LDH release or the number of 

viable cells were found from the PM arising from the three combustion phases. This study also 

compared the toxicity of PM generated in these combustion experiments with PM (with geometric 

diameter of carbon particulate measured at 31±7 nm) from burning birch in high-temperature 
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combustion conditions (700-1000°C) in a conventional stove. A higher concentration of LDH 

release and reduction in cell viability resulted from exposure to the medium-temperature (500-

800°C) combustion PM indicating that the PM from lower temperatures in a cast iron stove was  

more toxic than particulates collected during the high-temperature burning process (Bølling et al., 

2012). However, due to the differences the experimental set-up, such as fuel type and stove used, 

it is not clear whether the difference in toxicity of derived PM was caused by combustion 

temperature or other combustion conditions.    

In general, most studies on woodsmoke toxicity found the PM generated under incomplete 

combustion conditions (e.g. smouldering, low oxygen) or with older technology were more toxic 

than PM emitted from more complete combustion conditions or newer technology.  

 

Toxicity of whole woodsmoke 

Leonard et al. (2000) investigated the toxicity on RAW 264.7 cells of whole woodsmoke generated 

from thermolyzing bark in a furnace at 400°C. Woodsmoke generated at different periods of time 

after ignition (from 0 minute to 20 minutes) was bubbled through saline for 1 minute and then the 

bubbled solutions were added to cells. The toxicity of woodsmoke to cells was assessed based on 

DNA damage, lipid peroxidation level and generation of the cytokine TNF-α. The study found that 

woodsmoke caused DNA damage and the smoke collected at latter periods (15 minutes and 20 

minutes after ignition) had more significant effects on DNA damage compared with smoke 

collected at the beginning of the burns. The lipid peroxidation levels and the generation of TNF-α 

of cells exposed to woodsmoke were also found increased compared with the control by 2.9-fold 

and 2.1-fold, respectively (Leonard et al., 2000). 

 

Discussion  

In vitro toxicity of PM derived from bushfire/biomass burning emissions  

The results of in vitro toxicological testing of the effects of bushfire/biomass burning PM varied 

substantially between studies due to the differences in the cell types, PM extraction methods, 

exposure concentrations and times of exposure. However, most of the studies have shown that 

particulates derived from bushfire/biomass burning have an adverse impact on cells. Fine 

particulates (PM2.5) from primary bushfire smoke were generally found to elicit greater biological 

responses than the coarse particulates (PM4.2-24) (Leonard et al., 2007). Some studies found that 

PM from smoke was more toxic than ambient PM (Franzi et al., 2011; Pavagadhi et al., 2013), 
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while other studies have presented results which suggest that mechanisms underlying the toxicity 

differ between bushfire PM and ambient PM (Nakayama Wong et al., 2011; Verma et al., 2009).  

Woodsmoke has been tested for toxicity of PM arising from different combustion phases and 

conditions using in vitro methods. The toxicity of woodsmoke PM appears to change as a 

consequence of combustion conditions, including parameters such as temperature, oxygen 

concentrations and technology of boiler/heater using (Bølling Anette Kocbach et al., 2012; 

Danielsen et al., 2011; Jalava et al., 2012, 2010). The chemical composition of PM from 

woodsmoke under the different combustion conditions (Rau, 1989) appears to be the likely cause 

of the differences in toxicity. From the results obtained in woodsmoke studies, it can be expected 

that the toxicity of bushfire PM may also change under different combustion conditions, however 

to date, no studies have addressed this issue for bushfire smoke. Wood burning could be used to 

understand the response to bushfires, however, because of the differences in fuel types, in terms 

of composition, moisture and the amount of fuel being burned in wood burning and bushfires, the 

results of woodsmoke PM toxicological studies may not adequately represent the toxicity of 

bushfire smoke. Studies on the effects of combustion conditions on the toxicity of bushfires should 

be conducted to enhance our understanding on the toxicity of bushfire emissions.  

Furthermore, each vegetation type has a specific fuel structure and content and therefore is likely 

to generate different chemical compounds and in differing concentrations in smoke when being 

burned (McMeeking et al., 2009; Possell & Bell, 2013). Some woodsmoke studies investigated 

the effects of chemical composition of PM on in vitro biological responses. Jalava et al. (2012) 

observed a positive correlation between inflammatory response of RAW 264.7 and level of PAH 

compounds in woodsmoke PM, while Verma et al. (2009) found a significant association between 

ROS generated by mouse macrophages with water-soluble transition metals. The differences in 

chemical components generated from combustion of different vegetation types may cause different 

toxicological effects that have not been addressed in toxicological studies on bushfire/biomass 

burning and thus further investigation on toxicity of bushfire emissions from different fuel types 

is required. 

Most of the literature on in vitro toxicity of bushfire and open biomass burning smoke covered in 

this review focused on the PM sourced from bushfire after ageing of the particulates during long-

distance transport. The biological effects of PM generated at, or near, bushfires in the field have 

not been investigated thoroughly with only the study by Leonard et al. (2007) collecting PM in the 

field during prescribed burns. The toxicity of PM after long-distance transport might change due 

to the chemical transformation of unstable components, e.g. organic compounds (Jalava et al., 

2006). Therefore, the observed toxicity of bushfire/open biomass burning PM in the majority of 
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studies may not reflect the effects on people who are in close proximity to the smoke. Individuals 

exposed at close range would include the firefighters and communities living close to natural 

bushfires or those residing in areas in which prescribed burns are routinely conducted.  

Apart from PM, bushfire and open biomass burning emissions consist of a variety of other 

pollutants that may also negatively impact human health. Some of the hazards of these pollutants 

have been investigated and confirmed in studies of air-sheds, however few studies have 

investigated the in vitro toxicity of these pollutants when sourced from bushfires, and only a single 

study was found which examined the toxicity of whole woodsmoke (Leonard et al., 2000). This 

paucity of data may be due to the difficulties in sample collection in remote sites and the episodic 

nature of bushfire events which makes it difficult to assess the toxicological effects of the gaseous 

pollutants. Even though the toxicity of many of the individual pollutants is generally well 

established, the toxicity of combined gaseous pollutants is difficult to assess (Naeher et al., 2007).  

 

In vitro methods of toxicity testing  

The most commonly reported method used in testing the in vitro biological effects of PM from 

bushfire/open biomass burning or woodsmoke was to extract or to suspend PM in a solution to 

which the test cells are then exposed. After incubation in the culture medium containing the PM, 

the cells or cell supernatant are then analyzed to determine toxicological responses either by 

measuring cytotoxic responses or by determining other cellular responses. However, as previously 

noted, there are substantial differences in the experimental design and methods of these studies 

including the types of cells tested, extraction solvents, extraction times, doses and times of cell 

exposure. These differences may account for variation in the results of the toxicological studies. 

For example, when comparing two durations of exposure (12 hours and 40 hours, Bølling et al. 

(2012) found that the production of IL-6, IL-8 and LDH release increased with exposure time 

while TNF-α concentration decreased. Franzi et al. (2011) tested the viability of RAW 264.7 cells 

after exposed to the same dose of bushfire PM (10 µg) for 0.5, 1, 2 4, 6 and 24 hours and found 

that the number of dead cells was highest after 0.5 hour of exposure. After 24 hours the number of 

dead cells was similar between cultures treated by wildfire PM and PBS (10 µL) as a control. This 

result might be due to the higher proliferation rate of surviving cells after treatment by bushfire 

PM compared with the control (Franzi et al., 2011). Furthermore, the use of different toxicological 

endpoints among studies is also a challenge when comparing the results from different studies. 

The above variations are not specific to bushfire/biomass burning in vitro toxicological studies, 

but are also problems for in vitro studies of air pollutants in general. 
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To enable direct comparisons to be undertaken between studies, as well as to be able to reflect 

physiologically relevant conditions, it is necessary to develop standard protocols for in vitro 

toxicological testing of bushfire PM, similar to some existing protocols for nanoparticles (The 

International Organization for Standardization, 2010, 2016). These protocols should recommend 

which solvent should be used for extraction to better imitate physiological conditions. The dose 

and time of exposure should also be suggested based on the calculation of particulate loads inhaled 

into the respiratory system; this would provide results that better reflect a human exposure 

scenario. Types of filters used for PM collection and types of cell used for exposure should also 

be recommended in the protocols. The majority of studies included in this review used glass fibre 

and Teflon filters to collect PM for toxicity testing. However, Karlsson et al.(2006) found that the 

fibre from glass fibre filters accounted for up to 25% of mass of PM extracted from filters and 

therefore contributed to the effects on outcomes. This issue should be taken into account when 

recommending a suitable type of filter. When choosing types of cell used for in vitro toxicology 

studies of air pollutants, mouse macrophages RAW 264.7 and human epithelial cells A549, which 

have been applied in the majority of studies, are possible candidates. 

As discussed previously, toxicity of whole bushfire smoke should be assessed because assessing 

the toxicity of bushfire smoke using extracted material may present limitations in terms of our 

understanding of the potential health impacts of bushfire smoke exposure. Leonard et al. (2000) 

evaluated the toxicity of the whole woodsmoke by bubbling the smoke into saline over 1 minute. 

However, the efficiency of this method depends on the solubility of the components of 

woodsmoke. This method only assesses the toxicity of soluble components and may underestimate 

the toxicity of smoke as a complex mixture made up of many compounds. Although the technique 

of direct exposure has not been employed by studies assessing bushfire toxicity, the toxicity of 

complex bushfire emissions could be assessed with in vitro techniques that have been used to test 

the hazards of cigarette smoke or airborne pollutants (Aufderheide & Scheffler, 2011; Bakand et 

al., 2006; Nara et al., 2013). In these studies, cells were exposed directly to smoke by drawing 

smoke through an incubation chamber so that it contacts with cells at the air-liquid interface. 

Bakand et al. (2006) used a horizontal diffusion chamber system to expose cells to NO2; while 

Aufderheide & Scheffler (2011) and Nara et al. (2013) applied a device to expose cells to cigarette 

smoke. This direct exposure method imitates the in vivo exposure conditions better than the 

indirect method (solubilizing the gas in the culture medium), especially in the case of poorly 

soluble gases (Aufderheide, 2005). This method is also suitable for testing and evaluating the 

combined effects of gaseous and particulate phases in complex mixtures (Knebel et al., 2002).  
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Conclusions  

This review focused on the in vitro toxicological effects of bushfire/open biomass burning 

emissions. There is a paucity of studies investigating the toxicity of bushfire/open biomass burning 

emission. Furthermore, the application of a wide range of experimental design and methods creates 

difficulties in comparing results from different studies.  It is recommended that researchers 

standardise protocols to enable comparison between studies of different vegetation types and 

combustion conditions as well as toxicological outcomes to provide a clearer picture of the 

potential for health impacts from specific types of bushfires. The protocols should recommend 

types of filters used for PM collection, PM extraction method, types of cells used for exposure, 

exposure time and dose and toxicity endpoints evaluated. Furthermore, there is a need to evaluate 

whole smoke of bushfire to consider the biological responses following exposure to this complex 

mixture. It is also recommended that further work should be undertaken on the toxicity of newly 

generated bushfire PM compared with aged smoke to better understand the potential for health 

impacts in those exposed to bushfire smoke.  

Update of recent published works 

Since the review paper was published (Dong et al., 2017) further studies on in vitro toxicity of PM 

from biomass burning have been published (Deering-Rice et al., 2018; Kasurinen et al., 2018; 

Marchetti et al., 2019). Deering-Rice et al. (2018) introduced woodsmoke PM (size fractions 0.43–

10µm) extracts to several types of human cells including embryonic kidney (HEK-293), A549, 

BEAS-2B cells and examined the transient receptor potential V3 (TRPV3) activation using a 

calcium flux assay. This study found that the activation of TRPV3 was dependent on the chemical 

composition of the PM and this contributed to the pneumotoxicity of particulates. Kasurinen et al. 

(2018) compared the differences between cell models using monocultures (A549 or THP-1) and 

co-cultures of these two cell types after exposure to PM1 from wood burning. The study found that 

all PM samples had a negative impact on cells and there was a diversity of cellular responses 

(inflammatory cytokines and chemokines production, ROS production, cytotoxicity, genotoxic) 

which were affected by the exposed cell type and composition of PM. Another recently published 

study by Marchetti et al. (2019) examined the cell viability, cytokine production, oxidative stress 

responses and DNA damage of A549 cells exposed to PM10 in smoke from burning pellets, 

charcoal and wood. These authors also found that the cellular responses were related to the 

chemical composition of PM10 and different types of biomass may have different toxicological 

pathways. The lack of any recent studies on in vitro toxicity of PM from vegetation fires once 

again emphasises the urgent need for more studies on this neglected but important consideration 

of the impacts of wildfire smoke.   
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 EMISSIONS OF INORGANIC GASES 

(This chapter is an article manuscript titled “Emissions of CO2, CO, SO2, NO and NO2 from laboratory-

based fires of five common vegetation types in Western Australia” which has been submitted to the Journal 

of Geophysical Research - Atmospheres) 

 

Abstract 

This study investigated the emission factors (EFs) for CO2, CO, SO2, NO and NO2 from laboratory-based 

fires of vegetation from five typical vegetation types of Western Australia including three grasslands 

(Spinifex represented by Triodia basedowii, Kimberley grass represented by Sehima nervosum and 

Heteropogon contortus, and an invasive grass represented by Ehrharta calycina (Veldt grass)), Banksia 

woodland and Jarrah forest in different combustion conditions. Combustion conditions were altered by 

controlling the vegetation moisture content (<10%, 12-16% and 20-25%) and air flow rate (0, 1.25 and 2.94 

m.s-1). Burns of woodland (Banksia) and forest (Jarrah) had significantly higher EFs for CO, resulting in 

lower modified combustion efficiency (MCE) than those of tropical grass (Spinifex). Temperate grass 

(Veldt) fires had significantly lower EFCO2 and higher EFCO than those of the tropical grass fires. EFs for 

SO2, NO and NO2 were variable between different vegetation types, indicating variation in nitrogen and 

sulphur content of the fuels. Moisture content did not strongly influence the MCE and EFs, but flow rate 

had a significant effect. The results for MCE, EFs for CO and CO2 were similar to values reported from 

field measurements for similar ecosystems in Australia, indicating the applicability of these laboratory-

based results. However, emission factors produced in this study are different to the profiles generated from 

vegetation fires in other parts of the world. To improve prediction of bushfire emissions and impacts in 

Australia, EFs of all fire-prone Australian vegetation types should be determined, particularly for those 

vegetation types in close proximity to densely populated urban areas where smoke pollution might pose a 

health risk.    

Keywords: bushfires, vegetation fires, inorganic gases, CO2, CO, SO2, NOx 

 

Introduction  

Emissions from bushfires, also called vegetation fires, including wildfires and prescribed burns, 

(planned fires with the purpose of reducing the combustible vegetation load) have been 

increasingly studied in recent decades due to an increase in frequency of these events and the 

significant amount of pollutants emitted to the atmosphere (Andreae and Merlet, 2001; Koppmann 

et al., 2006; Vicente et al., 2011). Bushfire smoke consists of many compounds, emitted in two 

phases: gaseous and particulate. Of the gases emitted, carbon dioxide (CO2), carbon monoxide 

(CO), nitrogen oxides (NOx) and sulphur dioxide (SO2) are the most common combustion products 
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and have been measured in most of the studies investigating emissions of inorganic gases from 

vegetation fires. 

CO2 is the main product of biomass burning due to the high carbon content of biomass.  CO is a 

by-product of incomplete combustion and may be present in high concentrations in bushfire 

smoke, depending on combustion conditions, such as fuel moisture, burning temperature and stage 

of the fire (Koppmann et al., 2006; Reisen and Tiganis, 2007). NOx is a mixture of nitrogen oxides, 

with nitric oxide (NO) and nitrogen dioxide (NO2) the main components (US Environmental 

Protection Agency – USEPA, 1999), and can react with free radicals to form ozone in the 

troposphere, which is an important air pollution problem and the primary component of smog 

(USEPA, 1999). NO is the most abundant form of NOx emission from vegetation combustion 

(Andreae and Merlet, 2001). Biomass burning has been estimated to contribute to about 40% of 

CO and 20% of NOx in total global emissions (Langmann et al., 2009). SO2 is also generated from 

burning biomass (Andreae and Merlet, 2001). The reaction of SO2 and other atmospheric 

compounds can lead to the formation of small particles, such that SO2 is considered a major 

precursor of ambient PM2.5 (European Environment Agency - EEA, 2014). The emissions of NOx 

and SO2 from bushfires have been found to be dependent on the chemical composition of fuel 

(Burling et al., 2010; Lacaux et al., 1996). 

Emissions of bushfires can be estimated by multiplying fuel load, burned area, combustion 

efficiency and emission factors for pollutants of interest (Possell et al., 2015).  Emission factor 

(EF) for pollutants is defined as the amount of pollutant generated from the burning of a mass unit 

of dry fuel. Therefore, it is an important metric for studies investigating emissions from fires.  

Bushfire emissions are highly depended on vegetation composition which is significantly different 

between geographical regions (De Vos et al., 2009). The distinct vegetation composition of 

different areas raises the necessity of EFs for pollutants emitted from fires of local vegetation types 

for better emission prediction. Australia is a fire-prone country with an  estimated contribution of 

about 8% to total global carbon emission from biomass burning (Paton-Walsh et al., 2010). In 

recent years, more attention has been paid to emissions from bushfires in Australia with a number 

of studies undertaken. Most of these examined the emissions from northern Australian savanna 

fires which account for a high proportion of bushfires in this country (Desservettaz et al., 2017; 

Paton-Walsh et al., 2010; Shirai et al., 2003; Smith et al., 2014; Wang et al., 2017a, 2017b). Other 

studies have investigated fires of grassland and forests in the south-eastern part of the continent 

where many metropolitan cities are located (Guérette et al., 2018; Paton-Walsh et al., 2014, 2005; 

Possell et al., 2015). Western Australia (WA) is the largest state of Australia, accounting for one 

third of the country’s area and can experience bushfires at any time of the year due to its large 
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latitudinal variation (Bryant, 2008). However, research on emissions from bushfires in WA is 

limited (De Vos et al., 2009; Reisen and Brown, 2009; Reisen et al., 2006b). Of those that have 

been undertaken they have focused on the concentration of air pollutants in bushfire smoke to 

which firefighters were exposed, and did not produce data on emission factors for the different 

pollutants.  

With the above context, this study was conducted to investigate the chemical composition of 

smoke from burning some typical vegetation types in Western Australia (WA) (including three 

grasslands (two tropical and one temperate), one woodland and one forest) in the laboratory with 

the aim of producing emission factors for the main pollutants: inorganic gases (CO2, CO, NO, NO2 

and SO2), volatile and semi-volatile compounds, and particulate matters from WA vegetation fires. 

This study also examined the effects of combustion conditions (controlled by flow rate and fuel 

moisture content) on the emission profiles of pollutants. This chapter will discuss the results for 

inorganic gases only. Data on other pollutants will be presented in other chapters of this thesis.   

 

Methodology  

Combustion experimental set-up 

An oval-shaped ceramic chamber was used for combustion of vegetation samples (Figure 1).  The 

chamber had a small door near the bottom where air could be drawn through. At the top of the 

chamber, a system of 6” stainless steel duct with a total length of 10 metres was connected to the 

outlet of the chamber to collect the emitted smoke. Smoke was drawn through the duct using an 

exhaust fan which could create different wind speeds in the chamber. The sampling area was 

located at the end of the duct system, before the exhaust fan, and consisted of five sampling ports 

of varying diameters to collect and measure different components of the smoke including 

aldehydes, particulate matter, inorganic gases, temperature, and velocity of smoke flow and VOCs, 

in order (Figure 3.1). The design of the horizontal duct system, varying in height levels, not only 

facilitated the sampling and measurement process, but also contributed to the effective mixing of 

smoke along the duct. The smoke was well mixed and confirmed by the relatively constant PM2.5 

mass collected at different positions on a cross-section of PM sampling point (Table A1.1, 

Appendix 1).  
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Figure 3-1. Schematic diagram of combustion experiment set-up 

A thermocouple was installed in the combustion chamber to measure the temperature change 

inside the chamber throughout the combustion process. A thermal anemometer (TSI Model 

TA430) was installed to measure the temperature of the smoke at sampling points and the velocity 

of smoke flow inside the duct. Vegetation samples were placed in a stainless steel wire box 

(dimensions 303030 cm) on a stainless steel frame inside the chamber. The purpose of placing 

vegetation in the wire box was to minimise the turbulence of vegetation caused by changes in air 

flow rate, which might influence the combustion process of the small amounts of vegetation used. 

The vegetation burn was ignited for 10 seconds using a propane torch via the door near the bottom 

of the chamber (Figure 3.1).  

 

Experimental combustion conditions 

Air flow rate and vegetation moisture content were used as factors to create different combustion 

conditions. Vegetation samples were prepared at three moisture contents: “dry” – <10%; “moist” 

– 12 to 16% and “wet” – 20 to 25% (see section on Vegetation sample preparation). The range of 

moisture levels of the vegetation was chosen to mimic the range of conditions that could be found 

in both wildfires and  prescribed burns (Bush Fire & Environmental Protection Branch, 2007; Fire 

Management Branch, 2011; Marsden-Smedley, 2009).  

Three air flow rates were used in the experiments (no flow, low and high flow rate). For the “no 

flow” condition the exhaust fan was not used and oxygen was supplied for the burn from fire-

induced convective movement of air into the combustion chamber (Figure 3.1). At low and high 
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flow conditions, the fan was operated at speeds that created the flow rates of 1.3 m.s-1 (equivalent 

to 4.5 km.h-1) and 2.9 m.s-1 (equivalent to 10.6 km.h-1) respectively in the chamber. These air flow 

rates are within the limit wind speeds recommended for prescribed burn in different vegetation 

types in Australia (Bush Fire & Environmental Protection Branch, 2007; Marsden-Smedley, 

2009).  

 

Types of vegetation  

Five common vegetation types, including three grasslands, a woodland and a forest from WA were 

chosen based on their prominence in wildfires and prescribed fires recorded by agencies in charge 

of bushfire fighting in WA (Bryant, 2008). Samples for each vegetation type were collected based 

on the abundance of species in each vegetation type (Gibson et al., 1994). Samples used for 

combustion consisted of up to five common species mixed in the same ratio of weight to represent 

each vegetation type. Due to the large geographical distribution of grasslands which account for 

around 85% of WA land area (WA EPA, 2006) and the regular fires in these systems, three types 

of grassland were included in this study.  

Spinifex, dominated by the genus Triodia, is a hummock grassland distributed extensively in arid 

areas of Australia covering an area of nearly 1.4 million km2, accounting for 18% of the total area 

of Australia. Spinifex is also the largest major vegetation group of WA (Department of 

Environment and Water Resources, 2007). Triodia basedowii, the most dominant species of 

Triodia, was collected in the Gascoyne, a region in the north-west of WA, and used as 

representative of spinifex grassland. Another tropical grassland was from the Kimberley, a 

northern remote region of WA which is dominated by grasslands. Due to the dry and hot weather, 

grassland fires occur regularly in the Kimberley (WA EPA, 2006). Two common grass species 

Sehima nervosum and Heteropogon contortus were collected and used as representative of 

Kimberley grassland. The third grassland sampled around Perth was an invasive grass, Ehrharta 

calycina (Veldt grass) which is a perennial temperate grass from South Africa. It was accidentally 

introduced to Australia and has become a widespread weed, invading many types of bushland in 

WA (Sanford & Reed, 2006). Its presence has been shown to increase the risk of bushfires 

(DiTomaso et al., 2013).  

Banksia woodland is a common native vegetation type on the coastal plains of WA. With a diverse 

number of species forming several layers of fuel and being fire-prone, this vegetation type often 

experiences intense bushfires (Burrows and McCaw, 1990). Five dominant species including 

Banksia attenuata, Hibbertia hyperricoides, Acacia saligna, Xanthorrhoea preissii and 

Allocasuarina frasenriana were collected to form a representative sample of Banksia woodland. 
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Jarrah forest is another native vegetation type located in the south-west of WA. This type of 

vegetation is recorded as being subject to the largest number of fires, accounting for around 28% 

of total vegetation fires recorded by the WA Department of Environment and Conservation in the 

period 1999 to 2003 (Bryant, 2008). Five dominant species from the jarrah forest were collected 

including Eucalyptus marginata, Corymbia calophylla, Hakea undulata, Xanthorrhoea preissii 

and Lepidosperma drummondii. 

 

Vegetation collection and vegetation sample preparation 

Above-ground samples of the plants of grasses and leaves and twigs with diameters of less than 

5mm of vegetation species representing the Banksia woodland and Jarrah forest were cut from 

trees in the field. These were transferred to the laboratory and stored at 4°C until processing (cut 

into small pieces of 20-30 cm in length and dry). Vegetation was dried gradually at 40°C in an 

oven until the target moisture content was achieved. Each vegetation type was prepared with three 

moisture content levels (<10%, 12–16% and 20–25%).  

To determine moisture content, sub-samples of each species were weighed using balance (Explorer 

Ohaus) and then were put in an oven (Modul Temp) at 80oC for 24h. After being dried for 24h, 

sub-samples were re-weighed and the moisture content of each species was calculated using the 

following formula: 

𝑀𝐶𝑖 =
𝑚𝑤−𝑚𝑑

𝑚𝑤
∗ 100%      

Where: 𝑀𝐶𝑖: moisture content of species i; 𝑚𝑤: weight before drying (g); 𝑚𝑑: weight after drying 

at 80oC for 24h (g).  

The moisture content of each vegetation type including different species were calculated from the 

moisture content of each species using the following formula: 

𝑀𝐶 =
∑ 𝑚𝑖∗𝑀𝐶𝑖

𝑛
1

∑ 𝑚𝑖
𝑛
1

∗ 100%       

Where: 𝑀𝐶: overall moisture content of the vegetation sample (n=1 to 5) (%); 𝑀𝐶𝑖: moisture 

content of species i in this type of vegetation; 𝑚𝑖: weight of species i in the vegetation sample (g) 

All vegetation samples were burned within 2 weeks of preparation after storage in plastic bags at 

4oC. The moisture content of samples changed very little during storage (0–0.4%) (see Table 

A1.2).  
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Combustion experiments 

Three replicate 25 g samples of each type of vegetation were burned under each combustion 

condition. Veldt grass did not ignite and combust at the two highest moisture contents (moist and 

wet) and since the Kimberley grass species were collected in dry condition, emissions from the 

grasses was restricted to dry grass.  

After every burn, the combustion chamber was cleaned using a brush and the whole system was 

cleaned thoroughly by using the extraction force of the exhaust fan for at least 30 minutes. Burns 

(termed “blank burn”) were conducted with the application of the propane torch only (without a 

vegetation sample in the chamber) to take into account the possibility of pollutants remaining in 

the system and affecting pollutant concentrations in subsequent burns. These blank burns were 

conducted before the 1st and after every 9th experimental burn. In blank burns, only CO2 and NO 

concentrations increased due to the combustion of propane and N2 in the air (accounting on average 

for about 6% and 1% of the sampled values, respectively) and the increased values were subtracted 

from the vegetation burns. 

 

CO2, CO, SO2, NO2 and NO measurement 

The concentrations of CO2, CO, SO2, NO2 and NO in the smoke were measured using a real-time 

multi-gas monitor MultiRAE Lite Pumped (Honeywell, USA). CO2 was measured by a non-

dispersive infrared (NDIR) sensor (RAE Systems Inc.). Other remaining gases were measured 

using electrochemical sensors (RAE Systems Inc.). The use of electrochemical sensors enabled 

measurement of multiple gases simultaneously, but may have underestimated the gas 

concentrations due to potential negative cross-interference between sensors (i.e. NO2 and SO2). 

Nevertheless, the results for these gases have been presented and compared with values reported 

in the literature to see whether they were comparable. The working ranges of the MultiRAE were 

0 to 50,000ppm (CO2), 0 to 2,000ppm (CO), 0 to 20ppm (SO2), 0 to 20ppm (NO2) and 0 to 250ppm 

(NO) respectively. The MultiRAE was calibrated with ambient fresh air before each experiment 

using a pre-set procedure in the instrument. The instrument was also calibrated using reference 

gases periodically as recommended by the manufacturer. 

Measurements of inorganic gases inside the duct during the burning process were automatically 

recorded every 5 seconds throughout the combustion process, starting as the vegetation was ignited 

and continuing for 6 minutes after ignition. The concentrations of gases generated by the burns 

were calculated by deducting the concentrations in ambient air (as measured inside the duct prior 

to ignition) from the readings recorded during the burn.  
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There were instances where the concentrations of some gases exceeded the working ranges of the 

instrumentation; this mostly occurred in the burns with the no fan condition applied. The 

distribution of concentration peaks of these gases with sampling time in cases that did not exceed 

the instrumentation’s working ranges followed a sixth degree polynomial equation with R2>0.99 

(see Figure A1.1). Therefore, the sixth-degree polynomial functions of sampling time were used 

for the extrapolation of . the over-range concentrations of gases.  

 

Calculation of emission factors and modified combustion efficiency 

The fire-integrated emission factors (EF) of emitted pollutants were calculated using carbon mass 

balance method as follows (Desservettaz et al., 2017): 

𝐸𝐹𝑖 =
𝑚𝑖

𝑚𝑓𝑢𝑒𝑙
=

𝑚𝑖

𝑚𝐶
𝐹𝐶 

Where 𝐸𝐹𝑖: emission factor of pollutant i (g.kg-1 dry fuel); 𝑚𝑖: mass of pollutant i emitted (g), can 

be calculated using the formula: 𝑚𝑖 = ∫ 𝐴 × 𝐶𝑡 ×
𝑡𝑓

𝑡𝑠
𝑣𝑡 × 𝑑𝑡   (Irfan et al., 2014) where 𝐴: area of 

the duct at sampling points; 𝑡𝑠 𝑎𝑛𝑑 𝑡𝑓: start and finish times of sampling period; 𝐶𝑡: concentration 

of pollutant i at time t (mg.m-3); 𝑣𝑡: velocity of smoke at time t (m.s-1); 𝑑𝑡: interval of each record 

(dt = 5s). 

𝑚𝐶 is the amount of C emitted (g), and is calculated as the sum of carbon mass emitted in CO2, 

CO, hydrocarbons and particulates (McMeeking et al., 2009). Hydrocarbons and aerosol carbon 

were not evaluated in this study, and since CO2 and CO are the major carbonaceous products of 

bushfires (>95%, Meyer et al., 2012) carbon mass emitted in CO2 and CO was used in this 

calculation, which might slightly inflate the EFs (May et al., 2014). 

𝐹𝐶  is the carbon content of fuel. Since fuel composition was not analysed in this study, we used 

the values reported for Australian vegetation by Hurst et al. (1994) which were 45% for grass and 

48% for leaves and twigs to calculate the EFs for pollutants from burning grass and 

woodland/forest, respectively.  

Modified combustion efficiency (MCE) is a parameter indicating the efficiency of a combustion 

process, with more complete combustion resulting in higher values of MCE. Combustion with an 

MCE over 0.9 indicates a dominant flaming phase, MCEs from 0.8 to 0.9 suggest a mixture of 

flaming and smouldering phases, and an MCE below 0.8 indicates combustion to be mainly in the 

smouldering phase (Lee et al., 2008; Sinha et al., 2003). 

The MCE of each burn was calculated using the formula (Ward and Radke, 1993): 
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𝑀𝐶𝐸 =
𝐶𝐶𝑂2

𝐶𝐶𝑂2
+ 𝐶𝐶𝑂

 

Where 𝐶𝐶𝑂2
 and 𝐶𝐶𝑂: carbon content in emitted CO2 and CO. 

In some cases in order to see more clearly the relationships between emissions of gases, number 

of moles of some gases (calculated by dividing the amount of an emitted gas by its molecular 

weight) were used instead of the emission factors.  

 

Statistical analysis 

Relationships between variables were assessed using regression analysis. The influence of 

vegetation type on inorganic gas emissions was evaluated using one-way analysis of variance 

(ANOVA) and Kruskal-Wallis tests, for normally and non-normally distributed data respectively, 

using SPSS ver.25 (IBM). Post-hoc Tukey and Dunn-Bonferroni tests were performed for 

significant ANOVA and Kruskal-Wallis results, respectively. The effects of moisture content and 

flow rate on emissions were investigated using permutational multivariate ANOVA 

(PERMANOVA) using PRIMER 6+ (PRIMER-E). A significance value of p<0.05 was utilised for 

statistical analysis.  

 

Results  

Emission factors  

Carbon dioxide and carbon monoxide  

Emission factors for CO2 across all combustion conditions were similar for Spinifex, Banksia and 

Jarrah (Figure 3.2a). Significant differences between the emissions factors for CO from burning 

the three vegetation types were observed (Figure 3.2b). The EFCO from Spinifex burning was 

significantly lower; more than 2-fold less than those of Banksia and Jarrah, which indicated the 

combustion of Spinifex was more complete than that of the other vegetation types. 

In contrast, the EF for CO2 from burns of different grasslands showed a significant difference 

between Veldt grass and the other two types of grass. EFCO2 of the temperate grassland was much 

lower than that of the tropical grasslands (Figure 3.3a). Conversely, Veldt grass burning emitted 

184 g.kg-1 (dry fuel) of CO which was more than 2-fold higher than those from Spinifex and 

Kimberley grass burning (Figure 3.3b).  

 

Sulphur dioxide  
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Significant differences were also observed between SO2 emissions from the different vegetation 

types. Banksia yielded the highest EFSO2, followed by Jarrah and Spinifex. Post-hoc testing showed 

that grass had significantly lower EFSO2 compared with the woodland and forest (Figure 3.2c). 

Among the three types of grasslands, Spinifex had the highest emission of SO2, followed by Veldt 

grass. Kimberley grass burns generated a very small EFSO2, the difference being statistically 

significant between Spinifex and Kimberley grass (Figure 3.3c).  

 

Nitrogen oxides  

NO was the most abundant nitrogen oxide generated. The average EFs for NO in all combustion 

conditions were similar for the three vegetation types of Spinifex, Banksia and Jarrah (Figure 

3.2d). Meanwhile, EFNO for the grasslands were significantly different, with Spinifex burns 

generating the highest emissions of NO, followed by Veldt grass and then Kimberley grass (Figure 

3.3d). 

Across all vegetation types NO2 was emitted in smaller amounts compared with NO. Spinifex had 

the highest NO2 emission, followed by Banksia. Jarrah had the lowest EFNO2 which was around 

half that of Spinifex (Figure 3.2e). For the three grassland types, the NO2 emission results were 

the reverse of those found for EFNO. Kimberley grasses emitted the highest EFNO2, followed by the 

Veldt grass and then Spinifex (Figure 3.3e).   

Since NO and NO2 emitted from combustion are rapidly interconverted depending on combustion 

temperature (Paul et al., 2008), NOx is often reported for both NO and NO2 (Akagi et al., 2011). 

EFs for NOx were significantly different between three types of grasslands but not for NOx 

emissions when comparing vegetation types (Figure 3.2f). 

 

EFs under different combustion conditions 

The variation of EFs for inorganic gases under different combustion conditions controlled by fuel 

moisture content and air flow rate is presented in Figure 3.4. Fuel moisture content had a 

significant effect on the CO2 emission factors of the Spinifex and Banksia, but not for the Jarrah. 

EFCO2 from burning wet Spinifex was higher than that from dry and moist grass, whilst lesser 

amounts of CO2 were observed from moist and wet Banksia burns compared with dry woodland 

vegetation (Figure 3.4a). Similarly, EFCO was also influenced by fuel moisture content, with 

significant difference between wet and dry/moist Spinifex burns, and between moist and dry 

Banksia burns (Figure 3.4b).  
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Fuel moisture content had some effect on the emission factors of SO2 with a significant increase 

in EFSO2 observed from burning Jarrah under wetter conditions. EFSO2 from both Spinifex and 

Banksia burning did not change significantly with different moisture contents (Figure 3.4c). The 

EFNO2 from burning Spinifex was also not impacted by fuel moisture content, however the EFs for 

NO2 were influenced by moisture content in Banksia and Jarrah with less NO2 emitted from burns 

of moister vegetation (Figure 3.4d). For NO, the fuel moisture content had a significant effect only 

on the emissions from Banksia, with the lowest EFNO generated from burning moist Banksia 

(Figure 3.4e).  

The flow rate showed strong effects on emissions of CO2, CO and SO2 across all vegetation types. 

While EFs for CO2 significantly decreased with the increase in the air flow rate, EFs for CO and 

SO2 increased (Figure 3.4a, b, c). Emissions of nitrogen oxides seemed to be less affected by air 

flow rate, with significant changes only observed from burning Banksia for EFNO2 and Spinifex 

for EFNO (Figure 3.4e, f). 
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a)                                                                            b)                                                                             c) 

        
      d)                                                                              e)                                                                             f) 

       
 

Figure 3-2. Box plots showing the EFs for inorganic gases (a - CO2, b - CO, c - SO2, d - NO, e - NO2 and f - NOx) emitted from burning Spinifex, Banksia and Jarrah in 

all combustion conditions. Black squares in the box plots show the mean values (n=27). Significant differences between types of vegetation are presented by the 

letters a, b and c at top of the box plots. The differences were evaluated using one-way ANOVA tests (for CO2, CO, and NO2) and Kruskal-Wallis test (for SO2, NO 

and NOx) with P<0.05 
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a)                                                                            b)                                                                             c) 

        
      d)                                                                              e)                                                                             f) 

         
Figure 3-3. Box plots showing the EFs for inorganic gases (a - CO2, b - CO, c - SO2, d - NO, e - NO2 and f - NOx) emitted from burning Spinifex, Kimberley grass and 
Veldt grass in dry condition. Black squares in the box plots show the mean values (n=9). Significant differences between kinds of grasses are presented by the 
letters a, b and c at the top of the box plots. The differences were evaluated using Kruskal-Wallis tests (for CO2, CO, SO2 and NO2) and one-way ANOVA test (for 
NO and NOx) with P<0.05
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a)  

         

 

b)  
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c)  

           

 

d)  
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e)  

           

 

f)  

            

Figure 3-4. Variation of EFs for inorganic gases (a - CO2, b - CO, c - SO2, d - NO, e - NO2 and f - NOx) from burning vegetation in different moisture contents under 
different air flow rates (n=27). Letters a, b, c at the top of each bar group represent the significant difference between different fuel moisture contents. Letters x, 
y, z at the top of each bar represent the significant difference between different flow rates. Influences of moisture content and flow rate were assessed using 
PERMANOVA with p<0.05
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Modified combustion efficiency (MCE) 

The fire-integrated MCE (for the whole burn in 6 minutes sampling) from burning vegetation 

ranged from 0.75 to 0.97, depending on vegetation type and combustion conditions.  

Of the different types of vegetation, Spinifex had the highest average MCE, suggesting that 

combustion was mainly in the flaming phase and this pattern was significantly different to the 

combustion of Banksia and Jarrah which consisted of two phases (Figure 3.5a). Amongst the grass 

types, Spinifex and Kimberley grass combustion had similar MCE values, whilst the Veldt grass 

had a significantly lower MCE compared with other kinds of grass, suggesting that this grass had 

less of the flaming and more of the smouldering phase (Figure 3.5b).  

a)                                                                                          b) 

   

Figure 3-5. Box plots showing the MCE of vegetation burn. a) Different types of vegetation (n=27); b) 
Different kinds of grass (n=9). Black squares in the box plots show the mean values. Significant differences 
between kinds of grasses are presented by the letters at the top of the box plots. The differences were 
evaluated using one-way ANOVA test (for different types of vegetation) and Kruskal-Wallis test (for 
different kinds of grasses) with P<0.05 

 

Fuel moisture content had impacts on the MCE from burning Spinifex and Banksia but no effect 

on MCE of Jarrah (Figure 3.6). Burns of wet Spinifex had significantly higher MCE than those of 

dry and moist grass, whilst burns of Banksia in moist and wet conditions had lower MCE than that 

of dry Banksia (Figure 3.6a, b). Compared with fuel moisture content, flow rate had a stronger 

influence on the MCE and increased flow rates significantly reduced the MCE of burns across all 

vegetation types (Figure 3.6). For Spinifex, MCE in the high flow rate significantly decreased 

compared with the no and low flow rate conditions, and there was little difference in MCE at the 

two lowest flow rates (Figure 3.6a). However, the effects of flow rate on MCE of Banksia and 

Jarrah combustion were more pronounced with a steeper decrease in MCE in the low and high 

flow rate conditions (Figure 3.6b, c). 
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a)                                                                           b)     

   

                                         c) 

 

Figure 3-6. Variation of mean MCE of burns of vegetation (a - Spinifex, b - Banksia, c  - Jarrah) in different 
moisture contents under different air flow rates (n=9). Letters a, b, c at the top of each bar group represent 
the significant difference between different fuel moisture contents. Letters x, y, z at the top of each bar 
represent the significant difference between different flow rates. Influences of moisture content and flow 
rate were assessed using PERMANOVA with p<0.05. 
 

Relationship between MCE and emissions of inorganic gases 

No relationship with MCE was observed for emission factors for NO, NO2 and NOx. A negative 

relationship between MCE and emissions factor for SO2 was observed. Across all vegetation types 

a significant relationship was observed (R2 = 0.43) between MCE and EFSO2 (Figure A1.2). Strong 

correlations were found between the number of moles of CO2
 and the number of moles of NOx 

emitted from burns of individual vegetation types (except for Banksia - Figure A1.3). 

Discussion 

Influence of combustion conditions on EFs and MCE 

Fuel moisture content influenced the combustion of different vegetation types in different ways. It 

was expected that the increase in vegetation moisture content would prolong the smouldering 
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phase, resulting in higher emissions of CO and a decrease in combustion efficiency (Chen et al., 

2010; Tawfiq et al., 2015). However, this expected trend was only observed for burns of Banksia. 

Fires of Spinifex showed the reverse trend with a significantly higher MCE from burns of wet 

grass compared with those of drier grass. Spinifex is a highly flammable species since its leaves 

contain flammable resin (Central Land Council, 2013). It is possible that the higher amount of 

flammable resin in wet Spinifex compared with dry and moist vegetation might enhance the 

combustion efficiency since the resin might be lost during the drying process. There were no 

significant changes in MCE for burns of Jarrah with different moisture contents. A similar 

observation was reported by May (2017) in a study investigating the effects of moisture content 

on energy release and emissions of pyrophytic vegetation in a laboratory setting where a similar 

MCE was observed when burning dry (1–2%) and wet (10–15%) eucalyptus which is similar to a 

representative species of Jarrah in this study. This study and the study by May (2017) used similar 

methods to prepare vegetation in different moisture contents. The process used an oven to dry 

vegetation gradually until the desired levels were achieved, instead of drying vegetation to constant 

weight then adding water or allowing the dry sample to absorb water vapour until reaching the 

desired moisture contents (Chen et al., 2010; Smith et al., 2013). The slow drying method might 

better reflect the natural drying process of vegetation in the field and retain some combustible 

lipids in the vegetation, resulting in wet vegetation combusts as well as the dry samples (May, 

2017).     

On the other hand, the increase in air flow rate significantly decreased the EFCO2 and increased the 

EFCO, resulting in a decrease of MCE. This trend was contrary to initial expectations that the higher 

flow rate would mean more oxygen supplied thereby enhancing combustion efficiency. The 

direction of air supply significantly influenced combustion efficiency in vegetation fires (Surawski 

et al., 2015). Surawski et al. (2015) conducted a laboratory-based study investigating combustion 

of wildland fuels in different fire spread modes (heading – fire propagates with the wind, backing 

– fire against the wind, and flanking – fire perpendicular to the wind). That study found that CO 

emission in heading fires was about 2-fold that of the other two remaining fire spread modes. MCE 

rapidly decreased and smouldering was the longest combustion phase in heading fires (Surawski 

et al., 2015). The design of this present study (ignition and air supply using the same door at the 

bottom of the chamber) might result in heading fires in which the intense force of the high air flow 

rate (in the context of the small amount of vegetation burned) quickly cooled down the fire and 

hence eliminated the flaming phase, causing the lower values of MCE and higher emission of CO. 

The average highest temperature recorded in the burning chamber decreased from around 200ºC 
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in no flow rate conditions, to 130ºC in low flow rate conditions to 70ºC in high flow rate 

conditions. 

 

Relationship between MCE and EFs for inorganic gases 

The inverse correlation between MCE and EFSO2 observed in this study was similar to the findings 

of some field- and laboratory-based studies (Burling et al., 2010; Sinha et al., 2003). Even though 

the emission of SO2 has been found to be associated with the flaming phase (Lobert et al., 1991),  

Sinha et al. (2003) reported a reasonably strong negative relationship with R2=0.56 in emissions 

from African savanna fires. Burling et al. (2010) also observed a negative correlation (R2=0.55) 

between EFSO2 and MCE in laboratory measurements of wildland fuels. The natural variability of 

fires and differences in sulphur content in fuel might be responsible for these observations (Burling 

et al., 2010; Sinha et al., 2003). 

Strong correlations between emission factors of CO2
 and NOx in this study were supported by the 

finding of Lacaux et al. (1996) who also found a strong linear relationship between the 

concentrations of NOx and CO2 emitted from African savanna fires. CO2 is the main product of 

vegetation burning and higher values of CO2 are related to the combustion of more fuel. Since the 

emissions of NOx are dependent on the chemical composition of the fuel it was not surprising to 

find a significant positive relationship between NOx and CO2 emissions. Similar results in this 

study confirm that the formation of NOx in bushfires is highly correlated with CO2 emissions and 

thus mainly occurs in the flaming phase (Lacaux et al., 1996).  

 

Emission factors of different vegetation types in a global context 

A comparison of EFs for inorganic gases observed in this study and other studies is presented in 

Table A1.3. There was only one laboratory-based data set for tropical grass fires, that of Chen et 

al. (2007), available for comparing with the data collected in this study. Although the EFCO2 was 

similar, the EFs for CO from tropical grasses in this study were 3-fold higher than the value 

reported for Dambo grass in the US. This result lead to a higher MCE in the study by Chen et al. 

(2007) compared with the present study (0.98 vs. 0.95). Comparisons with field-based data from 

Australian savanna show that the EFs for CO2 and CO found in this study were slightly lower than 

those reported by Shirai et al. (2003) and Smith et al. (2014) but in the range reported by 

Desservettaz et al. (2017). The EFs for SO2 for all kinds of grass were lower than the reported 

values for savanna with factors of more than two in other vegetation types (Akagi et al., 2011; 

Sinha et al., 2003). The EFs for nitrogen oxides from burning grasses in this study were also 

different to those reported in other studies (Table A1.3). From the results of this work, it can be 
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seen that there were significant differences in MCE, EFs for CO2 and CO between temperate grass 

(Veldt) and tropical grass (Spinifex and Kimberley). Explanations for these differences could be 

many and varied but the most likely is that temperate and tropical grasses may have different 

chemical compositions, in addition to differences in growing season which could influence the 

carbon content and combustibility of the different species.  

When EFs reported for Banksia are compared with laboratory-based data produced by Burling et 

al. (2010) and McMeeking et al. (2009) for coastal plain fuels and chaparral in the US, it appears 

that the MCE, EFCO2 and EFCO values of Banksia are very similar to values reported for chaparral, 

however, EFs for NOx and SO2 of Banksia were 2 to 3 times higher than those of chaparral, 

respectively (Table A1.3). 

For forest vegetation, the EF for CO of Jarrah was higher than laboratory measurements reported 

for Amazon forest species and boreal forest (McMeeking et al., 2009; Soares Neto et al., 2011). 

This might be due to the significant difference in fuel compostion between vegetation types. MCE, 

EFs for CO2 and CO recorded in this study were similar to the values obtained from field 

measurements for other Australian temperate forests (Guérette et al., 2018; Paton-Walsh et al., 

2014) and US temperate forest (Liu et al., 2017) while EFs for SO2 and NOx from Jarrah were 4 

to 6 times higher than those reported for US temperate forest (Liu et al., 2017) (Table A1.3). 

Despite some MCE values being similar to other vegetation types in other parts of the word, 

emission profiles of inorganic gases of Australian vegetation types were different for substances 

where emissions are highly dependent on fuel composition such as SO2 and NOx (Burling et al., 

2010). Therefore the use of EFs from fires in one vegetation type and region may not be suitable 

for predicting emissions in other parts of the country. It is suggested that a more accurate 

understanding of bushfire emissions in Australia can only be achieved by sampling a greater range 

of vegetation types across different parts of the country.  

 

Conclusion  

This study has produced a data set on emission factors for typical vegetation types in Western 

Australia based on controlled experimental burns of representative vegetation. The agreement in 

MCE, EFCO2 and EFCO between this study and other field-based studies on emissions from fires of 

similar ecosystems in Australia suggests that the EFs can be applied for predictive modelling 

purposes.  

This study found that fuel moisture content and air flow rate had significant influences on modified 

combustion efficiency and the emission factors for CO2 and CO. EFs for other gases which are 
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highly dependent on the relative fuel chemical content, including SO2, NO and NO2, were less 

influenced by the combustion conditions. However due to significant differences between 

laboratory and field conditions (e.g. amount of fuel burned, fuel composition), further studies 

focusing on generating emissions factors for these gases from field-based measurements are 

recommended in order to benchmark the laboratory-based data obtained in this study.  
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 EMISSIONS OF SEMI-VOLATILE  

AND VOLATILE ORGANIC COMPOUNDS 

 

4.1. Introduction  

Bushfire smoke contains numerous trace volatile and semi-volatile compounds which could have 

adverse impacts on human health depending on the degree of exposure and concentration of 

smoke. These include carbonyls (aldehydes and ketones) and volatile organic compounds (VOCs). 

Formaldehyde is categorised as a carcinogenic substance (Group I) to humans by the International 

Agency for Research on Cancer (IARC, 2012) and also causes irritation to eyes and upper 

respiratory tract, asthma and eczema (WHO, 2010). Exposure to high concentrations of 

formaldehyde has been shown to cause nasal tumours in experimental rats (Leikauf and Katz, 

2005). In a study of firefighters’ exposure during prescribed burns in Australia, Reisen et al. (2006) 

reported that 28% of monitored firefighters were exposed to concentrations of formaldehyde 

higher than the proposed occupational exposure standard (0.3 g.m-3). Formaldehyde emitted from 

bushfires also has a significant influence on the OH- balance and ozone production in the 

atmosphere due to the process of photolysis (Radojevic, 2003; Sinha et al., 2003). Acetaldehyde 

has been found to cause cancer in rats following inhalation exposure and is categorised as a 

possible human carcinogen due to its ability to interfere with DNA synthesis and repair (IARC, 

2010). Other aldehydes are not considered to be carcinogenic but nonetheless have adverse impacts 

on human health if exposure occurs at high concentrations. For example, acrolein can irritate the 

mucous membranes, the airways and the skin (Faroon et al., 2008).  

VOCs emitted from vegetation fires can also react with nitrogen oxides in the atmosphere to form 

tropospheric ozone, an important greenhouse gas and precursor of smog (Shirai et al., 2003; 

USEPA, 1999a). Benzene, a major VOC detected in bushfire smoke (Ferek et al., 1998; Reisen et 

al., 2006a), is a genotoxic compound and has been associated with increased risk of acute myeloid 

leukaemia and cancer in children (Li et al., 2015; WHO, 2010).  

In recent years, several studies have been conducted which have reported emission factors for 

some aldehydes and VOCs in bushfire smoke in Australia (Paton-Walsh et al., 2014, 2010; Possell 

and Bell, 2013b; Shirai et al., 2003; Smith et al., 2014). Shirai et al. (2003) measured and reported 

the mixing ratios and emission factors for some VOCs from northern Australian savanna fires 

using aircraft measurements. Studies by Paton-Walsh et al. (2010, 2014) and Smith et al. (2014) 

produced emission factors for formaldehyde from ground-based measurements at fires in field 
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settings. Possell and Bell (2013) reported emission factors of some VOCs from experimental burns 

of eucalyptus foliage. The main focus of these studies was the measurement of emissions from 

savanna fires in the northern part and savanna/forest fires in the south-eastern regions of Australia. 

Reisen and Brown (2009) and De Vos et al. (2006) measured the exposure of WA firefighters to 

formaldehydes and VOCs during bushfire fighting, however these studies did not calculate the 

emission factors for these substances.  

Few studies have examined emissions of semi-volatile and volatile compounds from burns of 

different vegetation types under varying combustion conditions which may affect the emission 

characteristics (Ciccioli et al., 2001; Radojevic, 2003). In this context, this chapter investigates the 

emission profile of carbonyl and VOC compounds associated with different WA vegetation types 

under different combustion conditions.  

 

4.2. Methodology and study design 

 Experimental set-up, preparation of vegetation samples and combustion experiments 

The experimental set-up and design of the combustion experiments were described in Chapter 3. 

Different carbonyl compounds and VOCs were collected or measured simultaneously through 

several ports at the sampling area during the combustion process.  

For carbonyl (and particulate matters – chapter 5) sampling, fifty grams (50 g) of vegetation was 

burnt each time in triplicate for each vegetation type under each combustion condition. Air samples 

from blank burns without vegetation were also collected to examine the potential accumulation of 

contaminants in the duct system. Blank burns were conducted after every nine vegetation burns.  

 

 Carbonyl sample collection and analysis  

a) Collection 

Carbonyls in smoke were collected in sorbent tubes containing silica gel pre-coated by 2,4-

Dinitrophenylhydrazine (DNPH) (SKC Cat. No. 226-119) using an active sampling pump (SKC 

Aircheck®52) set at flow rate of maximum 1.0 L.min-1 for a period of 6 minutes throughout the 

whole burning process, following the instructions of the manufacturer of sorbent tubes (SKC, 

2004). The sorbent tubes were cooled to ambient temperature and the two ends were broken 

immediately prior to sample collection. In order to avoid the effects of sunlight on the collected 

carbonyls, the sorbent tubes were wrapped in aluminium foil following the manufacturer’s 

recommendation during sampling and transport processes (SKC, 2004). After sampling, the 
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sorbent tubes were transported to the laboratory in a portable cooling box and then stored at <4°C 

until being desorbed (within 2 weeks after sampling), prior to chemical analysis. 

The flow rates of the pump before and after sampling were measured using an SKC pump 

calibrator. The flow rate used for calculating the concentration of carbonyls was the average value 

of pre- and post-sampling flow rates. The difference in the flow rates before and after sampling 

for all sample collection was less than 10%, which is within the recommended value in the standard 

method TO-11A (USEPA, 1999b). 

The concentrations of carbonyl compounds in blank burns were less than 3.0% of the 

concentrations recorded in the burnt vegetation samples (Table A2.1, Appendix 2). Emissions 

from blank burns were subtracted from samples to correct for the possibility of pollutants 

remaining in the combustion apparatus.  

b) Carbonyls analysis 

Carbonyl derivatives desorption and analysis   

Carbonyl compounds in smoke were adsorbed by 2,4-DNPH in the sorbent tube to form DNPH-

carbonyl derivatives. These derivatives were then de-adsorbed in the laboratory and measured to 

quantify the amount of carbonyls adsorbed. A pilot test was conducted to check whether 

breakthrough occurred and it found that there were no breakthroughs for most compounds when 

burning 50 g of vegetation and collecting samples in 6 minutes, with the exception of acrolein 

(Table A2.2). Sampling acrolein using DNPH tubes is not recommended by the tube manufacturer 

due to the instability of DNPH-acrolein derivative (SKC Operating Instructions – Sorbent Sample 

Tubes). Therefore, data on acrolein was not considered in the analysis and will not be discussed in 

this chapter. 

Carbonyl samples were desorbed following the protocol of TO-11A (USEPA, 1999b) with some 

modifications for the use of sorbent tube. Following sampling, the sorbent tubes were broken and 

the silica gels contained in the tubes were transferred into 15 mL glass vials which had been 

cleaned thoroughly and rinsed with acetonitrile (Fisher Chemical, HPLC grade). Five (5) mL of 

acetonitrile was added to the vials to desorb the DNPH-carbonyl derivatives. The purity of 

acetonitrile was tested for carbonyl contamination as instructed in TO-11A (USEPA, 1999b). An 

average amount of 1.47 ng.L-1 of formaldehyde was found in the reagent, which is within the limit 

recommended by TO-11A. No other carbonyl contaminants were detected (Table A2.3).  

The vials were stored in a refrigerator at 4ºC before being analysed using high performance liquid 

chromatography-ultraviolet detector (HPLC-UV) to quantify derivatives of DNPH and seven 

carbonyl compounds including formaldehyde (CH2O), acetaldehyde (CH3CHO), acrolein 
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(CH2=CHCHO), acetone (CH3COCH3), propionaldehyde (CH3CH2CHO), benzaldehyde 

(C6H5CHO) and butyraldehyde (CH3CH2CH2CHO). Before the HPLC analysis, solvent in vials 

was divided into 2 aliquots of 2 mL and transferred into 2 mL vials; one was used in HPLC analysis 

and one was stored at 4ºC for confirmatory analysis if necessary (USEPA, 1999b).  

A mixed standard of carbonyl-DNPH derivatives was purchased from Sigma-Aldrich (Cat. No. 

47649-U). A Phenomenex Luna Omega 1.6um C18 100A (100 x 2.1 mm) column was used and 

the UV detector was operated at 360 nm. The results obtained from HPLC-UV were concentrations 

of derivatives of DNPH and carbonyl compounds. Therefore, in order to calculate the 

concentrations of carbonyls in solution, the ratio of molecular weights between carbonyl 

compounds and their relative DNPH derivatives was taken into account using the following 

formula (USEPA, 1999b): 

𝐶𝑎𝑙 = 𝐶𝑑𝑒 ×
𝑀𝑊𝑎𝑙

𝑀𝑊𝑑𝑒
 

 Where:𝐶𝑎𝑙: Concentration of carbonyl compound (mg.L-1); 𝐶𝑑𝑒: Concentration of relative DNPH 

derivative (mg.L-1); 𝑀𝑊𝑎𝑙: Molecular weight of carbonyl; 𝑀𝑊𝑑𝑒: Molecular weight of relative 

DNPH derivative.  

Quality assurance/Quality control (QA/QC) 

Calibration standard curves for all compounds had strong linear responses with the R2 in the range 

of 0.998–0.999. Duplicate measurements were conducted for every 10th sample and the 

coefficients of variation were in the range of 0.43–4.43%. Limits of detection (LoD) were 

calculated as 3 times of the standard deviation of blank sampling tubes. In cases when the standard 

deviations could not be identified (e.g. concentration was lower than the method detection limit), 

method detection limits were used (Table A2.3).  

 

 Calculation of modified combustion efficiency (MCE) and emission factors (EFs) for 

carbonyls  

To examine the effect of combustion efficiency on the carbonyl emissions, relationships between 

modified combustion efficiency (MCE) and EFs for carbonyls were investigated. The MCE was 

calculated using the ratio of excess carbon content emitted in the forms of carbon dioxide (CO2) 

and carbon monoxide (CO) (Chapter 3).  

EFs for carbonyls in each burn were calculated using the carbon mass balance method using the 

following formula (Desservettaz et al., 2017): 
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𝐸𝐹𝑖 =
𝑚𝑖

𝑚𝑏𝑢𝑟𝑛𝑒𝑑
=

𝑚𝑖

𝑚𝐶
𝐹𝐶  

Where  𝐸𝐹𝑖: Emission factor for compound i (g.kg-1 dry fuel); 𝑚𝑖: amount of i emitted, calculated 

using formula: 𝑚𝑖 =  𝐶𝑖 × 𝑣 × 𝐴 × 𝑡 (Wardoyo et al., 2006), where 𝐶: Average concentration of 

compound i in that burn (mg.m-3); 𝑣: Average velocity of smoke at sampling area during sampling 

time (m.s-1) (see Chapter 5, section 5.2.5); 𝐴: Area of the duct at sampling points (A = 0.018 m2); 

𝑡: Sampling time (s), t = 360 s. 𝑚𝑏𝑢𝑟𝑛𝑒𝑑: Amount of dry vegetation (0% of moisture content) 

burned (g); 𝑚𝐶: amount of C emitted (g), calculated as the sum of carbon mass emitted in CO2, 

CO since these gases account for more than 95% of carbon amount emitted from biomass burning 

(Meyer et al., 2012). 𝐹𝐶: the carbon content of fuel. We used the values reported for Australian 

grass (0.45) and leaves and twigs (0.48) by Hurst et al. (1994).  

The emissions (concentration and EF) of total carbonyls were calculated as the sum of emissions 

of six individual compounds. 

 

 VOCs measurement 

A portable Gas Chromatograph/Mass Spectrometry (GC/MS) instrumentation HAPSITE ER 

(Inficon, USA) was used to identify VOCs in vegetation smoke. The sampling probe of the 

HAPSITE was located at the end of the pipe system, facing directly into the flow of smoke. The 

instrument was set up to draw in the smoke which was then transferred using nitrogen as a carrier 

gas, through a narrow-bore fuse silica column 15 metres long to the detector. A thin layer of 

material known as stationary phase which can selectively attract VOCs coats the inside of this 

column. When smoke passes through the column, the chemicals in the stationary phase react with 

different VOCs in the smoke at different rates and the VOCs, which have the fastest reaction rate, 

will exit the column first. Following this principle, VOCs are separated from one another, and then 

are identified by the Mass Spectrometer (Inficon, 2008). A mixture of internal standards is added 

to the sample inlet flow to verify the performance and sensitivity of the instrument. VOCs in smoke 

were identified using the chemical inventories AMDIS and NIST associated with the HAPSITE 

software (Inficon, 2008). The concentrations of some VOCs such as benzene, toluene, ethyl 

benzene and xylene can be calculated and quantified by the associated software based on the areas 

of these chemicals’ peaks in the mass spectra, however, in this study concentrations of VOCs in 

the vegetation fire smoke were too low, thus precluding quantification (De Vos et al., 2009). In 

order to compare the emission of VOCs produced during the combustion of different vegetation 

types, the areas of the peaks appearing in the mass spectra were utilised instead of concentrations. 
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Owing to an equipment malfunction during the burns of Kimberley grass, no VOC data for this 

type of vegetation were collected. 

 

 Statistical analysis 

Values that were lower than the detection limits were replaced by half the detection limit for 

statistical analysis (USEPA, 2000). The influence of vegetation type on the carbonyls emitted was 

evaluated using one-way analysis of variance (ANOVA) analysis with a post-hoc Tukey test  for 

normally distributed data and using Kruskal-Wallis test with Dunn’s post-hoc test for data without 

a normal distribution (SPSS ver.25, IBM). The effects of moisture content and flow rate on 

carbonyl emissions were investigated using permutational multivariate ANOVA (PERMANOVA) 

(PRIMER 6+, PRIMER-E). The correlations between MCE and EFs for carbonyls were examined 

using regression analysis (SPSS ver.25, IBM). The significance value of p<0.05 was utilised for 

statistical interpretation.  

 

4.3. Results  

 Emission of carbonyl compounds 

a) Composition of carbonyl emission in smoke from burning vegetation 

Distributions of emission (in both concentration and EF) of individual carbonyl compounds 

(presented as % of emission of total carbonyls) are shown in Figure 4.1 and Table A2.4. For all 

vegetation types, formaldehyde and acetaldehyde were the most abundant compounds emitted 

from vegetation fires, accounting for 71 to 96% of emissions of total carbonyls investigated (Table 

A2.4). Acetone was the third most abundant compound for all vegetation types, with the exception 

of Kimberley grass. Carbonyl emissions from Kimberley grass had a significant proportion of 

butyraldehyde (16%), the third most abundant carbonyl from burns of this vegetation type (Figure 

4.1).  

EFs for most of the carbonyls (except for butyraldehyde) emitted from vegetation fires were 

significantly correlated with one another (Table A2.5). Pairs of compounds with the strongest 

correlations were formaldehyde – acetaldehyde, formaldehyde – propionaldehyde, acetaldehyde 

– propionaldehyde and acetone – propionaldehyde with R2 coefficients of 0.93, 0.89, 0.96, and 

0.81, respectively.  
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Figure 4-1. Bar graphs showing the proportions of emission of  individual carbonyls in emission of  total 
carbonyls from burning three vegetation types across all combustion conditions (n=27, left); and three 
types of dry grasses in three levels of flow rates (n=9, right)  
 

b) Emission factors for aldehydes from different vegetation types 

a)                                                                        b) 

 

Figure 4-2. Box plots showing the emission factors for total carbonyls emitted from burning a) different 
types of vegetation (n=27); and b) different types of grassland (n=9) across all combustion conditions. 
Mean values are presented as the black squares in the box plots. Statistical difference are presented using 
letters a, b (between vegetation types) and x, y (between grasslands). The differences were investigated 
using Kruskal-Wallis tests (for different vegetation types) and one-way ANOVA (for different grasslands) 
with significance value p<0.05 

Among the three vegetation types, Jarrah burns emitted the highest amount of carbonyls per unit 

of fuel burned (2.26 g.kg-1 (dry fuel)), followed by Banksia (1.91 g.kg-1) and then Spinifex (1.86 

g.kg-1). The total carbonyl emission was not significantly different between grassland, woodland 

and forest (Figure 4.2) and was similar for most individual compounds (Figure 4.3). There were 

significant differences (p<0.05) in EFs for the remaining two compounds (butyraldehyde and 
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benzaldehyde) between grassland and woodland/forest. Banksia and Jarrah had similar EFs for all 

individual compounds (Figure 4.3).  

In contrast, the EFs were very different between tropical and temperate grasslands. Aldehyde 

emission from the Veldt grass (4.20 g.kg-1) was significantly higher than that from other types of 

grassland (1.14 and 1.67 g.kg-1 for Spinifex and Kimberley grasses, respectively) (Figure 4.2). For 

individual compounds, Veldt grass also had the highest EFs for most compounds except for 

butyraldehyde where the highest emissions were from Kimberley grass burns (Figure 4.3). 

Emissions from burns of Spinifex and Kimberley grass were also similar for most compounds with 

the exception of butyraldehyde. EFs for the two most abundant compounds, formaldehyde and 

acetaldehyde, from the burns of the two tropical grasslands were significantly different from those 

of temperate grassland (Figure 4.3). 

c) Effects of combustion conditions on emissions 

Variation of EFs for total and individual carbonyl compounds from burns of vegetation in different 

moisture contents under different air flow rates are presented in Figure 4.4. Burning Spinifex with 

higher moisture content appeared to generate higher emissions of carbonyls. A similar trend was 

also observed in Jarrah burns for most compounds, except for acetone and benzaldehyde (Figure 

4.4d, g). Wetter Banksia emitted higher amounts of carbonyls compared with dry Banksia, 

however the highest EFs for formaldehyde, acetaldehyde, butyraldehyde and benzaldehyde from 

Banksia burns were observed at the intermediate moisture content. Among the six compounds, 

acetone was the least affected by fuel moisture content (Figure 4.4d).  

Flow rate had an influence on emissions of both total and individual carbonyls across all vegetation 

types (Figure 4.4). Higher EFs for most individual carbonyls were found when burning vegetation 

at higher flow rates, with the exception of benzaldehyde from Jarrah burns (Figure 4.4g). Between 

vegetation types, EFs for carbonyls from Banksia burns seemed to be more strongly affected by 

flow rate with significant increases observed with increasing flow rate. Meanwhile, EFs from 

Spinifex and Jarrah burns were only significantly different between no flow and low/high flow 

conditions. Burning these two types of vegetation at low and high flow rates generated similar EFs 

for carbonyls (Figure 4.4). 
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Figure 4-3. Box plots showing the emission factors for individual carbonyl compounds (a - formaldehyde, 
b - acetaldehyde, c - acetone, d - propionaldehyde, e - buryladehyde, f - benzaldehyde) emitted from 
burning different types of vegetation (solid plots, n=27); and different types of grassland (crossed plots, 
n=9) across all combustion conditions. Statistical differences are presented using letters a, b (between 
vegetation types) and x, y (between grasslands). The differences were investigated using Kruskal-Wallis 
tests (for different vegetation types) and one-way ANOVA (for different grasslands) with significance value 
p<0.05 
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a) EF for total carbonyls 

 

b) EF for formaldehyde 

 

 

c) EF for acetaldehyde 

   

d) EF for acetone 
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e) EF for propionaldehyde 

  

f) EF for butyltaldehyde 

   

g) EF for benzaldehyde 

    

Figure 4-4. Variation of EFs for total and individual carbonyls from burning vegetation in different moisture 
contents under different air flow rates (n=27). Letters a, b, c at the top of each bar group represent the 
significant difference between different fuel moisture contents. Letters x, y, z at the top of each bar 
represent the significant difference between different flow rates. Influences of moisture content and flow 
rate were assessed using PERMANOVA with p<0.05 
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d) Correlations between EFs and MCE 

The EFs for most carbonyls, with the exception of butyraldehyde, were significantly inversely 

correlated with the MCE across all vegetation types (Figure A2.1). Acetone emissions had the 

strongest correlation with MCE (R2=0.51), followed by propionaldehyde and benzaldehyde 

(R2=0.38). A weak non-significant correlation between butyraldehyde and MCE was observed 

which was caused by the extreme emission of this compound from Kimberley grass compared 

with other types of vegetation (Figure 4.3). If values from burns of Kimberley grass are excluded, 

a significant inverse correlation between butyraldehyde and MCE was also observed for burns of 

the remaining four vegetation types (R2=0.43) (Figure A2.1).    

The R2 values of negative correlations between the EFs for formaldehyde, acetaldehyde, acetone, 

propionaldehyde, benzaldehyde and MCE of Banksia burns were higher than 0.8, indicating a very 

strong influence of combustion efficiency on the emissions of these semi-volatile gases (Table 

A2.6). Aldehyde emissions from Kimberley grass and Veldt grass combustion also had strong 

relationships with MCE with the R2 varying from 0.70 to 0.88. Burns of Spinifex and Jarrah 

showed much lower correlations between the amount of carbonyls emitted and combustion 

efficiency (Table A2.6).     

 

 Emissions of VOCs 

A range of VOCs were detected in the vegetation smoke with 15 compounds identified, including 

benzene, toluene, ethylbenzene, xylene, styrene, furfural, benzaldehyde, benzonitrile, 

isopropylbenzene, phenol, benzofuran, m-cymene, indene, p-cymene and naphthalene. Benzene, 

toluene, styrene and indene were the VOCs most frequently detected in emissions of the vegetation 

fires. Jarrah yielded the largest number of identifiable VOCs compared with other types of 

vegetation and generated some VOCs that were not detected in the burns of other vegetation types, 

such as isopropylbenzene, m-cymene and p-cymene (Table A2.7).  

The emissions (in terms of area of peak) of benzene, toluene, ethylbenzene and xylenes (BTEX) 

which are common VOCs measured in emissions from biomass burning from combustion of 

different vegetation types are compared in Figure 4.5. Veldt grass and Jarrah emitted larger 

amounts of BTEX compared with Banksia and Spinifex. Veldt grass combustion generated the 

highest average emissions of benzene, toluene and ethylbenzene, followed by the Jarrah burning. 

Conversely, Jarrah yielded the highest average peak area of xylene, followed by the Veldt grass 

(Figure 4.5).  
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Figure 4-5. Box plots showing peak areas of BTEX from vegetation burning across all combustion conditions. Black squares in the box plots show the mean peak 
areas of BTEX (n=27 for Spinifex, Banksia and Jarrah; n=9 for Veldt grass)
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4.4. Discussion  

 Carbonyl emissions 

Abundance of carbonyls 

The abundance of formaldehyde and acetaldehyde emissions observed in this study was consistent 

with results of other studies on bushfire smoke (Christian et al., 2003; Reisen et al., 2006b; Vicente 

et al., 2011). Christian et al. (2003) measured trace gas emissions from laboratory fires of savanna 

fuel and reported that EFs for formaldehyde and acetaldehyde were about 6-fold and 4-fold higher 

than that of acetone. Reisen and Brown (2009), when measuring the concentrations of pollutants 

to which bushfire fighters are exposed, also reported formaldehyde as the dominant aldehyde from 

vegetation fires, with formaldehyde and acetaldehyde measured at g.m-3 level while other 

aldehydes including acrolein, and 2-furaldehyde were detected at mg.m-3 level. Vicente et al. 

(2011) also reported that formaldehyde and acetaldehyde were the main aldehydes found in forest 

fire smoke.   

Formaldehyde was more abundant in the vegetation fire smoke than acetaldehyde as observed in 

this work as well as in many other studies (Burling et al., 2011; Christian et al., 2003; Guérette et 

al., 2018; Liu et al., 2017). However, some other studies reported higher EF for acetaldehyde 

compared with that for formaldehyde (Hurst et al., 1994a; Vicente et al., 2012; Yokelson et al., 

2008). The difference in order of abundance of these two main compounds in vegetation fire smoke 

might be due to differences in sampling and measurement methods between studies. The sampling 

methods applied by Hurst et al. (1994) and Vicente et al. (2011) involved the collection of smoke 

in Tedlar bags, whereas in our study and other studies carbonyl collection used 2,4-DNPH tubes, 

impregnated filter cassettes or glass flasks (De Vos et al., 2009; Guérette et al., 2018; Reisen and 

Brown, 2009). Formaldehyde is a polar organic compound and has been found to be lost using 

Tedlar bags (Pau et al., 1991), which may explain the discrepancy. Acetaldehyde and 

formaldehyde in the study by Yokelson et al. (2008) were measured using different methods 

(Fourier transform infrared spectroscopy FTIR for formaldehyde and proton-transfer reaction mass 

spectrometry PTR-MS for acetaldehyde) which might influence the comparison between EFs for 

these two aldehydes. Other studies which used FTIR to measure both formaldehyde and 

acetaldehyde reported similar relative orders of abundance to our study (Burling et al., 2011; 

Guérette et al., 2018). 
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Comparison with values reported in literature 

A comparison of EFs for carbonyls from biomass burning for similar vegetation types around the 

world is provided in Table A2.8. Due to the lack of data on butyraldehyde and benzaldehyde 

emissions in the literature, only EFs for the four remaining compounds were compared. Owing to 

the greater abundance and potentially higher risk of human exposure to formaldehyde from 

bushfire smoke compared with other compounds, this discussion focuses on emissions of 

formaldehyde. 

The EFs for formaldehyde between tropical grassland (Spinifex and Kimberley grass) and 

woodland/forest (Banksia and Jarrah) obtained in this study were consistent with findings of field-

based studies in Australian vegetation fires in recent years (Guérette et al., 2018; Paton-Walsh et 

al., 2010; Smith et al., 2014). Guérette et al. (2018) measured the EFs for formaldehyde from 

prescribed fires in Australian temperate forest and found similar EFs compared to those from 

Australian savanna reported by Smith et al. (2014) and Paton-Walsh et al. (2010). However, in 

this study, Veldt grass had a 2-fold greater EFs for formaldehyde compared with Banksia and 

Jarrah. In addition to distinct fuel composition which resulted in differences in emissions, 

significantly lower MCE was observed in burning Veldt grass compared with those of other 

vegetation types (Chapter 3) and might explain the high EF for formaldehyde from this grass. 

EFs for formaldehyde, acetaldehyde and acetone from Spinifex were in good agreement with 

values reported from African savanna burns in a laboratory-based study by Christian et al. (2003). 

Meanwhile, EF for formaldehyde from Banksia was 3-fold higher than that reported from 

chaparral in the US under laboratory burning conditions (Burling et al., 2010). EFs for 

formaldehyde from Jarrah forest were 5-fold higher, but the EFs for acetaldehyde and acetone 

were lower (1.5 and 3-fold, respectively) than those from eucalyptus burns reported in the 

experimental study by Yokelson et al. (2008). It is not possible to compare values obtained from 

Veldt grass burns due to the relative scarcity of data on emissions from temperate grass fires 

(Urbanski et al., 2009). The difference in EFs from vegetation fires in different parts of the world 

highlights the need to generate EFs from local Australian vegetation types to better predict 

emissions from bushfires in Australia. 

When compared with data obtained in field-based studies, EFs for formaldehyde in our study were 

1.4 to 2.2-fold lower than those reported for similar vegetation types (Burling et al., 2011; Liu et 

al., 2017; Paton-Walsh et al., 2005). The lower values in our study might be due to differences 

arising from laboratory-based versus field-based measurements. While measurements undertaken 

in controlled laboratory conditions capture all the phases of a fire, measurement in the field, 

especially at the ground platform, may be biased toward the smouldering phase since products 
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from the flaming phase are quickly transported upwards by convection (Burling et al., 2010; Paton-

Walsh et al., 2014). In addition, formaldehyde emission in the field is significantly influenced by 

photochemical processes with decreases via photo-dissociation when reacting with OH- and 

increases as a product of the oxidation of VOCs. Since VOCs are also major emissions from 

vegetation fires, the secondary formation of formaldehyde (by the oxidation of VOCs) in the first 

short period of a fire may compensate for its loss (by the reaction with OH-) (Paton-Walsh et al., 

2010), another reason for higher EFs reported from field-based measurements compared with our 

laboratory-based data.  

   

Effects of combustion conditions and combustion efficiency on emissions 

Carbonyl emissions from Spinifex and Jarrah increased as fuel moisture content increased, which 

was expected (Koppmann et al., 2006). For Banksia the burns of moist vegetation generated higher 

amounts of some carbonyls compared with those emitted from wet Banksia fires. This trend was 

not anticipated and occurred only in conditions when the rates of air flow were increased (see 

Figure 4.4). Higher rates of air flow might have disturbed the fuel bed, causing fluctuating 

combustion conditions which override the effect of fuel moisture content. 

The increase of air flow was found to reduce the combustion efficiency of the burns and decrease 

the MCE (Chapter 3). Negative correlations between carbonyl EFs and MCE indicated that more 

carbonyls were emitted at lower MCE values. Therefore, higher EFs for carbonyls were observed 

with the high flow rate conditions as expected.  

The strong inverse correlations between MCE and EFs for carbonyls for most vegetation types 

were similar to the results of other studies, confirming that the carbonyl emissions were associated 

with the smouldering phase. Guérette et al. (2018) reported a strong negative correlation between 

EF for formaldehyde and MCE (R2 = 0.79) for temperate forest fires in Australia. The study by 

Christian et al. (2003) examined the emissions of African vegetation fuel in the laboratory and 

they also found strong negative correlations between MCE and EFs for acetone and acetaldehyde 

with R2 of 0.82 and 0.87, respectively. Vicente et al. (2011) also observed a strong inverse 

relationship (R2 = 0.8) between EF for acetaldehyde and MCE of a forest fire in Portugal.  

 

Extrapolating EFs for other carbonyls from EF for formaldehyde 

Formaldehyde in bushfire emissions is commonly measured and reported but the availability of 

information on other carbonyls is scarce (Table A2.8). Strong correlations between EFs for 

formaldehyde and other compounds including acetaldehyde, propionaldehyde and acetone across 

all vegetation types, observed in this study, were used to investigate the potential extrapolation of 
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EFs for these carbonyls from the EF for formaldehyde to estimate emissions of infrequently 

measured compounds. Extrapolating functions where the linear regression functions (with zero 

intercept) were obtained by plotting EFs for formaldehyde (X axis) and EFs for another compound 

(Y axis) (Figure A2.2). EFs for acetaldehyde, acetone and propionaldehyde can be extrapolated 

from EF for formaldehyde using multiplication factors of 0.563, 0.142 and 0.087, respectively (R2 

values of the regressions are 0.93, 0.73 and 0.89, respectively). EFs for formaldehyde and 

acetaldehyde (or acetone) reported simultaneously for several vegetation types in a limited number 

of studies were also plotted (Burling et al., 2011; Christian et al., 2003; Guérette et al., 2018; 

Lawson et al., 2015; Liu et al., 2017) and these data points were close to the extrapolating lines 

(Figure A2.2). The extrapolated values using this proposed function show a good level of 

agreement with measured values (coefficient of variation <17%). This consistency suggests the 

applicability of using these functions in extrapolating emissions of other carbonyls from that of 

formaldehyde across different types of vegetation fires. 

 

 VOC emission 

Qualitative results confirmed that several VOCs were present in vegetation fire smoke. The most 

frequently detected included benzene and toluene, which were also identified in other studies 

(Barboni and Chiaramonti, 2010; de Gouw et al., 2006; Shirai et al., 2003). 

The emissions of VOCs from vegetation burning are complex and depend on different factors 

including fuel type and combustion conditions (Barboni and Chiaramonti, 2010). Barboni and 

Chiaramonti (2010) reported significantly higher concentrations (1.5 to 3-fold) of BTEX in the 

smouldering phase compared with those emitted in the flaming phase of prescribed burns. 

Therefore, the higher emissions of BTEX from Veldt grass burning compared to Banksia and 

Spinifex was likely due to higher contribution of the smouldering phase in the combustion of Veldt 

grass as the MCE of Veldt grass burns was observed to be significantly lower than the combustion 

of other types of vegetation (Chapter 3). The more diverse composition of VOCs and the higher 

BTEX emissions of Jarrah compared to those of Banksia and Spinifex might be due to the high 

content of biogenic VOCs in eucalyptus leaves including isoprene, monoterpenes, and 

sesquiterpenes that can create more VOCs in emitted smoke when burnt (Maleknia et al., 2009). 

The averages of some BTEX across all combustion conditions showed high standard deviations 

(Figure 4.5) due to the markedly increases of emissions from combustion in high flow rate 

conditions compared to those from burns in no fan conditions which indicated the significant effect 

of air flow rate on the combustion and the emissions of these VOCs. However, the approach of 
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using peak areas of these VOCs was not scientifically robust and only provided a preliminary 

comparison in VOC emissions between vegetation types. 

 

4.5. Conclusion 

Several VOCs including benzene were detected in smoke from vegetation fires. Carbonyl 

emissions were similar for tropical grassland (Spinifex), woodland (Banksia) and forest (Jarrah) 

vegetation consistent with the findings reported from field-based measurements in other Australian 

studies. However, burns of a temperate grass (Veldt grass) generated greater carbonyl emissions 

than the tropical grasses (Spinifex and Kimberley grasses). Due to the scarcity of data on the 

emission of carbonyls from temperate grassland, further research into emissions from this type of 

grassland should be conducted. 

Combustion conditions affected carbonyl emissions, with higher EFs observed from burns using 

fuel with higher moisture content and under higher air flow conditions. Negative correlations 

between modified combustion efficiency and emission factors for most carbonyls were observed, 

confirming that the emission of carbonyls is primarily associated with the smouldering phase. Even 

though the emission factors for carbonyls obtained in this study were lower than those reported 

from field based measurements in similar vegetation types, due to differences in sampling 

conditions and the chemical transition of carbonyl compounds, this study has demonstrated the 

effects of combustion conditions on carbonyl emissions. This study has also proposed functions 

which may be useful to predict emissions of infrequently measured carbonyls (acetaldehyde, 

acetone and propionaldehyde) from that of formaldehyde, a commonly measured and reported 

substance. Field-based studies on the emission factors for these carbonyls are recommended to 

validate this laboratory-based data.  
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 EMISSIONS OF PARTICULATE MATTER 

(Within the content of this chapter, I was helped in analysing PAHs by Bo Strandberg – Department of 

Public Health and Community Medicine at the Institute of Medicine, University of Gothenburg, Sweden – 

who contributed about 10% of the work load) 

 

5.1. Introduction  

Particulate matter (PM) is one of the major air pollutants emitted from vegetation fires and consists 

of a high proportion of particulates with diameter of less than 2.5µm (PM2.5) which can penetrate 

deeply into the lungs and impact the health of populations and individuals (Alves et al., 2010a; 

Reid et al., 2005b). Epidemiological studies have revealed that exposure to PM2.5 is associated 

with cardiopulmonary morbidity and mortality, as well as exacerbation of diabetes mellitus and 

adverse birth outcomes (Feng et al., 2016).   

The nature and degree of health effects of PM2.5 may be influenced by its components including 

toxic substances such as polycyclic aromatic hydrocarbons (PAHs) and metals adsorbed onto 

surfaces of PM (Cavanagh et al., 2009; Dieme et al., 2012). Many PAHs are defined as mutagenic 

and/or carcinogenic compounds and are known to cause lung cancer (Choi et al., 2010). A study 

by Alves et al. (2010) found that the dominant PAHs in shrubland burning particles were alkylated 

compounds, benzo(a)anthracene, pyrene, phenanthrene, fluoranthene and chrysene. The higher 

concentrations of these PAHs were present in finer-size particulates. When studying PAH 

emissions from different firewood types in Australia, Zou et al. (2003) reported that most 

genotoxic PAHs were present in the particulate phase. 

Garcia-Hurtado et al. (2014) found that the major trace metals in PM2.5 emitted from shrub wildfire 

in Spain were Cu, Zn, Zr, Pb, Ti, and Ba. In a study comparing metals in aerosols in Singaporean 

ambient air in non-bushfire conditions and in the period affected by smoke from biomass burning, 

Pavagadhi et al. (2013) observed higher concentrations of metals including Al, Cr, Fe, Mn, Co, 

Ni, Zn, Cu, Cd and Pb in PM2.5 during the affected period compared with those in non-bushfire 

conditions. Some first-row transition metals such as Fe, Ni and Cu absorbed in PM have been 

suggested to produce free radicals that may cause oxidative stress when accumulated in the body 

(Jiang et al., 2014). This phenomenon may have negative impacts on human health by causing 

chronic illness such as lung damage and cancer (Pham-Huy et al., 2008). 

Bushfire emissions are one of the most significant sources of PM2.5 pollution in Australia due to 

the fire-prone nature of the country (Environmental Protection Authority Victoria, 2018). The 

number of studies investigating the emissions of PM from bushfires in Australia has increased in 

recent years (De Vos et al., 2009; Desservettaz et al., 2017; Reisen and Brown, 2009; Wang et al., 
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2017a, 2017b; Wardoyo et al., 2006). Wardoyo et al. (2006) investigated the particle number and 

emission factors (EF – amount of pollutant emitted from burning a unit amount of fuel) for PM2.5 

from experimental combustion of five trees species in Queensland. Studies by De Vos et al. (2009) 

and Reisen and Brown (2009) measured the concentrations of respirable particles which bushfire 

fighters were exposed to when conducting prescribed burns. No data on chemical composition of 

PM was produced by those studies. Wang et al. (2017a, 2017b) reported the EF for total suspended 

particles from forest and savanna fires in the northern and south-western areas of Australia. 

Desservettaz et al. (2017) measured emissions from tropical savanna fires and reported the EFs for 

particulates in Aitken mode (0.015–0.1µm) and accumulation mode (0.1–0.67 µm) and some 

chemical components of the particulates including SO4
2-, NO3

-, NH4
+ and Cl-. Data on emission of 

PM2.5 from vegetation fires in Australia and its chemical compositions is scarce.  

This chapter investigates the emission of PM10 and PM2.5 and the chemical composition of PM2.5 

(water-soluble metals and PAHs) emitted from burning different vegetation types of Australia in 

varying conditions. In addition to the aim of providing data on PM2.5 emissions from vegetation 

fires in Australia, the chapter also investigates the influences of vegetation types and combustion 

conditions on PM2.5 emission. 

 

5.2. Methodology and study design 

 Study design and experimental conditions 

The details of the experimental set-up and design are outlined in Chapter 3. PM collection was 

conducted concurrently with the carbonyl sampling with fifty gram (50g) of vegetation was burn 

in each experiment (Chapter 4).  

 

 PM collection 

Personal Modular Impactors (PMI) (SKC, Cat. No. 225-5-37) with two inlets of 2.5 µm and 10 

µm connected to each other were used to collect PM2.5 and PM2.5-10 using active sampling pumps 

(SKC Aircheck®52). PM2.5-10 was collected onto 25 mm polyvinyl chloride (PVC) filters (SKC, 

Cat. No. 225-5-25) and PM2.5 was collected onto 37 mm PVC filters (SKC, Cat. No. 225-5-37-P).  

For each experimental burn, three filters were used to collect PM2.5 for subsequent analysis (water-

soluble metals, PAHs and toxicity testing). PVC filters were used for gravimetric and metals 

analysis due to their low tare weight and following the recommendations of National Institute for 

Occupational Safety and Health (NIOSH) 3700 (National Institute for Occupational Safety and 

Health, 2003). Polytetra-fluoroethylene (PTFE) membrane filters (37 mm, Zefluor®, Pall 

Laboratory) were used for PAH analysis as recommended in NIOSH 5506 (NIOSH, 1998). The 
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PM samplers were located inside the duct, facing the smoke flowing through the duct. Pumps were 

set at a flow rate of 3.0 L.min-1 as recommended by the PMI manufacturer. Where the 

concentrations of particulate in smoke were too high, clogging the filters, causing the pump to 

stop, the pump flow rate was adjusted to 1.0 or 1.5 L.min-1
 to ensure the pumps ran smoothly 

throughout the sampling process. Temperatures were measured at PM sampling sites. The highest 

temperatures of smoke measured at the PM sampling area were 40ºC, 51ºC and 57ºC for no, low 

and high flow conditions, respectively. The average residual PM2.5 mass in the system (identified 

by blank burns) was 7.0 µg (accounting for 1% of the sampled values) and this residue was 

deducted from PM2.5 masses collected from vegetation fires.  

Gravimetric analysis 

The masses of PM10 and PM2.5 were determined by the differences in weight between pre-sample 

and post-sample filters using a microbalance (Mettler Toledo XP6 Excellence Plus). Before being 

weighed, the filters were conditioned in a desiccator in a conditioning room for at least 48 hours 

to obtain stable humidity and temperature conditions, following the European Study of Cohorts 

for Air Pollution Effects (ESCAPE) protocol (EU-multicenter study RUPIOH, 2009). A static 

electricity remover (Stablo-ex, Shimadzu) was used to treat the filters before weighing in order to 

eliminate static electricity which might affect their weights (EU-multicenter study RUPIOH, 

2009).  

Concentrations of PM10 and PM2.5 were calculated using the formula: 

𝐶 =
𝑚𝑃𝑀

𝑉
=

𝑚𝑃𝑀

𝐹×𝑡
        

Where 𝐶: concentration of PM generated (mg.m-3); mPM: mass of PM collected (µg); V: volume 

of collected smoke (L); F: flow rate of pump (L.min-1); t: sampling time (min). 

Determination of the optical properties of PM2.5 

The optical reflectance of PM collected onto filters was measured using a Smoke Stain 

Reflectometer (Diffusion System Ltd, EEL Model 430), following the standard operational 

protocol RUPIOH SOP 4 (ESCAPE, 2008). The darkness of filters containing PM was expressed 

as the difference in reflectance when compared with a control filter. The control filter was chosen 

as the median reflectance value from among five randomly chosen new filters. The reflectance of 

a filter was obtained by averaging the reflectance values measured at five different points on the 

filter’s surface. The calibration was repeated using the control filter after measuring every 25 

sampled filters (ESCAPE, 2008).  

The absorption coefficient was calculated using the formula (ESCAPE, 2008): 
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𝑎 =
𝐴

2𝑉
× ln (

𝑅𝐹

𝑅𝑆
)        

Where: 𝑎: absorption coefficient of the sample filter (m-1); A: area of PM stain on the sample filter 

(m2). 𝐴 = 𝜋(
𝑑

2
)2where d is the diameter of the smoke stain round on filter. In this study, d = 33mm 

so the value of A is 855.3 x 10-6 m2; V: volume of air sampled (m3); 𝑅𝐹: the average reflectance 

of the blank burns as percentage of 𝑅0. 𝑅0 is the reflectance of the clean control filter (=100); 𝑅𝑆: 

the reflectance of the sample filter as percentage of 𝑅0. 

Mass absorption coefficient σ (m2.g-1), which can represent the amount of elemental carbon (EC) 

in particulates (Chen et al., 2007; Gramsch et al., 2004; Reid et al., 2005b),was then calculated by 

dividing the absorption coefficient α (m-1) by the PM2.5 concentration (mg.m-3) where: 

σ =
α

C
× 1000 

After the mass of PM and smoke stain reflectance of filters had been measured, they were stored 

at –20°C prior to chemical analysis. 

 

 PM2.5-bound water-soluble metal analysis 

PVC filters used to collect PM2.5 were placed into 15 mL polypropylene tubes and 5 mL of 

ultrapure water 18.2MΩ.cm (Millipore) was added to each tube. The water-soluble metals in PM 

were extracted by ultrasonication (Branson 2410) for 2×30 minutes at 37ºC (Akhtar et al., 2014; 

Heal et al., 2005; Pavagadhi et al., 2013). After extraction, the extracts were centrifuged at 8,000 

rpm for 10 minutes to remove particles and filter debris from extracts. Thereafter 2 aliquots of 2 

mL of centrifuged extract were diluted five times with ultrapure water and acidified to 2% using 

HNO3 (Thermo Fisher Scientific). One aliquot was used for water-soluble metal analysis, while 

the second was stored at <4ºC for later analysis if necessary. 

Thirteen water-soluble metals including alkali, alkaline-earth, transition and other metals (Na, K, 

Ca, Ni, Fe, Cu, Cd, Cr, Pb, Zn, Mg, Mn and Al) were analysed. K and Na were measured using 

inductively coupled plasma optical emission spectrometry (iCAP™ 7600 duo ICP-OES, Thermo 

Fisher) while the remaining metals were measured using inductively coupled plasma mass 

spectrometry (iCAP™ RQ ICP-MS, Thermo Fisher).  

To examine the recovery rate of the method, 50 µL of standard solution 100 ppm (ICP-MS-E 

Verification standard of High Purity Standards) was spiked to blank filters. The spiked filters were 

extracted following the above extraction procedure. The percentage of recovery of this method 

ranged from 86% to 113% for different metals. Calibration standard curves for all metals had 
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strong linear responses with the R2 values (0.9996–1.000). Duplicate measurements were 

conducted for every 10th sample and the coefficient of variation was 0.4 to 4.4%. A summary of 

QA/QC parameters for analysis of water-soluble metals in PM2.5 is shown in Table A3.1 in 

Appendix 3.  

 

 PM2.5 - bound PAH analysis  

PAH analysis was undertaken for one sample (filter with the highest mass of PM2.5 collected to 

ensure PAH detection) for every vegetation type collected in each combustion condition. PM2.5 

collected onto PTFE filters was sent for PAH analysis at the University of Gothenburg, Sweden, 

following a protocol described by Jorgensen et al. (2013). Filters were extracted in 

dichloromethane for 10 minutes using an ultrasonic extractor (Sonica, Soltec, Italy). Extracts were 

then cleaned via a 2 cm column of silica gel with sodium sulfate on top. Prior to analysis, the 

extract solutions were concentrated to the final volume of 20 to 30 µL using a pure nitrogen stream. 

An internal standard mixture containing 16 deuterated USEPA PAHs (Dr. Ehrenstorfer, Augsburg, 

Germany) was added to samples before extraction and PAH standards before analysis. 

The concentrations of 16 USEPA PAHs (Table A3.2) were then measured in the extracts using 

high resolution gas chromatography/low-resolution mass spectrometry (HRGC/LRMS, Agilent 

Technologies, Inc., Santa Clara, Calif.). Electron impact ionisation and selected ion monitoring 

mode was applied for the MS, and the GC column was a 60m × 0.32 mm I.D. non-polar capillary 

column (J&W DB-5, Agilent). Helium was used as gas with a flow of 1 mL.min-1. GC injector 

temperature was set to 230ºC. The GC oven was temperature programmed of 50ºC and hold 3 

minutes, 10ºC.min-1 to 180ºC and hold 5 minutes, 3ºC min-1 to 300ºC and hold 20 minutes. 

Urban dust with known-concentrations of PAHs (Standard Reference Material – SRM 1649a, 

purchased from the National Institute of Standards and Technology, Gaithersburg, MD, USA) was 

used as the quality control (QC) sample. Measured concentrations of 12 PAHs in SRM deviated 

less than 15% compared with certified concentrations (with the exception of BaA for which the 

deviation was 20%). QA/QC parameters of PAHs analysis are presented in Table A3.2. 

 

 Calculation of emission factors (EFs)   

EFs for PM2.5 in each burn were calculated using the following formula (Alves et al., 2011; 

Wardoyo et al., 2006): 

𝐸𝐹𝑃𝑀2.5 =
𝑚𝑃𝑀2.5

𝑚𝑏𝑢𝑟𝑛𝑒𝑑
=

𝐶𝑃𝑀2.5 × 𝑣 × 𝐴 × 𝑡

𝑚𝐶
 × 𝐹𝐶  
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Where: 𝐸𝐹𝑃𝑀2.5: emission factor of PM2.5 (g.kg-1 dry fuel); 𝑚𝑃𝑀2.5: amount of PM2.5 collected, 

calculated as 𝐶𝑃𝑀2.5 × 𝑣 × 𝐴 × 𝑡; 𝐶𝑃𝑀2.5: average concentration PM2.5 (mg.m-3); 𝑣: average 

velocity of smoke at sampling area during sampling time (m.s-1); 𝐴: area of the duct at sampling 

point (A = 0.018 m2); 𝑡: sampling time (s), t = 360 s; 𝑚𝑏𝑢𝑟𝑛𝑒𝑑: amount of dry vegetation burned 

(g), expressed as the ratio of amount of carbon emitted 𝑚𝐶 (g) over the carbon content of the 

vegetation 𝐹𝐶 (48% for the forest and woodland, 45% for the grasses) (Hurst et al., 1994a).  

The average velocity of smoke was obtained by averaging the recorded velocities (every 5 

seconds) during the whole sampling period. The PMI heads used to collect PM were located inside 

the duct, thereby reducing the duct area, and thus increasing the velocity of smoke. However, the 

velocity of smoke was measured at a point after the PM sampling point. A trial was conducted and 

the average ratio of velocity between two points (PM sampling point and velocity recording point) 

was 1.28 for conditions using the fan. This ratio was used to estimate the average velocity of smoke 

flow at the PM sampling point in the calculation. For the no flow condition, because the velocity 

of smoke flow was based on the natural dispersion of smoke and was therefore small (around 

0.3m.s-1), the difference in velocity at these two sampling points was negligible and assumed to be 

equal to the recorded velocity.  

Average EFs for water-soluble metals and PAHs in PM2.5 were calculated based on the average 

EFs for PM2.5 following the formula: 𝐸𝐹𝑖 = 𝐸𝐹𝑃𝑀2.5
× 𝐶𝑖; where 𝐸𝐹𝑖: emission factor for pollutant 

i (PAHs or water-soluble metals) in PM2.5 (mg.kg-1 dry fuel); 𝐸𝐹𝑃𝑀2.5
: emission factor for PM2.5 

(g.kg-1 dry fuel); 𝐶𝑖: average concentration of pollutant i in PM2.5 (mg.g-1). 

 

 Statistical analysis 

Metals and PAH concentrations that were below the limit of detection (LoD) were replaced with 

a value of half the respective LoD (USEPA, 2000). One-way analysis of variance (ANOVA) and 

Kruskal-Wallis analysis (SPSS ver.25, IBM) were used to analyse the effects of vegetation type 

on the emission characteristics of PM2.5, in cases of normally and non-normally distributed data, 

respectively. Appropriate post-hoc tests were also conducted (Tukey test for ANOVA and Dunn-

Bonferroni test for Kruskal-Wallis). The influences of combustion conditions (fuel moisture and 

flow rate) on PM2.5 emissions were evaluated using permutational multivariate ANOVA 

(PERMANOVA, PRIMER 6+).  Regression analysis was used to assess the correlations between 

variables (SPSS ver.25, IBM). A significance value of p<0.05 was used for all statistical analysis.  
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5.3. Results  

 Physical characteristics of PM 

Ratio of PM2.5 and PM10 

The majority of PM10 emitted from vegetation burning was in the smaller size fraction, namely 

PM2.5. A linear regression (with zero intercept) between the concentrations of PM10 and PM2.5 

generated from vegetation fires (n=99) indicated that PM2.5 accounted for 98.7% of the PM10. The 

PM2.5/PM10 was consistent between different vegetation types which averagely varied from 97.5 

to 98.4%, with the exception of Spinifex which had a significantly lower ratio of PM2.5 to PM10 

(94.7%) compared with other vegetation types. The mean concentrations of PM10, PM2.5 and ratio 

of PM2.5/PM10 are provided in Table A3.3. For all three types of vegetation, the PM2.5/PM10 were 

positively correlated with MCE (the R2 of 0.31, 0.43 and 0.62, respectively for Spinifex, Banksia 

and Jarrah). Given that PM2.5 was the major component of the PM10 emitted from vegetation burns, 

only PM2.5 will be discussed in the following sections.  

Mass absorption coefficient of PM2.5 

Mass absorption coefficients of PM2.5 from three vegetation types of Spinifex, Banksia and Jarrah 

were significantly different. Spinifex derived PM2.5 had the highest mass absorption coefficient, 

followed by Jarrah and then Banksia (Figure 5.1). Among the three types of grass, burning dry 

Spinifex and Kimberley generated PM2.5 having similar absorption coefficients which were 

significantly higher than those from Veldt grass burns (Figure 5.1). A weak relationship between 

MCE and the mass absorption value of PM2.5 emitted from vegetation combustion was observed 

(R2=0.17, p=0.02). 

a)                                                                            b) 

    

Figure 5-1. Box plots show the mass absorption coefficient of PM2.5 emitted from burning a) different types 
of vegetation in all combustion conditions (n=27) and b) different types of grass in dry condition (n=9). 
Black squares in the box plots show the mean values. Significant differences between vegetation/grass 
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types are presented by the letters a, b at top of the box plots. The differences were evaluated using one-
way ANOVA tests with P<0.05 

 Emission factors for PM2.5 

Jarrah yielded the highest emission of PM2.5, followed by Banksia and Spinifex. ANOVA tests 

showed that the emission of PM2.5 of Spinifex was significantly lower than the two other types of 

vegetation (p<0.001). The difference in EFPM2.5 between Banksia and Jarrah was not statistically 

significant (Figure 5.2, a). Among the three types of grass, Spinifex and Kimberley grass generated 

similar emissions of PM2.5, whilst the Veldt grass emitted significantly higher EFPM2.5 which was 

6 to 8-fold higher the Spinifex and Kimberley grass, respectively (Figure 5.2, b).  

a)                                                                           b) 

     

Figure 5-2. Box plots show the EFs for PM2.5 emitted from burning a) different types of vegetation in all 
combustion conditions (n=27) and b) different types of grass in dry condition (n=9). Black squares in the 
box plots show the mean values. Significant differences between vegetation types/grass kinds are 
presented by the letters a, b at top of the box plots. The differences were evaluated using one-way ANOVA 
tests with P<0.05 

 

Combustion conditions significantly influenced the emission factors for PM2.5 (Figure 5.3). The 

EFs for PM2.5 increased in moist and wet conditions when compared with burning dry vegetation. 

Vegetation burns in higher flow rates generated higher emissions of PM2.5 when compared with 

those obtained from the no flow condition. PERMANOVA tests revealed that, for Banksia and 

Jarrah, the emissions for PM2.5 at different flow rates were significantly different from each other, 

whilst the significant differences were between no flow and low/high flow conditions in the case 

of Spinifex burns (Figure 5.3).  
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Figure 5-3. Emission factors for PM2.5 emitted from Spinifex, Banksia and Jarrah burning in different 
combustion conditions (n=27). Letters a, b, c at the top of each bar group represent the significant 
difference between different fuel moisture contents. Letters x, y, z at the top of each bar represent the 
significant difference between different flow rates. Influences of moisture content and flow rate were 
assessed using PERMANOVA with p<0.05 

 

A strong negative relationship was observed between MCE and EFPM2.5 of burning vegetation 

(Figure 5.4). When examining the correlations between MCE and EFPM2.5 for individual vegetation 

types, strong correlation coefficient values R were observed for most vegetation types, with the 

exception of Spinifex (Figure 5.4). 
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Figure 5-4. EF for PM2.5 as a function of MCE. The R and p-value of correlations between EFPM2.5-MCE for 
individual vegetation types are presented in the attached table 

 

 Chemical characteristics of PM2.5 

Concentrations of PM2.5-bound water-soluble metals  

K and Na were the dominant water-soluble metals in PM2.5, accounting for more than 97% of the 

mass of the 13 metals analysed. The next most abundant metals were Ca, Mg and Zn which were 

present in PM2.5 at concentrations up to 6.5 µg.mg-1. Other metals, including Al, Cr, Mn, Fe, Ni, 

Cu and Cd were present in PM2.5 at very low concentrations and many of them were below the 

analytical limit of detection (Table 5.1). 

Jarrah and Banksia burning generated PM2.5 containing similar total concentrations of metals 

which were about 3-fold higher than that generated from Spinifex (Table 5.1). Kruskal-Wallis tests 

revealed that the concentrations of individual metals were significantly different in the PM derived 

from  the combustion of the three vegetation types, with the exception of Mg, which varied little 

(Table A3.4-a). PM2.5 from Banksia and Jarrah burns had a higher composition of K, Na and Mg 

than that from Spinifex, whereas Spinifex burning generated a higher concentration of other metals 

(Ca, Zn, Al, Cr, Mn, Fe, Ni, Cu, Cd and Pb) compared with Banksia and Jarrah (Table 5.1).   

PM2.5 from burns of the dry grasses had significantly different total concentrations of water-soluble 

metals. Veldt grass PM2.5 yielded the highest metal concentrations, followed by Spinifex. 

Kimberley grass had a very low PM2.5-bound metals concentration, 10 to 17-fold lower than those 

of Spinifex and Veldt grasses, respectively (Table 5.1). The significant lower total concentration 

of metals of the Kimberley grass PM2.5 was due to the very low concentrations of K and Na. 
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Spinifex 9 -0.476 0.195 

Kimberley grass 3 -0.961 0.179 

Veldt grass 3 -0.962 0.176 

Banksia 9 -0.873 0.002 

Jarrah 9 -0.834 0.005 

 

R=–0.857
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Concentrations of other metals in PM2.5 derived from Kimberley grass burns were in comparable 

ranges to those of the other two types of grasses (Table 5.1 and Table A3.4). 

Concentrations of metals in PM2.5 were not significantly affected by the fuel moisture content for 

most vegetation types, except for Spinifex (Figure A3.1). Moist Spinifex derived PM2.5 had a 

higher total metal concentration compared with that from burning dry/wet Spinifex. Air flow rate 

also did not significantly influence the PM2.5-bound total metal concentrations (Figure A3.1). 

The EFs for dominant individual metals and total metals from vegetation fires were calculated 

from EFs for PM2.5 and mass percentage of metals in PM2.5 are presented in Table A3.5. Jarrah 

had the highest EFs for K and Mg; Banksia had the highest EFs for Na and Ca; whilst Veldt grass 

generated the highest emission of Zn, per unit of fuel burnt, respectively. Since EF for PM2.5 was 

strongly negatively correlated with MCE, it is not surprising that the emissions factors for 

abundant metals also had strong negative correlations with MCE (R=–0.88 for EFK-MCE and R= 

–0.83 for EFNa-MCE). 
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Table 5-1. Mean concentrations (Mean ± SD) of water-soluble metals in PM2.5 generated from vegetation burning. The mean values were calculated by averaging 
values in all combustion conditions. Unit: µg.mg-1 PM 

Metals 
Different types of vegetation (n=27)  Different types of dry grass (n=9) 

Spinifex Banksia Jarrah  Spinifex Kimberley grass Veldt grass 

K 60 ± 29 140 ± 33 150 ± 28  50 ± 19 5.3 ± 3.1 90 ± 24 

Na 7.4 ± 3.3 41 ± 14 23 ± 6  7.1 ± 2.4 0.34 ± 0.20 14 ± 3.5 

Ca 1.3 ± 1.6 0.78 ± 1.0 0.48 ± 0.94  2.5 ± 2.1 0.28 ± 0.24 0.056 ± 0.031 

Mg 0.12 ± 0.18 0.24 ± 0.35 0.33 ± 0.67  0.17 ± 0.26 0.051 ± 0.037 0.032 ± 0.032 

Zn 0.17 ± 0.26 0.11 ± 0.08 0.056 ± 0.103  0.25 ± 0.40 0.27 ± 0.15 0.59 ± 0.22 

Al 0.035 ± 0.058 0.028 ± 0.095 0.017 ± 0.021  0.049 ± 0.060 0.012 ± 0.029 0.0030 ± 0.0031 

Cr 0.010 ± 0.029 < 0.0001 0.002 ± 0.006  0.028 ± 0.047 0.008 ± 0.023 0.0010 ± 0.0005 

Mn 0.012 ± 0.030 0.0010 ± 0.0012 0.011 ± 0.019  0.031 ± 0.047 0.0003 ± 0.0002 0.0012 ± 0.0014 

Fe 0.035 ± 0.058 < 0.003 0.027 ± 0.015  0.053 ± 0.069 0.012 ± 0.014 0.0049 ± 0.0035 

Ni 0.013 ± 0.036 < 0.0001 0.0017 ± 0.0042  0.036 ± 0.058 0.014 ± 0.019 0.0017 ± 0.0014 

Cu 0.021 ± 0.047 0.0018 ± 0.0021 0.0083 ± 0.019  0.054 ± 0.072 0.0052 ± 0.0033 0.0024 ± 0.0043 

Cd 0.015 ± 0.009 < 0.0001 < 0.0001  0.028 ± 0.048 0.0040 ± 0.0049 0.0074 ± 0.0033 

Pb 0.0072 ± 0.017 < 0.0002 < 0.0002  0.018 ± 0.027 0.0010 ± 0.0010 0.0034 ± 0.0064 

∑metals 69 ± 31 180 ± 39 180 ± 31  60 ± 20 6.3 ± 3.0 110 ± 25 
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Concentrations of PAHs in PM2.5 

Pyrene (Pyr) and fluoranthene (Flu) were the most abundant PAHs in PM2.5 produced by 

vegetation burning. Pyr comprised up to about 21% of the PAH mass (16 PAHs), followed by Flu 

which accounted for about 17% (Table 5.2). Other major PM-bound PAHs were benzo(a)pyrene 

(BaP – 10%), chrysene (CHR – 9%), benzo(b)fluoranthene (BbF – 8%), and benzo(a)anthracene 

(BaA – 8%). When grouping PAHs based on the number of aromatic rings, 4-ring PAHs were the 

major group contributing more than 50% of the total mass concentrations of PAHs. Other high-

molecular weight groups also accounted for significant proportions, at 27% and 14% for 5-ring 

and 6-ring PAHs, respectively. Low-molecular weight PAHs (2-ring and 3-ring) were not 

abundant (<6%). 

Among the three vegetation types, Jarrah had the highest total concentration of PAHs which was 

1.7 and 1.9- fold higher than those in PM2.5 derived from Spinifex and Banksia burns, respectively. 

Jarrah derived PM2.5 also had the highest concentrations of individual PAHs among the three types 

of vegetation (Table 5.2). PM2.5 generated from burning Kimberley grass contained higher 

concentrations of PAHs, which was also 1.7 and 1.9-fold higher than those from dry Spinifex and 

Veldt grass, respectively (Table 5.2). 

The EFs for PAHs which were calculated from EFs for PM2.5 and mass concentrations of PAHs 

and are presented in Table A3.5. Due to having the highest EFPM2.5 and concentration of PM-bound 

PAHs among three types of vegetation, Jarrah burning generated PM2.5 with the highest emission 

factors for 16 PAHs which was 1.7-fold and 3.2-fold higher than those from Banksia and Spinifex, 

respectively. For the three types of grassland, although having the lowest PAH concentration in 

PM2.5, Veldt grass burns yielded the highest EF for PM2.5-bound 16 PAHs which was about 5-fold 

higher than those of the other grass types due to its significantly higher EFs for PM2.5 (Table A3.5).   
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Table 5-2. Mean concentrations of 16 PAHs in PM2.5 from vegetation burning. Unit ng.mg-1 PM2.5 

PAHs 
 Different vegetation types (n=27)  Different types of grass (n=9) 

 Spinifex Banksia Jarrah  Spinifex Kimberley grass Veldt grass 

Naphthalene NaP 0.57 ± 0.42 0.49 ± 0.34 0.84 ± 0.52  0.45 ± 0.39 2.3 ± 2.3 0.39 ± 0.30 

Acenaphthylene AcPy 0.37 ± 0.36 0.56 ± 0.35 1.3 ± 0.60  0.24 ± 0.04 0.36 ± 0.16 0.83 ± 0.58 

Acenaphthene Acp 0.30 ± 0.12 0.047 ± 0.019 0.78 ± 0.37  0.093 ± 0.055 0.37 ± 0.20 0.55 ± 0.21 

Fluorene FL 0.51 ± 0.37 0.37 ± 0.17 0.61 ± 0.19  0.17 ± 0.13 0.19 ± 0.11 0.86 ± 0.17 

Phenanthrene PA 39 ± 35 48 ± 23 75 ± 37  8.6 ± 1.5 14 ± 4 88 ± 22 

Anthracene Ant 7.9 ± 6.7 8.6 ± 4.2 11 ± 6  1.9 ± 0.4 2.4 ± 0.4  15 ± 4 

Fluoranthene Flu 260 ± 160 270 ± 98 480 ± 180  110 ± 55 220 ± 40 190 ± 30 

Pyrene Pyr 330 ± 200 330 ± 110 590 ± 190  150 ± 77 300 ± 38 230 ± 42 

Benzo(a)anthracene BaA 120 ± 50 120 ± 52 240 ± 94  73 ± 15 140 ± 36 59 ± 7 

Chrysene CHR 140 ± 75 140 ± 63 320 ± 130  77 ± 11 170 ± 46 67 ± 13 

Benzo(b)fluoranthene BbF 170 ± 76 130 ± 55 240 ± 100  110 ± 37 200 ± 19 57 ± 13 

Benzo(k)fluoranthene BkF 110 ± 35 96 ± 43 210 ± 93  100 ± 32 88 ± 4 49 ± 9 

Benzo(a)pyrene BaP 220 ± 91 150 ± 67 290 ± 130  160 ± 59 260 ± 13 68 ± 8 

Dibenzo(a,h)anthracene DBA 33 ± 15 20 ± 10 60 ± 42  33 ± 11 22 ± 4 13 ± 2 

Benzo(g,h,i)perylene BghiP 160 ± 66 100 ± 48 230 ± 100  120 ± 60 170 ± 1 45 ± 4 

Indeno(1,2,3-cd)pyrene IND 160 ± 60 110 ± 53 200 ± 91  130 ± 61 170 ± 9 50 ± 6 

∑16 PAHs  1700 ± 750 1500 ± 570 2900 ± 1100  1100 ± 210 1800 ± 160  930 ± 140 
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5.4. Discussion 

 Size and optical properties of PM 

The major abundance of PM2.5 in PM10 observed in this study was consistent with the findings of 

other studies. McMeeking et al. (2009) investigated the emissions of US vegetation fires in 

laboratory-based experiments and found a ratio of PM2.5 to PM10 of 93.5%. Vicente et al. (2013) 

reported that 85 to 97% of PM10 emitted from wildfires in Portugal was fine particulate PM2.5. In 

a paper reviewing studies of bushfires in Southeast Asia, Radojevic (2003) stated that 99% of 

particulates were less than 2.5µm.  

 It has been found that the flaming phase is characterised by the high emission of fine particulates, 

whilst more coarse particulates are generated in the smouldering phase (Garcia-Hurtado et al., 

2014). MCE indicates the fraction between the flaming and smouldering phases of a combustion 

process and the greater the duration of the flaming phase, the higher the value of MCE (Lee et al., 

2010). Therefore, the positive correlations between the ratio of PM2.5/PM10 and MCE observed in 

this study were expected.  

Mass absorption coefficients of PM2.5 have been found to be dependent on combustion phases with 

larger coefficients observed for PM2.5 generated from flaming-dominant combustion compared 

with those from the smouldering-dominant fire (Reid et al., 2005a). Among the three types of 

vegetation, Spinifex is the most combustible fuel and Spinifex fires were mostly in the flaming 

phase with a corresponding higher absorption coefficient (Chapter 3). Veldt grass burns were 

mostly in the smouldering phase, hence the mass absorption coefficient of PM2.5 emitted from 

burning this grass type was significantly smaller than those derived from burns of other grass types 

which were mostly in the flaming phase (Chapter 3)Chen et al. (2007) found a strong positive 

correlation between emission factors for light absorption and EC, with higher values of mass 

absorption coefficients corresponding with higher EC in particulates. Thus, from mass absorption 

coefficient values, it can be suggested that Spinifex generated PM2.5 with the highest fraction of 

EC, followed by Jarrah and Banksia. Among the three grass types, Veldt grass burning derived 

PM2.5 with a lower fraction of EC than those from Spinifex and Kimberley grass.  

The weak correlation between MCE and mass absorption coefficients of PM2.5 observed in this 

study was consistent with what was reported by Ferek et al. (1998) and McMeeking et al. (2009) 

where Ferek et al. (1998) observed that the emission of EC was independent of MCE and showed 

variability between fires. In a study examining the emissions of vegetation fires in a laboratory 

setting, McMeeking et al. (2009) reported a very weak correlation between EFEC and MCE with 

R2=0.09.  
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 Emission factors for PM2.5 

Effects of vegetation types 

The differences in emission factor for PM2.5 from different Western Australian vegetation types 

measured in this study support the results reported in other studies on emissions from biomass 

burning in other parts of the world (Akagi et al., 2011; Chen et al., 2007; McMeeking et al., 2009). 

In a recent compilation of emissions from biomass burning, Akagi et al. (2011) reported a nearly 

2-fold higher EFPM2.5 from a temperate forest than from a tropical savanna. This result is similar 

to the findings of this study which had significantly higher PM2.5 emissions from burning woody 

systems such as forest (Jarrah) and woodland (Banksia) compared with Spinifex dominated 

grassland. Different EFPM2.5 emissions between different grass types (tropical – Kimberley and 

Spinifex grasses vs. temperate – Veldt grass) found in this study are also similar to the patterns 

observed by Chen et al. (2007) who reported a significant difference in EF for PM2.5 from 

combustion of two different kinds of grass (namely Dambo grass and Montana grass). Dambo 

grass from the savannas of southern Africa is a sub-tropical grassland, whilst Montana grass 

collected in Missoulla USA is a temperate grass. The PM2.5 emission factor of the Montana grass 

was 5-fold higher than that of the Dambo grass (Chen et al., 2007).  

 

Effects of combustion conditions 

The higher EFs for PM2.5 when burning moist and wet vegetation compared with those from 

burning dry vegetation in this study were similar to results reported by Shen et al. (2013) who 

investigated the influence of fuel moisture content on the emission of total PM from residential 

wood burning. Shen et al. (2013) observed a 3 and 7-fold increase in total PM emission factor 

when burning wood with moisture content of 14% and 27%, respectively, compared with that from 

wood burn at moisture content of 5%. It was identified that a higher water content in fuel required 

more energy to be vaporized and reduced the combustion efficiency, thus yielding higher 

emissions of particulate matter (Shen et al., 2013). The higher EF for particulates may also be 

explained by the higher emission of organic constituents of PM from the pre-ignition pyrolysis 

process when burning wetter fuel (May et al., 2014).   

The results on the influence of flow rate on the emission of PM2.5 in this study were also similar 

to those of Shen et al. (2013) who observed a 4-fold increase in EFs for PM10 when burning wood 

in enhanced air conditions compared with normal air supply. Vegetation burns in higher flow 

conditions had lower combustion efficiency (Chapter 3) and therefore generated higher emissions 

of PM2.5. In addition, the ability of the exhaust fan to draw particulates from remaining ash into 
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the emission flow, could also contribute to the higher EFPM2.5 in low and high flow conditions 

compared with no flow burns in which the fan did not operate.  

The strong negative correlation between MCE and EFPM2.5 observed in this study was similar to 

findings of other studies on emissions of biomass burning. A laboratory-based study by Hosseini 

et al. (2013) also observed a strong negative relationship (R2=0.8) between EFPM2.5 and MCE. 

Strong positive correlations between emissions of particulates and other substances negatively 

associated with the MCE (i.e. organic carbon, carbon monoxide) were also reported (Alves et al., 

2011; Desservettaz et al., 2017; Reisen and Brown, 2009), indirectly indicating the negative 

correlations between particulate emission and MCE. A negative relationship between EFPM2.5 and 

MCE was also reported by McMeeking et al. (2009), however this correlation was not strong 

(R2=0.39).  

 

Comparison of EFs with other studies 

EFs for PM2.5 obtained in this study were compared with values reported for similar vegetation 

types in Australia and other parts of the world (Table A3.6). The majority of previously reported 

data on EFPM were obtained from laboratory-based studies. In order to facilitate comparison with 

other laboratory-based studies and match their combustion conditions as closely as possible, 

results obtained with no assisted air flow from this study were used for comparison purposes. The 

EFPM2.5 of Spinifex and Kimberley grasses were similar to that reported for Dambo grass, an 

African sub-tropical grassland, in an experimental study by Chen et al. (2007). The PM2.5 emission 

of Veldt grass was also between the values reported for US temperate grassland/rangeland in 

experimental studies conducted by Chen et al. (2007) and McMeeking et al. (2009). However, the 

EFPM2.5 for tropical grasses in this study were about 3 to 5-fold lower than those reported for 

tropical savanna from field-based studies (Desservettaz et al., 2017; Sinha et al., 2003). There are 

a number of differences between the studies which may account for this discrepancy including 

differing combustion conditions (i.e. fuel moisture content and wind speed), fuel type and fuel 

composition. In addition, the study by Desservettaz et al. (2017) had field sampling that was biased 

towards burns with low MCE. Finally, the difference in the size of particulates collected by the 

studies (Desservettaz et al., 2017 reported EF for PM0.67; Sinha et al., 2003 reported EFPM4) may 

also contribute to the differences in the EFs reported. If including results obtained with air flow 

conditions in this study, the EFPM2.5 for Spinifex was comparable with the value reported for 

tropical savanna in the compiled data reported by Akagi et al. (2011). 

The EFPM2.5 of Banksia was similar to laboratory-based values reported for chaparral by 

McMeeking et al. (2009) but higher than those also reported for chaparral by Burling et al. (2011) 
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(field-based) and Hosseini et al.(2013) (laboratory-based). The EFPM2.5 of Jarrah was 2-fold lower 

than that reported in the compilation (Akagi et al., 2011) (Table A3.6).  

 

 Metals and PAHs composition of PM2.5 

Water-soluble metals 

Due to the large mass proportion, potassium is used as a marker of aerosols from biomass burning 

(Garcia-Hurtado et al., 2014; Hosseini et al., 2013; McMeeking et al., 2009). Radojevic (2003) 

reported that the mass percentage of K in aerosols from bushfire smoke varied from 10 to 20%. In 

this study, across all vegetation types, PM2.5 from combustion of Banksia and Jarrah had higher 

concentrations of K, accounting for 14 to 15% of PM mass, compared with those from grass 

burning which had lower K concentrations of 0.5 to 9% of PM2.5 mass (Table 5.1). Similar results 

were found by Chen et al. (2007) who reported elemental K accounting for nearly 24% and less 

than 1% of PM2.5 mass when burning sagebrush and grass, respectively. Zhang et al. (2013) found 

that PM2.5 emitted from burning leaves had a higher K concentration compared with burning wood. 

Banksia and Jarrah have higher proportion of leaves and therefore might generate PM2.5 with 

higher mass percentages of potassium when compared with grasses. 

The composition of the cytoplasm of plant tissue includes the elements K, Na, Ca, Mg and Zn 

(Andreae et al., 1998), therefore as might be anticipated, the proportion of these metals in 

vegetation fire derived PM2.5 were elevated. These results were consistent with the findings of 

McMeeking et al. (2009) and Hosseini et al. (2013) who also reported that K, Na, Ca and Mg were 

abundant inorganic metals in PM2.5 emissions from vegetation fires.  

The variation in metals concentrations in PM2.5 derived from burning different types of vegetation 

was pronounced in this study, with significant differences observed for most metals between 

vegetation types. This suggests that vegetation types had distinct chemical compositions. 

Furthermore, vegetation growing in different soil conditions may uptake different concentrations 

of metals from soil which is likely another reason of this observation. Combustion conditions did 

not significantly affect the metal composition of PM2.5 for most vegetation types which was 

expected, given that the concentration of metals in particulates is known to be determined mainly 

by the chemical composition of vegetation (Chen et al., 2007; Christian et al., 2003; Hosseini et 

al., 2013). Where differences in metals concentrations were observed between different 

combustion conditions (namely burning moist Spinifex compared to dry and wet Spinifex) this 

might be due to differences in sample collection times. The grass used for preparing moist Spinifex 

was collected separately and consisted of seed-stems, which was different from the grass used for 
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preparing the dry and wet samples. This may have caused potential differences in fuel composition 

and hence resulted in the differences in PM2.5-bound water-soluble metal concentrations.   

 

PAHs 

The abundance of Pyr, Flu, BaP, CHR, BbF and BaA in PM2.5-bound PAHs observed in this study 

was consistent with other studies which also found a similar abundance of particle-phase PAHs 

emitted from biomass burning (Alves et al., 2010a; Garcia-Hurtado et al., 2014; Hosseini et al., 

2013). Alves et al. (2010a) found BaA, Pyr, PA, Flu and CHR being major PAHs in wildfire smoke 

particles; Garcia-Hurtado et al. (2014) reported BaA, Flu and Pyr as most abundant PAHs in PM2.5 

and PM10 emitted from shrubland fires; Hosseini et al. (2013) observed that BaP, BaA, Pyr, CHR, 

BaP Flu, BkF were major PAHs bound in PM2.5 from wildland fires. The insignificant fraction of 

low molecular PAHs (2 and 3 rings) was also similar to results of other studies on particle-phase 

PAHs since these PAHs mainly occur in the vapour phase and therefore might be lost during the 

processes of PM sampling and the weighing and storing of filters (Choi et al., 2010).  

Ratios of individual PAHs, including PA/PA+Ant, Flu/Flu+Pyr, BghiP/BaP and IND/IND+BghiP, 

have been suggested to apportion possible sources of PAHs (Alves et al., 2011; Hosseini et al., 

2013; Tobiszewski and Namieśnik, 2012; Vicente et al., 2012). Table A3.7 presents the ratios of 

PAHs obtained in this study as well as other studies on vegetation fires and other emission sources. 

In this study, the ratios of PAHs between different vegetation types were quite similar to each 

other, with the average PA/PA+Ant, Flu/Flu+Pyr, BghiP/BaP and IND/IND+BghiP ratios in the 

range of 0.83–0.88, 0.43–0.45, 0.67–0.71 and 0.52–0.53, respectively. The consistency in these 

PAH ratios in PM across different vegetation types confirms their potential to be used to represent 

PAH emissions from biomass burning. The PA/PA+Ant and Flu/Flu+Pyr ratios in this study were 

similar to those reported for forest and chaparral  (Hosseini et al., 2013; Vicente et al., 2012). 

However, they were also close to the ratios for vehicle emissions (Rogge et al., 1993) (Table A3.7). 

BghiP/BaP ratio in this study was similar to value reported for chaparral but lower than those of 

shrubland (Alves et al., 2011; Garcia-Hurtado et al., 2014; Hosseini et al., 2013). IND/IND+BghiP 

of this study was slightly higher than those reported for forest and chaparral but lower than those 

of shrubland (Alves et al., 2011; Garcia-Hurtado et al., 2014; Hosseini et al., 2013; Vicente et al., 

2012). Both ratios of BghiP/BaP and IND/IND+BghiP from vegetation fires were significantly 

different to those from traffic and vehicle sources (Table A3.7). The results of this study confirm 

previous suggestions that of the four proposed ratios, BghiP/BaP and IND/IND+BghiP may be the 

most useful for apportionment purposes to differentiate emissions from biomass burning and 

traffic/vehicular exhaust (Tobiszewski and Namieśnik, 2012; Vicente et al., 2012).  
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Potential health effects of PM2.5 

A number of studies have reported health effects associated with exposure to bushfire smoke 

derived PM (Chen et al., 2006; Johnston et al., 2007). Therefore, bushfires occurring in vegetation 

types that generate high emissions of PM2.5 such as Jarrah forest, Banksia woodland or Veldt grass 

may increase the risk of adverse impacts on human health due to the elevated PM emission, 

especially to people exposed at proximate distance (e.g. firefighters or people in communities close 

to bushfire events) or vulnerable people (e.g. those with chronic diseases such as asthma or chronic 

obstructive pulmonary disease). The health effects of PM2.5 have also been found to be associated 

with its chemical components including metals and PAH compounds (Feng et al., 2016; Kim et 

al., 2013). Metals are considered as toxic PM components since they can induce reactive oxygen 

species (ROS) that cause cellular inflammation or damage cells exposed to PM (Feng et al., 2016). 

PAHs can cause both short-term (e.g. irritation and inflammation) and long-term (e.g. cancer and 

DNA damage) effects in exposed animals and humans (Kim et al., 2013). With the higher 

concentrations of PAHs and metals, PM2.5 generated from Jarrah forest and Banksia woodland 

could be more hazardous to human health when compared with those from grasslands. However, 

the higher concentrations of some transition metals (Fe, Cu, Mn, Ni) which can induce ROS and 

cause oxidative stress (Carter et al., 1997; Feng et al., 2016) in PM2.5 from Spinifex may potentially 

play an important role in impacting human health. It is also noteworthy that the results obtained in 

this study need to be considered in context of an experimental study with fresh smoke. PM2.5 in 

aged smoke may be chemically transformed and different to that which is newly generated and 

may therefore also differ in its human health impact (Leonard et al., 2007).    

 

Limitations 

There were a number of limitations in this study. Firstly, the use of low pump flow rate when 

collecting PM (in some cases, see 5.2.2) may increase the size of 50% cut-off (d50) PM collected. 

Reducing the flow rate by 50% (3.0 to 1.5 L.min-1) and 33% (3.0 to 1.0 L.min-1) may increase d50 

1.4-fold and 1.7-fold, respectively (Trakumas and Smith, 2008). However, since PM2.5 is the 

dominant proportion in PM10 in vegetation burning emissions (>98%) PM collected with flow 

rates of 1.0 and 1.5 L.min-1 could be assumed as PM2.5. Secondly, isokinetic PM sampling could 

not be conducted in this study and this might result in the underestimation of PM emissions from 

burns with the fan applied. Lastly, the collection of PM from the hot smoke flux (the highest 

temperature at the sampling area was 57 ºC) might also cause the underestimation of PM collected 
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since some non-methane organic compounds might have not been condensed completely to the 

particulate phase (Hosseini et al., 2013). 

 

5.5. Conclusion 

This study has investigated emission profiles of PM from fires of typical vegetation types of 

Western Australia which have not been previously reported. PM2.5 was the major component of 

PM10 generated from vegetation fires and had a strong negative correlation with modified 

combustion efficiency. The emission of PM2.5 and its chemical composition was highly dependent 

on vegetation types. PM2.5 emissions from forest and woodland were similar to each other and 

significantly different from grassland. Combustion of grasslands in different geographical areas 

also resulted in significantly different emission factors for PM2.5.  

Variation in combustion conditions influenced the emission of PM2.5, with emission factors 

increased with greater fuel moisture content and higher flow rate. However, the water-soluble 

metal concentrations in PM2.5 appeared to be more dependent on the type of fuel burned rather 

than the combustion conditions. Mass concentrations of water-soluble metals in PM2.5 from forest 

and woodland were higher than those from grasslands. The EFs for PM2.5 and its chemical 

components provide useful data to predict the emissions and to assess possible effects to human 

health from bushfires in Australia, especially at local and regional scales.  
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 TOXICITY OF PARTICULATE MATTER 

(There were two people who helped me in conducting research related to this chapter, each contributed 

about 10% of the work load. Professor Graeme Zosky – University of Tasmania provided advice on 

designing the toxicological experiments, and Michael Morici – School of Medical and Health Sciences, 

ECU helped in running the cytokine analysis) 

 

6.1. Introduction   

The effects on human health of smoke from bushfires, especially to the human respiratory system, 

have been investigated in several epidemiological studies. Most studies have found that bushfire 

PM10 (particulates with diameter of less than 10 µm) has negative impacts on human health with 

an increase in the number of hospital admissions during bushfire episodes (Chen et al., 2006; 

Crabbe, 2012; Johnston et al., 2007; Morgan et al., 2010; Tham et al., 2009). For example, on days 

when bushfire events occurred and the ambient PM10 concentration exceeded 15 µg.m-3, the 

number of people admitted to hospital in Brisbane (Australia) due to respiratory causes increased 

by 9 to 19 % above the baseline (Chen et al., 2006). Similarly, Johnston et al. (2007) observed a 

significant increase in respiratory admissions in Darwin (Australia) when the concentration of 

PM10 in ambient air increased by 10 µg.m-3 as a result of bushfires. However, these studies mainly 

focused on the epidemiological relationships between bushfire events and cardiorespiratory 

morbidity and mortality, rather than the toxicological impacts of the smoke.  

Whilst several studies have measured the toxicity of atmospheric pollutants in ambient air or from 

specific sources such as cigarette smoke (Aufderheide and Scheffler, 2011; Cavanagh et al., 2009; 

Cervellati et al., 2014; Guastadisegni et al., 2010), few studies have been undertaken to measure 

the toxicity of vegetation fire emissions. A small number of studies have compared the toxicity of 

ambient particulate matter in usual airshed conditions to periods affected by wildfire emissions 

(Franzi et al., 2011; Nakayama Wong et al., 2011; Pavagadhi et al., 2013; Wegesser et al., 2009), 

however, there is a paucity of data focused on the toxicity of smoke generated from vegetation 

fires. 

The majority of PM10 emitted from bushfires is PM2.5 (>98%) (Radojevic, 2003, Chapter 5).  The 

emission of PM2.5 in bushfire smoke, and the associated chemical composition of the particles, has 

been found to be affected by vegetation types (Chen et al., 2007; Christian et al., 2003; McMeeking 

et al., 2009, Chapter 5). The differences in composition of chemicals bound in aerosols may affect 

the toxicity but there have been very few studies that have addressed this issue (Dong et al., 2017).  

Cell viability and cytokine production are some common assays have been conducted to test the 

in vitro toxicity of bushfire/biomass burning derived PM2.5 (Alves et al., 2014; Danielsen et al., 
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2011; Jalava et al., 2006, 2010, 2012; Liu et al., 2005). Cell viability is the most basic assay in in 

vitro toxicity evaluation (Pavagadhi et al., 2013). Cytokines are proteins secreted from cells and 

represent the response and interaction between cells (Zhang et al., 2007). Some pro-inflammatory 

cytokines which promote inflammation are used as marker of inflammation such as interleukin 

(IL) - 1, IL-6, IL-8 and tumour necrosis factor (TNF)-α (Eisenbrand et al., 2002).  

This chapter presents the results related to in vitro toxicological experiments investigating and 

comparing the toxicity of PM2.5 derived from burning different vegetation types. The association 

between chemicals in the PM2.5, including water-soluble metals and polycyclic aromatic 

hydrocarbons (PAHs), on the response was also evaluated. 

 

6.2. Methods and materials  

 Burning experiments, PM collection and chemical analysis 

Details of vegetation sample preparation and burning experiments are described in Chapter 3. 

PM2.5 collection and chemical analysis are described in Chapter 5. Since the water-soluble metals 

were analysed from different PVC filters to those used for toxicological testing, the concentrations 

of metals introduced to cells were calculated using the formula: 𝐶 =
∑ 𝐶𝑖×𝑚𝑖

∑ 𝑚𝑖
, where: C was the 

concentration of a given PM2.5-bound metal in a given pooled PM sample used for the PM toxicity 

test (see 6.2.3), 𝐶𝑖 was the measured concentration of that metal in PM2.5 on a PVC filter collected 

in burn i, 𝑚𝑖 was the mass of PM2.5 on the other PVC filter which was also collected in burn i and 

used for toxicological testing. PAHs were analysed from one representative filter for each 

vegetation type in each combustion condition and assumed to be the PAH concentrations in 

solution which cells were exposed to. 

 

 Cell line  

To examine the toxicity of PM2.5 from vegetation fires, the human alveolar epithelial cell line A549 

(ATCC) was used. A549 cells were chosen as epithelial cells are exposed directly to PM when 

smoke is inhaled. Furthermore, this cell line has been widely used in research relating to the 

toxicity of air pollutants (Bølling et al., 2012; Danielsen et al., 2011; Karlsson et al., 2006; 

Pavagadhi et al., 2013).  

 

 PM2.5 sample preparation 

PM2.5 collected onto PVC filters was extracted using methanol (Alfa Aesar™>99.8%) for the 

toxicological testing following the procedure reported by Bølling et al. (2012) and Jalava et al. 
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(2012, 2010, 2006). Because of the small amount of PM2.5 collected in experiments, up to three 

filters of the same combustion condition were combined to make one PM sample for toxicity 

analysis. In cases when less than three filters were pooled, blank filters were added to make the 

total number of pooled filters of three in order to have the same potential effect of filter material 

on the PM extract. These filters were placed in a pre-weighed glass vial and 15 mL of methanol 

was added to cover all filters. The PM on filters was extracted into methanol for 3  5 minutes in 

an ultrasonic bath (Branson 2210). After the extraction, filter papers were discarded and the extract 

was evaporated using a pure nitrogen gas stream (99.999%) until dry. The glass vial was re-

weighed to identify the amount of PM2.5 extracted and thereafter stored at –20ºC prior to toxicity 

testing. 

 

 Cell culture and exposure 

Epithelial cells A549 were cultured in Ham’s F-12K (Kaighn’s) medium (Gibco®, Cat No. 

21127022) supplemented with 10% of Fetal Bovine Serum (FBS, Interpath Services, Victoria, 

Australia) and 0.5% of Penicillin-Streptomycin (Gibco®, Cat No. 15140122) at 37ºC in 5% CO2 

and were split when the confluence was over 80%.  Cells were exposed to PM2.5 at passages 6 to 

8. 

The dry PM samples were resuspended into Ham’s media at a concentration of 1000 µg.mL-1 with 

manual agitation for 5 minutes, followed by a sonication for 5 minutes. A549 cells were cultured 

in 96-well plates at a density of 200,000 cells.mL-1 (100 µL.well-1) for cell viability assay and 24-

well plates at a density of 100,000 cells.mL-1 (500 µL.well-1) for cytokine assays s overnight. Then 

the old media was decanted and c PM suspension was added to cells at concentrations of 50 and 

500 µg.mL-1 for 24 hours at 37ºC in 5% CO2. These concentrations were chosen based on a pilot 

study using a dose range of 15 to 500 µg.mL-1 (Appendix 4).  The exposure of cells to each PM 

suspension was undertaken in duplicate in each experiment. The results of cellular responses to 

each PM suspension were average values of the duplicates. The average coefficients of variation 

of duplicates in cell viability measurements were 5% and 7% at exposure doses of 50 µg.mL-1  and 

500 µg.mL-1 (except for measurements with cell viability of lower than 10% at high exposure 

dose), respectively, and those of IL-8 production measurements were 5% and 6%, respectively. 

Extracts from blank PVC filters were prepared with the same preparation steps for sampled filters 

as described in section 2.4, dissolved in culture media at dilution ratios equivalent to 50 and 500 

µg PM.mL-1 and then added to cells to examine the effects of blank filters on the cellular responses. 

Cells exposed to fresh media only were used as the control. 
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 Cell viability assay 

Cell viability after 24 hours of exposure was assessed using 3-(4,5-dimethylthiazole-2-yl)-2,5-

diphenyl-tetrazolium bromide (MTT) assay (Trevigen TACS® MTT – Cat No. 4890-25-K). The 

MTT assay was conducted following the manufacturer’s instructions (Trevigen). Specifically, 10 

µL of MTT reagent was added to each well and the plate was incubated at 37ºC for 2 hours until 

the purple formazan stained cells were visible. Detergent (100 µL) was then added to each well 

and the plate was incubated overnight at room temperature. Absorbance was read at 570 nm using 

EnSprire Multimode Plate Reader (PerkinElmer). The number of viable cells in wells was then 

determined based on a function of their relative absorbance. In order to take into account the impact 

of PM on absorbance readings, the background absorbance of PM suspension (without cells) was 

determined simultaneously and subtracted from the absorbance of exposed cells. The cell viability 

in each well was calculated using the following formula:  

𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝑁𝑜. 𝑐𝑒𝑙𝑙𝑠𝑎𝑚𝑝𝑙𝑒

𝑁𝑜. 𝑐𝑒𝑙𝑙𝑐𝑜𝑛𝑡𝑟𝑜𝑙
× 100 

Where 𝑁𝑜. 𝑐𝑒𝑙𝑙𝑠𝑎𝑚𝑝𝑙𝑒 ,  𝑁𝑜. 𝑐𝑒𝑙𝑙𝑐𝑜𝑛𝑡𝑟𝑜𝑙 were the number of cells in wells exposed to samples and 

controls. Samples with the cell viability less than 100% were considered cytotoxic, while those 

with the cell viability of higher than 100% had cellular proliferation.  

     

 Cytokine assays 

After 24 hours of exposure, the supernatant was collected, and centrifuged at 1000 ×g for 15 

minutes (Eppendorf Centrifuge 5424) to remove particles and cells. The supernatant was then 

aliquoted and stored at –80ºC for cytokine analysis.  

The production of the pro-inflammatory cytokines interleukin (IL)-8 and tumour necrosis factor 

(TNF)-α were measured using Human Premixed Multi-Analyte Kit following the instructions of 

the manufacturer (R&D Systems, Minnesota, United States). Briefly, the supernatant collected 

from cell exposure experiments was mixed with fluorescently labelled magnetic beads and 

incubated in the dark for 2 hours at room temperature. These microspheres were pre-coated with 

cytokine-specific antibodies which bound the respective cytokines in the supernatant during 

incubation. A secondary antibody labelled with biotin was then added. The beads were then treated 

with streptavidin-phycoerythrin (Streptavidin-PE) and the production of phycoerythrin was used 

as a fluorescent reporter with the BioRad-Bioplex™ 200 system used for detection.  

The IL-8 production was adjusted using the relative viable cell numbers in order to see the IL -8 

generation in relation to viability (Table A4.1). Due to the extremely low cell viability (0%) in 



 

107 
 

some samples and the potential adsorption of IL-8 on PM at the high exposure dose (see 6.4.1), 

the adjustment was only conducted for results obtained at the low exposure dose. 

 

 Statistical analysis 

Statistical analysis was conducted using SPSS ver.25 (IBM) with the significance value p<0.05. 

Kruskal-Wallis tests were used to assess the difference in cellular responses between samples and 

controls, and between two doses of exposure. Relationships between concentrations of individual 

chemical species and cellular responses were analysed using Spearman’s correlation. A principal 

component analysis (PCA) was conducted for the water-soluble metals and PAHs (excluding five 

metals Cr, Cd, Ni, Fe and Pb, which had many values below the limit of detection – Table A4.2 - 

Appendix 4) to identify factors that explained the majority of variance (determined by the scree 

plot) of chemical data. Prior to the PCA, data on concentrations of chemical species were 

standardised using z-scoring due to the large differences in their scales. In the preliminary analysis 

of PCA using a cut-off loading of |0.50|, Acp and Mg were found not to have strong loading on 

any factors and Zn had similar strong loadings (>0.5) on two factors. Thus these three species were 

omitted (Matsunaga, 2011) and the PCA was rerun with remaining variables (including 6 water-

soluble metals and 15 PAHs). The relative scores of identified factors were used as substitutes for 

chemical species in the multiple regression analysis with the cellular responses to examine the 

attributions of PM2.5-bound compounds on the in vitro toxicity of PM2.5. 

 

6.3. Results  

 Cytotoxicity 

Exposure to the higher concentration of PM2.5 was associated with decreased cell viability for most 

vegetation types. At exposure dose of 50 µg.mL-1, cells exposed to extracts of PM2.5 from all 

vegetation types showed variable cell viability compared with the control. While Spinifex and 

Veldt grass PM2.5 extracts increased the number of cells growing, extracts of PM2.5 from Banksia 

and Jarrah burns decreased the cell viability compared with the control. At the higher exposure 

dose, PM2.5 from Spinifex burns was not cytotoxic, whilst those from burns of other vegetation 

types decreased the cell viability relative to those obtained at low exposure dose (Figure 6.1, Table 

A4.1). The cytotoxicity levels varied between vegetation types. PM2.5 from Banksia burns reduced 

cell viability to 84% at 50 µg.mL-1, and viability fell to 34% at the high exposure dose. The lower 

exposure concentration of extract from Jarrah burns had a more pronounced impact on cell 

viability reducing it to 50% and at the higher dose of 500 µg.mL-1 this went down further to 34%. 
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Veldt grass derived PM2.5 increased cell viability to 129% at the dose of 50 µg.mL-1 however this 

decreased to 103% at 500 µg.mL-1 (Figure 6.1, Table A4.1).  

PM2.5 from Jarrah burning seemed to have the strongest cytotoxic effect on human epithelial cells 

among the three vegetation types, followed by Banksia and Spinifex (Figure 6.1, left). Banksia 

and Jarrah PM extracts decreased the cell viability at both exposure concentrations compared with 

the control. In contrast, the viability of cells exposed to Spinifex burning derived PM extracts 

increased slightly in comparison with the control, with values of 116% and 114% at doses of 50 

µg.mL-1 and 500 µg.mL-1, respectively (Table A4.1). For dry grasses, cells exposed to particulates 

from Spinifex burning yielded lower cell viability at the lower exposure dose but higher cell 

viability at the higher exposure dose when compared with those treated with Veldt grass PM2.5. It 

is notable that cell viability was not decreased below the control following exposure to PM derived 

from either type of grass, at either exposure dose (Figure 6.1, right). 

Cells exposed to blank filter extract, prepared to be equivalent to the PM extracts at 50 µg.mL-1 

and 500 µg.mL-1, had cell viability of 118% and 105%, respectively, in a comparison with the 

control (Table A4.1). 

 

 

Figure 6-1. Cell viability (presented as percentage of the control) exposed to PM2.5 from burning different 
vegetation types (left, n=9) and two types of dry grass (right, n=3) at two doses of exposure 

 

 Cytokine production 

The concentrations of the cytokine TNF-α were below the limit of detection (<9 pg.mL-1) in the 

experimental samples and controls. Cells exposed to the blank filter extract, prepared to be 

equivalent to the PM extracts at 50 µg.mL-1 and 500 µg.mL-1, produced IL-8 of 104% and 103%, 

respectively, in a comparison with the control (Table A4.1). The effect of blank filters on cellular 

IL-8 production was negligible.  
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The IL-8 production of cells exposed to PM2.5 varied among different vegetation types and 

between two doses of exposure (Figure 6.2). At a dose of 50 µg.mL-1, PM2.5 from Spinifex and 

Jarrah burning generated similar average concentrations of IL-8 and higher (1.2-fold) than that 

produced by the control. These IL-8 production levels were also higher than that of Banksia 

burning derived PM2.5 (Figure 6.2). At dose of 500 µg.mL-1, PM2.5 from Banksia burns yielded the 

highest IL-8 production, 1.9-fold higher than that of the control (Table A4.1). Jarrah derived PM2.5 

generated a similar amount of IL-8 compared with the control at the high exposure concentration, 

whilst PM2.5 of Spinifex burns caused very low cellular generation of IL-8, which was about one 

third of the control. The IL-8 production of cells exposed to PM2.5 from Banksia and Jarrah were 

5.6 and 2.6-fold, respectively, higher than those exposed to PM2.5 from Spinifex burning (Figure 

6.2, left). The adjusted IL-8 production of cells exposed to Jarrah PM2.5 at the lower dose was 

much higher than those of other vegetation types (3.2 and 2.7-fold of Spinifex and Banksia, 

respectively) (Table A4.1). 

Between the two grasses, the IL-8 production (and the adjusted IL-8 production) of cells exposed 

to PM2.5 from Spinifex burns was higher than that arising from exposure to Veldt grass burning 

PM2.5 at the low exposure dose. By contrast, at the dose of 500 µg.mL-1, cells exposed to the Veldt 

grass PM2.5 produced 4.3-fold higher IL-8 concentration when compared with those exposed to 

Spinifex burning PM2.5 (Figure 6.2 and Table A4.1). 

Production of IL-8 was increased in cells treated with PM2.5 from Banksia and Veldt grass burning 

at the higher dose compared with those treated at the lower dose. Meanwhile, Spinifex and Jarrah 

PM2.5 had a reverse dose response with a reduction in the measured concentrations of IL-8 

produced when the cells were treated at the higher dose (Table A4.1).  

 

 

Figure 6-2. Concentration of IL-8 produced by cells exposed to PM2.5 from burning different vegetation 
types (left, n=9) and two types of dry grass (right, n=3) at two doses of exposure 
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Correlation between cytotoxicity and cytokine production 

The cell viability and cytokine production in this study were negatively associated as expected. At 

the higher exposure dose the correlation between cell viability and IL-8 production was significant 

but moderate (Spearman’s coefficient ρ=0.52), whilst this correlation was weak at the lower dose 

(ρ=0.04). 

 

 Chemical concentrations of PM2.5 and correlation with toxicity 

Details on chemical composition of PM2.5 from vegetation burns were described in Chapter 5. 

Among the three vegetation types, Jarrah and Banksia had similar total concentrations of metals 

(the sum of concentrations of individual metals) in PM2.5, whilst metal concentration of PM2.5 from 

Spinifex was 3-fold lower than those derived from forest and woodland burning. For the different 

grassland types, PM2.5 from burning dry Veldt grass contained higher concentrations of metals 

than those found in Spinifex (Table A4.2).  

Jarrah burning generated PM2.5 containing a much higher concentration of 16 PAHs, around 

double, than those emitted from burning Spinifex and Banksia. BaP, a carcinogenic PAH, was also 

present in the highest amount in the PM2.5 emitted from Jarrah burning. Total concentrations of 

PAHs in PM2.5 derived from burning two types of dry grass were similar (Table A4.2).  

Spearman’s correlation coefficients between individual and total concentrations of water-soluble 

metals/PAHs with toxicological responses are presented in Table 6.1. The correlation analysis 

excluded some metals including Cr, Cd, Ni, Fe and Pb with low concentrations which were below 

the limit of detection in many samples. The cellular toxicological responses were more 

significantly correlated with the concentrations of water-soluble metals in PM2.5 than with the 

concentration of PAHs. The number of viable cells at both doses were negatively correlated with 

the total concentration of metals. The IL-8 production at the lower dose had no relationship with 

total metal concentrations, however at the higher dose IL-8 was positively correlated with total 

metal concentrations (ρ=0.63). Some individual metals had strong correlations (ρ>0.5) with 

biological responses including K, Na, and Zn (Table 6.1).  

Insignificant and weak correlations were observed between total PAH concentration and toxicity 

endpoints (Table 6.1). The production of IL-8 of cells when exposed to PM extract at a dose of 50 

µg.mL-1 had a significant weak positive correlation (ρ = 0.43) with the total amount of 16 PAHs 

in PM2.5. For individual PAHs, significant correlations were also mainly observed between the 

amount of IL-8 produced at dose of 50 µg.mL-1 and some high-molecular PAHs including BbF, 

BkF, BaP, DBA, BghiP and IND. 
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Table 6-1. Spearman's correlation coefficients between individual PM-bound water-soluble metals/PAHs 
and toxicological responses 

Concentration  

(µg.mg-1 PM) 

Number of  

viable cells 

 50 µg.mL-1 

Number of  

viable cells 

 500 µg.mL-1 

IL-8 production 

(pg.mL-1) 

 50 µg.mL-1 

IL-8 production 

(pg.mL-1) 

 500 µg.mL-1 

K –0.669** –0.568** –0.071 0.524** 

Na –0.508** –0.644** –0.393* 0.768** 

Ca 0.071 0.171 0.025 –0.335 

Cu 0.017 0.171 0.534** –0.546** 

Zn 0.537** 0.303 –0.007 0.094 

Mg 0.109 0.049 0.083 –0.274 

Mn 0.040 0.170 0.490** –0.452** 

Al 0.223 0.174 0.217 –0.334 

∑Water-soluble metals –0.606** –0.598** –0.158 0.626** 

NaP –0.121 –0.039 0.342 –0.024 

AcPy –0.218 –0.200 0.086 0.182 

Acp –0.048 –0.065 0.282 –0.270 

FL 0.138 0.040 0.100 –0.112 

PA –0.179 –0.233 –0.083 0.246 

Ant –0.053 –0.196 0.033 0.226 

Flu –0.410* –0.377* 0.280 0.074 

Pyr –0.368* –0.333 0.328 0.016 

BaA –0.403** –0.269 0.335 –0.054 

CHR –0.397** –0.244 0.351 –0.042 

BbF –0.250 –0.116 0.425* –0.232 

BkF –0.430** –0.235 0.383* –0.108 

BaP –0.215 –0.080 0.465* –0.314 

DBA –0.236 –0.044 0.449** –0.280 

BghiP –0.206 –0.088 0.442* –0.335 

IND –0.278 –0.121 0.447* –0.272 

∑PAHs –0.342 –0.215 0.428* –0.151 

** Significant at p<0.01; * Significant at 0.01<p<0.05  

 

PCA identified four factors which explained 85.1% of the variance of the PM2.5-bound chemical 

concentrations included in the analysis. The first factor was characterised by positive loadings of 

12 PAHs (NaP, AcPy, Flu, Pyr, BaA, CHR, BbF, BkF, BaP, DBA, IND and BghiP). Factor 2 

included 3 PAHs (FL, PA and Ant with positive loading) and Ca (negative loading). Factor 3 was 

characterised by positive loadings of Mn, Al and Cu. The last factor included K and Na with 

positive loadings (Table A4.4). 
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Multiple regression analysis showed that these four factors explained 45.0% (F=5.12; p=0.004) 

and 50.1% (F=6.28, p=0.001) of the variations in viable cell numbers at the low and high exposure 

doses, respectively. For IL-8 production, these factors accounted for 47.5% (F=5.65; p=0.002) and 

64.8% (F=11.5, p<0.001) of the variations at the low and high exposure doses, respectively. Factor 

2 had no significant impact on the toxicity of PM2.5, whilst factor 3 only influenced IL-8 

production. The cell viability and IL-8 production of exposed cells were mainly influenced by 

factors 1 and 4 (Table 6.2).  

 
Table 6-2. Coefficients and their relative p-values of regressions between factors and cellular responses. 

Cellular response  Factor 1 Factor 2 Factor 3 Factor 4 

Number of viable cells – 50 µg.mL-1 
Coefficient –0.446 –0.048 0.098 –0.489 

p-value 0.006 0.747 0.514 0.003 

Number of viable cells – 500 µg.mL-1 Coefficient –0.192 –0.091 0.172 –0.653 

p-value 0.187 0.524 0.235 <0.001 

IL-8 (pg.mL-1) –  50 µg.mL-1 Coefficient 0.347 0.076 0.502 –0.310 

p-value 0.024 0.604 0.002 <0.042 

IL-8 (pg.mL-1) – 500 µg.mL-1 Coefficient –0.256 0.169 –0.289 0.686 

p-value 0.041 0.168 0.022 <0.001 

Significant coefficients (at p<0.05) are presented in bold 

 

6.4. Discussion 

 Toxicity of PM2.5 at different exposure doses 

The dose-response relationship between cell viability and PM dose observed in this study was 

similar to that reported in other studies examining the in vitro toxicity of particulate matter from 

biomass burning (Franzi et al., 2011; Jalava et al., 2010). Jalava et al. (2010) reported a decrease 

of cell viability from about 97% to 48% when exposing mouse macrophages RAW264.7 to 

extracts of PM1 from wood burning at doses of 50 µg.mL-1 and 300 µg.mL-1, respectively. When 

treating the RAW264.7 cells with coarse PM collected in a rural area affected by wildfire smoke 

at different PM amounts of 0, 2.5 and 25 µg (equivalent to doses of 0, 25 and 250 µg.mL-1 in the 

current study), Franzi et al. (2011) observed a decline of live cells from 65% to 50% and then 25%, 

respectively.  

Theoretically, cells experience greater levels of inflammation when exposed to higher doses of 

PM and induce more inflammatory proteins (Akhtar et al., 2014; Jalava et al., 2006). Mouse 

macrophages were reported to induce 2 to 3.5-fold and 2 to 3-fold higher amounts of TNF-α and 

IL-6, respectively, when exposed to wood burning PM2.5-1 (particulate with diameter of between 1 
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and 2.5 µm) at a dose of 300 µg.mL-1 than those exposed to a dose of 50 µg.mL-1 (Jalava et al., 

2006). The cytokine production of cells when exposed to PM2.5 from Veldt grass and Banksia 

burns in this study was similar to the result of Jalava et al. (2006) with increased IL-8 production 

observed in the higher exposure dose. However, markedly lower production of IL-8 was induced 

at the higher dose compared with the lower dose for both Jarrah and Spinifex burning derived 

PM2.5. Cell viability was also decreased in response to high concentrations of Jarrah derived PM2.5 

and it is plausible that occurrence of rapid cell death prevented the induction of cytokine 

production. Similar results were reported in other in vitro toxicological studies which also 

observed lower cytokine production of cells exposed to extremely high doses of particulates 

(Akhtar et al., 2010; Michael et al., 2013). The production of IL8 in cells exposed to the higher 

dose of Spinifex derived PM was lower than that of controls. Given the enhancing impact of the 

grassland PM2.5 extracts on cell number growth, it follows that a component of the Spinifex PM2.5 

could act to reduce the production of inflammatory cytokines. For example, zinc (Zn) is known to 

have antioxidant and anti-inflammatory abilities and has been found to reduce cytokine production 

in cell culture models (Prasad, 2008; Varin et al., 2008), which makes Zn a possible candidate for 

mediating this effect (see 6.4.3), although in this study Zn concentrations were correlated with cell 

viability but not IL-8 production. Further, the potential adsorption of IL-8 on PM might also be 

another reason for the low IL-8 concentrations at the higher exposure dose, particularly in the case 

of Spinifex PM2.5. Akhtar et al. (2010) reported that particulates had the capacity to adsorb IL-8 

and this capacity varied depending on PM characteristics such as carbon content, surface area and 

solubility. This leads to the possibility that the differing composition of PM samples arising from 

different vegetation types in this study were able to adsorb IL8 to varying degrees, thus further 

confounding results. 

 

 Toxicity of PM2.5 from combustion of different vegetation types 

The number of in vitro toxicological studies on PM from biomass burning and toxicity of PM 

derived from combustion of different biomass types is limited (Dong et al., 2017). Only one study 

by Karlsson et al. (2006) examined the toxicity of PM (size was not mentioned) from burning 

wood and wood pellets and found that combustion of these fuel types generated PM having similar 

genotoxicity for both sources. This finding was likely due to the same wood nature of these fuel 

types. However, this study showed the difference in the toxicity of PM2.5 derived from burning 

grassland (Spinifex) compared with forest and woodland (Banksia and Jarrah). Grassland 

generated PM2.5 with no remarkable cytotoxicity (higher cell viability) and less inflammatory 

effect (lower IL-8 production) on the A549 cells. Between forest and woodland, Jarrah seemed to 
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be more toxic (lower cell viability and higher IL-8 production) than the Banksia at a dose of 50 

µg.mL-1 but the toxicological difference became less noticeable at the higher exposure dose. Since 

PM constituents have effects on the biological responses of exposed cells (Jalava et al., 2012; 

Pavagadhi et al., 2013; Verma et al., 2009), the differences in toxicity between vegetation types 

found in this study might be explained by the differences in PM2.5-bound water-soluble metals and 

PAH concentrations (Chapter 5). It is reasonable that PM2.5 from Jarrah was the most toxic due to 

its highest concentrations of PAHs and water-soluble metals compared with those derived from 

combustion of other vegetation types. This finding was supported by a recently published result 

from an in-vivo study by Kim et al. (2018) who tested the toxicity of PM (size was not mentioned) 

from wildland fuel (including red oak, peat, pine needles, pine and eucalyptus) burns in mice lungs 

and also found that particulates from eucalyptus had higher lung toxicity (assessed by neutrophil 

counts) due to their highest concentrations of some PAHs such as PA, Ant and Flu. 

 

 Association between chemical composition and toxicity of PM2.5 

The stronger Spearman’s correlation coefficients between total water-soluble metals concentration 

and number of viable cells compared with those between total PAH concentrations and cell 

viability (Table 6.1) suggests that cell viability was more likely associated with the water-soluble 

metals content of the PM. This was confirmed by the results of the PCA and multiple regression 

analysis which showed that factor 4 (characterised by the positive loadings of K and Na) had 

significant negative correlation with number of viable cells at both doses (Table 6.2). Similar 

results were obtained by Bølling et al. (2012) who examined the toxicity of PM0.1-2.5 in woodsmoke 

on a co-culture of A549 pneumocytes and THP-1 monocytes and observed that the number of 

viable cells had a stronger correlation with total concentration of elements (R2=0.47) than with 

total concentration of PAHs (R2<0.1). Potassium (K), the abundant element, was found to have 

the strongest correlation with cell viability (R2 = 0.64) (Bølling et al., 2012), which is similar to 

the findings of this current study. Kasurinen et al. (2018) also observed positive correlations 

between the concentrations of K and Na in PM1 in woodsmoke and cytotoxicity of PM1 on A549 

cells (assessed by the cellular metabolic activity), however the correlations were not strong. K is 

a marker of bushfire emissions and the relatively strong negative correlation between K 

concentration and cell viability observed in this current study emphasises the potential health 

effects of PM2.5 emitted from bushfires. 

PAHs were also observed to have a negative impact on cell viability, especially at the low exposure 

dose, with a significant negative correlation between factor 1 and the cellular response. At the high 

exposure dose, the correlation was also negative but weaker since the extremely low cell viability 
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in some samples might have obfuscated the strength of PAH effects. Negative correlations between 

PAHs and cell viability have also been reported in several studies on in vitro toxicity of PM from 

biomass burning (Jalava et al., 2012; Kasurinen et al., 2018). 

Cellular production of IL-8 was associated with both PM2.5-bound metal and PAH concentrations. 

The influence of PM-bound metal contents on IL-8 production of cells was pronounced at the 

higher exposure dose with a strong and significant positive correlation between IL-8 and total 

concentrations of metals. In contrast, PAHs showed a clearer influence on IL-8 concentrations at 

the lower exposure dose with positive correlations obtained between amounts of IL-8 released and 

concentrations of total PAHs as well as most individual PAHs. Our results were similar to the 

findings of Jalava et al. (2012) who tested the toxicity of woodsmoke PM on mouse macrophages 

RAW264.7 and observed significantly positive correlation coefficients between concentrations of 

genotoxic PAHs including BaA, BbF, BkF, BaP and TNF-α release (ρ=0.56–0.76). Kasurinen et 

al. (2018) observed strong correlations (ρ>0.78) between IL-8 concentrations produced by human 

monocytes cells (THP-1) and concentrations of PAH in PM generated from wood burning. 

Al, Mn and Cu in PM2.5 (associated with factor 3) also affected the IL-8 production of cells. Cells 

exposed to PM2.5 with higher concentrations of these metals induced more IL-8 (Table 6.2). This 

finding was supported by results of other studies which also found higher inflammatory cytokines 

induced from cells exposed to biomass burning related PM with higher metal concentrations 

(Marchetti et al., 2019; Pavagadhi et al., 2013).  

Meanwhile, IL-8 production at the higher exposure dose of 500 µg.mL-1 might be affected by IL-

8 adsorption potential of PM and/or extensive cell death for Spinifex and Jarrah PM as previously 

discussed. The results for these vegetation types distorted the strength and direction of correlations 

between PM2.5 chemical composition and IL-8 induced by cells exposure at the high concentration 

of PM extracts.  

It is noteworthy that there might be some component in PM2.5 from Spinifex and Veldt grass which 

promoted cellular proliferation, resulting in the increase in cell number growth compared with the 

control at both exposure doses. Grassland-PM samples contained relatively high concentrations of 

zinc (Zn), which was positively correlated with cell viability (Table 6.1). As Zn is an essential 

element with many biological roles including in the processes of DNA synthesis and cell 

proliferation, as well as anti-apoptotic functions, it is a strong potential candidate for mediating 

the beneficial effects of grassland PM2.5 on cell viability (MacDonald, 2000; Truong-Tran et al., 

2001). 
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Limitations 

This study has a number of limitations. Firstly, different matrices were used to extract the PM-

bound chemical components (Milli-Q water for water-soluble metals and dichloromethane for 

PAHs) and PM2.5 exposed to cells (methanol). The amounts of chemicals that cells were exposed 

to, therefore, might be different to what was found in the chemical analysis which might result in 

uncertainty in the correlations between chemical composition of PM2.5 and biological responses 

of the cells. Secondly, endotoxin is often analysed in toxicological studies of ambient aerosols to 

identify the potential contribution to the inflammatory effects of particulates (Cavanagh et al., 

2009). Due to the limited amount of PM2.5 collected, endotoxin analysis could not be performed 

in this study. However, PM derived from biomass burning has been found to generate negligible 

levels of endotoxin (Franzi et al., 2011). Therefore, endotoxin has not been investigated in many 

studies on toxicity of biomass burning PM (Danielsen et al., 2011; Jalava et al., 2012, 2010; 

Karlsson et al., 2006; Kasurinen et al., 2018; Kubátová et al., 2006). Thirdly, the extraction, 

concentration and resuspension of the PM preparation process might lead to differences in the 

natural characteristics of the particulates, e.g. size or morphology might change which in turn 

might also influence their cellular toxicity. Furthermore, the method of exposing cells to PM 

extracts in vitro does not replicate the physiological conditions of PM exposure in individuals, 

therefore the biological responses of cells in vitro may differ to those in the airways of human 

exposed to bushfire smoke. Finally, as an experimental study with the limitations outlined above 

care must be taken when interpreting the results of this study. While relative toxicity can be 

implied, the results cannot be generalised to population or human exposure to bushfire smoke.  

 

6.5. Conclusions 

This study examined the biological response of human epithelial cells to PM2.5 from burning 

different vegetation types in experimental conditions in order to investigate the effects of fuel types 

and PM2.5 chemical composition on the toxicity of PM. This study demonstrated that the vegetation 

fire derived PM2.5 provoked adverse impacts on human epithelial cells. The toxicity of PM2.5 also 

varied for different fuel types. The toxicity of different vegetation types was associated with their 

relative PM-bound chemical compositions. PM2.5 from Jarrah burns was the most hazardous, 

followed by those from Banksia and then Spinifex. Between the two types of grassland, Veldt 

grass PM2.5 was more toxic than Spinifex PM2.5. These findings emphasise the need to consider 

the public health impacts of exposure to bushfire smoke in Australia, since Jarrah, Banksia and 

Veldt grass are vegetation types growing in close proximity to dense communities. There are 

several other endpoints for assessing the in vitro toxicity such as the generation of oxidative stress 
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or genotoxicity, which should also be considered as part of a suite of endpoints to better understand 

the health impacts of bushfire derived PM. Finally this study only measured in vitro toxicity of 

particulate matter, whereas smoke is a complex mixture and studies of whole bushfire smoke 

would be more informative. 
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 SYNTHESIS 

 

This study investigated the chemical composition of emissions from combustion of common 

vegetation types in Western Australia to determine the effect of fuel types and/or combustion 

conditions on the chemical composition and in vitro toxicity of the smoke. To do this pollutants 

emitted from burning different vegetation types and in different combustion conditions were 

measured. It also examined the biological effects of PM2.5 in vegetation fire smoke using an in 

vitro approach to investigate the role of fuel type on toxicity of bushfire-derived particulates. The 

study found that emissions profiles of pollutants from burning different vegetation types did vary, 

as did the in vitro toxicity of the PM2.5 derived. The effects of combustion conditions on emissions 

also varied, depending on the pollutant of interest. This section summarises the overall findings of 

this study and addresses some limitations and implications of this work for future research and 

considerations for practitioners in their planning and responses to managing smoke impacts on 

human health.  

 

Chemical composition of smoke produced from the combustion of different vegetation types 

Emissions from the combustion of different vegetation types including grassland, woodland and 

forest varied. Vegetation type did not have a strong influence on the emissions of CO2, NOx and 

most carbonyls (formaldehyde, acetaldehyde, acetone and propionaldehyde). Emissions of other 

gaseous pollutants such as CO, SO2, butyraldehyde and benzaldehyde were strongly dependent on 

the type of vegetation burned, with higher emissions generated from combustion of Jarrah (forest) 

and Banksia (woodland) than from burns of Spinifex (grassland) (Chapter 3 and 4). Similarly the 

emission of PM2.5 and its components were highly affected by vegetation type with greater EFPM2.5, 

elemental carbon (EC) (referred from mass absorption coefficient), concentrations of PM2.5-bound 

water-soluble metals and PM2.5-bound PAHs generated from burns of Banksia and Jarrah 

compared with those from Spinifex (Chapter 5). Overall among the three types of vegetation, 

woodland and forest burns yielded similar emissions of pollutants to each other, but emitted 

significantly higher amounts of air pollutants than the grassland burns.  

When the three different types of grassland were considered, the EFCO of the Veldt grass (temperate 

grass) was 2-fold higher than those of Spinifex and Kimberley grasses (tropical grasses). 

Consequently, the EFCO2 of the Veldt grass was significantly lower than those from the two 

remaining grasses since a high proportion of Veldt grass burned carbon emitted in the form of CO. 

These big differences are possibly a consequence of Veldt grass burns occurring mainly in the 

smouldering phase, whilst the combustion of the two tropical grasslands was largely in the flaming 
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phase (Chapter 3). The two tropical grasses generated similar emissions for most of the other 

pollutants, except for SO2, NOx and butyraldehyde. The temperate grass emitted much higher 

amounts of pollutants including CO, formaldehyde, acetaldehyde, VOCs, PM and EC (Chapter 3, 

4 and 5). This difference was especially notable for the EFPM2.5 of Veldt grass which was 5-fold 

higher than those from the combustion of Spinifex and Kimberley grass (Chapter 5). 

This study has demonstrated that vegetation type plays an important role in influencing the amount 

of air pollutants emitted from bushfires. The big differences observed in this study were mainly 

between vegetation types, which is not surprising since each have distinct differences in plant 

structures (e.g. grassland vs. woodland/forest), they occur in different geographical regions (e.g. 

tropical vs. temperate) and each also has a distinctive and characteristic chemical composition. 

These differences should be considered when predicting emissions of bushfires since predictions 

made from inappropriate reference vegetation types are unlikely to be accurate. 

 

Air pollutant profiles produced from burning Western Australian vegetation types 

compared with those in other Australian and international studies 

Compared with the available data on field studies of bushfire emissions in Australia, the emission 

factors for CO2 and CO in this laboratory-based study were similar to those reported for similar 

vegetation types such as tropical savanna and temperate forest (Chapter 3). The EFs for 

formaldehyde from this study were lower than those reported in field-based studies (Paton-Walsh 

et al., 2014, 2005), which might be due to the secondary formation of formaldehyde and the bias 

toward the smouldering phase of measurements in field studies (Chapter 4). When compared with 

international data (Hosseini et al., 2013; Liu et al., 2017; McMeeking et al., 2009; Sinha et al., 

2003), emission factors for pollutants that were rarely reported in Australian studies such as NOx, 

SO2 and PM2.5 were different with those reported for other vegetation types in the world, which 

most likely reflects the distinct differences in fuel composition (Chapters 3 and 5). These 

differences also support the need to use EFs obtained from the combustion of local vegetation 

types to better predict the bushfire emissions of the unique vegetation types of Australia and more 

particularly Western Australia. The need is more pronounced for vegetation types growing in close 

proximity to communities, in order to better estimate pollutant concentrations and evaluate the 

potential for adverse health effects. 
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Combustion conditions (fuel moisture and air flow rate) and the chemical composition of 

smoke 

Moisture content (in the range <10%–25%), in this experimental study, was not a significant 

predictor of emissions of gaseous pollutants (Chapters 3 and 4), but it did significantly influence 

the emissions of PM2.5, with greater EFPM2.5 obtained from burns of moister fuel (Chapter 5).  

Although the concentrations of PM2.5-bound chemical species (water-soluble metals) were not 

affected by the fuel moisture content (Chapter 5), the emission factors for these PM2.5-bound 

species were increased with the increase of vegetation moisture content since they were calculated 

from the EFPM2.5. These results suggest that the prescribed burns may have higher emission factors 

for particulates compared with wildfires since the fuel moisture content in prescribed burns is 

typically higher than that experienced in wildfires. However, it should be noted that in addition to 

the fuel moisture content, there are many other factors  that differ between prescribed burns and 

wildfires (e.g. weather conditions, woody and foliage proportions of fuel burned, and fire intensity) 

which strongly impact the emissions of particulates (Burling et al., 2011; Wardoyo et al., 2006).   

Air flow rate was found to have a strong effect on emissions from vegetation fires, with much 

higher EFs for most of the measured pollutants observed from burns in higher flow rates. It was 

initially expected that with higher flow rates (meaning higher oxygen supply) the combustion 

would be more effective and less pollutants would be emitted. However, given the relatively small 

amount of vegetation sample in each burn (25 or 50g) and the air spread mode (causing heading 

fires), the high flow rate applied was possibly too intense and strongly reduced the burning 

temperature, resulting in a reduction in flaming and thus leading to higher emissions of pollutants 

associated with the smouldering phase, such as CO and carbonyls (Chapters 3 and 4). Furthermore, 

high air flow rates might have disturbed the ash remaining after the burn, leading to the 

mobilisation and subsequent extraction of more pollutants (Chapters 3 and 5). With the known 

significant influence of wind on air pollutant emissions, it is suggested that care should be taken 

when undertaking prescribed burns to avoid combustion conditions where the flame ceases rapidly 

(i.e. heading fires) since burning in these conditions is not only less efficient in respect to the fuel 

load reduction but also may generate more pollutants to the atmosphere.    

 

Toxicity of PM2.5 and vegetation type 

The in vitro toxicity of PM2.5 was found to be significantly affected by vegetation type being 

burned, with particulates from forest and woodland more toxic to A549 cells than those from 

grasslands. Cells exposed to PM2.5 from Banksia and Jarrah burning had lower cell viability and 

produced more inflammatory cytokine IL-8 than those exposed to Spinifex derived PM2.5. 
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Between forest and woodland, Jarrah seemed to be more toxic than Banksia at the lower exposure 

dose of 50 µg.mL-1 but the toxicological difference became less pronounced at the higher exposure 

dose (Chapter 6).  

The influence of vegetation type on relative in vitro toxicity of PM from bushfires has not been 

previously investigated and reported (Dong et al., 2017). The findings of this study have provided 

preliminary evidence showing the important role of fuel type on the toxicity of PM2.5 emitted from 

vegetation fires. These results were supported by a recently published in vivo study which also 

found that particulate matter derived from burning eucalyptus was more toxic to mice lung cells 

than those from other fuel types including red oak, peat, pine needles and pine (Kim et al., 2018). 

However, our knowledge and understanding of the toxicity of emissions from the combustion of 

different vegetation types is still very limited and requires further investigation. 

Higher toxicity of PM2.5 was observed at higher exposure doses. Cytotoxicity of PM2.5 from 

burning all types of vegetation followed a dose-response trend with lower cell viability observed 

when cells were exposed to extracts at higher concentrations of PM2.5. Cells exposed to Banksia 

and Veldt grass burning derived PM2.5 also showed cytokine production increasing with increased 

doses of PM2.5 (Chapter 6). This finding confirms the higher risk to human lung health arising 

from exposure to more concentrated smoke. 

 

Chemical components of PM2.5 associated with toxicity 

The higher toxicity of PM2.5 derived from Jarrah burns compared with PM2.5 from other vegetation 

types appeared to be well explained by the fact that the highest total concentrations of 13 water-

soluble metals and 16 PAHs were found in Jarrah PM2.5. This confirms the association between 

PM2.5 chemical composition and its toxicity. The concentrations of 16 PAHs and 6 metals (K, Na, 

Al, Mn, Cu and Ca) explained 45 to 50% of the variations of cellular responses (except for IL-8 at 

the high exposure dose which was potentially affected by the adsorption capacity of PM). The 

cytotoxicity of vegetation fire derived PM2.5 was associated with PM2.5-bound K and Na 

concentrations, while the inflammatory impact (IL-8 production) was more strongly associated 

with the content of genotoxic PAHs (BbF, BkF, BaP, DBA, BghiP and IND), Al, Cu and Mn in  

the PM2.5 (Chapter 6). These results provide useful insights into issues associated with the 

toxicological evaluation and risk assessment of bushfire-derived PM2.5. The potential toxicity of 

PM2.5 can be initially assessed based on concentrations of adsorbed chemical compounds. 

However, it is noteworthy that the assessed toxicity is only related to the responses investigated in 

this study (i.e. cellular cytotoxicity and inflammatory cytokine IL-8 production) since different 

chemicals may have distinct toxicological pathways.    
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Most of the literature on in vitro toxicity of bushfire and open biomass burning smoke has focused 

on the PM sourced from bushfires after ageing of the particulates during long-distance transport.  

To date no studies on the in vitro biological effects of PM generated at, or near, bushfires in the 

field have been found, except for a study byLeonard et al. (2007) who examined the PM collected 

in the field during prescribed burns. The toxicity of PM after long-distance transport might change 

due to the chemical transformation of unstable components, e.g. organic compounds (Jalava et al., 

2006). Therefore, the toxicity of bushfire/open biomass burning PM reported in the majority of 

studies may not reflect the potential effects on people who are in close proximity to the source of 

the smoke. The results of my study have provided more information on the toxicity of newly 

generated particulates, a topic which, together with consideration of ageing during long-range 

transport, needs attention in future studies both in the field and laboratory. 

 

Study limitations  

When compared with field-based measurements, laboratory-based experiments have the 

advantage that they can capture emissions for the complete fire process (including both flaming 

and smouldering phases). Field-based measurements, on the other hand, may be biased towards 

the flaming phase (for measurements using aircraft) or the smouldering phase (for ground-based 

measurements) (Paton-Walsh et al., 2014). However, the limited amount of fuel burned under 

experimental conditions in this study may not be fully representative of emissions in practice. In 

addition, other practical factors such as surface soil conditions, higher variability of fuel 

components and higher proportions of woody fuel may affect the emissions of bushfires in the 

field (Possell et al., 2015). This study was also limited by the instrumentation used to measure and 

sample the smoke. For example the potential cross inference of SO2 and NO2 sensors and the 

inability to quantify VOCs emitted are recognised problems. This study was also limited in its 

ability to measure PM emissions under isokinetic conditions, which might also have affected the 

results (Misra et al., 2003).  

The study was also limited in its ability to compare with field results due to time, budget and 

logistics constraints. Even though the MCE and EFs for CO2 and CO from this study were 

comparable with other field-based studies of Australia, further studies on smoke emissions in the 

field should be conducted to validate this laboratory-based approach, especially for pollutants 

(PM2.5, SO2, NOx) or fuel types (Banksia woodland and temperate grass) which have not been 

previously sufficiently studied. It should also be noted that the ageing of pollutants in the field 

situation may change their emission profiles and impacts compared with laboratory-based data.  
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Implications and recommendations 

This study has shown that the fuel type significantly influenced the emission factors for pollutants 

from vegetation fires and it provides a set of data on emission factors for the main pollutants from 

fires of typical vegetation types of Western Australia. With the limited amount of bushfire 

emission data available from Australian systems, this study provides a significant resource for 

calculating the emissions inventories of bushfires in Australia. This is especially important for 

pollutants such as NOx, SO2, carbonyls and PM2.5. The functions to extrapolate EFs for 

acetaldehyde, acetone and propionaldehyde from the EF for formaldehyde obtained in this study 

(Chapter 4) may also help in estimations of the emissions of these non-commonly measured 

carbonyls from bushfires.  

Woodland and forest fires generated the highest emissions of pollutants with a higher toxicity 

PM2.5 than tropical grassland. Among the grassland types, the temperate grass burns generated 

significantly higher emissions and slightly more toxic PM2.5 than the tropical grass. These results 

suggest greater potential health effects from bushfires in woodland, forest and temperate grassland 

compared with tropical grassland fires, noting that the area, combustion conditions and proximity 

of populations will be important factors that affect subsequent human exposure and the potential 

for impact. Therefore, suitable and effective protection equipment and methods for firefighters 

who fight bushfires in these ecosystems (woodland, forest and temperate grassland) should be 

considered. Given the close proximity to communities, the potential for enhanced toxicity with 

these types of fires also needs further consideration to protect community health.  

The biological effects of particulates from vegetation fires on human lung cells was investigated 

in this study, however, bushfire emissions consist of gaseous pollutants such as CO, SO2, NOx, 

aldehydes and PAHs which also have potential human health impacts.  Hence, future research 

assessing the toxicity of whole bushfire smoke is recommended to enhance our understanding of 

the potential health impacts of bushfire smoke exposure. 

Even though the results of in vitro studies may not be able to replicate the physiological responses 

of the human body to pollutants exactly, this study showed that in vitro toxicological testing 

methods are adequate to provide a valuable preliminary indication and comparison of the toxicity 

of pollutants from different sources. Different toxicological effects of pollutants can be in vitro 

tested by varying the types of cells used and the biological endpoints measured. Furthermore, in 

vitro toxicity testing also enhances our in-depth understanding of the mechanisms through which 

a pollutant can affect human health (U.S. National Research Council, 2007). Further studies using 

in vitro approaches are therefore recommended to investigate the toxicity of emissions, not only 
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from bushfires but also from other sources, to enable better understanding of the health risks that 

humans face.   
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APPENDIX 1. Supplementary material for Chapter 3 
 

Table A1.1. Agreement in PM mass collected at different positions on a cross-section of the duct at 
sampling point confirming the well-mixing of the smoke 

Flow 

condition 
Position 

PM mass 

collected 

(µg) 

Mean PM mass 

between 

positions (µg) 

SD of PM mass 

between 

positions (µg) 

CoV 

=SD*100/Mean 

No - 1 1 1444 1,387 53 3.8% 

 2 1381    

 3 1338    

No - 2 1 420 428 31 7.3% 

 2 463    

 3 402    

No - 3 1 606 635 27 4.3% 

 2 661    

 3 637    

Low - 1 1 288 281 11 4.1% 

 2 286    

 3 268    

Low - 2 1 273 268 8 3.0% 

 2 273    

 3 259    

Low - 3 1 364 369 14 3.8% 

 2 385    

 3 359    

High - 1 1 95 103 9 8.7% 

 2 100    

 3 113    

High - 2 1 319 314 6 2.1% 

 2 315    

 3 307    

High - 3 1 166 171 8 4.9% 

 2 180    

 3 166    

SD: Standard deviation 

CoV: Coefficient of Variation 

Position 1, 2: close to the edge of the duct; position 3: in the middle of the duct.   



 

143 
 

Table A1.2. Examples of change in moisture content of vegetation samples after storing at 4°C (before 
burning) 

Weight (g) before 

storing at 4ºC 

Moisture content 

(%) before storing 

at 4ºC 

Weight (g)  

before burning 

Moisture content 

(%) before 

burning 

Change in 

moisture content 

(%) 

𝑊𝐵 𝑀𝐶𝐵 𝑊𝐴 𝑀𝐶𝐴 𝑊𝐴 − 𝑊𝐵 

25.3 9.0 25.3 9.0 0 

25.4 8.0 25.3 7.6 - 0.4 

25.0 6.9 25.0 6.9 0 

25.4 8.9 25.5 9.3 + 0.4 

51.0 22.3 51.2 22.6 + 0.3 

50.4 22.3 50.4 22.3 0 

50.8 7.7 51.0 8.1 + 0.4 

 

Moisture content of vegetation sample before burning (after storing at 4ºC) was calculated by 

using following formula: 

𝑀𝐶𝐴 =
𝑊𝐴 − 𝑊𝐵 × (1 − 𝑀𝐶𝐵)

𝑊𝐴
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Table A1.3. The comparison of MCE and EFs (g.kg-1 dry fuel) of inorganic gases observed in this study with literature  

 MCE EFCO2 EFCO EFSO2 EFNO EFNO2 EFNOx
b Author Study type 

Grassland          

Spinifex (n=27) 0.948 ± 0.012 1564 ± 20 55 ± 13 0.23 ± 0.16 2.8 ± 0.8 0.59 ± 0.19 3.1 ± 0.8  This studya  

Kimberley grass (n=9) 0.942 ± 0.004 1555 ± 6 60 ± 4 0.01 ± 0.01 1.1 ± 0.02 0.96 ± 0.14 1.7 ± 0.1 This studya  

Veldt grass (n=9) 0.868 ± 0.040 1432 ± 65 139 ± 42 0.08 ± 0.1 1.8 ± 1.02 0.93 ± 0.31 1.8 ± 0.3 This studya  

Dambo grass 0.98 ± 0.00 1607 ± 10 20.1 ± 4.0  1.7 ± 0.1 0.8 ± 0.1  (Chen et al., 2007) Lab 

Australian savanna  1674 ± 56 87 ± 33     (Smith et al., 2014) Field 

  1613 ± 86 88 ± 7     (Shirai et al., 2003) Field 

 0.86 - 0.99 1466 - 1698 15 - 147     (Desservettaz et al., 2016) Field 

African savanna 0.94 1700 ± 60 65 ± 20 0.43 ± 0.30   3.3 ± 0.6 (Sinha et al., 2003) Field 

Savanna  1686 ± 38 63 ± 17 0.48 ± 0.27   3.9 ± 0.8 (Akagi et al., 2011)b Compilation 

Woodland and forest          

Banksia woodland (n=27) 0.904 ± 0.011 1592 ± 20 107 ± 13 1.1 ± 1.0 3.2 ± 1.0 0.4 ± 0.3 3.4 ± 1.0 This studya  

Coastal plain fuel  0.930 ± 0.029 1632 ± 150 78 ± 28 0.9 ± 1.4 4.5 ± 2.4 0.7 ± 0.4  (McMeeking et al., 2009) Lab 

Chaparral 0.909 ± 0.029 1538 ± 125 93 ± 24 0.4 ± 0.2 1.7 ± 2.2 0.5 ± 0.2  (McMeeking et al., 2009) Lab  

Chaparral 0.945 ± 0.005 1772 ± 41 66 ± 6 0.68 ± 0.13 2.3 ± 0.2 0.6 ± 0.2 2.3 ± 0.3  (Burling et al., 2010) Lab 

Jarrah forest (n=27) 0.896 ± 0.015 1577 ± 27 117 ± 17 1.3 ± 0.8 2.8 ± 0.3 0.30 ± 0.12 2.9 ± 0.3 This studya  

Amazon  forest species n/a 1565 ± 128 50 ± 17    2.8 ± 0.8 (Soares Neto et al., 2011) Lab 

Boreal forest 0.917 ± 0.068 1311 ± 325 71 ± 40 0.1 ± 0.1 3.3 ± 1.8 1.6 ± 1.1  (McMeeking et al., 2009) Lab 

Australian temperate forest 0.88 - 0.91 1620 ± 160 120 ± 20     (Paton-Walsh et al., 2014)  Field 

 0.92 ± 0.01 1660 ± 170 93 ± 15     (Guérette et al., 2018) Field 

US temperate forest 0.912 1454 ± 78 89.3 ± 28.5 0.32 ± 0.37 0.11 ± 0.11 0.58 ± 0.50 0.5 ± 0.4 (Liu et al., 2017) Field 

Temperate forest  1637 ± 71 89 ± 32    2.5 ± 1.0 (Akagi et al., 2011) Compilation 

Note: aThe EF values (of this study) obtained under no fan conditions were used for comparison in order to have combustion (natural ventilation) and sampling conditions 

(without the effect of exhaust fan) most similar with other studies. bNOx calculated as NO. 



 

145 
 

Figure A1.1. Examples of extrapolation of inorganic gases concentration peaks 

a) Distribution of concentration peaks with sampling time of samples not over the working range of instrument followed the 6th degree polynomial 

function 
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b) Examples of extrapolated concentration peaks 
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Figure A1.2. Relationship between EFs for SO2, NO, NO2 and NOx (as NO) and MCE of vegetation burns (n=99, for all combustion conditions) 
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 Figure A1.3. Relationship between number of moles of CO2 and NOx (as NO) emitted from burns of individual vegetation types 
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Table A2.1. Concentrations of carbonyls in blank burns (mg.m-3) and ratio of blank burns to the vegetation fire samples 

 n CH2O CH3CHO CH2=CHCHO CH3COCH3 CH3CH2CHO CH3CH2CH2CHO C6H5CHO 

Blank burns 12 0.071 0.005 <LoD 0.0003 0.001 0.006 0.006 

No fan 4 0.145 0.010 <LoD 0.0004 0.002 0.007 0.0004 

Low fan 4 0.046 0.003 <LoD 0.0002 0.0003 0.005 0.002 

High fan 4 0.021 0.002 <LoD 0.0002 0.001 0.005 0.0004 

Samples (average) 90 4.942 2.813 0.865 0.588 0.394 0.197 0.470 

No fan 36 7.598 4.375 1.883 0.633 0.548 0.233 0.932 

Low fan 27 4.116 2.290 0.420 0.645 0.350 0.203 0.307 

High fan 27 3.113 1.775 0.293 0.486 0.283 0.154 0.171 

Blank burns - samples ratio 1.4% 0.2% NA 0.1% 0.3% 3.0% 1.3% 

No fan  1.9% 0.2% NA 0.1% 0.4% 3.0% 0.0% 

Low fan  1.1% 0.1% NA 0.0% 0.1% 2.5% 0.7% 

High fan  0.7% 0.1% NA 0.0% 0.4% 3.2% 0.2% 

Formaldehyde - CH2O; Acetaldehyde - CH3CHO; Acrolein - CH2=CHCHO; Acetone - CH3COCH3; Propionaldehyde - CH3CH2CHO;  

Butyraldehyde - CH3CH2CH2CHO; Benzaldehyde - C6H5CHO  



 

151 
 

Table A2.2. Result on testing breakthrough (pilot test). Numbers in table are the ratios of carbonyl amounts found in the 2nd section to those in the 1st 
section of the DNPH tubes 

Amount of 

vegetation 

Time of 

sampling 
CH2O CH3CHO CH2=CHCHO CH3COCH3 CH3CH2CHO CH3CH2CH2CHO C6H5CHO 

250 g 15 min 61% 22% >100% 33% 0% 35% 22% 

250 g 15 min 25% 82% >100% 8% 0% 17% 18% 

50 g 6 min 1% 23% 26% 0% 8% 0% 0% 

50 g 6 min 31% 25% >100% 5% 0% 12% 0% 

50 g 6 min 10% 18% 0% 0% 32% 24% 13% 

 

The 2,4-DNPH tube consists of two sections of sorbent. The 1st section includes 300 mg sorbent, the 2nd one contains 150 mg sorbent. In order to 

determine whether there was breakthrough, two sections were extracted and analysed for carbonyls separately. Since the sorbent amount of 2nd section 

was half of that of the 1st section, there was potential breakthrough if the amounts of carbonyl found in 2nd section was >50% of those in the 1st section.  
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Table A2.3. QA/QC parameters for carbonyl analysis 

 Chemical 

formula 

R2 of the 

standard 

curve 

Intra-day  

coefficient of variation 

(%) 

Accuracy of 

standard (%) 

LoD 

(mg.L-1) 

Conc. in 

reagent# 

(ng.L-1) 

Formaldehyde CH2O 0.9994-0.9999 0.4 - 2.5 97-99 0.007 1.47 

Acetaldehyde CH3CHO 0.9982-0.9998 0.4 - 2.9 95-99 0.006 ND 

Acrolein CH2=CHCHO 0.9986-0.9995 0.2 - 5.7 94-100 0.001* ND 

Acetone CH3COCH3 0.9984-0.9995 0.0 - 8.5 98-100 0.08 ND 

Propionaldehyde CH3CH2CHO 0.9984-0.9995 0.3 - 5.8 96-98 0.001* ND 

Butyraldehyde CH3CH2CH2CHO 0.9984-0.9994 0.4 - 9.6 97-99 0.001* ND 

Benzaldehyde C6H5CHO 0.9985-0.9994 3.3 - 8.9 96-101 0.001* ND 

 

Limit of detection (LoD) of a compound was calculated as 3 times of the standard deviation of this compound in blank tubes. In cases that the standard 

deviations could not be identified (e.g. concentration was lower than the method detection limit), method detection limits were used (marked as asterisk). 
# The purity of reagent (acetonitrile) was accessed as instructed by TO-11A (USEPA, 1999b). Acetonitrile reagent was mixed in a ratio 4:1 with desorbing 

solution of a blank tube. Then both the blank tube desorbing solution and the mixed solution were analysed for carbonyl contents. The carbonyl 

concentrations in the acetonitrile reagent were then calculated using mass balance method (USEPA, 1999b). ND – not detected (n=3).     
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Table A2.4. Mean concentrations of carbonyls from burning vegetation (Unit: mg.m-3) and distributions of emission (concentration/EF) of individual 
carbonyls (presented as % of emission of total carbonyls) 

Type of 

vegetation 
n 

 
CH2O  CH3CHO CH3COCH3 CH3CH2CHO CH3CH2CH2CHO C6H5CHO 

Total 

carbonyls 

Spinifex 27 Conc. 3.46  2.09  0.38  0.29  0.11  0.25  6.50  

  % of total 52% 32% 6% 5% 2% 3% 100% 

Kimberley grass 9 Conc. 4.51  2.27  0.25  0.19  1.38  0.31  12.6  

 % of total 51% 25% 2% 2% 16% 3% 100% 

Veldt 9 Conc. 11.0  5.65  0.66  0.79  0.25  0.37  21.3  

  % of total 57% 31% 4% 4% 1% 2% 100% 

Banksia 27 Conc. 4.35  2.99  0.68  0.41  0.23  0.48  10.1  

  % of total 48% 32% 8% 4% 3% 5% 100% 

Jarrah 27 Conc. 5.17  2.52  0.69  0.36  0.23  0.71  10.6  

  % of total 53% 26% 8% 4% 3% 6% 100% 

 

Note: The mean values for Spinifex, Banksia and Jarrah were the average values of nine combustion conditions (3 moisture contents  3 flow rates); 

whilst the mean value for Kimberley grass and Veldt grass were the average values of three combustion conditions (1 moisture content  3 flow rates).  
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Table A2.5. R2 coefficient of correlations between EFs for carbonyls (n=99) 

 EFCH2O EFCH3CHO EFCH3COCH3 EFCH3CH2CHO EFCH3CH2CH2CHO EFC6H5CHO 

EFCH2O 1.000 0.930** 0.720** 0.894** 0.153** 0.447** 

EFCH3CHO  1.000 0.736** 0.957** 0.111** 0.365** 

EFCH3COCH3   1.000 0.806** 0.045* 0.476** 

EFCH3CH2CHO    1.000 0.044* 0.366** 

EFCH3CH2CH2CHO     1.000 0.113* 

EFC6H5CHO      1.000 

 **Correlation was significant with p<0.01; * Correlation was significant with 0.01<p<0.05. 

 

 

Table A2.6. Coefficient R2 and p-value of regression between MCE and EFs for carbonyls 

Correlation 

All veg. types 

(n=33) 
 

Spinifex 

(n=9) 
 

Kim. grass 

(n=3) 
 

Veldt 

(n=3) 
 

Banksia  

(n=9) 
 

Jarrah  

(n=9) 

R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value 

MCE - EFCH2O  0.362 <0.001  0.236 0.185  0.826 0.274  0.851 0.253  0.888 <0.001  0.381 0.077 

MCE - EFCH3CHO 0.340 <0.001  0.194 0.236  0.755 0.314  0.800 0.295  0.836 0.001  0.353 0.091 

MCE - EFCH3COCH3  0.513 <0.001  0.260 0.160  0.734 0.345  0.884 0.222  0.897 <0.001  0.386 0.074 

MCE - EFCH3CH2CHO  0.383 <0.001  0.241 0.180  0.808 0.289  0.808 0.289  0.868 <0.001  0.435 0.053 

MCE - EFCH3CH2CH2CHO  0.005 0.692  0.108 0.389  0.826 0.274  0.770 0.319  0.809 0.001  0.346 0.096 

MCE - EFC6H5CHO  0.383 <0.001  0.001 0.934  0.697 0.371  0.747 0.336  0.768 0.002  0.005 0.854 

Significant R2
 and p-value are presented in bold. 
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 Table A2.7. Detected percentage of VOCs in smoke from vegetation fires 

VOCs All veg. 

type 

Spinifex Veldt Banksia Jarrah 

Dry Moist Wet Total Dry Dry Moist Wet Total Dry Moist Wet Total 

Benzene 88% 56% 78% 100% 78% 100% 89% 89% 89% 89% 100% 100% 78% 93% 

Toluene 81% 33% 56% 100% 63% 100% 89% 89% 67% 81% 89% 100% 89% 93% 

Furfural 49% 78% 89% 67% 78% 67% 11% - - 4% 67% 44% 67% 59% 

Ethylbenzene 40% - 44% 22% 22% 22% 44% 56% 11% 37% 67% 78% 56% 67% 

Xylene 53% 11% 56% 33% 33% 33% 78% 78% 0% 52% 100% 100% 44% 81% 

Styrene 71% 78% 78% 56% 70% 67% 78% 78% 22% 59% 89% 89% 78% 85% 

Benzaldehyde  53% 89% 100% 56% 81% 56% - - - - 44% 89% 100% 78% 

Benzonitrile 17% 44% 22% 22% 30% 22% - - 11% 4% 22% - 22% 15% 

Isopropylbenzene 10% - - - - - 11% - - 4% 33% 56% - 30% 

Phenol 21% 78% 11% 44% 44% 11% 11% - - 4% 11% 11% 33% 19% 

Benzofuran 42% 78% 22% 56% 52% 33% 11% 33% - 15% 78% 56% 56% 63% 

m-Cymene 23% - - - - - - - - - 78% 89% 67% 78% 

Indene 69% 11% 56% 89% 52% 100% 78% 67% 56% 67% 100% 89% 44% 78% 

p-Cymenene 4% - - - - - - - - - - - 44% 15% 

Naphthalene 40% 56% 56% 56% 56% 33% 11% - - 4% 100% 78% 11% 63% 

Percentage was calculated by dividing the number of burns in which VOCs were detected to the total number of burns conducted. 9 burns were conducted for 

each type of vegetation in each level of moisture content, so there were 27 burns for Spinifex, Banksia and Jarrah; 9 burns for Veldt grass; and total of 90 burns 

for all vegetation types. “-” means 0%. 
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Table A2.8. Comparison of EFs for carbonyls from vegetation fires obtained in this study and from literature 

 EFCH2O EFCH3CHO EFCH3COCH3 EFCH3CH2CHO Author Study type 

Grassland       

Spinifex  1.01 ± 0.66 0.57 ± 0.35 0.11 ± 0.07 0.09 ± 0.06 This study Lab 

Kimberley grass  0.86 ± 0.41 0.42 ± 0.18 0.02 ± 0.02 0.03 ± 0.03 This study Lab 

Veldt grass  2.25 ± 1.28 1.34 ± 0.97 0.26 ± 0.28   0.21 ± 0.17 This study Lab 

Dambo grass 0.60 2.13 1.20 0.19 (Yokelson et al., 2008) Lab 

African savanna 1.12 0.76 0.19  (Christian et al., 2003) Lab & Field 

Australian savanna 1.5 ± 0.5    (Paton-Walsh et al., 2010) Field 

 1.6 ± 0.4    (Smith et al., 2014) Field 

Savanna 1.73 ± 1.22 1.55 ± 0.75 0.63 ± 0.17  (Akagi et al., 2011) Compilation 

Woodland        

Banksia woodland  0.94 ± 0.66 0.57 ± 0.35 0.17 ± 0.13 0.08 ± 0.05 This study Lab 

Chaparral 0.35 ± 0.14    (Burling et al., 2010) Lab 

Temperate forest       

Jarrah forest (n=27) 1.18 ± 0.74 0.60 ± 0.42 0.20 ± 0.16 0.10 ± 0.07 This study Lab 

Eucalyptus 0.27 0.92 0.61 0.10 (Yokelson et al., 2008) Lab 

Australian temperate 

forest 

1.7 ± 0.4    (Guérette et al., 2018) Field 

2.6 ± 1.2    (Paton-Walsh et al., 2005) Field 

US Temperate forest 2.29 ± 0.27 1.64 ± 0.52   (Liu et al., 2017) Field  

Forest (Portugal) 0.09 - 0.96 1.03 - 1.87  0.03 - 0.17 (Vicente et al., 2012) Field, Tedlar bags 

Temperate forest 2.27 ± 1.13    (Akagi et al., 2011) Compilation 

There is no comparison for butyraldehyde and benzaldehyde due to the lack of data on these compounds from other studies. 



 

157 
 

    

   

Figure A2.1. Regression relationships between MCE and EFs for carbonyl. The solid orange line in the graph of MCE-EF CH3CH2CH2CHO shows the regression between 
MCE and EF for butyraldehyde when excluding data from burns of Kimberley grass 
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      a)   Formaldehyde - Acetaldehyde                                                                          b)   Formaldehyde - Acetone 

  
c) Formaldehyde – Propionaldehyde 

 

Figure A2.2. Linear relationships between EFs for formaldehyde and acetaldehyde (a), acetone (b) and propionaldehyde (c) (n=99). Round blue dots showing the 
data obtained in this study; square orange dots showing the values reported in other studies (Christian et al. (2003) - African savanna; Burling et al. (2011) – US 
conifer forest; Lawson et al. (2015) – Australian coastal heathland; Liu et al., (2017) – US temperate forest; and Guérette et al. (2018) – Australian temperate 
forest) 

y = 0.563x
R² = 0.93

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00 1.00 2.00 3.00 4.00 5.00

EF
C

H
3

C
H

O
(m

g.
kg

-1
d

ry
 f

u
e

l)

EFCH2O (mg.kg-1 dry fuel)

y = 0.142x
R² = 0.73

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.00 1.00 2.00 3.00 4.00 5.00

EF
C

H
3

C
O

C
H

3
(m

g.
kg

-1
d

ry
 f

u
e

l)

EFCH2O (mg.kg-1 dry fuel)

y = 0.087x
R² = 0.89

0.00

0.10

0.20

0.30

0.40

0.50

0.00 1.00 2.00 3.00 4.00 5.00

EF
C

H
3

C
H

2
C

H
O

(m
g.

kg
-1

d
ry

 f
u

e
l)

EFCH2O (mg.kg-1 dry fuel)



 

159 
 

APPENDIX 3. Supplementary material for Chapter 5 
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Table A3.1. QA/QC parameters for PM water-soluble metal analysis 

 
 

R2 of the standard 

curve 

Recovery 

rate (%) 

Intra-day  

coefficient of 

variation (%) 

Accuracy of 

standard (%) 

Limit of 

detection 

(µg.mg-1) 

Na  0.9997 106 1.0 - 2.3 102 - 107 <0.004 

K  0.9999 106 NA 101 - 109 <0.0004 

Ca  0.9996 112 1.8 - 3.6 101 <0.002 

Ni  0.9999 112 1.7 - 12.3 105 - 107 <0.0001 

Fe  0.9999 109 2.4 - 13.8 108 - 109 <0.003 

Cu  0.9998 110 1.7 - 12.8 107 - 108 <0.003 

Cd  1.0000 105 0.2 - 12.9 102 - 107 <0.0001 

Cr  1.0000 111 2.4 - 9.3 103 - 104 <0.0001 

Pb  1.0000 86 NA 104 - 107 <0.0002 

Zn  1.0000 111 0.8 - 6.3 98 - 99 <0.0001 

Mg  0.9997 102 0.5 - 11.3 97 - 102 <0.004 

Mn  0.9999 113 3.3 - 5.6 102 - 103 <0.0002 

Al  1.0000 98 1.6 - 18.3 96 - 114 <0.0005 
Limit of detection (LoD) in µg.mg-1 of PM was calculated by dividing the LoD (in µg of metals/sample) to the mean PM2.5 mass (in mg/sample)  
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Table A3.2. QA/QC parameters for 16 USEPA polycyclic aromatic hydrocarbon (PAHs) in PM2.5 

PAHs Abbreviation Number of rings LoD (ng.mg-1) 
% of measured and 

certified values of SRM 

Naphthalene NaP 2 0.21 90% 

Acenaphthylene AcPy 3 0.001 NA 

Acenaphthene Acp 3 0.013 115% 

Fluorene FL 3 0.12 NA 

Phenanthrene PA 3 0.17 NA 

Anthracene Ant 3 0.011 NA 

Fluoranthene Flu 4 0.098 103% 

Pyrene Pyr 4 0.003 91% 

Benzo(a)anthracene BaA 4 0.003 120% 

Chrysene CHR 4 0.005 112% 

Benzo(b)fluoranthene BbF 5 0.064 85% 

Benzo(k)fluoranthene BkF 5 0.029 101% 

Benzo(a)pyrene BaP 5 0.006 99% 

Dibenzo(a,h)anthracene DBA 5 0.006 108% 

Benzo(g,h,i)perylene BghiP 6 0.012 88% 

Indeno(1,2,3-cd)pyrene IND 6 0.008 108% 

Limit of detection (LoD) in ng.mg-1 of PM was calculated by dividing the LoD (in ng of PAHs/sample) to the mean PM mass (in mg/sample) 
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Table A3.3. Mean concentration of PM10, PM2.5 and ratio of PM2.5 and PM10 from vegetation burning 

Vegetation type n 
PM10 concentration 

(mg.m-3) 

PM2.5 concentration  

(mg.m-3) 
PM2.5/PM10 

Spinifex 27 29.7 28.5 94.7% 

Kimberley grass 9 23.3 22.8 97.5% 

Veldt grass 9 158 155 98.4% 

Banksia 27 103 101 97.9% 

Jarrah 27 67.2 66.3 98.3% 
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Table A3.4. Kruskal-Wallis test results for effect of vegetation type on concentrations of PM2.5-bound water-soluble metals  

Metal 
Different vegetation type  Different types of grasses 

χ2(2) p Pairwise comparison  χ2(2) p Pairwise comparison 

K 48.1 <0.001 Spinifex vs. Banksia/Jarrah  21.8 <0.001 Kimberley vs. Spinifex/Veldt 

Na 65.2 <0.001 Spinifex vs. Banksia vs. Jarrah  21.8 <0.001 Kimberley vs. Spinifex/Veldt 

Ca 6.78 0.034 Spinifex - Jarrah  12.1 0.002 Veldt vs. Spinifex 

Zn 7.69 0.021 Banksia - Jarrah  8.80 0.012 Veldt vs. Spinifex 

Mg 2.63 0.268 NA  2.00 0.368 41.6 

Al 18.8 <0.001 Banksia vs. Jarrah/Spinifex  0.268 0.875 53.7 

 Cr 29.6 <0.001 Banksia vs. Jarrah/Spinifex  2.23 0.329 48.8 

Mn 33.2 <0.001 Banksia vs. Jarrah/Spinifex  3.39 0.184 44.5 

Fe 35.8 <0.001 Banksia vs. Jarrah/Spinifex  4.12 0.127 55.7 

Ni 30.1 <0.001 Banksia vs. Jarrah/Spinifex  4.24 0.120 56.4 

Cu 19.4 <0.001 Banksia vs. Jarrah/Spinifex  13.0 0.002 Veldt vs. Spinifex/Kimberley 

Cd 44.2 <0.001 Spinifex vs. Banksia vs. Jarrah  2.11 0.349 63.1 

Pb 45.1 <0.001 Spinifex vs. Banksia vs. Jarrah  4.42 0.110 63.4 

∑metals 50.1 <0.001 Spinifex vs. Banksia/Jarrah  22.1 <0.001 Kimberley vs. Spinifex/Veldt 

Significant values of p are in bold 
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Table A3.5. Emission factors for PM2.5 (Mean ± SD), dominant water-soluble metals and PAHs in PM2.5 generated from vegetation burning 

 Different types of grassland (dry) (n=9)  Different vegetation types (n=27) 

 Spinifex Kimberley grass Veldt grass  Spinifex (grassland) Banksia (woodland) Jarrah (forest) 

EFPM2.5  4.8 ± 3.1 3.6 ± 1.9 31.8 ± 17.3  7.4 ± 4.0 17.2 ± 8.4 18.0 ± 11.2 

Water-soluble metals        

EFK 0.2 ± 0.02 0.02 ± 0.01 2.6 ± 1.1  0.4 ± 0.3 2.3 ± 0.9 2.7 ± 1.5 

EFNa 0.032 ± 0.019 0.001 ± 0.002 0.420 ± 0.188  0.055 ± 0.042 0.679 ± 0.380 0.432 ± 0.292 

EFCa 0.015 ± 0.017 0.001 ± 0.002 0.002 ± 0.002  0.010 ± 0.013 0.018 ± 0.028 0.011 ± 0.026 

EFMg 0.001 ± 0.001 0.0002 ± 0.0003 0.001 ± 0.002  0.001 ± 0.001 0.006 ± 0.009 0.009 ± 0.019 

EFZn 0.001 ± 0.001 0.001 ± 0.001 0.020 ± 0.013  0.001 ± 0.001 0.002 ± 0.002 0.001 ± 0.001 

EF16 PAHs * 5.6 ± 4.3 6.3 ± 1.4 29.7 ± 19.2  14.1 ± 10.6 25.8 ± 15.1 44.8 ± 24.0 

EFs for PM2.5 and water-soluble metals are presented in g.kg-1 dry fuel; EFs for PAHs are presented in mg.kg-1 dry fuel.  

*n=3 for dry grasses, n=9 for vegetation types. 
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Table A3.6. The comparison of MCE and EFs for PM2.5 (g.kg-1 dry fuel) obtained in this study with literature 

 MCE EFPM2.5 Author Type of study 

Grassland     

Spinifex (n=9) 0.948 ± 0.012 3.1 ± 1.8 This study Lab-based 

Kimberley grass (n=3) 0.942 ± 0.004 2.5 ± 1.2 This study Lab-based 

Dambo grass  0.98 ± 0.00 2.2 ± 1.1 (Chen et al., 2007) Lab-based 

Australian savanna1 0.86 - 0.99 12 ± 3 (Desservettaz et al., 2017) Field-based 

African savanna2 0.94 10.0 ± 7.5 (Sinha et al., 2003) Field-based 

Savanna  7.2 ± 3.4 (Akagi et al., 2011) Compilation 

Veldt grass (n=3) 0.868 ± 0.040 15.3 ± 4.3 This study Lab-based 

Montana grass 0.98-0.97 10.3 ± 0.9 (Chen et al., 2007) Lab-based 

Rangeland 0.905 ± 0.043 18.9 ± 13.9  (McMeeking et al., 2009) Lab-based 

Woodland and forest     

Banksia woodland (n=9) 0.904 ± 0.011 10.3 ± 5.3 This study Lab-based 

Jarrah forest (n=9) 0.896 ± 0.015 6.0 ± 1.6 This study Lab-based 

Chaparral 0.909 ± 0.029 11.6 ± 15.1 (McMeeking et al., 2009) Lab-based 

Chaparral 0.945 ± 0.005 7.1 ± 1.5 (Burling et al., 2011) Field-based 

Chaparral 0.946 ± 0.006 5.5 ± 1.3 (Hosseini et al., 2013) Lab-based 

Temperate forest  12.7 ± 7.5 (Akagi et al., 2011) Compilation 

The EF values (of this study) obtained under no flow conditions were used for comparison in order to 

have the most similar combustion (natural ventilation) and sampling conditions (without the effect of 

exhaust fan) with other laboratory-based studies. 

1Aitken mode PM; 2 PM4.
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Table A3.7. Diagnostic ratios of PAHs obtained in this study and other studies and proposed diagnostic ratios for different emission sources 

Diagnostic ratio  
Fuel Author 

PA/PA+Ant Flu/Flu+Pyr BghiP/BaP IND/IND+BghiP  

Vegetation fires       

0.85 ± 0.03 0.44 ± 0.02 0.69 ± 0.05 0.52 ± 0.02  All veg. types1 This study 

0.83 ± 0.03 0.43 ± 0.02 0.71 ± 0.07 0.52 ± 0.01  Spinifex2 This study 

0.85 ± 0.02 0.42 ± 0.03 0.69 ± 0.03 0.49 ± 0.01  Kimberley grass3 This study 

0.86 ± 0.02 0.45 ± 0.01 0.69 ± 0.05 0.52 ± 0.01  Veldt grass3 This study 

0.85 ± 0.01 0.45 ± 0.02 0.67 ± 0.06 0.53 ± 0.02  Banksia2 This study 

0.88 ± 0.02 0.45 ± 0.02 0.70 ± 0.02 0.53 ± 0.01  Jarrah2 This study 

0.72 ± 0.17 0.40 ± 0.04  0.40 ± 0.04  Chaparral Hosseini et al., 2013 

0.75 0.60 0.86 0.75  Shrubland Alves et al., 2011 

0.98 0.61 0.70 0.66  Shrubland Garcia-Hurtado et al., 2014 

0.83 - 1.0 0.25 - 0.70 0.33 - 0.58 0.15 - 0.49  Forest Vicente et al., 2012 

Other sources       

  >1.7   Traffic sources Tobiszewskind & Namieśnik, 2012 

0.77 0.61 3.34 0.04  Non-catalyst vehicle Rogge et al., 1993 

Rogge et al., 1993 0.89 0.44 2.27 0.09  Catalyst vehicle 

1 n=33 (average of all vegetation types in all combustion conditions); 2 n=9 (average of all combustion conditions); 3 n=3 (average of dry vegetation in 3 air flow 

rates). 
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Figure A3.1. Influence of combustion conditions on the total concentrations of water-soluble metals in PM2.5 from burning given vegetation types (n=27). Letters 
a, b, c at the top of each bar group represent the significant difference between different fuel moisture contents. Letters x, y, z at the top of each bar represent 
the significant difference between different flow rates. Influences of moisture content and flow rate were assessed using PERMANOVA with p<0.05 
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APPENDIX 4. Supplementary material for Chapter 6 
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Results of the pilot study to determine the doses of exposure 

A pilot study was conducted with several exposure doses in range of 12.5 to 500 µg.mL-1   and found large differences in the dose response of cells 

exposed to PM depended on toxicity endpoint and type of vegetation.  

 

PM2.5 from Jarrah could negatively influence the cell viability at low doses of exposure (<150 µg.mL-1) but Banksia PM2.5 showed strong effects only 

at a dose of 500 µg.mL-1 (above figure, left). The effects of PM2.5 on cellular cytokine production were also more pronounced at the 500 µg.mL-1dose 

(above figure, right).  

Based on the above results and due to the limited amount of collected PM2.5, two doses of PM suspension, 50 and 500 µg.mL-1, were chosen for the 

main experiments to ensure the cellular responses to exposure to PM2.5 from all vegetation types measurable.  
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Table A4.1. Mean toxicological responses of A549 cells exposed to PM2.5 from vegetation fires at two doses of exposure 

Vegetation type n 

Cell viability  

(% of the control) 

 
IL-8 concentration  

(pg.mL-1) 

 Adjusted IL-8 

concentration  

(pg.mL-1.10-5 cells) 

50 µg.mL-1 500 µg.mL-1  50 µg.mL-1 500 µg.mL-1  50 µg.mL-1 

Different vegetation types         

Spinifex 9 116 114  201 48.4  116 

Banksia 9 84 34  171 274  138 

Jarrah 9 50 34  197 128  370 

Different dry grasses         

Spinifex 3 110 126  225 51.7  135 

Veldt grass 3 129 103  172 224  88.4 

Control  100 100  167 145  111 

Blank filters  118 105  174 150  97.6 
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Table A4.2. Mean adjusted concentrations of water-soluble metals in PM2.5 from vegetation combustion 

exposing to cells. Bracketed values represent standard deviations. Unit: µg.mg-1 PM 

 Different vegetation types   Different kinds of dry grass 

 Spinifex Banksia Jarrah  Spinifex Veldt grass 

K 60 (24) 140 (32) 154 (15)  49 (7) 87 (30) 

Na 7.3 (2.3) 38 (13) 23.2 (4.7)  6.9 (1.2) 14 (2) 

Ca 1.3 (1.3) 0.84 (0.88) 0.43 (0.59)  2.4 (1.7) 0.048 (0.020) 

Mg 0.12 (0.14) 0.25 (0.34) 0.30 (0.49)  0.18 (0.19) 0.028 (0.030) 

Zn 0.17 (0.16) 0.10 (0.03) 0.051 (0.051)  0.24 (0.23) 0.49 (0.11) 

Al 0.036 (0.037) 0.021 (0.041) 0.020 (0.025)  0.050 (0.043) 0.0032 (0.0010) 

Cr 0.010 (0.018) <0.0001 0.0025 (0.0037)  0.027 (0.026) 0.0012 (0.0005) 

Mn 0.012 (0.020) 0.0010 (0.0013) 0.010 (0.014)  0.031 (0.027) 0.0010 (0.0010) 

Fe 0.036 (0.040) <0.003 0.015 (0.013)  0.054 (0.043) 0.0035 (0.0026) 

Ni 0.012 (0.023) <0.0001 0.0019 (0.0028)  0.035 (0.032) 0.0022 (0.0003) 

Cu 0.021 (0.032) 0.0019 (0.0019) 0.0093 (0.012)  0.053 (0.043) 0.0010 (0.0004) 

Cd 0.009 (0.018) <0.0001 <0.0001  0.027 (0.025) 0.0069 (0.0017) 

Pb 0.007 (0.012) <0.0002 <0.0002  0.018 (0.016) 0.0012 (0.0021) 

∑13 metals 69 (25) 180 (40) 180 (17)  59 (6) 100 (30) 
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Table A4.3. Mean concentrations of 16 PAHs in PM2.5 from vegetation combustion which cells were exposed to. Bracketed values represent standard deviations. 

Unit ng.mg-1 PM 

  Different vegetation types (n=27)  Different kinds of grass (n=9) 

  Spinifex Banksia Jarrah  Spinifex Veldt grass 

Naphthalene NaP 0.57 (0.42) 0.49 (0.34) 0.84 (0.52)  0.45 (0.39) 0.39 (0.30) 

Acenaphthylene AcPy 0.37 (0.36) 0.56 (0.35) 1.3 (0.60)  0.24 (0.04) 0.83 (0.58) 

Acenaphthene Acp 0.30 (0.12) 0.047 (0.019) 0.78 (0.37)  0.093 (0.055) 0.55 (0.21) 

Fluorene FL 0.51 (0.37) 0.37 (0.17) 0.61 (0.19)  0.17 (0.13) 0.86 (0.17) 

Phenanthrene PA 39 (35) 48 (23) 75 (37)  8.6 (1.5) 88 (22) 

Anthracene Ant 7.9 (6.7) 8.6 (4.2) 11 (6)  1.9 (0.4) 15 (4) 

Fluoranthene Flu 260 (160) 270 (98) 480 (180)  110 (55) 190 (30) 

Pyrene Pyr 330 (200) 330 (110) 590 (190)  150 (77) 230 (42) 

Benzo(a)anthracene BaA 120 (50) 120 (52) 240 (94)  73 (15) 59 (7) 

Chrysene CHR 140 (75) 140 (63) 320 (130)  77 (11) 67 (13) 

Benzo(b)fluoranthene BbF 170 (76) 130 (55) 240 (100)  110 (37) 57 (13) 

Benzo(k)fluoranthene BkF 110 (35) 96 (43) 210 (93)  100 (32) 49 (9) 

Benzo(a)pyrene BaP 220 (91) 150 (67) 290 (130)  160 (59) 68 (8) 

Dibenzo(a,h)anthracene DBA 33 (15) 20 (10) 60 (42)  33 (11) 13 (2) 

Benzo(g,h,i)perylene BghiP 160 (66) 100 (48) 230 (100)  120 (60) 45 (4) 

Indeno(1,2,3-cd)pyrene IND 160 (60) 110 (53) 200 (91)  130 (61) 50 (6) 

∑16 PAHs  1700 (750) 1500 (570) 2900 (1100)  1100 (210) 930 (140) 
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Table A4.4. Factor loadings of the chemical compounds obtained from PCA. Only loadings >|0.30| are 

presented 

Chemical species Factor 1 Factor 2 Factor 3 Factor 4 

K    0.843 

Na    0.928 

Ca  -0.736   

Al   0.811  

Mn   0.853  

Cu   0.841  

NaP 0.805    

AcPy 0.680 0.555   

FL  0.796   

PA  0.926   

Ant  0.910   

Flu 0.736 0.545   

Pyr 0.773 0.495   

BaA 0.933    

CHR 0.907    

BbF 0.970    

BkF 0.949    

BaP 0.971    

DBA 0.866    

IND 0.988    

BghiP 0.969    

                   Loadings >|0.50| are presented in bold 
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