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ABSTRACT 

The increased cell numbers, presence of the blastocoel and rapid cell re-organisation 

have required the development of specific survival criteria post warm to effectively 

select the most viable blastocyst for transfer. Pre-freeze blastocyst expansion and post 

warm re-expansion have been shown to contribute significantly to the chances of an 

implantation and subsequent live birth. The aim of this study was to explore factors that 

influence the outcome of blastocyst transfers after vitrification and warming, and 

hopefully improve outcomes by further applying improvements in future cycles. 

Variables from 8 years of vitrified/warmed blastocysts were retrospectively compiled 

and analysed to determine the most significant contributors to outcome. There were 

2466 transfers of either 1 or 2 vitrified/warmed blastocysts resulting in 796 (32.3%) 

clinical pregnancies and 751 (30.5%) live born babies. The patient/cycle specific variables 

of age: ≤38 years (OR: 2.01, 95% CI:1.48-2.73), transfer order: ≤ 2 (OR:1.32, 95% CI:1.10-

1.59) and cycle type: non-HRT (OR: 1.38, 95% CI:1.15-1.66) significantly influenced the 

live birth outcome. Blastocysts vitrified on day 5 of development had significantly 

improved outcomes to day 6 blastocysts (OR: 1.80, 95% CI: 1.37-2.35). A greater degree 

of blastocyst expansion on Day 5 further improved these outcomes (OR: 1.47, 95% 

CI:1.17-1.86). A grade 1 morphology rating significantly improved the outcomes of day 5 

expanded blastocysts (OR: 1.51, 95% CI:1.24-1.85). The composition of the warming 

media and possibly the concentrations of osmotic buffer contributed to the survival of 

warmed blastocysts. Post warming assessment of the blastocyst showed that if the level 

of cell degeneration in the surviving and transferred embryo was less than 5%, this 

significantly influenced the outcome (OR:1.57, 95% CI:1.22-2.03). There was no 

significant difference if a blastocyst with ≥ 95% cell survival commenced re-expansion 

within 30 or 60 minutes after the warm (OR: 1.13, 95% CI:0.87-1.46). This study 

highlights the significance of even a small number of degenerative cells in the warmed 

blastocyst despite early commencement of re-expansion and warrants further 

prospective analysis. 
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1 INTRODUCTION 

1.1 Background to the Study 

A review of 25 population surveys in 2007 showed a global prevalence of infertility to be 

9% of the population (Boivin, Bunting, Collins, & Nygren, 2007) with estimates of 1 in 6 

couples requiring medical intervention to achieve conception during their reproductive 

lifetime. A report from the World Health Organisation published in 2012 concluded that 

prevalence estimates had changed little over the previous two decades (Mascarenhas, 

Flaxman, Boerma, Vanderpoel, & Stevens, 2012). Despite the stable infertility prevalence 

there is increasing use of Assisted Reproductive Technology (ART) to procreate. The 

proportion of Australian births in 2016 that required some form of ART treatment was 

4.4% (Australian Institute of Health and Welfare, 2018).This compared to 1992 when In 

vitro-fertilisation (IVF) treatment accounted for 0.9% of births (Lancaster, Shafir, & 

Huang, 1995). The latest report from the National Perinatal Epidemiology and Statistics 

Unit (NPESU) describes ART as the most common form of treatment for infertility, with 

over 81,000 ART cycles initiated in Australia and New Zealand in 2016 (Fitzgerald, Paul, 

Harris, & Chambers, 2018).  Despite a significant utilisation of IVF technology, the 

summary embryo data from this report reveals that less than 10% of embryos created 

implant into the uterus. This compares to a reproductive efficiency of a fertile couple in 

their mid-20’s of 25% (Wang. et al., 2003). Decreased implantation rates of embryos 

grown in vitro and the use of single embryo transfer (SET) have led to the development 

of strategies to improve the culture environment and selection of embryos prior to 

transfer.  

Development of nutrient gradients in culture media to mimic the passage of the embryo 

through the fallopian tube and into the uterus has allowed extended use of culture 

beyond the cleavage stage to the blastocyst stage of development (Gardner, 1998). This 

has assisted with embryo selection as only 40-50% of fertilised oocytes reach this stage 

of development in-vitro (Schoolcraft et al., 1999a). Differentiation of the blastocoel, 

trophectoderm (TE) and inner cell mass (ICM) as morphological markers on Day 5 and 6 

of culture also enable a more informative assessment of embryo morphology. It is also 

relevant that the physiological processes of the cleavage stage embryo depend on 
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translation of stored maternal rather than embryonic RNA (Telford, Watson, & Schultz, 

1990).  

Cryopreservation of excess embryos after selection for fresh transfer is well established 

as a successful process, with the first pregnancy in the world for the cleavage stage 

achieved in Australia (Trounson & Mohr, 1983). Vitrification has been the 

cryopreservation procedure of choice for excess blastocysts (Kuwayama, Vajta, Kato, & 

Leibo, 2005) and the recovery of the embryo from this procedure introduces further 

assessment criteria of the warmed blastocyst. The proportion of cell degeneration and 

further division is easily calculated in warmed cleavage stage embryos due to the 

relatively low number of cells (2-8) but the increased cell numbers in blastocysts (100-

150) makes it difficult and inaccurate to perform this analysis. During the equilibration 

and vitrification of blastocysts the blastocoel collapses as the TE breaks contact with the 

zona pellucida (ZP). After warming, the blastocoel re-expands in some embryos and not 

in others, usually within a 3-4 hour period (Desai & Goldfarb, 2005) with better 

implantation results when re-expansion has occurred prior to the frozen embryo 

transfer (FET). 

The maximum time required for a blastocyst to commence this re-expansion and 

successfully implant is unknown. Identifying this time point would help ensure 

embryologists provide the best possible embryo for transfer to the patient. The 

endometrium in frozen embryo transfer cycles is synchronised with the age of the 

embryo which for blastocysts is Day 5 or 6 post ovulation and therefore the in vitro time 

available for blastocyst assessment is limited. This is further exacerbated by embryos 

being frozen singularly and assessments made one embryo/warm at a time.  

1.2 Prevalence of infertility and ART trends in Australia 

Despite the prevalence of infertility remaining constant over 2 decades there are some 

important shifts in society that has seen an increasing use of ART (Mascarenhas et al., 

2012).  In 2017 (Figure 1-1) the median maternal age of child birth of 31.3 years 

compares to 29.8 in the year 2000 and 25.4 in 1971 (Australian Bureau of Statistics, 

2018). Women are choosing to bear children later. The latest NPESU report for ART 

cycles in 2016 shows that the highest live delivery rate per embryo transfer for fresh 
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autologous cycles (36.9%) and autologous thaw cycles (33.3%) was for women aged less 

than 30 years.  

Figure 1-1 Median age of parents, Australia-1937 to 2017 

 

This success rate declined with advancing women’s age with a rate of 1.3% for women 

aged over 44 (Fitzgerald et al., 2018). These figures demonstrate that maternal age has a 

significant impact on fertility and the delaying of conception results in an increased 

utilisation of ART. The same report revealed that more than 1 in 4 women using IVF 

technology to attempt a conception in 2016 were aged 40 or older. There were 15,198 

babies born due to ART in Australia and New Zealand in 2016 according to the NPESU. 

Trends in the provision of ART are detailed in section 7 of the NPESU report. There has 

been a shift in the utilisation of extended blastocyst culture rather than shorter term 

cleavage culture prior to embryo selection for transfer and cryopreservation between 

2009 (49.8%) and 2016 (78.4%). This trend is accompanied by an increase in the 

proportion of cycles not proceeding to embryo transfer from 23.4% to 49.0%. This is 

mainly due to an increasing trend in freeze-all cycles to avoid a transfer in a fresh cycle. 

The proportion of blastocyst warm cycles utilising the vitrification technique for 

cryopreservation increased from 33.2% in 2009 to 87.8% in 2016. 
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The number of SET procedures has increased from 69.7% in 2009 to 87.7% in 2016 

resulting in a drop in multiple deliveries from 8.2% to 3.8%. These achievements have 

occurred while improving live birth rates per embryo transfer from 21.2% to 26.2%. 

1.3 Ovarian stimulation 

The first successful birth utilising IVF technology involved retrieving an oocyte from a 

natural menstrual cycle (Steptoe & Edwards, 1978). To increase the probability of 

successful fertilisation, embryo development and implantation it has been necessary to 

induce multiple dominant folliculogenesis in the ovaries to produce supernumerary 

oocytes for insemination (Claman, Domingo, Garner, Leader, & Spence, 1993). There are 

differing drug regimens that have been utilised to produce this follicular response. 

1.3.1 Clomiphene Citrate 

It was discovered during treatment of endometrial hyperplasia and breast cancer with 

the oral anti-oestrogen Clomiphene Citrate (CC) that it also resulted in ovulation 

induction (Kistner & Smith, 1961).  The oral delivery, preservation of the steroid negative 

feedback and low cost made CC an attractive option for ovarian stimulation during early 

applications of IVF technology (Trounson, Leeton, Wood, Webb, & Wood, 1981).  Anti-

oestrogenic effects localised to the uterus, the recruitment of only 1-2 follicles and 

inhibited cervical mucus production are effects of CC that limit the pregnancy rates of 

this therapy (Gelety & Buyalos, 1993).  Various modifications were developed to combat 

these effects including the use of lower doses (Quigley, Maklad, & Wolf, 1983) and 

supplementing with gonadotrophins (Li et al., 2015).  Due to the reliance on a functional 

hypothalamic pituitary ovarian axis to exert its oestrogen receptor effects, CC is not 

suitable for patients with hypo or hypergonadotrophic hypogonadism (Practice 

Committee ASRM, 2013). 

1.3.2 Gonadotrophins 

Gonadotrophic preparations are the most commonly utilised agents for ovarian 

stimulation in IVF (Lunenfeld, 2004).  Follicle Stimulating Hormone (FSH), Luteinising 

Hormone (LH) and human Chorionic Gonadotrophin (hCG) have evolved in purification 

level and source, from human pituitary gonadotrophin (Gemzell, Diczfalusy, & Tillinger, 

1958) and placental cells (Seegar-Jones, Gey, & Ghisletta, 1943) to recombinant FSH 
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(Howles, 1996; Olijve, de Boer, Mulders, & van Wezenbeek, 1996) and hCG 

(International rhCG Study Group, 2001).  The endogenous response to gonadotrophin 

therapy is monitored with the use of peripheral oestradiol measurements and ovarian 

ultrasonography (Speroff & Fritz, 2005).  There are many factors influencing ovarian 

response including age of the patient and the proportion of antral follicles prior to the 

commencement of gonadotrophin (Rutherford et al., 1988). 

1.3.3 Agonist 

A problem occurring in cycles augmented with exogenous gonadotrophins is the 

spontaneous LH surge that can lead to ovulation prior to oocyte collection in 25-30% of 

cases (Hillier, Afnan, Margara, & Winston, 1985).  The development and application of 

gonadotrophin releasing hormone (GnRH) agonists allowed physicians to flood the GnRH 

receptors in the pituitary with an initial activation followed by desensitization effect, 

thereby suppressing endogenous gonadotrophin release hence preventing premature 

ovulation (Conn & Crowley, 1994).  An added benefit to this pituitary suppression was 

the ability to schedule oocyte retrievals rather than accessing facilities on an emergency 

basis (Rogers et al., 1986). 

1.3.4 Antagonist 

GnRH antagonist analogues act by binding to pituitary receptors excluding endogenous 

GnRH and suppressing pituitary gonadotrophic production with immediate effect and 

recovery.  The rapid effect without a stimulation phase of gonadotrophins allows short 

term suppression of the endogenous LH surge and hence prevention of premature 

ovulation during ovarian stimulation for IVF (Olivennes et al., 1994).  Other advantages 

of GnRH antagonist use in IVF treatment include: reduced costs; shorter duration of 

treatment; less patient discomfort and less gonadotrophins required to produce the 

oocytes (Al-Inany & Aboulghar, 2002; Fauser & Devroey, 2005). 

1.3.5 Mild Stimulation 

The use of gonadotrophins with GnRH analogues has enabled ovarian stimulation 

protocols to produce multiple oocytes for use in IVF but there are also significant side 

effects (Macklon, Stouffer, Giudice, & Fauser, 2006).  High cost of medications, patient 

discomfort from injections, inconvenience due to monitoring strategies and elevated 
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risks associated with ovarian hyperstimulation syndrome (OHSS) are some of the issues 

associated with ovarian stimulation.  To address these sequelae and make stimulation 

regimes more patient friendly, milder strategies have been developed to produce a 

reduced number of oocytes (Verberg et al., 2009). 

1.4 Endometrial Preparation 

Embryo(s) developed in vitro are transferred into a receptive uterus during the 

proliferative/ secretory phase of the endometrium. This can be in the same cycle the 

oocytes were retrieved from or in a subsequent monitored cycle specifically designed for 

the transfer of a frozen/warmed embryo. 

1.4.1 Fresh embryo transfer cycles 

A significant contributor to the failure of early IVF attempts was the method used to 

extend the shortened luteal phase in cycles stimulated with gonadotrophins (Edwards, 

1973). Eventually problems associated with the luteal phase were bypassed in fresh 

embryo transfers by retrieving an oocyte in a natural menstrual cycle and utilising a 

natural luteal phase to nurture the embryo (Edwards, Steptoe, & Purdy, 1980). 

Cancellation and success rates per cycle start however were reduced when compared to 

cycles utilising ovarian stimulation with gonadotrophins (Fahy, Cahill, Wardle, & Hull, 

1995). The use of ovarian stimulation regimes in assisted reproduction and in particular 

GnRH agonists disrupts the activity of the corpus luteum and endometrial preparation 

for implantation (Smitz et al., 1988). Luteal supplementation has been shown to improve 

endometrial quality and subsequent rates of embryo implantation (Soliman, Daya, 

Collins, & Hughes, 1994). 

1.4.2 Frozen embryo transfer cycles 

The use of ovarian hyperstimulation and the production of multiple oocytes and 

subsequent embryos resulted in supernumerary embryos after completion of the fresh 

embryo transfer (Van den Abbeel et al., 1988). Cryopreservation at various stages of 

embryo development has been successful in rescuing these extra embryos (Troup et al., 

1991). Cycles utilising embryos previously cryopreserved require synchronisation of the 

endometrium with the developmental stage of the embryo (Devroey & Pados, 1998). 

Patients with regular cycles and an endometrium receptive to implantation may have a 
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natural cycle monitored to target ovulation (Sathanandan et al., 1991). Patients with 

irregular cycles can be administered hormone replacement therapy (Pattinson, Greene, 

Fleetham, & Anderson-Sykes, 1992) or mild stimulation by gonadotrophins to produce a 

receptive endometrium (Lornage et al., 1990). The successful use of the frozen embryo 

transfer cycle has led to some freeze all strategies where no fresh embryo transfer is 

performed so as to not reduce the chance of embryo implantation by transferring into 

an endometrium compromised by excessive doses of gonadotrophins (Shapiro et al., 

2011). 

1.5 Collection of oocytes and fertilisation 

1.5.1 Oocyte Collection 

After exogenous ovarian stimulation by gonadotrophins with some form of pituitary 

desensitisation (GnRH antagonist/agonist) the ovaries hopefully produce supernumerary 

follicles. Follicular development criteria are calculated in individual clinics according to 

their stimulation regimes but in general when 2-3 follicles ≥17mm are observed with 

ultrasound monitoring after 7-12 days of stimulation, ovulation is triggered by the 

administration of hCG (Tan et al., 1992).  The timing of the egg collection procedure 

subsequent to the hCG trigger can vary between 35-40 hours (Templeton et al., 1986).  

Human oocytes were originally collected using a laparoscopic technique utilised at the 

time for various gynaecological surgeries (Lopata et al., 1974; Steptoe & Edwards, 1970).  

Due to the general anaesthesia required, difficult access due to obstructive pelvic 

adhesions and long recovery times, an alternative approach using an abdominal 

transducer was developed (Lenz, Lauritsen, & Kjellow, 1981).  This procedure soon 

evolved after the development of vaginal transducers to a technique that was quicker 

and less painful requiring shorter recovery times and able to be performed as a day 

procedure (Wikland, Enk, & Hamberger, 1985).  There are however still clinical cases 

that require approaching the ovary trans abdominally (Yovich, Matson, & Yovich, 1989).  

Transvaginal oocyte aspiration (TVOA) requires a 16-17-gauge needle, 30-35 cm in 

length threaded through a guide attached to a transducer that is introduced into the 

vaginal canal.  Negative pressure (100-200 mm Hg) applied using a vacuum pump 

controlled by a foot pedal aspirates the contents of follicles 10mm or greater 

(Blackledge et al., 1986).  The contents of the follicle are then examined using a stereo 
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dissecting microscope and oocyte cumulus complexes (OCC) identified, rinsed in culture 

media and placed in culture at 37 degrees Celsius utilising a physiological bicarbonate pH 

buffering system to maintain the pH at 7.2-7.3.  

1.5.2 Sperm preparation 

Seminal fluid contains 90% secretions from the accessory glands in addition to Sertoli 

cell secretions and spermatozoa from the testes (Kierszenbaum & Tres, 2012). Alkaline 

bases present in these substances provide the spermatozoa with protection from acidic 

denaturation in the vagina (Mann, 1964). The inhibitory effects of seminal fluid also 

prevent sperm from prematurely becoming acrosomally responsive (Cross, 1996). Due 

to these factors sperm must separate from seminal fluid to achieve capacitation and 

subsequent fertilisation (Austin, 1952). This separation is achieved prior to IVF often by 

either using a swim up procedure, density gradient centrifugation or a combination of 

both (Carrell et al., 1998).  

1.5.3 Insemination 

Insemination methods are usually confined to either conventional IVF where a number 

of sperm are placed around the OCC for a period of time, or intracytoplasmic sperm 

injection (ICSI) where individual sperm are isolated and injected into a metaphase II 

oocyte that has been denuded of its cumulus (Palermo, Joris, Devroey, & Van 

Steirteghem, 1992). 

1.5.3.1 IVF 

Currently in most IVF programmes the IVF fertilisation process remains blinded to the 

embryologist due to the presence of the corona radiata that surrounds the secondary 

oocyte. Oocytes retrieved 35-40 hrs after a trigger injection are briefly rinsed in culture 

media and placed in a dish containing media before washed sperm is added. 

Insemination times are usually co-ordinated to enable an embryologist to be available 

18-20 hours later to perform a fertilisation check prior to syngamy. An abbreviated co-

incubation time is practiced in some centres and a systematic review and meta-analysis 

of studies on abbreviated insemination times has shown that as little as one hour’s 

exposure of oocytes to sperm can improve clinical pregnancy rates without 

compromising fertilisation rates (Zhang et al., 2013). Co-incubation times even as short 

as 30 seconds have been shown to reduce polyspermy rates from 7.2% down to 2.8% 
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without compromising fertilisation, embryo development and pregnancy rates (Bungum, 

Bungum, & Humaidan, 2006).  The removal of cumulus cells after the abbreviated co-

incubation period (3-6 hr post insemination) has been performed successfully in some 

centres (Guo et al., 2016; Jin et al., 2014; Xiong et al., 2011; Xue et al., 2013). 

1.5.3.2 ICSI  

It is difficult to estimate the proportion of the various types of aetiologies presenting at 

ART units across Australia and New Zealand as it is based on clinical diagnosis that may 

vary between clinicians (Fitzgerald et al., 2018). According to reported data in 2016, 

10.7% of initiated cycles had a male infertility diagnosis alone with 12.2% having both 

male and female causes of sub-fertility (Fitzgerald et al., 2018).  Male infertility is 

defined in the WHO manual (World Health Organization., 2010) as simply one or more 

abnormalities in the semen. The most successful solution to achieving fertilisation with 

reduced sperm parameters in IVF was described in 1992 as ICSI (Palermo et al., 1992). 

ICSI requires the removal of the cumulus oophora soon after egg collection using a brief 

exposure to exogenous hyaluronidase along with mechanical pipetting using various 

gauge pipettes. Mature metaphase II oocytes are injected with viable sperm that have 

been immobilised by rupturing the plasma membrane around the distal portion of the 

flagellum. ICSI requires specialised micromanipulation equipment attached to an 

inverted microscope and performed by an experienced clinical embryologist. Progressive 

motility is not an essential pre-requisite for fertilisation after ICSI and therefore sperm 

can be sourced from both the epididymis and testicular tissue (Devroey et al., 1994; 

Silber, Ord, Balmaceda, Patrizio, & Asch, 1990) . To aid in the manipulation of sperm 

prior to and during the ICSI process, a high molecular weight polymer, 

polyvinylpyrrolidone (PVP) or a more natural component of the extra-cellular matrix, 

Hyaluronic acid is used (Liu, Feenan, Chapple, Roberts, & Matson, 2017). 

1.5.4 Fertilisation 

Fertilisation after conventional IVF insemination does not require the sperm to travel 

through the various regions of the female reproductive tract. In-vivo numbers of sperm 

reaching the cumulus oophorus complex (COC) are thought to be an overestimate of a 

hundred or so with 10-20 reaching the ZP (De Jonge, 2005). The numbers used for 

gamete co-incubation in vitro, especially with poor starting sperm parameters have been 
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reported up to 1.2 million/ml (Trounson, 1994). As sperm enters the egg vestments, 

hyaluronic activity and hyperactive motility enables acrosome intact sperm to proceed 

through the extra cellular matrix and make surface contact with the ZP (Huszar et al., 

2003). Exposure to zona proteins leads to an acrosome reaction assisting passage 

through the ZP into the perivitelline space (PVS) and the sperm plasmalemma 

subsequently fuses with the oolemma of the oocyte (Chen & Sathananthan, 1986).  

Oocyte activation soon follows with repetitive cytoplasmic oscillations, elevation of 

intracellular calcium levels and the migration of cortical granules towards the oolemma 

(Sathananthan et al., 1994). Cortical granules release enzymes that modify zona proteins 

and prevent further sperm entering the PVS (Ducibella, 1996). Meiosis II resumes with 

the extrusion of the second polar body and the sperm head chromatin decondenses. 

Nuclear envelopes form and the male and female pronuclei migrate toward each other 

with microtubules inherited from the sperm centrosome (Schatten, 1994). 

1.6 Embryo culture, zygote to blastocyst 

1.6.1 Culture Media 

Early culture media formulations used for human IVF were based on simple salt 

solutions such as Earls Balanced Salt Solution (EBSS) or more complex recipes such as 

Hams F10 inherited from animal somatic cell culture systems. Tyrodes T6 and Whittens 

WM1 were also inherited from animal ART laboratories (Mahadevan, Fleetham, Church, 

& Taylor, 1986). By the mid 1980’s a medium more imitative of the fallopian tube 

environment named human tubal fluid medium was formulated (Quinn, Kerin, & 

Warnes, 1985). Some 10 years later media formulations were altered according to 

different metabolic requirements of the human embryo from zygote to blastocyst 

(Leese, 1995). The energy substrate glucose was found to be at a lower concentration 

mid-cycle when compared to the follicular or luteal phases (Gardner, Lane, Calderon, & 

Leeton, 1996). This has also been augmented with improved embryo quality when 

glucose is removed from culture media between the pronuclear (Day 1) and cleavage 

stages (Day 2-3) (Coates, Rutherford, Hunter, & Leese, 1999). It was also demonstrated 

that only a simple set of non-essential amino acids were required during Day 1-3 of 

culture (Lane & Gardner, 1997) and that possibly they could act as modulators of 
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intracellular pH (Bavister, 1993). Later stages of development benefit by the inclusion of 

the essential amino acids (Gardner et al., 1998).  

All embryo culture requires a buffering system to maintain a stable physiological pH. It 

has been shown that ionic exchange mechanisms within human embryos can maintain a 

pH between 7.0 and 7.3 over significant changes in external pH (Dale, Menezo, Cohen, 

DiMatteo, & Wilding, 1998). To avoid stress on these mechanisms the best strategy is to 

keep culture pH in a similar range. Commonly used buffers in ART include NaHCO3 and 

N-2-hydroxyethylpiperazine-N’-2ethansulfonic acid (HEPES). The former requires gassing 

with CO2 while the latter is used when handling gametes and embryos in ambient air. 

The use of NaHCO3 as a non-toxic and physiological buffer also provides nutrient to the 

culture environment and allows manipulation of the pH through the adjustment of the 

concentration of the buffer or the CO2 percentage (Carney & Bavister, 1987). The 

recommendation for human embryos based on the Henderson-Hasselbach equation in a 

culture with 25mM NaHCO3 at sea level is to provide 6% CO2 at 37°C. Reduced oxygen 

tension from atmospheric (20%) to 5% in the gas provided to human embryos in vitro 

has been shown to benefit growth (Catt & Henman, 2000; Dumoulin et al., 1999). 

The majority of embryo culture is performed with some form of macromolecule 

supplementation in the media. Fertilisation through to cleavage and pregnancy is 

possible in protein-free media but consistent performance is improved with 

supplementation (Caro & Trounson, 1986). Whole serum has been used as a protein 

source in culture media but the presence of unknown elements and patient to patient 

variation can affect the quality of embryo culture (Gardner, 1994). Today the most 

commonly used protein ingredient is human serum albumin that was shown to improve 

results when compared to whole serum (Staessen et al., 1990). Due to the biological 

source of these supplements, the risk of transmitting disease and unidentified protein 

components there has been a focus on the development of recombinant and alternative 

macromolecule protein substitutes (Dyrlund et al., 2014). These have already been 

shown to maintain embryo quality and success rates when compared to HSA (Bungum, 

Humaidan, & Bungum, 2002) but the cost of regular use in IVF culture media has 

prevented significant uptake. Other macromolecule substitutes have also been explored 
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including polyvinyl alcohol (PVA), dextran and hyaluronan (Gardner, Rodriegez-Martinez, 

& Lane, 1999; Pool & Martin, 1994). 

Cytokines and growth factors present in the female reproductive tract play a 

multifunctional role in supporting blastocyst development, implantation and ongoing 

foetal health (Kane, Morgan, & Coonan, 1997). One of these cytokines, Granulocyte-

macrophage colony stimulating factor (GM-CSF) has been identified and shown through 

knock out mouse studies to be a significant contributor to ICM size, birth weight and 

subsequent mortality (Robertson, Roberts, Farr, Dunn, & Seamark, 1999). An increase in 

proportion of blastocyst development and subsequent cell number was shown when 

supernumerary human embryos were cultured in medium supplemented with 

recombinant GM-CSF (Sjoblom, Wikland, & Robertson, 1999). A randomised multi-

centre trial found addition of GM-CSF to culture media increased the survival of 

transferred human embryos to live birth and may be beneficial for women with previous 

miscarriage (Ziebe et al., 2013). 

1.6.2 Oil Overlay 

It is common practice to use oil to overlay culture media to avoid rapid changes in 

osmolality, temperature and pH (Brinster, 1963). Media that can be expensive when 

obtained ready made through a commercial source can be used in smaller volumes with 

oil overlay due to the protection from evaporation. The oil also provides a physical 

barrier to airborne particulate matter. Mineral oil is a product of fractional distillation of 

crude petroleum. Further refinement to remove unsaturated hydrocarbons produces 

paraffin oil that is less likely to oxidise and be less reactive. Peroxidation of mineral oil 

leads to the formation of hydroperoxide that can combine with hydrogen to produce 

free radicals that can alter the function of the lipid component of the embryo plasma 

membrane (Otsuki, Nagai, & Chiba, 2007). The degree of peroxidation is dependent on 

exposure to heat, UV light, extended storage, lot number and manufacturer (Otsuki, 

Nagai, & Chiba, 2009). Manufacturers need to ensure these elements are controlled 

during production and distribution to IVF clinics.   
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1.6.3 Incubators 

One of the most important elements in an ART laboratory is the incubation system. This 

is where the oocytes/embryos are cultured for an extended pre-implantation period 

from day 0 when oocytes are collected through to Day 3-6 when embryos are removed, 

transferred to the patient or cryopreserved. There have been novel approaches to 

design a system that nurtures the growing embryo to a standard close to the female 

reproductive tract. These include a submarine incubation system where a pre-gassed 

sealed bag containing the embryos are placed under water in a water bath (Vajta et al., 

2004) and intravaginal culture where embryos are encapsulated and inserted into the 

vagina of the patient for incubation (Ranoux et al., 1988). These approaches have not 

been widely adopted due to inherent technical difficulties in achieving culture 

consistency. Traditionally large, often water jacketed incubators (150-200 litres) with 

CO2, temperature and humidity control were used for human embryo culture. These 

incubators were gassed from a 100% CO2 cylinder and an internal solenoid in the 

incubator-controlled gas injection to maintain a 5% CO2 level with the balance in 

ambient air. These incubators struggled to maintain constant conditions due to the 

repetitive opening required in a busy IVF unit and the smaller volumes used when 

compared to somatic cell culture. Humidity levels especially would struggle to remain 

high during these periods leading to inaccurate CO2 readings as older thermal 

conductivity sensors (TC) required stable humidity and temperature conditions to work 

correctly. Reducing the volume of these units (<50 litres) allowed for quicker recovery 

times and improved blastocyst development (Avery & Greve, 1992). Reducing the 

incubation space even further to less than 0.5 litres in bench top incubators improved 

temperature recovery times from 20 minutes to just 5 minutes (Cooke, Tyler, & Driscoll, 

2002). The smaller volume incubation chambers can have a constant feed of pre-mixed 

gas that enables a cost-effective method of supplying 6% CO2 with reduced oxygen (5%) 

and the balance in N2. Bench top incubators also have customised grooved culture plates 

that allow direct transfer of heat to the culture ware rather than relying on convection in 

a larger box incubator (Fujiwara et al., 2007). Smaller bench top incubators are now 

produced with the additional tool of time-lapse imaging integrated into the instrument 

that has the additional benefit of reduced embryo handling (Cruz et al., 2011). 
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1.6.4 Laboratory Air 

Gametes and embryos are vulnerable to the presence of volatile organic compounds 

(VOC) and chemical air contaminants (CAC) in the immediate environment. The air 

within an IVF laboratory may have elevated proportions of these compounds despite the 

use of high efficiency particulate air filters (HEPA) installed (Cohen, Gilligan, Esposito, 

Schimmel, & Dale, 1997). Full elimination of these contaminants is very difficult in IVF 

laboratories inheriting the workspace used previously for different purposes, but specific 

design-built IVF laboratories require an extensive air management system. This system 

should not only provide HEPA filtration but also reasonable protection from VOC by 

using rapid air exchange and carbon/potassium permanganate filtering. Contaminants 

can also come from within the workspace from new equipment, disposable tissue 

culture ware, compressed gas, sterilising agents and people traffic (Hall, Gilligan, 

Schimmel, Cecchi, & Cohen, 1998). These laboratory items require significant off gassing 

time and personal cosmetics and perfumes should be avoided in the IVF laboratory. The 

effect of VOC on embryo growth is not always obvious and can be realised through poor 

embryo quality and implantation rates (Boone, Johnson, Locke, Crane, & Price, 1999). 

1.6.5 Culture platforms 

There has been extensive research into the chemical requirements of human embryos in 

culture with various culture media formulations being proposed. It is important also to 

consider the physical environment surrounding the developing embryo. The in vivo 

embryo travels constantly through the fallopian tube and is therefore exposed to 

microvilli contact and movement. These factors contrast significantly to culture 

platforms used in vitro (Swain & Smith, 2011). Inert culture dishes made of a plastic 

polymer are in common use in IVF laboratories. The configuration of the culture is varied 

with isolated culture (Rijnders & Jansen, 1999), isolated but shared media (Vajta et al., 

2008), or group culture (Moessner & Dodson, 1995). Various volumes and 

oocyte/embryo densities are used to take advantage of autocrine/paracrine effects 

(Katz-Jaffe, Schoolcraft, & Gardner, 2006). To create a more dynamic culture the 

application of external forces such as shaking (Isachenko et al., 2006), tilting (Matsuura 

et al., 2010), vibrating (Isachenko et al., 2011) and fluid flow (Heo et al., 2010) have been 

used to mimic the dynamic environment of the fallopian tube. These physical forces can 
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refresh the chemical constitution of the immediate environment of the embryo (Smith, 

Takayama, & Swain, 2012). 

1.7 Embryo Selection 

Although there were early attempts at IVF using gonadotrophic ovarian stimulation 

there was still no success at achieving ongoing pregnancies and live births (Talbot et al., 

1976). After the success in the UK of a natural IVF cycle producing the world’s first IVF 

baby, natural cycles hopefully producing one oocyte and one embryo transferred were 

used (Edwards et al., 1980). Success rates were low however and there were significant 

practical limitations due to the requirement to detect the LH surge and perform the egg 

collection procedure at any point in a 24 hr period (Lopata, 1980). Soon after the first 

baby was born there were normal pregnancies reported in controlled cycles using the 

anti-oestrogen Clomiphene (Trounson et al., 1981). The increasing successful use of 

Clomiphene alongside human menopausal gonadotrophin (hMG) and hCG to produce 

multiple oocytes and embryos ultimately resulted in the transfer of more than one 

embryo in a fresh IVF cycle (Edwards, Lobo, & Bouchard, 1996). The elevated proportion 

of multiple births and the associated perinatal complications ultimately resulted in the 

reduction of the number of embryos transferred (Templeton & Morris, 1998). The latest 

figures in Australia and New Zealand for cycles in 2016 show that 87.7% of embryo 

transfer procedures were of 1 embryo (Fitzgerald et al., 2018). This compares to less 

than 10% in 1993 (Lancaster et al., 1995). The widespread use of SET without a 

reduction in implantation rate has been the result of improved culture conditions and 

embryo selection strategies implemented in the laboratory. 

1.7.1 Morphology 

Appearance and rate of development has been the mainstay of embryo selection since 

ovarian stimulation increased the pool available for utilisation (Cummins et al., 1986). 

This strategy is easy to implement with standard microscopy and embryo handling 

equipment but still requires training, competency and precision of the clinical 

embryologist (Braude, 2013; De los Santos et al., 2016). Depending on the facilities 

available, clinic philosophy and local legislation there is an emphasis on selection and 

transfer at different developmental stages of the embryo. This selection uses various 
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scoring systems based on morphological features of the embryo relative to time 

(Hossain, Phelps, Agarwal, Sanz, & Mahadevan, 2016). 

1.7.1.1 Pronucleate Embryo (Day 1) 

The single cell embryo is dependent on oocyte reserves during the early developmental 

stages and therefore oocyte quality is a significant ingredient in any assessment of the 

pronucleate embryo (Braude, Bolton, & Moore, 1988). Fertilisation is dynamic and 

difficult to assess with static observations, but various methodologies have been 

proposed to select embryos with high implantation potential at this stage of 

development. These methodologies are based on the orientation of the pronuclei 

relative to each other and polar body position (Garello et al., 1999), the number and 

distribution of nucleoli within the pronuclei (Tesarik & Greco, 1999) and the timing of 

pronuclear fading and cytokinesis (Scott, Alvero, Leondires, & Miller, 2000). Grading, 

selection and transfer of pronucleate embryos is rarely used in contemporary IVF 

laboratories with the advent of blastocyst culture (Reh et al., 2010). In some 

circumstances when there is a history of embryo fragmentation early selection and 

transfer may be beneficial (Sermondade et al., 2012)  

1.7.1.2 Early Embryo Cleavage (Day 2-3) 

For much of the past 4 decades of IVF the morphology and rate of division of cleaving 

embryos has been used as a measure of implantation potential (Hossain et al., 2016; 

Stylianou, Critchlow, Brison, & Roberts, 2012).  Common to many different grading 

schemes is the assessment of cell number relative to insemination time, comparative 

blastomere size and the proportion of fragmentation (McKiernan & Bavister, 1994; Van 

Royen et al., 1999). These elements are often combined into a cumulative embryo score 

to choose the embryo most likely to implant (Visser & Fourie, 1993). However the 

various scoring systems can be confusing when trying to compare embryo quality results 

and an international consensus may be able to address this (Alpha Scientists in 

Reproductive Medicine, 2011). The validity of these scoring systems have been 

questioned due to the difficulty of tracing embryo implantation when more than one 

embryo is transferred (Hoover, Baker, Check, Lurie, & O'Shaughnessy, 1995). 
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1.7.1.3 The Blastocyst (Day 5-6) 

All stages of blastocyst development share 3 common morphological features in the TE, 

ICM and blastocoel and they form the basis of the most common grading system for the 

selection of viable blastocysts (Gardner & Schoolcraft, 1999a). The first morphological 

signs of cell differentiation occur when blastocoel formation begins approximately 16-20 

hrs after compaction and 95-103 hrs after insemination (Campbell et al., 2013). It results 

in the first dimensional changes to the originating oocyte as the actions of Na+/K+ ion 

pumps located basolaterally in the forming TE cells create an osmotic gradient (Watson 

& Barcroft, 2001). This gradient leads to a passive movement of fluid into the 

extracellular space within the blastocyst which is then contained by tight junctions 

between TE originally formed during compaction. The blastocoel fluid containment, 

restricting fluid leakage by paracellular routes, ultimately results in expansion of the 

blastocyst (McLaren & Smith, 1977). During the expansion process the PVS disappears 

and the ZP thins from a 10-16 µm thickness (Balaban et al., 2002) to just an outline when 

fully expanded prior to hatching. The embryo increases in diameter from the 110-120 

µm average of the secondary oocyte (Griffin, Emery, Huang, Peterson, & Carrell, 2006; 

Payne, Flaherty, Barry, & Matthews, 1997) to an average 265 µm of the expanded 

blastocyst (Richter, Harris, Daneshmand, & Shapiro, 2001). TE cells are the first 

differentiated cell line of the embryo and grow rapidly in number after the onset of 

cavitation with numbers in excess of 200 in the fully hatched blastocyst (Hardy, 

Handyside, & Winston, 1989). Soon after blastulation has begun it is evident that a 

clump of cells form within the blastocoel at one pole of the blastocyst. These ICM cells 

are pluripotent and range in morphology from a large, highly compacted group of cells 

correlating with an improved implantation potential (Richter et al., 2001) to a small to 

non-existent group of loosely compacted cells. The work of Richter et al (2001) 

emphasised the importance of quantifying blastocyst parameters to determine their 

individual influence on implantation outcome. They determined the ICM as the most 

important morphological element when selecting viable blastocysts. Recent studies have 

challenged this work suggesting more emphasis should be placed on the blastocoel and 

the TE rather than the ICM (Ahlstrom, Westin, Reismer, Wikland, & Hardarson, 2011; 

Ebner et al., 2016; Hill et al., 2013; Thompson, Onwubalili, Brown, Jindal, & McGovern, 

2013). 
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1.7.1.4 Morphokinetics 

Time-lapse imaging systems (TLS) have developed from bespoke setups (Payne et al., 

1997) to ready built time-lapse incubators (Meseguer et al., 2011) enabling many 

embryos from multiple patients to be monitored simultaneously. It is now possible to 

replace static observations with images taken every few minutes in multiple focal planes 

without removing embryos from the incubator and without an embryologist present. 

New phenomena in embryo development can now be observed that previously were not 

captured. These include 2nd polar body extrusion (post ICSI), pronuclear formation and 

fading, cleavage patterns, compaction, cavitation, blastocyst expansion and hatching 

dynamics. A combination of observations at various developmental time points can be 

packaged into algorithms to aid in embryo selection (Liu, Chapple, Feenan, Roberts, & 

Matson, 2015). Software recognition of developmental milestones can also semi-

quantify parameters enabling complex embryo selection algorithms to be applied 

(Conaghan et al., 2013). Despite these advances in technology, in 2014 a Cochrane 

review showed there was little peer reviewed evidence that outcomes are improved 

based on better embryo selection criteria in TLS (Armstrong, Arroll, Cree, Jordan, & 

Farquhar, 2015) and that any improvements could be attributed to incubator design. 

This opinion paper has since been followed with others supporting the hypothesis that 

improved outcomes can be realised by using a combination of TLS and traditional 

morphological assessments compared to traditional methods alone (Adamson et al., 

2016). It is possible that these benefits may only be realised with cleavage stage embryo 

transfers rather than extended culture blastocyst transfers (Goodman, Goldberg, 

Falcone, Austin, & Desai, 2016). Another recent prospective, observational, two-centre 

pilot study with a matched control group showed that TLS selected embryos did not 

have significantly improved outcomes compared to static morphological assessments 

alone (Kieslinger et al., 2016). This study however did show that utilising TLS for embryo 

selection enabled the transfer of equally successful embryos with decreased 

morphological scores. 

1.7.2 Extended Culture 

The first IVF successes from ovarian stimulation were through the selection and transfer 

of cleavage stage embryos (Trounson et al., 1981). These early attempts however 
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utilised Clomiphene Citrate and hCG yielding low oocyte numbers. Super ovulation and 

LH suppression with agonists often result in a greater number of oocytes (Rutherford et 

al., 1988) and more confidence in extending the culture period to the blastocyst stage. 

Despite the greater number of embryos available the blastocyst formation and 

implantation rates were reduced during early attempts at extended culture in clinical 

programmes (Bolton, Wren, & Parsons, 1991). The development of complex stage 

specific culture media improved the outcomes of extended culture leading to greater 

clinical implementation (Gardner, 1998) and the most common form of embryo 

selection in use today (Wang, Kovacs, & Sullivan, 2010).  

1.7.3 Genetic Screening 

Advances in the techniques used for genetic analysis of embryos has enabled increasing 

use of pre-implantation genetic screening (PGS) to ensure the transfer of only euploid 

embryos to the patient (Munné, 2006). If supplemented with extended culture and 

blastocyst biopsy there is evidence that 52% of blastocysts may be euploid compared to 

30% of cleavage stage embryos (Fragouli et al., 2011). The use of high resolution next 

generation sequencing (NGS) has also helped with the identification of levels of 

mosaicism believed to be up to 30% in blastocysts (Grifo et al., 2015).  

1.7.4 Biochemical markers of viability 

There has been much work on the identification of bio-markers of viability for human 

embryos that are non-invasive and better quantify evidence for embryo selection. 

Oocyte respiration analysis has shown a variation of ATP production in unfertilised 

oocytes in an IVF programme and may be a future tool for embryo selection (Obeidat et 

al., 2018). The measurement of proteins in the supernatant of culture media used for 

embryo culture has identified possible indicators of embryo viability (Katz-Jaffe & 

Gardner, 2008; Warner, Lampton, Newmark, & Cohen, 2008).  Amino acid production 

and depletion of embryos as measured in culture media has much potential in the 

selection of viable embryos (Sturmey, Brison, & Leese, 2008). Raman (low frequency) 

and near infrared (NIR) spectrophotometric analysis of the culture medium surrounding 

embryos has enabled the quantification of the secretome (ATP, fatty acids, glucose, 

cholesterol, hormones and other signalling molecules) providing a snapshot of embryo 
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health that has shown some correlation to embryo implantation potential (Nagy, Sakkas, 

& Behr, 2008). 

1.8 Embryo transfer 

Embryo transfer techniques in common use today involve access to the uterus via the 

cervical canal and have changed little since the early pregnancies in IVF (Trounson et al., 

1981). A retrospective study of embryo transfer procedures with difficulty achieving 

passage through the cervical canal has shown poorer outcomes compared to easier 

transfers (Tomás, Martikainen, Tapanainen, Tikkinen, & Tuomivaara, 2002). The addition 

of ultrasound guidance using an abdominal transducer has however improved the 

accuracy and outcome of the procedure especially when access is difficult (Kan et al., 

1999; Sallam & Sadek, 2003). The use of ultrasound guidance has enabled the 

documentation of embryo positioning and a position closer to the fundus has also been 

shown to positively influence outcomes (Wong et al., 2016). Surgical transfer techniques 

have been explored in the past due to perceived problems with this approach, including 

the induction of contractions in the myometrium possibly moving embryos into the 

cervix or upward to the fallopian tubes (Righini et al., 1998). Contamination of the 

uterine environment from microbes present in the cervical mucus and adhering to the 

transfer catheter is also considered a risk (Tan, Bennett, & Parsons, 1990). Surgical 

approaches included gamete intra-fallopian transfer (GIFT), suitable for patients without 

tubal occlusion, where a preparation of sperm and oocytes are introduced abdominally 

via laparoscope to the fallopian tube (Asch, Balmaceda, Ellsworth, & Wong, 1985). If 

sperm parameters were suboptimal then oocytes were fertilised in vitro and transferred 

to the fallopian tube by zygote intra-fallopian transfer (ZIFT), pronuclear stage embryo 

transfer (PROST) or tubal embryo transfer (TET) (Balmaceda et al., 1988; Devroey et al., 

1986; Yovich et al., 1987). The utilisation of tubal transfers has progressively been 

replaced with the earlier cheaper and less invasive cervical procedures due to other 

advances in ART. These include the development of complex culture media enabling 

blastocyst transfers, ICSI and assisted hatching (Ménézo & Janny, 1996). The use of 

media supplementation with adherence compounds such as hyaluronan has been 

shown to offer some benefit to the embryo transfer procedure (Bontekoe, Blake, 

Heineman, Williams, & Johnson, 2010). 
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1.9 Embryo cryopreservation 

1.9.1 Early work with sperm and mouse embryos 

The original challenge in the cryopreservation of living cells was to avoid intracellular ice 

formation and avoid the deleterious effects of increasing extracellular solute 

concentrations due to ice formation (Mazur, 1963; Muldrew, 2008). Non-toxic, low 

molecular weight, water soluble molecules that disrupt hydrogen bonds between water 

are common in animal and plant species that are required to survive sub-zero 

temperatures (Gosden, 2011). The use of 10% dilutions of cryoprotectant agents (CPA) 

glycerol, propylene glycol or ethylene glycol (EG) to achieve this during the slow freezing 

of semen to -79 °C showed good recovery rates (Polge, Smith, & Parkes, 1949). However, 

each cell type has different requirements in cooling rates depending on cell membrane 

permeability and CPA used. The work of Whittingham and colleagues on the successful 

cryopreservation of mouse embryos at various stages laid the foundation for many of 

the slow freezing protocols used today (Whittingham, Leibo, & Mazur, 1972). They 

showed superior results using Dimethyl Sulphoxide (DMSO) with slow rates of freezing 

for mouse embryos rather than the use of glycerol. DMSO (C2H6OS) with a molecular 

weight of 78.13 g/mol has a freezing point of 18.5°C but the freezing point in solution 

(eutectic point) is less than -60°C (Kleinhans & Mazur, 2007). 

1.9.2 Slow freezing trials of Human Embryos 

The use of gonadotrophins for ovarian stimulation often produced more embryos than 

could be transferred to the patient safely in the fresh cycle and this scenario introduced 

embryo cryopreservation as a technique that IVF laboratories were obliged to 

incorporate into their services (Trounson, Wood, & Leeton, 1982).  

1.9.2.1 Pronucleate and Cleavage Stage 

A trial of 1M glycerol vs 1.5M DMSO as a CPA on day 2-3, 4-8 cell embryos demonstrated 

the superiority of DMSO, most likely due to the reduced permeability of glycerol into the 

large blastomeres of the cleavage stage embryo (Trounson & Mohr, 1983). Serial 

dilutions at room temperature were used prior to sealing in a glass ampoule and 

reducing the temperature with liquid nitrogen and a programmable freezer. The 

transfers were scheduled 12 hrs following the warm with a blastomere survival rate of 
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≥50% considered suitable for transfer. The use of propylene glycol, also referred to as 

1,2 propanediol (PROH), was also trialled as a CPA for cleavage stage embryos (Lassalle, 

Testart, & Renard, 1985). PROH was considered a better option than DMSO due to 

reduced toxicity with increasing exposure time (Renard & Babinet, 1984) and reduced 

ice crystal formation on removal from LN2 (Boutron & Kaufmann, 1979). Increasing use 

of PROH showed better survival of embryos during day 1-2 of culture rather than latter 

stages and freezing at the pronucleate stage became a commonly used technique 

(Testart et al., 1986). Supplementation of a non-permeating CPA such as sucrose at 0.1M 

in addition to PROH during freezing was shown to improve embryo survival by assisting 

in cell dehydration, membrane stability and increasing CPA concentration within 

embryonic cells (Mandelbaum et al., 1987). The hypertonic concentration of sucrose 

prevents the rapid rehydration of the embryo which impedes the passage of CPA out 

during warming (Leibo & Mazur, 1978). 

1.9.2.2 Blastocyst Stage 

The use of glycerol as a CPA for blastocysts was successful at producing pregnancies and 

a live birth in a trial including DMSO (Cohen, Simons, Edwards, Fehilly, & Fishel, 1985). A 

subsequent comparison of cryopreservation at the cleavage and blastocyst stages 

concluded that a protocol of fresh transfer of cleavage stage embryos and 

cryopreservation of blastocysts was most efficient in their IVF programme (Fehilly, 

Cohen, Simons, Fishel, & Edwards, 1985). Equilibration of blastocysts in glycerol required 

increasing concentration steps for 10min each at room temperature prior to 

containment in an ampoule and loading into a programmable freezer. Blastocyst 

warming also required time consuming equilibration to remove the CPA. Reflective of 

culture conditions of the time, the blastocyst cryopreservation rate was reduced 

(183/784; 23%). Survival of blastocysts after thawing was based on the re-expansion of 

the blastocoel during a subsequent culture period (2-20 hrs). Cleavage stage embryos 

with ≥50% of blastomeres intact were transferred 2-43 hrs after thawing. The survival 

rate was 66% in blastocysts compared to 35% in cleavage stage embryos. Subsequent to 

this trial the use of PROH and non-permeating cryoprotectants further improved the 

success of slow cooling cleavage stage embryos (Testart et al., 1986). 
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1.9.3 Embryo Vitrification 

Various improvements have been made to slow freezing protocols with the use of 

0.25ml cryostraws that increase the warming rate to 300°C/min rather than large 

cumbersome ampoules (Renard & Babinet, 1984). Adding of the osmotic buffer sucrose 

in freezing and warming solutions and the acceleration of freezing between -35°C and -

80°C also allowed the duration of the procedure to be shortened. However, the major 

improvements have come in the form of vitrification. The term vitrification, as used for 

contemporary embryo cryopreservation, refers to the process in which the entire 

specimen, including intra and extra cellular space forms an amorphous glassy solid 

(Gosden, 2011). Vitrified embryos were used in 83.7% of the 29,820 frozen warmed 

embryo transfer cycles in Australia in 2016. The  live delivery rate per embryo transfer 

was  29.0% in autologous cycles with 82.8% of these transfers being SET (Fitzgerald et 

al., 2018). 

1.9.3.1 Oocytes, Pronucleate and Cleavage Stage Embryos 

As IVF clinics were implementing slow freezing techniques in their laboratories animal 

reproductive biologists were trialling rapid freezing techniques using much higher 

concentrations of solutes (Rall & Fahy, 1985). However, initial attempts at duplicating 

this methodology in human embryos was disappointing (Quinn & Kerin, 1986). In 

addition to the challenges of intracellular ice formation, fracture from extracellular ice 

precipitation and swelling during CPA removal there was the problem of toxicity of the 

elevated CPA concentrations used (Mukaida et al., 1998). The poor results from 

attempts at slow human oocyte cryopreservation when compared to embryo stages, 

despite the use of ICSI and PROH (Porcu et al., 1997; Tucker, Morton, Wright, Sweitzer, 

& Massey, 1998), motivated scientists to trial vitrification as a solution for human 

oocytes (Kuleshova, Gianaroli, Magli, Ferraretti, & Trounson, 1999). This group used 10% 

EG for 40s, 20% for 30s and 40% for 60s all at 37°C to equilibrate oocytes before loading 

into open pulled straws (OPS) (G. Vajta et al., 1998). Sucrose was also added to the 40% 

EG solution at 0.6 mol/l. Straws were then plunged directly into liquid nitrogen (-196°C) 

giving a cooling rate of 20 000°C/min. Warming was directly into decreasing sucrose 

concentrations from 0.4mol/l to 0.125mol/l at 37°C. Variations of this methodology also 
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produced pregnancies after vitrification of pronuclear and cleavage stage embryos (El-

Danasouri & Selman, 2001; Selman & El-Danasouri, 2002). 

1.9.3.2 Blastocysts 

The use of extended culture and vitrification techniques has made frozen embryo 

transfer implantation rates as successful as those of fresh (Roy, Bradley, Bowman, & 

McArthur, 2014). The development of unique vessels to carry the blastocysts through 

the vitrification process with a reduced volume as low as 0.1µl has enabled 

cooling/warming rates in excess of 20 000°C/min and lower concentrations of CPA to be 

used (Arav, Shehu, & Mattioli, 1993; Choi et al., 2000; Kuwayama, 2007; Lane, 

Schoolcraft, & Gardner, 1999; Martino, Songsasen, & Leibo, 1996; Roy, Brandi, et al., 

2014; G. Vajta et al., 1998). A vitrification method utilising a thin polypropylene strip 

0.1mm in depth, 0.4mm wide and 20mm in length protected by a 30mm long sheath has 

proven to produce significantly improved results for the cryopreservation of blastocysts 

(Kuwayama, Vajta, Ieda, & Kato, 2005). Accelerated cooling and warming rates up to 40 

000 °C/min, a reduced volume <0.1µl, versatility, safety and ease of use has made this 

device efficient for oocytes, zygotes, cleavage and blastocyst stages of human embryos 

(Kuwayama, 2007). EG and DMSO have been shown to be easily permeable beyond the 

plasma membrane (Fahy, Levy, & Ali, 1987) and they were used first successfully as an 

equal proportion combination in mice (Ishimori, Takahashi, & Kanagawa, 1992). This 

combination along with an osmotic buffer such as sucrose or trehalose has now become 

ubiquitous amongst IVF centres for the vitrification of human embryos including 

blastocysts (Argyle, Harper, & Davies, 2016).  

1.9.4 Survival 

Survival of embryos after cryopreservation can only be determined at the time of the 

warm. A blastomere survival rate ≥ 50%, e.g. 2/4 cells, is considered sufficient to 

diagnose a cleavage stage embryo as survived and select for transfer. It is important, 

however, to distinguish between those embryos with 100% blastomere survival and 

those with partial survival (Edgar, Bourne, Speirs, & McBain, 2000). Efficacy of 

cryopreservation methods for the blastocyst (survival) can be assessed by normal 

response to osmotic changes (re-expansion) during the dilution process at the time of 

the warm (Kuwayama, Vajta, Ieda, et al., 2005). A unique feature of the blastocyst is the 
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presence of the blastocoel which can present problems in the evacuation of water and 

the influx of cryoprotectant during vitrification. The possibility of ice crystal formation is 

directly proportional to the volume and inversely proportional to the viscosity and 

cooling rate (Liebermann et al., 2002). The artificial reduction of the blastocoel prior to 

vitrification showed some success at increasing the survival rate of expanded blastocysts 

from 30 to 60% (Vanderzwalmen et al., 2002). Some protocols now routinely use 

collapsing prior to vitrification and assisted hatching prior to transfer of warmed 

blastocysts (Desai et al., 2016). The advantage of oocyte, zygote and cleavage stage 

cryopreservation is that survival can be determined by assessing further development 

from 24 hrs through to the blastocyst stage on day 5-6 (Liebermann & Tucker, 2002). 

These embryo stages often have less than 9 cells to assess and survival criteria can be 

based on further cytokinesis of blastomeres. There have been attempts to replicate this 

methodology for blastocysts, but they have many cells, are rapidly re-organising their 

cell structure and are often already hatching and expected implantation is imminent. 

This requires observation over a shorter time-span to assess cell survival, expansion and 

hatching prior to selection for transfer (Yeoman et al., 2001). Blastocyst cryo-survival has 

been defined as cell survival immediately after warming and the absence of dark 

granular cells and areas of degeneration being the essential criteria without reference to 

expansion (Desai et al., 2016). Survival of cells is difficult to assess objectively and 

accurately however unless blastocysts are fixed and stained with nuclear and vitality 

stains (Lopes et al., 2015). There is a greater emphasis on re-expansion of blastocysts 

and cell-reorganisation in some protocols (Ahlström, Westin, Wikland, & Hardarson, 

2013). Zech et al warmed blastocysts 18-22 hrs prior to transfer, assessed under 200x 

magnification immediately after warming and again prior to transfer. If at 24hrs there 

was evidence of a blastocoel and structural integrity of the ICM, the embryo was 

transferred (Zech, Lejeune, Zech, & Vanderzwalmen, 2005). This strategy has also been 

used for day 4 morula stage embryos warmed 48 hrs prior to transfer (Ishimori et al., 

1992). These methods may however require the warming of more than one blastocyst to 

ensure the greatest possibility of the transfer of a viable blastocyst in a synchronised 

cycle. If a blastocyst is deemed not to have survived, there is not enough time to 

perform another warm and assessment prior to transfer (Ahlström et al., 2013). 

Wirleitner et al (2016) defined survival as re-expansion and further development 3 hours 
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after warming. Slow and incomplete re-expansion within 3 hours and poor morphology 

grading relative to pre-freeze morphology was regarded as delayed recovery. There was 

no transfer of a blastocyst when there was no re-expansion after 3 hours and cells 

showed signs of degeneration and lysis (Wirleitner, Schuff, Stecher, Murtinger, & 

Vanderzwalmen, 2016). Shu et al retrospectively compared two groups of warmed 

blastocysts and their resulting implantation rate. They allocated the groups based on 

fast and slow re-expansion but defined these categories by the proportion of re-

expansion at the end of the 2-4 hour period prior to transfer (Shu et al., 2009). They 

found significantly higher rates of implantation (26.7% vs. 11.3%) when the transferred 

blastocyst had a fast re-expanding blastocoel compared to a slow re-expanding 

blastocoel. 

The Alpha (Scientists in Reproductive Medicine) consensus on survival of blastocysts 

after cryopreservation is that ≥75% of cells are intact after warming. Although re-

expansion after 2 hours was considered it was not included due to discrepancies in the 

time available post warming to make such an assessment (Alpha Scientists in 

Reproductive Medicine, 2012). Despite this there are groups using different criteria such 

as ≥50% morphological survival (cells intact) and signs of re-expansion before transfer 

(Van Landuyt et al., 2015).  
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2 SUMMARY and AIMS 

The transfer of blastocysts that have a low implantation potential due to damage 

following vitrification and warming will result in poor pregnancy rates (Ahlström et al., 

2013). This is a waste of resources, gives patients false hope, and results in treatment 

taking longer without any improved outcome. This present study aims to retrospectively 

identify variables from a blastocyst vitrification programme that were significantly 

associated with survival and live birth outcomes. These associations may then be utilised 

to modify existing protocols and better manage patient expectations of a successful 

outcome. This would potentially decrease the number of embryo transfer procedures 

required to achieve a pregnancy.  
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3 MATERIALS and METHODS 

This is a retrospective cohort study of blastocysts that have been vitrified and warmed 

during the period from 2008 to 2015. The primary outcome measure is a live birth from 

those embryos deemed to have survived and subsequently transferred to the patient. A 

comparison is made between different variables that may influence this primary 

outcome including vitrification and warming techniques used over time. 

3.1 Ethics 

All research involving human participants requires adherence to the National Statement 

on Ethical Conduct in Human Research that is a series of guidelines made in accordance 

with the National Health and Medical Research Council Act 1992. Research undertaken 

at Hollywood Fertility Centre required approval from the Hollywood Private Hospital 

Ethics Committee and this was obtained (Appendix 7.1.1). Ethics approval was also 

granted by the Edith Cowan University Research Ethics Committee (Appendix 7.1.2). The 

research method identified for this project is the analysis of retrospective data involving 

human beings. Important issues covered in the ethics application include: 

3.1.1 Consent to the use of Data 

An acknowledgement and agreement was sighted and signed by the gamete providers 

of the embryos involved in this study. This agreement outlined the potential use of data 

collected during treatment for research and quality improvement processes. 

3.1.2 Risk 

As this was a retrospective data analysis, the only identified risk was the disclosure of 

sensitive personal information. This risk was managed by de-identifying data prior to 

analysis and an employer/employee confidentiality agreement as the principal 

researcher is a full-time employee of the IVF unit. 

3.1.3 Benefit 

The negligible risk was outweighed by the benefits associated with the data analysis. 

These include identification of blastocyst survival criteria associated strongly with live 

birth outcomes. These benefits are realised by improved outcomes for patients, more 

efficient use of resources, advancement of knowledge and benefits to society in 

improving the outcomes of ART. 
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3.1.4 Data and Privacy 

The data used in this study was categorised as re-identifiable coded information sourced 

from a database used during the normal course of an IVF cycle and stored on the secure 

servers at Hollywood Fertility Centre. The Hollywood database is a Microsoft SQL Server 

2008 R2 database with security managed via Windows Active Directory accounts and 

groups. The only patient information that leaves the Hollywood Fertility Centre’s 

premises is encrypted with 256-bit encryption solely for offsite disaster recovery 

purposes. 

3.1.5 Translation into Clinical Practice 

Any significant findings from this work will be published and presented at conferences to 

highlight the importance of looking more closely at the changing blastocyst after 

vitrification and warming. These protocols can then be assessed by prospective clinical 

trials and implemented into clinical practice if proved beneficial by improved outcomes. 

3.2 Data retrieval 

The data collection period commenced in February 2008 as the embryo 

cryopreservation systems moved to 100% vitrification at this time. The end date chosen 

was May 2015 due to moving to a different data base making consistent data entry and 

retrieval difficult. 17 fields of data were collected for each blastocyst warmed, 20 for 

each transferred and 25 for each birth outcome (Appendix 7.2). Blastocysts that had 

been biopsied, vitrified, warmed and transferred as known euploid were removed from 

the data set to avoid bias. Data was imported into a Microsoft Excel document that is 

securely stored using Windows Active Directory on the Hollywood Fertility Centre 

Servers. Data was retrieved for 2977 blastocysts that were vitrified and warmed. 

3.3 Data analysis 

Categorical variables were analysed using Pearson’s chi square test or Fisher’s exact test 

with Bonferroni correction for multiple comparisons. Independent t-test or Mann–

Whitney U-test was used for continuous variables depending on the normality of the 

distribution.  Normality was assessed using the Shapiro–Wilk test. Statistical significance 

was defined as P < 0.05 for single comparisons and adjusted lower for multiple 

comparisons (Bonferroni correction). Simple and multiple logistic regression was used to 
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calculate odds ratios. All analyses were performed with the use of SPSS 22 Statistical 

software (IBM, Armonk, New York), vassarstats.net. 

3.4 Risks and limitations 

This study included a retrospective analysis of data with an outcome measure that was 

known at the commencement of the study. Retrospective studies are vulnerable to 

sources of bias and confounding and results should be treated with caution. Most 

evident confounders were controlled for by multivariate analysis, but unknown sources 

could cause residual confounding. The period of the study may include other changes in 

protocols and procedures which may influence the outcome. Only good quality 

blastocysts are considered for cryopreservation, warming and transfer and therefore 

results cannot be generalised for all blastocysts. 

3.5 Patient Population and Setting 

This study was performed in a private specialist medical centre treating patients 

presenting with infertility. The outcomes of blastocysts vitrified and warmed from 2008 

to 2015 were examined. 

3.6 IVF Treatment 

3.6.1 Ovarian Stimulation 

All patients starting stimulation had a BMI <35 kg/m2, P4 < 5.0 nmol/l and FSH ≤ 15 

IU/ml. Ovarian stimulation was initiated by the administration of recombinant follicle 

stimulating hormone (rFSH) injections 125 – 300IU/daily (follitropin-α, Gonal F®, Merck 

Serono Australia or follitropin-β, Puregon®, MSD), beginning day 3 of the menstrual 

cycle. Follicular response was assessed via vaginal ultrasound on days 2, 6 and 11. 

Plasma oestradiol (E2), progesterone (P4) and luteinising hormone (LH) were also 

measured on days 2, 6 and 11. Dosage was altered accordingly depending on ovarian 

response. 

To prevent premature ovulation the GnRH antagonist Orgalutran® (Merck Sharp and 

Dohme, Australia) was administered at 0.25 mg/ daily when the leading follicle diameter 

reached 14 mm. Final follicular maturation (trigger) was achieved by the administration 

of 0.25 mg Ovidrel® (Merck Serono Australia) when at least three follicles had reached a 
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mean diameter of 17mm. Trans-vaginal oocyte aspiration (TVOA) was performed 35-38 

hours after Ovidrel® was administered. 

3.6.2 Blastocyst Culture 

Insemination was performed, 41-44 hours post trigger via conventional IVF or where 

indicated, ICSI. Gamete co-incubation occurred in Sydney IVF Fertilisation Media (COOK® 

Medical, Australia) and fertilisation check occurred 16-18 hours post insemination. 

Zygotes were moved into 20µl droplets of Cleavage Media (COOK® Medical, Australia) 

with no more than 5 per droplet. Embryos were cultured in the MINC incubator (COOK® 

Medical, Australia) in 5% O2, 6% CO2, and 89% N2. Embryonic development was assessed 

on days 3, 5 and 6 of culture, with embryos from day 3 forward being cultured in a 

separate 20µl droplet of Blastocyst Media (BM, COOK® Medical, Australia). Cleavage 

stage division of embryos was examined using a 2-factorial system 68 ± 1-hour post 

insemination. Cell number and degree of cytoplasmic fragmentation was examined for 

each embryo. One hundred and sixteen hours ± 2 hours post insemination (Day 5) 

embryos were graded using a two-component grading system; 1) degree of expansion as 

indicated by the presence of a blastocoel cavity and 2) ICM and TE quality. The assessed 

ICM and TE cells were assigned a numerical grade. Grades 1-2 indicate a discernible to 

distinct ICM and cohesive to lose layer of TE cells. Any embryo with no visible ICM or few 

or uneven layer of TE was not considered suitable for transfer or vitrification on day 5 

and remained in culture for reassessment on day 6. 

3.6.3 Blastocyst Vitrification and Warming 

During the data collection period there were two protocols used for blastocyst 

vitrification utilising different devices, media, equilibration and vitrification techniques. 

3.6.3.1 Hollywood Modified CVM™ Method. 

The CryoLogic Vitrification Method (CVMTM) is a commercially available vitrification kit 

incorporating the use of a FibreplugTM and the solid surface vitrification (SSV) method 

(Appendix 7.3.1). A modified version of this protocol was used incorporating 

equilibration and vitrification solutions from supplier A and warming solutions from 

suppliers A, B and C. (Appendix 7.3.6).  
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3.6.3.1.1 FibreplugTM Vitrification (Detail Appendix 7.3.2) 

Blastocysts were equilibrated singularly for 2 minutes at 37°C in a solution of 8% EG/ 

DMSO containing osmotic buffer while the blastocoel was collapsed using a 200 µm 

pipette. The blastocyst was then moved to a vitrification solution of 16% EG/DMSO for 

30 seconds prior to dispensing onto the FibreplugTM in a 3 µl drop. The FibreplugTM was 

then placed against a stainless-steel vitrification block, pre-equilibrated in liquid nitrogen 

where the drop formed a glass like bead. Once vitrified the FibreplugTM was placed inside 

a pre-cooled sheath and stored in LN2. 

3.6.3.1.2 FibreplugTM Warming (Detail Appendix 7.3.3) 

Fibreplugs were removed from LN2 and plunged into a solution pre-incubated at 37°C 

containing an osmotic buffer (sucrose or trehalose). Once identified, the blastocyst was 

immediately washed free of the vitrification media and moved through a series of 

solutions with decreasing concentrations of osmotic buffer (Appendix 7.3.8)  in 5-minute 

intervals. The blastocyst was then moved to culture in BM prior to assessment for 

survival. 

3.6.3.2 Hollywood Modified Cryotop® Vitrification Method (CT) 

The Cryotop® Vitrification Method (CT) is a commercially available kit with media and 

devices (Appendix 7.3.4). A modified version of the CT method utilising the Cryotop® 

Vitrification device, the CryoLogic Vitrification block (SSV) and the equilibration and 

vitrification solutions from supplier A and C were used. The solutions from suppliers A, B 

and C were used for warming (Appendix 7.3.7 ).  

3.6.3.2.1 Cryotop® Vitrification (Detail Appendix 7.3.5) 

Blastocysts were equilibrated singularly for 15 minutes at room temperature in a 

solution of 8% EG/ DMSO containing osmotic buffer. Unlike the CVM protocol there was 

no artificial collapsing of the blastocoel. The blastocyst was then transferred to a 

vitrification solution containing 16% EG/DMSO with a higher concentration of osmotic 

buffer. After rinsing for 60 seconds the blastocyst was aspirated in a volume < 0.1 µl and 

placed on the tip of the Cryotop® sheet. Excess vitrification solution was removed leaving 

a planar droplet containing the blastocyst. The sheet was then placed against a stainless-
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steel vitrification block, pre-equilibrated in liquid nitrogen. Once vitrified the sheet was 

inserted into a pre-cooled sheath and stored in LN2. 

3.6.3.2.2 Cryotop® Warming (Detail Appendix 7.3.6) 

Single blastocyst warming commenced a minimum 3 hrs prior to the scheduled transfer 

to allow enough time for embryo assessment. Cryotop® sheets holding the blastocysts 

were removed from LN2 and plunged into a solution pre-incubated at 37°C containing an 

osmotic buffer (sucrose or trehalose) for 1 minute. The blastocyst was then moved 

through a series of solutions with decreasing concentrations of osmotic buffer prior to 

moving to BM for culture and survival assessment. 

3.6.4 Survival Assessment 

Blastocysts were observed briefly at 30- and 60-minutes post warming on an inverted 

microscope for commencement of re-expansion defined as the appearance of a cavity 

and/or lineation of trophectoderm cells. Cell degeneration assessment occurred at the 

same time and was observed as highly granular cytoplasm without distinct cell 

membranes. During the first 2 years of the study period, if there was estimation that the 

proportion of viable cells was less than 70%, the blastocyst was deemed not to have 

survived and was not transferred. Due to poor outcomes from blastocysts assessed as 

survived using this criterion alone but not commenced re-expansion within 60 minutes, 

the latter assessment method became the sole survival criterion.  

3.6.5 Endometrial Preparation and Embryo Transfer 

Frozen embryo transfer cycles (FET) were managed either by hormone replacement 

therapy (HRT), low dose stimulation (LDS) or natural (NAT) cycle monitoring. HRT cycles 

involved administration of 4mg TDS Progynova® (Bayer, Australia) for a minimum of 10 

days. Serum E2 was measured on day 10 of the cycle and endometrial quality was 

examined via vaginal ultrasound. When E2 was greater than 800 pmol/l and endometrial 

thickness greater than 8mm, progesterone pessaries 400mg TDS (Orion, Balcatta 

Western Australia) were administered by the patient 3 times daily. The FET was 

scheduled on the sixth day of pessaries. Pessaries were continued until indicated 

otherwise by negative pregnancy result or placental support was initiated. Serum E2 and 

P4 levels were observed 3 days post transfer.  
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Gonal F®was administered for LDS cycles and response monitored using serum E2 levels 

on days 2 and 9. Once E2 level exceeded 500 pmol/l, vaginal ultrasound was used to 

monitor follicular and endometrial growth. When serum E2 levels reached 800IU and 

endometrial thickness reached 8mm, 5000IU hCG (Pregnyl™, human chrionic 

gonadotrophin) was used to trigger ovulation with embryo transfer scheduled for 6 days 

later. Gonadotrophic support was administered, 1500IU/day Pregnyl™ corresponding 

with days 17, 20, 23 and 26 of patient cycle. Serum E2 and P4 were examined 8 days 

post trigger. 

All embryo transfers were conducted using a Guardia™ Access Embryo Transfer Catheter 

from COOK® medical. A 1ml syringe filled with equilibrated culture media was attached 

to the inner sheath and stored in 6%CO2, at 37°C until required. At time of transfer, a 

blastocyst was moved from 20µl droplet into 900µl of culture medium. The embryo was 

loaded into the catheter by filling the inner sheath with pre-equilibrated medium, 

introducing a small air bubble, drawing approximately 5µl of medium into the catheter, 

followed by the embryo with another 5µl of media and another small air bubble. The 

total volume for transfer was approximately 10-15µl. The outer sheath of the catheter 

was placed through the cervix and under ultrasound guidance; the inner sheath was 

passed through and 20-35µl of medium containing the embryo deposited 1 cm back 

from the fundus. The inner and outer sheaths were checked by the scientist post 

transfer to ensure the successful transfer of the embryo. 

Human chorionic gonadotrophin hormone levels higher than 25IU/l indicated a positive 

biochemical pregnancy. Oestradiol and progesterone support was continued in patients 

to ensure adequate support before the placental hCG production shift. Pregnancy 

monitoring continued per practice protocol. Weekly blood tests of serum E2, P4 and hCG 

continued until week 7 of pregnancy when clinical pregnancy was confirmed by the 

presence of a gestational sac and fetal heart via ultrasound. 



35 
 

4 RESULTS 

4.1 Patient and Cycle Demographics 

4.1.1 Number of Embryos Transferred 

There were 2466 transfers of either 1 or 2 vitrified/warmed blastocysts resulting in 796 

(32.3%) clinical pregnancies and 751 (30.5%) live born babies. Less than 7% of embryo 

transfers were of 2 blastocysts due to either advanced maternal age or previous failed 

attempts. Table 4-1 shows the proportion of multiple pregnancies was significantly 

greater when 2 blastocysts were transferred compared to one, despite the overall 

clinical pregnancy rate not being significantly greater. The individual embryo outcomes 

(Table 4-2) demonstrate that the embryo implantation rate in the patients receiving two 

blastocysts was significantly lower than those receiving one, however they were also 

significantly older (Table 4-1). Genetically tested, imported, and embryos derived from 

donor oocytes were excluded from the data set to avoid any bias. 

Table 4-1: Pregnancy and multiple rates according to the number of warmed blastocysts 
transferred. Pregnancies were identified with a positive pregnancy test at week 4 and 
confirmed as viable with one or more fetal hearts present at 7 weeks gestation. 

 

Parameter 

No. embryos transferred 

1 2 p-value 

Age at transfer (mean years) 34.5 ± 4.5 36.0 ± 4.4 <0.0001 

No. embryo transfers 2311 155  

No. positive pregnancy tests* 961 (41.6%) 74 (47.7%) >0.133 

No. viable pregnancies* 735 (31.8%) 61 (39.3%)  >0.052 

No. multiple pregnancies** 18 (2.4%) 15 (24.6%) <0.0001 

*per transfer; **per viable pregnancy 
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Table 4-2: Embryo implantation and singleton birth details according to the number of 
warmed blastocysts transferred. 

 

Parameter 

No. embryos transferred 

1 2 p-value 

No. embryos transferred 2311 312  

No. fetal hearts 754 (32.9%) 76 (24.4%) <0.003 

No. babies born* 684 (29.6%) 67 (21.5%) <0.005 

No. boys:girls 344:340 34:33 = 1.0 

Weight at birth (g) 3346 ± 639 3186 ± 683 >0.052 

Gestation (weeks) 38.9 ± 2.4 38.4 ± 2.2 >0.101 

* number of babies born per embryo transferred 

The average gestational age of a multiple delivery was 36 ± 2.1 weeks compared to 39 ± 

2.3 weeks for singleton deliveries. Average birthweight for multiples (2261g ± 498g) was 

also significantly reduced (p<0.0001) when compared to singletons (3376g ± 607g). 

Double embryo transfers were excluded from further analysis due to the reduced 

proportion (6.3%), significantly different outcomes and the inability to trace individual 

blastocysts. 

4.1.2 Type of Transfer Cycle 

Almost half (47.7%) of single embryo transfer cycles were prepared using HRT, 40.0% 

LDS and the remainder being NAT cycles (12.3%). HRT cycles produced significantly less 

viable pregnancies per SET compared to LDS and NAT cycles combined, however the age 

of patients in this group was significantly older (Table 4-3). 
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Table 4-3: Single embryo transfer pregnancy rates and outcomes according to the type 
of transfer cycle. Cycles were following hormone replacement therapy (HRT), low dose 
stimulation (LDS) or unstimulated (natural). 

 

Parameter 

Cycle type 

HRT LDS Natural p-value 

Age at transfer (mean years) 35.2 ± 4.6 33.9 ± 4.1 33.5 ± 4.5 <0.0001** 

No. transfers 1103 925 283  

No. positive pregnancy tests 422 (38.3%) 406 (43.9%) 133 (47.0%) <0.006* 

No. viable pregnancies 302 (27.4%) 321 (34.7%) 112 (39.6%) <0.0001* 

*based on Bonferroni sig level p=0.017 for multiple comparisons, LDS (p=0.0111, 0.0004) and 

Natural (p=0.0080, <0.0001) cycles produced significantly greater positive pregnancy tests and 

viable pregnancies respectively than HRT cycles. There was no significant difference in positive 

pregnancy tests (p<0.3961) and viable pregnancies (p<0.1542) between LDS and Natural cycles. 

** The average age of patients was significantly different between both LDS (p<0.0001) and 

Natural (p<0.0001) compared to HRT cycles however there was no significant difference 

(p>0.3730) between LDS and Natural cycles.  

The average weight at birth and gestational period was not significantly different when 

comparing the type of transfer cycle but the number of fetal hearts and babies born in 

proportion to SET was significantly lower in the HRT group (Table 4-4). 
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Table 4-4: Embryo implantation and birth details according to the type of transfer cycle. 
Cycles were following hormone replacement therapy (HRT), low dose stimulation (LDS) 
or unstimulated (natural). 

 

Parameter 

Cycle type 

HRT LDS Natural p-value 

No. embryos transferred 1103 925 283  

No. fetal hearts 311 (28.2%) 327 (35.4%) 116 (41.0%) <0.0001* 

No. babies born 280 (25.4%) 299 (32.3%) 105 (37.1%) <0.0001* 

Weight at birth (g) 3307 ± 673 3355 ± 595 3423 ± 666 0.2767 

Gestation (weeks) 38.8 ± 2.8 38.9 ± 1.9 39.1 ± 2.5 0.5475 

*based on Bonferroni sig level p=0.017 for multiple comparisons, LDS (p<0.0007, <0.0007) and 

Natural cycles (p<0.0001, <0.0001) produced a significantly greater proportion of fetal hearts 

and babies born respectively than HRT cycles. There was no significant difference in the 

proportion of fetal hearts (p<0.0985) and babies born (p<0.1563) between LDS and Natural 

cycles. 

4.1.3 Aetiology of Infertility 

The cause of infertility, as diagnosed prior to the commencement of IVF treatment, did 

not significantly influence the outcome of single frozen embryo transfers (Table 4-5). 

More than half the embryos were from couples with male infertility only or idiopathic 

infertility. 
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Table 4-5: The relationship between aetiology of infertility and pregnancy following a 
single transfer of a warmed blastocyst. 

Aetiology Transfers Viable pregnancies* Deliveries** 

Male and female factors 467 (20%) 127 (27.2%) 122 (26.1%) 

Female factors only 447 (19%) 138 (30.9%) 117 (26.2%) 

Male factors only 638 (28%) 216 (33.9%) 192 (30.1%) 

Tubal factors 118 (5%) 44 (37.3%) 41 (34.7%) 

Unexplained 637 (28%) 210 (33.0%) 190 (29.8%) 

Total 2311 735 (31.8%) 662 (28.6%) 

* p>0.0912, ** p>0.1977 

Based on Bonferroni sig level p<0.005 for multiple comparisons (10) there was no significant 

difference in viable pregnancies (p>0.0216) or deliveries (p>0.0797) relative to patient aetiology. 

4.1.4 Transfer Attempt 

The number of previous embryo transfers a patient had received, whether successful 

and producing a viable pregnancy, or not implanting, is associated with the implantation 

rate. 1st transfer patients have not had a prior fresh transfer either due to patient choice 

or medical reasons. An increased progesterone level (prior to hCG administration) and 

risk of OHSS are the most common reasons for a freeze all cycle. Table 4-6 describes the 

reduced proportion of deliveries as the transfer attempts increase. 
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Table 4-6: Impact on outcome relative to the rank of transfer attempt 

Parameter 

Single embryo transfer rank  

Total 1 2 3-5 6-20 

Average age (mean 

years) 
32.4 ± 4.2 33.1 ± 4.5 33.6 ± 4.5 35.0 ± 3.9 33.5 ± 4.5 

No. transfers (SET) 287 802 958 264 2311 

No. viable 

pregnancies* 
120 (41.8%) 264 (32.9%) 287 (30.0%) 64 (24.2%) 735 (31.8%) 

No. deliveries* 111 (38.7%) 242 (30.2%) 254 (26.5%) 55 (20.8%) 662 (28.6%) 

Based on Bonferroni sig level p<0.0083 for multiple comparisons there was no significant 

difference in age between 1st and 2nd (p<0.0951) or 2nd and 3-5th (p<0.0821) transfer attempts. 

All other group comparisons of age were significant (p<0.0003). 1st transfer viable pregnancy and 

delivery rate was significantly (p<0.0002, p<0.0001) greater than 3-5 or 6-20 transfer attempts. 

All other transfer rank comparisons were not significant (p>0.0084). 

4.1.5 Impact of Age 

The proportion of embryo transfers resulting in viable pregnancies and deliveries 

according to the woman’s age is shown in Table 4-7. Whilst there was no difference 

between the women <30 yrs and 30-34 yrs, there were progressive and significant 

reductions in rates of pregnancy and delivery for those aged 35-39 yrs and ≥ 40 yrs. 

  



41 
 

Table 4-7: Impact of the age of the woman at vitrification upon blastocyst survival and 
implantation. 

Parameter 

Age of woman at vitrification (years)  

Total <30 30-34 35-39 ≥40 

No. transfers (SET) 465 844 794 208 2311 

No. viable pregnancies* 173 (37.2%) 291 (34.5%) 229 (28.9%) 42 (20.2%) 735 (31.8%) 

No. deliveries* 166 (35.7%) 265 (31.4%) 199 (25.1%) 32 (15.4%) 662 (28.6%) 

* p<0.0001 

Based on Bonferroni sig level p<0.0083 for multiple comparisons there was no significant 

difference in viable pregnancies (p>0.3537) or the number of deliveries (p>0.1277) between 

patients aged less than 30 and between 30 and 34. The number of deliveries between all other 

age groups was significantly different (p<0.0053). 

4.1.6 Logistic Regression of patient and cycle parameters. 

Maternal age, cycle type, and transfer order independently influence embryo transfer 

outcomes as shown by the odds ratios (Table 4-8). Patients less than or equal to 38 years 

of age at the time of vitrification are more than twice as likely to achieve the delivery of 

a baby than those older than 38. This trend is maintained despite adjusting for cycle type 

and transfer attempt (Table 4-9). The shift in odds ratio for all three independent 

variables is less than 10% using multiple regression analysis. This indicates the effect of 

confounding between cycle type, age and transfer attempt is minimal. 

Table 4-8: Simple regression results for age, cycle and transfer rank. 

Predictor Value p-value OR CI 

Age ≤ 38 years < 0.0000 2.1752 1.6020 2.9534 

Cycle No HRT < 0.0000 1.4770 1.2327 1.7696 

Transfer attempt ≤ 2 < 0.0002 1.4034 1.1732 1.6788 
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Table 4-9: Multiple logistic regression results controlling for age, cycle and transfer rank. 

Predictor Value p-value OR CI 

Age ≤ 38 years < 0.0000 2.0086 (7.7%) 1.4755 2.7344 

Cycle No HRT < 0.0005 1.3832 (6.4%) 1.1517 1.6611 

Transfer attempt ≤ 2 < 0.0026 1.3220 (5.8%) 1.1027 1.5850 

Percentage in parentheses represents the deviation from simple regression (Table 4-8) and 

multiple regression controlling for the other 2 variables. If >10% there is evidence of 

confounding.  

4.2 Blastocyst Specific Variables 

4.2.1 Age of embryo at time of vitrification (Day 5 vs Day 6) 

In a fresh cycle, embryo selection for transfer and vitrification occurs initially on Day 5 

and if nothing is suitable, subsequently on Day 6. A day 5 embryo has a typical age of 

118-125 hrs post insemination and a day 6 embryo 138-143 hrs post insemination. The 

survival, viable pregnancy and delivery rates are significantly greater for Day 5 embryos 

within the context of this protocol (Table 4-10). 

 

Table 4-10: The survival after warming and subsequent implantation of blastocysts 
vitrified on Day 5 vs Day 6 

 D5 D6 P value 

# warmed 2397 580  

#survived 2130 (88.9%) 493 (85%) <0.0102 

#SET 1887 424  

#viable pregs 643 (34.1%) 92 (21.7%) <0.0000 

#deliveries 580 (30.7%) 82 (19.3%) <0.0000 
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4.2.2 Blastocyst grade and expansion level relative to day of vitrification. 

In addition to the age of the blastocyst, the morphological variables, cell quality (grade1-

2) and the level of expansion differed at the time of vitrification. There was no significant 

difference in survival (p > 0.6458) or live birth rate (p > 0.3161) between grade 1 and 2 

blastocysts at the early stages of expansion on day 5 (Table 4-11). The difference in live 

birth rate between grade 1 and 2 blastocysts became significant for more expanded 

blastocysts on day 5 of development. There were too few blastocysts at the early 

expansion stages vitrified on day 6 to make a comparison with just one grade one 

blastocyst being transferred (Table 4-12). There were no significant differences in 

survival or live birth rate between grade 1 or 2 blastocysts at the more expanded stages 

on day 6. The proportion of grade 1 blastocysts on day 5 (31.5%) was significantly 

greater (p<0.0000) than that of day 6 (10.3%).  

Table 4-11: The survival after warming and subsequent implantation of blastocysts 
transferred on Day 5. Embryos stratified as either non-expanded or expanded/hatching 
and grade 1 or 2. 

Expansion Early blastocyst (EB) to Blastocyst(B) 
Expanded Blastocyst (XB) to Fully 

Hatched Blastocyst (FHB) 

Grade 1 2 1 2 

# warmed 92 566 663 1076 

#survived 84 (91.3%) 508 (89.8%) 591 (89.1%) 947 (88.0%) 

#SET 75 432 547 833 

#viable pregs 23 (30.7%) 109 (25.2%) 236 (43.1%) 275 (29.0%) 

#deliveries 21 (28.0%) 98 (22.7%) 216 (39.5%)* 245 (25.8%)* 

* P < 0.0007 
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Table 4-12: The survival after warming and subsequent implantation of blastocysts 
transferred on Day 6. Embryos stratified as either non-expanded or expanded/hatching 
and grade 1 or 2. 

Expansion EB to B XB to FHB 

Grade 1 2 1 2 

# warmed 1 31 59 489 

#survived 1 (100%) 29 (93.5%) 52 (88.1%) 411 (84.0%) 

#SET 1 26 47 350 

#viable pregs 0 (0%) 4 (15.4%) 14 (29.8%) 74 (21.1%) 

#deliveries 0 (0%) 4 (15.4%) 11 (23.4%) 67 (19.1%) 

 

4.2.3 Logistic Regression of Embryo Specific Variables. 

The day of vitrification, blastocyst grade and degree of expansion are independently 

associated with live delivery as an embryo transfer outcome as shown by the odds ratios 

in Table 4-13. Using multiple regression analysis, Day 5, Grade 1 Blastocysts that have 

reached the expanded/hatching stage have an 80% greater chance of continuing to a 

baby than Grade 1 expanded blastocysts on Day 6 (Table 4-14). Grade 1, Day 5 

Blastocysts that have reached the expanded/hatching stage have a 51% greater chance 

of continuing to a baby than Grade 2 Blastocysts that are also at the expanded/hatching 

stage on Day5. Blastocysts that have reached the expanded/hatching stage on Day 5 and 

are grade 1 have a 47% greater chance of continuing to a baby than non-expanded 

blastocysts. There was a significant reduction (13.5%) in the OR of the morphology grade 

when controlling for day of vitrification and expansion level suggesting some 

confounding (Table 4-14). 
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Table 4-13 Simple regression results for a comparison of day of vitrification, embryo 
grade and expansion level on delivery rates. 

Predictor Value p-value OR 95% CI 

Day of vitrification 5 < 0.0000 1.8508 1.4270 2.4006 

Morphology Grade 1 < 0.0000 1.7473 1.4417 2.1175 

Expansion level ≥XB < 0.0009 1.4626 1.1675 1.8323 

 

Table 4-14 Multiple logistic regression results controlling for day of vitrification, embryo 
grade and expansion level relative to delivery rates. 

Predictor Value p-value OR 95% CI 

Day of vitrification 5 <0.0000 1.7962 (-3.0%) 1.3728 2.3503 

Morphology Grade 1 <0.0001 1.5120 (-13.5%) 1.2373 1.8475 

Expansion level ≥XB <0.0012 1.4747 (+0.7%) 1.1663 1.8647 

Percentage in parentheses represents the deviation from simple regression (Table 4-13) and 

multiple regression controlling for the other 2 variables. If >10% there is evidence of 

confounding.  

 

Comparisons using binary logistic regression to identify individual confounding showed a 

significant reduction in the OR of day of vitrification when controlling for morphology 

grade. Day 5 grade 1 blastocysts have a 64% greater chance of continuing to a baby than 

day 6 grade 1 blastocysts (Table 4-15). However, a greater proportion of day 6 

blastocysts are morphology grade 2 (376/424, 89%) compared to day 5 blastocysts 

(1265/1887, 67%). Within blastocysts vitrified on Day 5 the morphology grade 1 

blastocysts had a 64% greater chance to continue to a baby than morphology grade 2 

blastocysts on the same day (Table 4-15). 
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Table 4-15 Binary logistic regression of day of vitrification and morphology grade relative 
to delivery rates 

Predictor Value p-value OR 95% CI 

Day of vitrification 5 <0.0002 1.6404 (-11.4%) 1.2604 2.1349 

Morphology Grade 1 <0.0000 1.6299 (-6.7%) 1.3406 1.9816 

 

More expanded grade 1 blastocysts had a 32% greater chance of continuing to a baby 

than non-expanded grade 1 blastocysts (Table 4-16). Morphology grade had more than 

double the effect of expansion as grade 1 expanded blastocysts had a 67% greater 

chance of continuing to a baby than grade 2 expanded blastocysts. 

Table 4-16 Binary logistic regression of expansion level and morphology grade relative to 
delivery rates 

Predictor Value p-value OR 95% CI 

Expansion level ≥XB <0.0173 1.3216 (-9.6%) 1.0504 1.6628 

Morphology Grade 1 <0.0000 1.6731 (-4.2%) 1.3762 2.0339 

 

Expanded blastocysts on day 5 were more than twice as likely to continue to a baby than 

expanded blastocysts on day 6 of development (Table 4-17). Expanded blastocysts on 

day 5 of development had a 63% greater chance of continuing to a baby than non-

expanded blastocysts on day 5. However, a greater proportion of day 6 blastocysts were 

expanded (397/424, 93%) compared to day 5 blastocysts (1380/1887, 73%). 
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Table 4-17 Binary logistic regression day of vitrification and expansion level relative to 
delivery rates 

Predictor Value p-value OR 95% CI 

Day of vitrification 5 <0.0000 2.0100 (+7.9%) 1.5456 2.6140 

Expansion level ≥XB <0.0000 1.6313 (+10.3%) 1.2976 2.0509 

4.2.4 Ranking of implantation potential 

Combining the survival rates and subsequent SET live delivery rates it is possible to 

construct a ranking table that provides a guide as to the probability of success of an 

embryo prior to choosing it to warm (Table 4-18). This table shows the improved success 

rates according to the day of vitrification, the morphology grade and to a lesser degree, 

expansion level. 
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Table 4-18 Blastocyst rankings according to blastocyst specific variables 

Category of 

embryo 

SET Viable pregnancies Deliveries Delivery rate of warmed 

blastocysts 

D5HB1 195 92 (47.2%) 84 (43.1%) 39.9% 

D5XB1 342 140 (40.9%) 128 (37.4%) 32.6% 

D5B1 67 22 (32.8%) 20 (29.9%) 27.1% 

D5XB2 641 214 (33.4%) 193 (30.1%) 26.4% 

D5HB2 187 61 (32.6%) 52 (27.8%) 24.6% 

D5EB2 87 26 (29.9%) 25 (28.7%) 23.4% 

D6HB1 21 6 (28.6%) 5 (23.8%) 20.2% 

D5B2 345 83 (24.1%) 73 (21.2%) 19.5% 

D6XB1 24 7 (29.2%) 5 (20.8%) 18.7% 

D6XB2 195 41 (21.0%) 38 (19.5%) 16.7% 

D6HB2 128 28 (21.9%) 25 (19.5%) 15.8% 

D6B2 24 4 (16.7%) 4 (16.7%) 15.5% 

D6FHB2 27 5 (18.5%) 4 (14.8%) 13.5% 

D5/D6 refers to day of vitrification 
EB early blastocyst, B blastocyst, XB expanded blastocyst, HB hatching blastocyst, FHB fully 
hatched blastocyst 
1/2 refers to embryo grade  
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4.3 Vitrification/Warming Technique Results 

4.3.1 Vitrification Device 

The change in vitrification device and technique during the data collection period 

resulted in an increasing proportion of CT warms occurring from 2010 through to 2015 

(Figure 4-1). This was expected as there is a delay in pregnant patients returning to use 

any remaining embryos.  

Figure 4-1 The proportion of warms with the Cryotop® and FibreplugTM devices. 

 

The overall survival rate of blastocysts vitrified on the Cryotop® device was 91.2% 

(1577/1730) which was significantly greater (p<0.0001) than the 83.9% (1046/1247) for 

blastocysts vitrified on the FibreplugTM device. The live delivery rate from SET’s however 

was not significantly different (p>0.3196) between the two devices (Cryotop® 422/1436, 

29.4%; FibreplugTM 240/875, 27.4%). The average age of the patients at the time of 

vitrification was also not significantly different (p>0.2273) between groups (Cryotop®, 

33.5 ± 4.5; FibreplugTM, 33.7 ± 4.4). The significant improvement in survival rate was not 

seen when controlling for media type (p>0.2016). The survival rate of blastocysts 

vitrified and warmed using only media from supplier A on the Cryotop device was 86.2%. 

Using the same media combination with FibreplugTM the survival rate was 83.8%. 
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4.3.2 Vitrification/Warming Media 

Vitrification and warming media used for both devices were from three different 

suppliers during the data collection period (Appendix 7.3.7). All vitrification media 

contained the cryoprotectants ethylene glycol and DMSO with either sucrose or 

trehalose being used as the osmotic buffer. The warming media consisted of a base 

media with differing concentrations of osmotic buffer. Most blastocysts vitrified on the 

FibreplugTM with media from supplier A were warmed using media from the same 

supplier and therefore it was not possible to make comparisons with media suppliers 

using this device (Table 4-19). 

Table 4-19 The survival and implantation of blastocysts vitrified on the FibreplugTM device 
using vitrification media from supplier A. Blastocysts were then warmed in media from 
suppliers A, B and C. 

 

Parameter 

Warming Media  

Total A B C 

Age (av.yrs.) 33.8 ± 4.4 32 ± 3.2 32.4 ± 3.6 33.7 ± 4.4 

# warmed 1185 12 50 1247 

#survived 993 11 42 1046 (83.9%) 

#SET 828 11 36 875 

#viable pregs 241 (29.1%) 4 (36.4%) 16 (44.4%) 261 (29.8%) 

#deliveries 222 (26.8%) 4 (36.4%) 14 (38.9%) 240 (27.4%) 

 

Vitrification on the CT device used media from suppliers A (Table 4-20) and C (Table 

4-21) with subsequent warming with media from suppliers A, B, C and B and C 

respectively. There was no significant difference in delivery rates between any of the 

media however the survival rate was significantly greater using warming media from 

supplier B. This difference persisted whether vitrification media from supplier A 

(p<0.0000) or C (p<0.0195) was used. 
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Table 4-20 The survival and implantation of blastocysts vitrified on the Cryotop® device 
using vitrification media from supplier A. Blastocysts were then warmed in media from 
suppliers A, B and C. 

 

Parameter 

Warming Media  

Total A B C 

Age (av.yrs.) 33.6 ± 4.4 33.1 ± 4.2 33.2 ± 4.8 33.3 ± 4.5 

# warmed 558 316 334 1208 

#survived 481 (86.2%)* 301 (95.3%)* 304 (91.1%) 1086 (89.9%) 

#SET 423 277 273 973 

#viable pregs 127 (30.0%) 97 (35.0%) 97 (35.5%) 321 (33.0%) 

#deliveries 109 (25.8%) 89 (32.1%) 85 (31.1%) 283 (29.1%) 

*Based on Bonferroni sig level p<0.0167 for multiple comparisons the survival rate using 

warming media from supplier B was significantly higher (p<0.0000) than that using warming 

media from supplier A. There was no significant difference in delivery rate between any of the 

groups (p>0.0867). 

Table 4-21 The survival and implantation of blastocysts vitrified on the Cryotop® device 
using vitrification media from supplier C. Blastocysts were then warmed in media from 
suppliers B or C. 

 

Parameter 

Warming Media  

Total B C 

Age (av.yrs.) 34.0 ± 4.2 33.5 ± 4.8 33.7 ± 4.6 

# warmed 190 332 522 

#survived 185 (97.4%)* 306 (92.2%)* 491 (94.1%) 

#SET 176 287 463 

#viable pregs 66 (37.5%) 87 (30.3%) 153 (33.0%) 

#deliveries 60 (34.1%) 79 (27.5%) 139 (30.0%) 

*p<0.0195 
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4.4 Embryo assessment prior to transfer 

During the early part of the data collection period, 2008-2009, the sole survival criterion 

was the cell degeneration level. Any blastocyst with less than 70% cell survival was 

considered not to have survived and therefore was not transferred. Blastocysts with 

levels of cell degeneration greater than 5% had significantly poorer success rates than 

those with less than 5% (Table 4-22). This form of assessment was accompanied by 

observations of re-expansion (Figure 4-2). Re-expansion became the sole assessment 

tool for survival in 2010. It was easier to quantify, and early observations revealed 

extremely poor success with blastocysts that took longer than 60 minutes to begin the 

re-expansion process (Table 4-23, Figure 4-3). This effect was also seen on outcomes 

when comparing blastocysts that commenced re-expansion within 30 minutes to those 

commencing between 30-60 minutes. The commencement of re-expansion was 

demonstrated by the development of a blastocoel and/or lineation of trophectoderm 

cells (Figure 4-4).  

Table 4-22 Proportion of cells surviving relative to the implantation and pregnancy 
outcome of warmed blastocysts. 

Parameter 

Cell survival (%) 

p-value 

70-79 80-94 95-100 

Age (av.yrs.) 34.4 ± 4.7 33.9 ± 4.4* 33.3 ± 4.5* 0.0082 

#warmed 71 634 1912  

#SET** 47 561 1692  

#viable pregs 5 (10.6%) 132 (23.5%) 593 (35.0%) <0.0000 

# deliveries 5 (10.6%) ** 119 (21.2%) ** 533 (31.5%) <0.0000 

* Based on Bonferroni sig level p<0.0167 for multiple comparisons there was a significantly 

greater proportion of older patients in the 80-94% group than the 95-100% group (p<0.0165). 

**There was no significant difference in the delivery rate between blastocysts with 70-79% cell 

survival and those with 80-94% survival (p>0.0839). Blastocysts with 95-100% survival had a 

significantly greater delivery rate than the 70-79 group (p<0.0023) and the 80-94 group 

(p<0.0000). ** x11 cell survival unknown as not recorded. 
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Table 4-23 Time taken to begin re-expansion after warming relative to the implantation 
and pregnancy outcome of warmed blastocysts (only recorded 2010 onwards).  

Parameter 

Time to start re-expansion (mins) 

p-value 

<30 30-60 >60 

Age (av.yrs.) 33.4 ± 4.5 33.2 ± 4.3 33.3 ± 4.0 0.7268 

#warmed 1475 456 391 2322 

#SET 1329 (90.1%) 411 (90.1%) 25 (6.4%)+ 1765 

#viable pregs 458 (34.5%) 120 (29.2%) 1 (4%) <0.0012 

# deliveries 410 (30.9%)* 105 (25.5%)* 1 (4%) <0.0024 

*Blastocysts commencing re-expansion within 30 minutes post warm had a significantly greater 

delivery rate than those commencing between 30- and 60-minutes post warm (p<0.0399). 
+ The practice of transferring blastocysts that commenced re-expansion more than 60 minutes 

after the warm ceased early in the study period due to the poorer results with these embryos. 

Figure 4-2 Commencement of re-expansion 

 

Arrows indicate evidence of re-expansion commencing.  



54 
 

Figure 4-3 A blastocyst failing to commence re-expansion after warming. 

 

Figure 4-4 Re-expansion within 30 minutes for a full blastocyst (top row) and a fully 
hatched blastocyst (bottom row) 

 

The rate of re-expansion for fully hatched blastocysts was relatively slower than the 

earlier stages of blastocyst development and had the greatest proportion (89%) that 

commenced re-expansion between 30 and 60 minutes. (Figure 4-5). 
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Figure 4-5 Time to commence re-expansion across different blastocyst stages 

 

Figure 4-6 Rate of re-expansion relative to vitrification device. 

 

A significantly (p<0.03) greater proportion of blastocysts vitrified on the Cryotop® (CT) 

device re-expanded within the first 30 minutes post warming when compared to those 

vitrified on the FibreplugTM (FP)(Figure 4-6).  
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4.4.1 Multiple Logistic Regression of embryo assessment criteria 

Simple regression analysis of cell degeneration and re-expansion shows that both 

variables are significantly associated with delivery rates (Table 4-24). Binary logistic 

regression controlling for each variable, however, shows significant confounding 

between the two variables (Table 4-25). Within blastocysts that re-expand in ≤ 30 

minutes, those with ≥ 95% cell survival after warming have a 57% greater chance of 

progressing to a baby than those with between 70 and 94% cell survival.  Within 

blastocysts that have ≥ 95% cell survival, however, there is no significant difference in 

delivery rate between those that commence re-expansion in ≤ 30 minutes to those that 

commence re-expansion between 30 and 60 minutes. 

Table 4-24 Simple regression results for a comparison of cell degeneration and re-
expansion assessment criteria on delivery rates. 

Predictor Value p-value OR 95% CI 

Cell degeneration ≥95% <0.0000 1.7950 1.4372 2.2420 

Re-expansion ≤30min <0.0399 1.3002 1.0122 1.6701 

Table 4-25 Binary logistic regression results controlling for cell degeneration and re-
expansion. 

Predictor Value p-value OR 95% CI 

Cell degeneration ≥95% <0.0005 1.5719 (12.4%)* 1.2185 2.0280 

Re-expansion ≤30min >0.3499 1.1308 (13.0%)* 0.8738 1.4634 
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4.5 Time interval between warm and transfer 

An advantage of assessing blastocysts after warming compared to cleavage stage 

embryos is the early evidence of the re-commencement of cellular activity. This gives an 

embryologist the ability to select or de-select a blastocyst within 60 minutes of warming 

it. Despite this shorter time frame, embryo transfer appointment times should allow ≥ 

3hrs for a suitable blastocyst to be assessed and selected for transfer. This provides for 

the possibility of needing to warm subsequent blastocysts. The warming of subsequent 

blastocysts and different scheduling times alters the time between the warm and the 

transfer (Table 4-26). 

Table 4-26 The impact of time between starting the warm and transfer of vitrified 
blastocysts. 

Parameter 

Time between warm and transfer (hrs) 

0-1 2 3 4 5 6 ≥7 

#SET 68 433 708 580 336 86 100 

#viable pregs 
20 

(29.4%) 

139 

(32.1%) 

218 

(30.8%) 

201 

(34.7%) 

104 

(31.0%) 

26 

(30.2%) 

27 

(27.0%) 

# deliveries 
19 

(27.9%) 

124 

(28.7%) 

192 

(27.1%) 

182 

(31.4%) 

96 

(28.6%) 

23 

(26.7%) 

26 

(26.0%) 

Coefficient of determination, R2=0.1288 

 p=0.4291 

There was no linear relationship when comparing the time difference between warming 

a blastocyst and its eventual transfer. Only 13% of the variance in transfer outcome 

could be explained by the time interval between the warm of the blastocyst and its 

transfer. 
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5 DISCUSSION 

5.1 Clinical value of embryo cryopreservation 

The original clinical benefit of embryo cryopreservation was to utilise all embryos 

produced from an oocyte collection cycle using exogenous gonadotrophins without 

increasing the probability of a multiple pregnancy (Cohen et al., 1985). This strategy also 

improved the cumulative pregnancy rate from an oocyte retrieval cycle and reduced 

overall treatment costs (Kjellberg, Carlsson, & Bergh, 2006). In this present study the 

majority (> 80%) of embryos cryopreserved were from cycles that also had fresh embryo 

transfers and embryos were vitrified for future use. Embryo cryopreservation is also 

utilised for oocyte donor/recipient cycles to assist with cycle synchronisation but early 

attempts proved difficult to justify due to poor embryo survival rates of less than 50% 

(Devroey & Pados, 1998).  More recently with improved cryopreservation techniques 

and better survival rates above 90%, embryo cryopreservation in donor/recipient cycles 

is more commonly used (Cobo et al., 2012). Of the 2821 oocyte recipient cycles 

performed during 2016 in Australia and New Zealand, 53.5% were thaw cycles and the 

live delivery rate was higher from thaw (26.2%) than fresh (14.5%) cycles (Fitzgerald et 

al., 2018). The use of thaw cycles for oocyte/embryo donation also allows for a 

quarantine period to reduce the risks of transmission of infectious diseases from donor 

to recipient (Hamer, Horne, Pease, Matson, & Lieberman, 1995).  In this present study, 

donor recipient embryos were excluded to avoid bias. If facilities and logistics did not 

allow for blastocyst culture that can further discriminate viable embryos, 

cryopreservation at early embryo stages was useful (Mandelbaum et al., 1987). It has 

also been used to rescue cleavage stage embryos that were classified as unusable due to 

poor morphological grades. If they developed to blastocysts they could be cryopreserved 

at the blastocyst stage and utilised in a later cycle if needed (Hartshorne, Elder, Crow, 

Dyson, & Edwards, 1991). During this present study facilities were available for safe 

blastocyst culture and greater than 90% of embryo transfers were of blastocysts. 

Embryo cryopreservation has also been utilised to supposedly improve 

embryo/endometrium synchronicity. Asynchrony due to a pre-ovulatory progesterone 

rise during ovarian stimulation has been shown to reduce the success of fresh embryo 

transfers (Bosch et al., 2010) and be improved by embryo cryopreservation and 
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subsequent transfer in a cycle specifically programmed for embryo transfer (Shapiro et 

al., 2010). Data in this present study did not discriminate for freeze all indications, 

however it is estimated that less than 5% of embryos were cryopreserved due to a 

premature progesterone rise. Slower developing blastocysts have been shown to have 

improved outcomes by cryopreserving and replacement in a later more synchronised 

cycle (Kaye et al., 2017). In this present study slower developing blastocysts (day 6) had 

a significantly reduced delivery rate despite being transferred in a day 5 endometrium of 

a replacement cycle (19.3% vs 30.7%). Embryo cryopreservation can also be used to 

preserve fertility in patients with impending treatment for conditions requiring the use 

of gonadotoxic agents that increase the risk of developing premature ovarian failure and 

infertility (Bedoschi & Oktay, 2013). This may be neoplasia or non-oncological systemic 

autoimmune or haematological conditions (Gidoni, Holzer, Tulandi, & Tan, 2008). The 

increasing success of oocyte vitrification has led to more fertility preservation occurring 

at the oocyte level. This can be performed for younger patients as it avoids the need for 

a donor/partner at the time of preservation and also avoids the problem of having 

excess embryos in storage after completing a family (Robertson, 2014; Seshadri et al., 

2018). The concordant advances in IVF of extended culture, trophectoderm biopsy, next 

generation sequencing (NGS) techniques for genetic screening of all 24 chromosome 

types and blastocyst vitrification have resulted in the increasing use of freeze-all cycles 

for pre-implantation genetic testing (Coates et al., 2017). Coates et al (2017) performed 

a randomised controlled trial of fresh vs frozen euploid blastocyst transfers and found 

no significant difference in live birth rates but more patients reached the stage of 

euploid embryo transfer as both test results for day 5 and 6 blastocysts were available. 

As the analysis took 17 hrs, only day 5 blastocysts could be used for biopsy and 

transferred fresh prior to 12 pm on day 6. The costs to the patient are kept to a 

minimum as biopsied cells can be sent to larger volume genetic testing laboratories 

where batching of samples is possible. In Australian and New Zealand IVF units there 

was an increase of 26.8% in cycles using pre-implantation genetic testing (PGT) during 

2016 and 39.2% were the result of freeze-all cycles (Fitzgerald et al., 2018). In this 

present study, biopsied embryos were excluded to avoid the bias from improved 

outcomes of known euploid embryos. 
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The most prevalent use of the freeze-all embryos strategy is in managing the iatrogenic 

complication of ovarian stimulation, ovarian hyperstimulation syndrome (OHSS) 

(Horwath, Check, Choe, Wilson, & Amui, 2005; Shin, Jeong, Nho, & Jee, 2018).  The 

incidence of mild to severe OHSS has been reported as being between 3.1% and 8% of 

IVF cycles (Delvigne & Rozenberg, 2002), however the validity of reporting is 

questionable for mild to moderate forms of the syndrome (Fernandez-Sanchez et al., 

2019). In Australia and New Zealand 0.5% of cycles proceeding to egg collection in 2016 

were reported as being admitted to hospital for treatment and the frequency of 

admissions was closely correlated with the number of oocytes collected (Fitzgerald et 

al., 2018).  A freeze-all approach to managing OHSS reduces endogenous hCG exposure 

and subsequent elevation of VEGF (vascular endothelial growth factor) from the corpora 

lutea and is one of the most effective strategies to prevent severe forms of OHSS 

(Griesinger et al., 2007; Nelson, 2017). More than 12% (287/2311) of single embryo 

transfers in this present study were first time transfers and therefore from freeze all 

cycles. Subsequent transfers could also be from an original pool of embryos from a 

freeze all cycle. 

5.2 Vitrification as a method of choice 

Slow freezing of human embryos takes more than 2 hours and requires the use of a 

relatively expensive programmable freezer (Mukaida et al., 1998). Soon after the first 

pregnancy utilising slow freezing in human embryos, shorter protocols were being 

devised using an interrupted cooling step and ultrarapid freezing (Gordts, Roziers, 

Campo, & Noto, 1990; Trounson & Mohr, 1983; Trounson, Peura, Freemann, & Kirby, 

1988). Poor survival and implantation rates along with regulatory constraints on human 

embryo cryopreservation trials resulted in most IVF units deferring to the more 

successful slow freezing techniques at this time (Friedler, Giudice, & Lamb, 1988; 

Trounson & Sjoblom, 1988).  

Due to the advantage of possibly avoiding ice crystal formation during vitrification, 

further studies were being conducted on other mammalian species to refine the 

concentrations and types of CPA’s being used (Kasai, 1996). At a similar time blastocyst 

culture became more prevalent with the introduction of stage specific media, the CPA 

combination of EG and DMSO with a step-wise exposure was proving successful for 
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blastocyst vitrification (Lane et al., 1999; Mukaida et al., 2001; Reed, Lane, Gardner, 

Jensen, & Thompson, 2002). Stage specific media was used for the culture of the 

embryos in this present study with EG and DMSO as the cryoprotectants. Despite 

consistent use of these products there was no consistency in the methodology being 

used for the clinical application of blastocyst vitrification and implementation was 

minimal (Vajta & Nagy, 2006). The development of suitable commercially available 

carrier devices that minimised the volume of the suspension containing the embryo and 

hence increased cooling and warming rates ultimately resulted in a widespread adoption 

of vitrification of human embryos (Kuwayama, 2007). Current vitrification techniques 

utilising these devices also provide for a reduced footprint, take up less storage space 

and reduce risk by reducing embryo handling (Liebermann, 2017). The Fibreplug 

vitrification system for blastocysts was established at Hollywood Fertility Centre in 2007. 

5.3 Patient and Cycle Demographics 

5.3.1 Single Embryo Transfer 

There is an ongoing trend of safer embryo transfer practices in Australia. The proportion 

of thaw cycles with a double embryo transfer (DET) in Australia and New Zealand during 

2016 was 8.2% (Fitzgerald et al., 2018). This is a direct result of supportive public funding 

for ART and to a lesser extent, clinical guidelines and educational campaigns (Chambers 

et al., 2013). All ART units in Australia are required by federal law (Research Involving 

Human Embryos Act 2004) to be issued a license to practice by the Reproductive 

Technology Accreditation Committee (RTAC). License holders comply with the RTAC 

Code of Practice that includes measures to reduce the incidence of DET. The latest 

version of the code requires units to recommend only one embryo be transferred to 

patients aged less than 35 years in their first cycle. During the data collection period of 

this present study (2008 to 2015) the proportion was 6.3%. Despite the additional 

embryo, the delivery rate for the Australia and New Zealand data was lower than SET 

(26.3% vs 28.6%). The main reason for this is that a higher proportion of patients 35 

years of age or older received a DET (15.7%) compared to those under 35 (7%) 

(Fitzgerald et al., 2018). The multiple pregnancy rates for SET vs DET in this present study 

were 2.4% and 24.6% respectively and this closely aligns with national data (Fitzgerald et 

al., 2018). Further efforts are required in selecting the right patients for DET, if any. The 
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use of a prediction model applying age, embryo score, ovarian sensitivity and treatment 

history has been shown to reduce the multiple rates from 25.2% to 3.8% for early day 2 

embryo transfers (Vaegter et al., 2019). 

5.3.2 Perinatal outcomes 

The average gestational period (38.9 weeks) and birth weight (3346g) for SET singleton 

pregnancies in this present study was similar to that of all singleton births in the 

Australian population (38.6 weeks and 3372g)  (Australian Institute of Health and 

Welfare, 2018). Despite this similarity the average maternal age of the patients with a 

singleton delivery in this cohort was 33.6 years at the time of the transfer compared to 

30.5 years in the Australian population. Both the gestational period (38.2 weeks) and 

average birth weight (3295g) of deliveries from blastocyst thaw cycles across Australia 

and New Zealand in 2016 were shorter and lighter respectively than the parameters 

from this present study. However, the average maternal age in Australia and New 

Zealand was almost 2 years older (35.4 years). The similar average gestation and birth 

weight to the Australian population contradicts some previous reports that birth weights 

from ART cycles are lower (Hansen et al., 2009; Z. Li, Wang, Ledger, & Sullivan, 2014). 

This could possibly be explained as mothers utilising ART are less likely to have smoked 

and more likely to be first time mothers (Fitzgerald et al., 2018). Interestingly, the sex 

ratio of babies from this present study was 100 males for every 100 females compared 

to 109 for ART in Australia and New Zealand and 106 for all Australian births in Australia 

in 2016 (Australian Institute of Health and Welfare, 2018; Fitzgerald et al., 2018). 

Blastocyst culture and cryopreservation have been implicated in reports of adverse 

neonatal outcomes, however the findings of preterm birth for blastocyst culture and 

large birthweight for cryopreserved blastocysts were not replicated in the study 

population of this present study (Maheshwari, Kalampokas, Davidson, & Bhattacharya, 

2013; Maheshwari, Raja, & Bhattacharya, 2016). There is significant variance in the 

reporting of adverse outcomes between clinics and regions and large meta-analyses 

cannot capture the various protocol differences. It has been well described in a review 

that different culture conditions can adversely influence embryo metabolism and 

subsequent extended culture outcomes (Wale & Gardner, 2015). It is not clear as to the 

embryo culture conditions of the units contributing data to the study by Maheshwari et 
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al, (2013). A survey of similar units however, revealed the majority were using 

atmospheric oxygen (20%) as opposed to reduced oxygen tension (5-6%) during embryo 

culture (Christianson et al., 2014). The use of atmospheric oxygen for embryo culture 

ignores the negative effects identified in many mammalian species including humans 

(Gardner, 2016). Blastocyst culture in this present study was consistently with a low 

oxygen tension of 6.0% with occasional embryo handling at atmospheric oxygen levels. 

This could possibly explain the relatively normal singleton outcomes after blastocyst 

culture and cryopreservation compared to those reporting for the Maheshwari et al 

2013 and 2016 meta-analyses.  

5.3.3 Maternal Age 

It is generally accepted that the human oocyte arrests at the prophase stage of the first 

meiotic division between the fourth and sixth months of life in utero (Johnson, 2018). 

Despite claims of potential postnatal oogenesis (Johnson, Canning, Kaneko, Pru, & Tilly, 

2004), there remains little consensus on the existence of stem cells in the adult ovary 

(Sophie, Céline, Marina, Sylvie, & Célia, 2019). So, unlike most somatic cells, oogonia are 

potentially immortal until recruited by folliculogenesis that occurs every day from before 

birth to menopause (Gougeon, 1996). Unfortunately, this finite population of ovarian 

follicles and senescence over time appears irreversible and is the primary cause of 

ovarian aging and reduced fecundity with age (Kirkwood, 1998).   Even ART cannot 

compensate for the 30-50% drop in fecundity caused by delaying attempts to conceive 

until a maternal age >35 years (Templeton, Morris, & Parslow, 1996; Wang et al., 2017). 

The most significant predictor of the outcome after a warmed blastocyst transfer in this 

present study was maternal age at the time of vitrification. Results showed those 

patients ≤ 38 years were more than twice as likely to achieve a live birth than those > 38 

years after controlling for the cycle type and transfer attempt. The patients in this 

present study had already generated quality blastocysts in a fresh cycle for 

cryopreservation but maternal age still has an influence on the aneuploidy of blastocysts 

despite good morphology (Cimadomo et al., 2014). 
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5.3.4  Embryo Transfer Cycle 

5.3.4.1 Endometrial preparation and timing of embryo transfer  

Sufficient hormonal preparation of the endometrium is essential to provide an adequate 

environment for the developing embryo. Successful implantation requires both 

endometrial receptivity and synchronicity between both the embryo and the 

endometrium (Devroey & Pados, 1998).  

5.3.4.1.1 Modified natural cycles  

In patients who have regular cycles, it is possible to prepare the endometrium with the 

endogenous hormones produced by the naturally developing follicle. This requires 

thorough monitoring of LH levels and endometrium thickness to ensure the accurate 

timing of ovulation and subsequent transfer (Casper & Yanushpolsky, 2016). Although 

sometimes described as a simpler form of endometrial preparation, it can require 

frequent clinic visits with less cycle control and more cancellations (Sathanandan et al., 

1991). An LH rise signifies ovulation in the following 36 to 40 hours (Andersen, Als-

Nielsen, Hornnes, & Franch Andersen, 1995) although definitions of an LH rise vary 

between centres (Mackens et al., 2017). To avoid asynchrony that could result from a 

missed LH surge, modified natural cycles use an exogenous trigger of ovulation when a 

follicle reaches 16mm or greater in size. A reduced proportion of modified NAT cycles 

(12.3%) were used in this present study as it required frequent clinic visits and a 

significant number of patients were based in rural areas. Despite this difficulty, the 

outcomes from these cycles were significantly better than those managed by HRT. Of 

the 283 embryos transferred in modified NAT cycles, 105 (37.1%) babies were born. This 

is significantly greater than the 25.4% (280/1103) from HRT cycles (Table 4-4). Using 

multiple regression controlling for age and transfer rank, non HRT cycles are almost 38% 

more successful at producing a live born baby compared to the HRT cycles (Table 4-9). 

Despite individual studies demonstrating a similar conclusion (Alama et al., 2007; Chang 

et al., 2011; Xiao, Zhou, Xu, Yang, & Xie, 2012), repeated reviews in the literature, 

however have found no evidence that favours one cycle type over another 

(Groenewoud, Cantineau, Kollen, Macklon, & Cohlen, 2013; Groenewoud, Cohlen, & 

Macklon, 2018). 
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5.3.4.1.2 Low dose ovarian stimulation cycles 

The use of gonadotrophins to control a cycle for the transfer of a frozen-thawed embryo 

has diminished after repeated studies showed no difference to natural, modified natural 

and HRT cycles (Ghobara & Vandekerckhove, 2008). Recent meta-analyses have not 

even included gonadotrophin stimulated cycles as part of the analysis (Groenewoud, 

Cantineau, Kollen, Macklon, & Cohlen, 2017; Mackens et al., 2017). In this present study 

however, 40% of cycles were prepared by a low dose gonadotrophin stimulation 

protocol. Clinical review within the unit concluded that the added cycle control 

alleviated problems with timing of ovulation and subsequent FET that are afforded to 

natural cycle management. Older patients also benefited from augmentation of 

spontaneous endometrial enrichment during the follicular phase. There was no 

significant difference between the 32.3% live birth rate of LDS cycles compared to the 

37.1% success rate of modified natural cycles in this present study. 

5.3.4.1.3 Hormone Replacement Cycles 

Most of the cycles in this present study were prepared with the use of sequentially 

delivered exogenous oestrogen and progesterone supplementation (47.7%). One of the 

greatest benefits of the hormonally controlled cycle is that the proliferative phase can 

be adjusted without compromising the implantation window (Simon et al., 1999; Soares 

et al., 2005). This is convenient for programming cycles and suitable for those 

anovulatory patients and those with irregular cycles. Unlike the consensus in the 

literature (Groenewoud et al., 2018), the outcomes from HRT cycles in this present study 

were significantly (p<.0001) poorer than those cycles prepared by natural means or 

supplemented with gonadotrophins (25.4% vs 32.3% and 37.1%). There is little 

agreement regarding the timing of embryo transfer for HRT cycles (Nawroth & Ludwig, 

2005) but a Cochrane review concluded that starting progesterone supplementation on 

the day equivalent to the day of egg collection or the day after resulted in greater 

success than commencing progesterone a day before the theoretical day of egg 

collection (Glujovsky et al., 2010). In this present study both D5 and D6 blastocysts were 

transferred on the 6th day of progesterone supplementation. This timing is considered 

too late by some authors and therefore a trial of transfer on the 5th day could be 
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considered (Escriba et al., 2006; Glujovsky et al., 2010; Mackens et al., 2017; van de 

Vijver et al., 2017). 

5.3.4.2 Embryo transfer rank 

In chapter 9 of the 2018 NPESU report, data is presented from an ongoing longitudinal 

study of patients commencing autologous treatment at the start of 2014, following their 

progress up to the end of 2016 (Fitzgerald et al., 2018). This provides an indicator of the 

pathway of treatment a patient takes if they are unsuccessful with their first embryo 

transfer. It excludes freeze-all cycles and patients drop out of the study when they have 

a successful delivery. Subsequent cycles maybe frozen or fresh transfers. The data shows 

a significantly reducing success rate as the transfer rank increases. In this present study 

there is also a significant reduction in success rates with subsequent embryo transfers. A 

direct comparison cannot be made as the NPESU data excludes subsequent cycles after 

a delivery and it is per cycle data rather than the per transfer data of this present study. 

However, the downward trend still exists in both data sets. In this present study more 

than 50% of embryo transfers were of the order of 3 or greater and the live delivery rate 

of 1st embryo transfers (38.7%) was significantly greater than the 26.5% and 20.8% of 

the 3-5 and 6-20 transfer rank groups (Table 4-6). Before the use of blastocyst culture 

became prevalent, studies showed that repeated cycles had similar success rates 

(Meldrum, Silverberg, Bustillo, & Stokes, 1998). This was however disputed for those 

that attained a pregnancy and were returning for another (Molloy, Doody, & Breen, 

1995). Shapiro et al. (2001) reported contradicting significant declines in success rates 

for repeated cycles and suggested an explanation of improved culture techniques and 

blastocyst transfer. They showed an implantation rate of 30% for 1st transfers, 18% for 

2nd transfers and 8% for 3rd (Shapiro, 2001). In this present study the equivalent 

implantation rate was 41.8%, 32.9% and 30.0% respectively. The reduced decline in 

comparison can be explained as this data set is for a period of 8 years and allows for 

patients returning after pregnancy to be included in the study.  It is also only for vitrified 

blastocysts that come from cycles with improved outcomes (Wang et al., 2008). Vitrified 

blastocyst outcomes also benefit from the inclusion of freeze all patients that have been 

shown to have an increased proportion of patients that are good responders after 

ovarian stimulation (Tarlatzis, Grimbizis, Bosdou, Kolibianakis, & Venetis, 2019). In a 
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recent multicentre, non-blinded, randomised controlled trial in 21 academic fertility 

centres in China it was demonstrated that there was a 26% improvement in the freeze 

all singleton live birth rate compared to fresh cycles (Wei et al., 2019). 

 

5.4 Blastocyst Morphology and Development Rate 

5.4.1 Day 5/6 

Development rate has been the most prevalent of embryo assessment criteria (Cummins 

et al., 1986; Hossain et al., 2016). This criterion holds for both the cleavage stage 

embryo and the blastocyst stage (Shapiro, Richter, Harris, & Daneshmand, 2001). In this 

present study, blastocysts were selected for vitrification either on day 5 or day 6 of 

development after insemination (Day 0). Controlling for morphology and the degree of 

expansion, day 5 blastocysts had an 80% greater chance of resulting in a live birth 

compared to day 6 blastocysts. Previous comparisons of fresh day 5 vs day 6 transfers 

have shown a similar or greater difference in success rates (Barrenetxea et al., 2005; 

Dessolle et al., 2011; Schoolcraft et al., 1999b; Shapiro et al., 2001). These studies relied 

on non-elective selection of the day 6 blastocyst transferred and therefore represented 

developmentally delayed blastocysts that did not meet the requirements of selection on 

Day 5. A subsequent study comparing elective Day 6 transfers showed the odds ratio of 

day 6 transfers to be 0.34 (Poulsen, Ingerslev, & Kirkegaard, 2017). They suggested the 

difference was likely to be the detrimental effects of prolonged culture or asynchrony 

with the endometrium in a fresh cycle. Some studies on replacement of frozen day 5/6 

blastocysts in subsequent controlled cycles have shown little difference when blastocyst 

quality is similar (Richter, Shipley, McVearry, Tucker, & Widra, 2006; Sunkara et al., 

2010). Sunkara et al., (2010) in a meta-analysis of studies comparing day 5 and 6 

blastocysts concluded that if the morphology grade was controlled day 5/6 outcomes 

were comparable in subsequent programmed frozen cycles.  They speculated that the 

endometrial-embryonic synchronisation could be more important than the blastocyst 

development rate in contributing to treatment outcome. This present study however 

contradicts these findings after controlling for blastocyst grade (OR 1.64) and expansion 

(OR 2.01). More recent studies comparing Day 5/6 outcomes from vitrified/warmed 

blastocysts also confirm that despite good quality blastocysts on Day 6 they do not 
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achieve the same outcomes as blastocysts vitrified on Day 5 (Ferreux et al., 2018b; Haas 

et al., 2016). However this does not fully remove the possibility of the differently primed 

endometrium playing a role in the implantation potential of the blastocyst (Weimar et 

al., 2012). Berrin et al (2018) also vitrified blastocysts developing on Day 7 and found 

similar implantation rates between Day 6 and 7 blastocysts (Berrin et al., 2018). 

5.4.2 Pre-vitrification Expansion and Morphology  

The assessment of blastocysts for vitrification used a combined ICM and trophectoderm 

score (Roy, Bradley, et al., 2014). Expansion level assessment is an indicator of embryo 

competence as it requires significant energy for sodium/potassium ATPases and the 

multi-protein tight junctions between trophectoderm cells to form a barrier (Alpha 

Scientists in Reproductive Medicine, 2011; Gardner & Schoolcraft, 1999a, 1999b). This 

criterion was first designed to be used as a rapid assessment tool under a dissecting 

microscope. The morphology grade, however, is easier to allocate at the more expanded 

stages as the visibility of the distinct cell types is clearer using an inverted microscope. 

The results in this present study confirm this by showing no significant influence of 

morphology grade on survival or live birth rate until there was significant expansion in 

the embryo on Day 5 (Table 4-11).  Unexpanded blastocysts with a morphology grade 1 

on day 5 had a greater delivery rate compared to grade 2 (28.0% vs 22.7%) however the 

difference was not significant as very few unexpanded blastocysts were given a 

morphology grade of 1. Similar findings from Ahlstrom et al (2011) showed that 

trophectoderm morphology was the strongest morphology predictor only when there 

was significant expansion in the blastocyst (Ahlstrom et al., 2011). In this present study, 

despite expansion on day 6, the significance of embryo grade is reduced as the 

development stage becomes the most significant indicator of viability. The ranking of 

embryos by combining survival and live birth outcomes in the present study confirms 

the importance of development rate (day 5/6) and the expansion level/morphology 

grade on day 5 and provides a useful tool for managing patient expectations and 

prioritising embryos for warming and transfer. 

5.5 Vitrification Technique 

The cooling/warming rates are critical criteria affecting blastocyst survival after 

vitrification in addition to the cryoprotectant concentrations, exposure time and 
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temperature (Kader, Choi, Orief, & Agarwal, 2009). Although there was no significant 

difference in live birth rates between techniques in this present study, the survival rate 

determines the embryos that make it to transfer for that calculation. This is an 

important factor often missed when looking at meta analyses suggesting the benefits of 

freeze all policies (Wei et al., 2019). 

5.5.1 Vitrification Device  

Although the cooling/warming rates using the FibreplugTM are unpublished it is assumed 

to be slower than the Cryotop® device as the volume of the sample is 20 to 30 times 

greater and the cooling/warming rates are inversely proportional to volume and risk of 

ice crystallisation (Vanderzwalmen et al., 2002). The reduced cooling/warming rates of 

the FibreplugTM in this present study could be an explanation of the lower blastocyst 

survival compared to the Cryotop (83.9% vs 91.2%). When vitrification of mouse 

embryos was first achieved in 1985, they were limited by cooling and warming rates 

<3000°C/min using a 45 µl drop drawn into a 0.25 ml plastic straw (Rall & Fahy, 1985). 

They manipulated the warming rate while keeping the cooling rate consistent and found 

significant differences in survival rates from 0% to 87.8%. Although there was success 

with the use of these straws for human blastocysts (Yokota, Sato, Yokota, Yokota, & 

Araki, 2001) the first birth from vitrified human blastocysts came from a group in Seoul, 

Korea using an electron microscope (EM) copper grid (Choi et al., 2000). The 26 µm bar 

diameter and 38 µm pore size of the 3mm diameter EM grid allowed direct exposure to 

liquid nitrogen with a more rapid cooling rate. The grid was subsequently inserted into a 

cryo vial pre-filled with liquid nitrogen and mounted on a cryo cane for storage. The 

survival rate of 51.6% was most likely more related to the use of EG as a single CPA 

rather than slower cooling/warming rates. Other devices also focussing on a reduced 

volume of the sample to be vitrified include the open pulled straw (OPS) and the 

cryoloop (Lane et al., 1999; Mukaida et al., 2003; Reed et al., 2002; G. Vajta, Holm, 

Greve, & Callesen, 1997). Despite the success of these devices, the rapid cooling rate 

(>20,000°C) and rapid warming rate (>40,000°C) of the Cryotop® due to the very small 

volumes (< 1µl) needed to contain the embryo have not been surpassed for clinical use 

on human embryos (Kuwayama, Vajta, Kato, et al., 2005). All these methods do however 

utilise direct exposure to liquid nitrogen to enhance their cooling and warming rates. 
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Due to concerns over contamination (Bielanski, Bergeron, Lau, & Devenish, 2003) from 

liquid nitrogen the development of closed systems have been explored (Papatheodorou 

et al., 2013). Both devices used during this present study were open systems with 

exposure to liquid nitrogen in the storage phase but utilised a sterilised vitrification 

block to vitrify the blastocysts prior to storage. The manufacturers of both devices have 

subsequently offered closed alternatives (Huang, 2016; Gábor Vajta, Rienzi, & Ubaldi, 

2015).  

In addition to the difference in shape between the two carrier devices there were also 

variations in the associated protocols that could explain an improved survival rate with 

the Cryotop device (Table 5-1). The equilibration time was significantly shorter with the 

Fibreplug (2 min vs 15 min) and temperature was 37 degrees Celsius compared to 19-23 

degrees Celsius with the Cryotop. Due to multiple variances it is difficult to determine 

which of them would influence survival more than the other. A conclusion on blastocyst 

survival cannot therefore be attributed to the device only and it is important to further 

analyse differences in the pre-handling of the blastocyst (artificial collapsing) and the 

vitrification/warming media used. 
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 Table 5-1 Cryotop® and FibreplugTM Methods 

 FibreplugTM Cryotop® 

Equilibration temp 37°C 19-23°C 

Equilibration time 2 min 15 min 

Artificial collapsing YES NO 

Visualisation NO YES 

SSV YES YES 

Cooling rate Unpublished 22,800°C/min (Kuwayama, Vajta, Kato, et al., 2005) 

Warming rate Unpublished 42,100°C/min (Kuwayama, Vajta, Kato, et al., 2005) 

Vitrification volume 3 µl <0.1 µl 

Warming temp 37°C 37°C 

Re-equilibration temp 37°C 19-23°C 

 

5.5.2 Blastocyst Collapsing 

In the FibreplugTM group of this present study the reduction of the blastocoel was 

performed by manual pipetting of the blastocyst through a reduced diameter pipette 

prior to exposure to the final vitrification solution. Previous studies had shown that 

blastocyst survival rates were reduced due to the expanded blastocoel not completely 

being devoid of water and replaced with CPA, increasing the risk of ice crystal damage.  

Blastocoel reduction by micro-needle aspiration, laser, hyperosmotic pressure (sucrose) 

and the manual pipetting were performed (T. Ebner & Shebl, 2018; Hiraoka, Hiraoka, 

Kinutani, & Kinutani, 2004; Kovačič, Taborin, & Vlaisavljević, 2018; Son, Yoon, Yoon, Lee, 

& Lim, 2003; Vanderzwalmen et al., 2002). In a study with mouse blastocysts, Frank et al 

(2019) concluded that the Na+/K+-ATPase driven water transport mechanisms were 

responsible for the majority of the re-expansion process after vitrification and warming 
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(Frank et al., 2019). They explained that a decreased cell survival due to not performing 

artificial collapsing prior to vitrification lead to these mechanisms being compromised 

and having to rely on passive mechanisms as measured through aquaporin transcripts 

Aqp3 and 8. They suggested this to be the mechanism resulting in artificially collapsed 

blastocysts re-expanding faster than those that were not artificially collapsed, however 

their study utilised laser collapsing as opposed to the manual pipetting method used in 

this present study. Their finding conflicts with the assessment in this present study that 

blastocysts vitrified on the Cryotop® device, that were not pre-treated with artificial 

collapsing, re-expanded quicker than those blastocysts vitrified on the FibreplugTM 

(Figure 4-6). Artificial collapsing was not performed in the Cryotop® group as the 

blastocoel collapses and partially re-expands spontaneously during the first equilibration 

phase of the vitrification process. Equivalent success compared to fresh blastocyst 

transfer has been published using this method (Roy, Bradley, et al., 2014) but some 

groups still routinely perform this pre-treatment prior to vitrification with the Cryotop® 

(Du et al., 2016). As part of a study on aseptic vitrification, Vanderzwalmen et al (2009) 

concluded that the longer equilibration using lower concentrations of cryoprotectants at 

room temperature allowed sufficient cryoprotectant to enter the blastocoel to avoid ice 

crystal formation (Vanderzwalmen et al., 2009). A prospective RCT investigating the 

effect of artificial shrinkage (collapse) on the implantation potential of vitrified 

blastocysts found the artificial shrinkage by laser-induced collapse did not significantly 

increase the implantation rate per transferred collapsed blastocyst compared with non-

collapsed blastocysts, however there was a significant improvement in survival rate (Van 

Landuyt et al., 2015). Although there is no evidence artificial blastocoel collapse can 

negatively affect survival and implantation outcomes, it was concluded for the protocols 

using Cryotop® in this present study that the procedure was an added handling risk and 

unnecessary. The extended equilibration time in the Cryotop protocol allows for gradual 

blastocoel collapse due to the removal of water and re-expansion as the blastocoel fluid 

is replaced with cryoprotectants. 

5.5.3 Vitrification/Warming Media 

The successful formula for vitrification media for human oocytes and embryos has 

remained consistent for the past decade with most formulations consisting of EG and 
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DMSO in equal proportions along with a carbohydrate acting as an osmotic buffer 

(Argyle et al., 2016). Each cryoprotectant has a role to ensure the formation of a 

solidified amorphous liquid state of high viscosity at a low temperature that spans both 

the intra and extra-cellular space (Fuller & Paynter, 2004). The concentrations of the 

permeable low molecular weight cryoprotectants used in this present study are the 

result of many years of trials with animal and human embryos (Leibo & Pool, 2011). They 

are similar for both sources of vitrification media used in this present study (8-16% v/v 

DMSO, 8-16% v/v EG) and are used with similar concentrations in many other centres 

worldwide (Table 5-2). Although the concentrations are similar, the temperature and 

duration of exposure differs between the two vitrification methods in this present study 

(Table 5-1).  Permeability coefficients and associated activation energies of water and 

various CPA’s differ with the changing surface area to volume ratio from the oocyte 

through to the blastocyst (Pedro et al., 2005).   Jin et al (2013) showed in the pig 

blastocyst that the activation energy for permeability to water, glycerol, DMSO, and EG 

was markedly lower for blastocysts compared to oocytes (Jin et al., 2013). The exposure 

to CPA’s at 37°C in the Fibreplug protocol of this present study, although for a short 

period, could explain the difference in survival rates between the two techniques 

considering the CPA concentrations were identical.   

Although the blastocyst survival rate was significantly greater with the Cryotop device in 

the present study, this difference was not maintained when controlling for the media 

type used during warming. This suggests a possible influence on blastocyst survival due 

to the composition of the warming media. Carbohydrates such as sucrose and trehalose 

are also used to supplement the handling media during warming. The increased solute 

concentration provided by the carbohydrate reduces the osmotic gradient across the 

cell membrane as the cryoprotectant permeates to the extracellular space (Dinnyés, Dai, 

Jiang, & Yang, 2000). In this present study, warming solutions with different 

formulations from 3 different suppliers were used.  Carbohydrate levels as high as 1 M 

were used to reduce the speed and magnitude of cellular swelling in the blastocyst 

(Liebermann, Dietl, Vanderzwalmen, & Tucker, 2003). It is thought that the higher 

osmotic buffer level compensates for the increased permeability of CPA’s through 

aquaporin water channels in the blastocyst (Pedro et al., 2005). Initially single step 
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carbohydrate dilutions were used during warming but multiple step reductions were 

shown to improve outcomes (Cho, Son, Yoon, Lee, & Lim, 2002). Early studies on mouse 

zygotes show significant changes in survival to blastocyst after EG exposure based on the 

use of differing levels of sucrose (Oda, Gibbons, & Leibo, 1992). Results for both 

vitrification devices in this present study favour the use of lower concentrations of 

osmotic buffer, however it is difficult to determine whether the effect is coming from 

the carbohydrate or other additions to the media.  

 

 

 



75 
 

 Table 5-2 Published Blastocyst Vitrification Methods 

Reference Collapse CPA Time Temp Device Warming 
Media 

Time Temp Culture Survival 

(Zhao, Yan, 
Huang, Sun, 
& Li, 2019) 

Yes 
Laser 

7.5% EG/DMSO 
15% EG/DMSO 
0.5M Sucrose 

8-10 min 
1 min 

Not 
stated 

Cryoloop 1 M Sucrose 
0.5 M 
0 M 

2 min 
3 min 
10 min 

RT 
RT 
37°C 

3 hrs Not stated 

(Berrin et 
al., 2018) 

Yes 
Laser 

7.5% EG/DMSO 
15% EG/DMSO 
0.5M Sucrose 

6-10 min 
80-110 s 

RT Cryoleaf 1 M Sucrose 
0.5 M 
0 M 

1 min 
4 min 
8 min 

37°C 
RT 
RT 

4 hrs Not stated 

(Kovačič et 
al., 2018) 

Yes vs No 7.5% EG/DMSO 
15% EG/DMSO 
0.5M Sucrose 

10 min 
1 min 

RT HSV 
Spatula 

1 M Sucrose 
0.5 M 
0 M 

1 min 
4 min 
8 min 

37°C 
RT 
RT 

>140 
min 

97.2-100% 

(Cimadomo 
et al., 2018) 

Yes 7.5% EG/DMSO 
15% EG/DMSO 
0.5% Sucrose 

14 min 
1 min 

RT Cryolock 1 M Sucrose 
0.5 M 
0 M  

1 min 
3 min 
5 min 

37°C 
RT 
RT 

>120 
min 

99% 

(Ferreux et 
al., 2018b) 

Yes vs No 7.5% EG/DMSO 
15% EG/DMSO 
0.5% Sucrose 

14 min 
Not 
stated 

RT CBS-Vit-HS 1 M Sucrose 
0.5 M 
0 M 

3 min 
4 min 
3 min 

37°C 
RT 
RT 

120-240 
min 

95% 

(Coello et 
al., 2017) 

No 7.5% EG/DMSO 
15% EG/DMSO 
0.5% Sucrose 

12 min 
1 min 

RT Cryotop 1 M Sucrose 
0.5 M 
0 M 

1 min 
3 min 
6 min 

37°C 
RT 
RT 

120 min 97.2% 

(Ebner et 
al., 2017) 

No 10% EG/DMSO 
20% EG/DMSO 
0.5% Sucrose 

1-3 min 
1 min 

RT Cryotop 0.5 M 
Sucrose 
0.25 M 
0.125 M 
0 M 

3 min 
 
2 min 
2 min 
1 min 

37°C 
RT 
RT 
RT 
RT 

Average 
4.5 hrs 

87.8% 
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5.6 Embryo assessment post warming 

The estimation of the proportion of cell degeneration in a collapsed blastocyst after 

warming is difficult and the methodology is not described well in the literature (Edgar & 

Gook, 2012). Despite this paucity in methodology, early reports used the survival criteria 

also used for cleavage stage embryos that at least 50% of the trophectoderm and ICM 

must have survived to proceed to transfer (Behr, Gebhardt, Lyon, & Milki, 2002).  In this 

present study it was found that the commencement of re-expansion within 60 minutes 

of the warm was a more reliable indicator of survival than the estimation of cell 

degeneration and was used as the sole survival criterion for most of the study. This 

requirement persisted regardless of the size of the cavity prior to vitrification. Re-

expansion has been identified as important in recent studies but this present study is the 

first describing the time to commencement of re-expansion as the sole determinant of 

blastocyst survival (Coello et al., 2017; Ebner et al., 2017; Ferreux et al., 2018a; Marren 

et al., 2016). Kovačič et al., (2018) included this criterion along with at least 50% cell 

survival (Kovačič et al., 2018) when assessing blastocysts after warming. The 

classification of a warmed blastocyst as survived may vary in different laboratories and 

in the literature (Edgar & Gook, 2012). These variations are due to assessments being 

done at different times according to different protocols (Ebner et al., 2009). It is possible 

also that if embryologists are put under a time pressure scenario there may not be 

enough time available to warm further blastocysts and this could bias the survival 

assessment (Alpha Scientists in Reproductive Medicine, 2012). For this reason, it is 

preferable for an IVF unit to be flexible as to when a warmed blastocyst can be 

transferred to ensure the best outcome for the patient. Some authors recommend 

warming 24 hrs prior for this reason, however a significant negative effect of day 6 

blastocysts would make this difficult to justify (Sunkara et al., 2010; Vanderzwalmen et 

al., 2003). The Alpha Consensus on Cryopreservation does not allow for re-expansion 

assessment; however, it does include a transfer rate KPI in addition to a survival KPI 

(Alpha Scientists in Reproductive Medicine, 2012). This present study did not find any 

detrimental effects from the length of time between the warm and the transfer, when 

the transfer was performed on the same day as the warm. 
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Of the blastocysts deemed to have survived in this present study, records were kept of 

the proportion of degenerated cells and whether they commenced re-expansion within 

30 or 60 minutes. It is difficult to obtain consistency amongst embryologists in 

estimating the proportion of degenerated cells so any estimations of 100% survival were 

combined with those of 95% and these compared with 70 to 94% assessments. A simple 

comparison of 30 min and 60 min commencement of re-expansion showed a 

significantly improved delivery rate of blastocysts commencing re-expansion within 30 

minutes. This difference however became insignificant when controlling for the 

proportion of cell degeneration. 

5.7  Summary 

5.7.1 Findings 

Double embryo transfers, despite strict criteria for inclusion, still produced unacceptable 

multiple pregnancy rates in this present study. Singleton deliveries from SET’s of a 

vitrified/warmed blastocyst have a similar gestational age and weight at birth to the 

Australian population whether ART was used or not. The sex ratio (M: F) of these babies 

in the present study was 100:100 compared to 109:100 of ART births in Australia and 

New Zealand in 2016 and 106:100 in the Australian population of all births. 

Maternal age is the strongest predictor of birth outcome and developmental age of the 

blastocyst post insemination remains the strongest embryo specific variable to influence 

outcome, even when all blastocysts were replaced on Day 5 in a controlled cycle. 

Blastocyst morphology grade does not influence the live birth rate unless the blastocyst 

is at the expanded stage or greater. 

Survival rates are improved when the vitrification volume is reduced, no artificial 

collapsing is performed and a longer equilibration period at room temperature is used. 

Osmotic buffer levels in warming media may contribute to blastocyst survival rate. The 

commencement of blastocyst re-expansion is a good indicator of blastocyst survival at 

60 minutes and easier to measure than the proportion of cell degeneration. Evidence of 

cell degeneration greater than 5 % significantly affects the live birth rate. 
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5.7.2 Implications 

Current double embryo transfer decisions need refining to reduce the multiple 

pregnancy rate for those procedures in this present study. The similar gestational period 

and birth weight compared to all singleton births contradicts reports of different 

outcomes for the ART population. Patients should be fully informed of the poorer 

outcomes from blastocysts utilised on Day 6 whether in a controlled fresh or frozen 

cycle. Blastocyst grading of ICM and trophectoderm cells should be reserved for 

blastocysts that are expanded or greater. Patients are best informed of the proportion 

of degenerative cells to be able to decide if they wish to improve their chances of a live 

birth by warming another embryo. If an embryologist has doubt about the proportion of 

degenerative cells in the warmed blastocyst then the early commencement of re-

expansion is a quick confirmation within one hour of the warm. 

5.7.3 Limitations 

This present study was retrospective, so unknown residual confounding factors could be 

influencing the results and subsequent findings. The study period was extensive and 

there may be uncontrolled variables from changes in protocols, including blastocyst 

grading expertise over time. These could be clinical, or laboratory related. Morphology 

grading in this study was a combined ICM and trophectoderm score and therefore a 

grade 2 blastocyst may contain a grade 1 ICM or trophectoderm. The conclusions made 

in this study reflect the protocols used in one IVF unit and may not be able to be 

extrapolated to other units. This study targets vitrified/warmed blastocysts of a good 

grade only and therefore findings are restricted to this embryo population only. Due to 

the difficulty in cell degeneration assessment there may be some inter-operator 

variability in embryo assessment post warm.  The data in this study is at the embryo 

level and therefore a single patient may be in the data set more than once and patient 

specific factors may influence the results. Day 6 development age blastocysts are used 

for transfer only when the supply of suitable day 5 blastocysts is exhausted. This may 

negatively influence conclusions about transfers with Day 6 embryos. All neonatal 

outcomes in this study were obtained from patient questionnaires rather than medically 

validated birth reports and may influence the birth outcome records.  
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5.7.4 Future Research 

Better criteria for double embryo transfer should be explored to reduce multiple birth 

rates or have the practice eliminated. Adjustments and comparisons of the different 

replacement cycle control methods could further improve synchronisation of the 

endometrium to the blastocyst. Controlled comparisons of warming solutions with 

different concentrations/type of carbohydrate osmotic buffer but same base media 

should be performed as there are a wide range of concentrations currently in use in 

clinical practice. The feasibility of altering the logistics of blastocyst thaw and transfer 

timing should be explored to allow for sufficient time for embryo assessment prior to 

transfer. The use of more recent data using cell specific grading, time-lapse culture and 

automated vitrification could validate the conclusions in this study. D5/6 vitrification and 

transfer decisions could be validated by more accurate timings obtained from time lapse 

data. 
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7.2 Data Field Table 

Table 7-1 Data Fields Retrieved from Hollywood database 

Field Name Definition Format Content 

Patient Identification code Unique 

patient 

identification 

code used for 

de-identifying 

purposes 

Numerical 5 figure 

number 

Aetiology Underlying 

cause of 

infertility 

Nominal  Male factors 

only, Multiple 

causes, Other 

female only, 

Tubal only, 

Unexplained 

Fertilisation code Single number 

representing 

unique 

fertilisation 

event 

Numerical 1-4 

Transfer code Single number 

representing 

unique 

transfer event 

Numerical 1-7 

Age at time of Cryopreservation Maternal age 

at the time 

the embryo 

was vitrified 

Numerical Age in years 
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Date of Cryopreservation Date of 

Vitrification 

Date  dd/mm/yyyy 

Straw Number Unique 

embryo 

identifier 

Numerical 

(2 part 

with year 

and 

number) 

yy/0001 

Blast Stage Stage of 

blastocyst at 

time of 

vitrification 

Nominal EB,B,XB,HB,FHB 

Day 5/6 Day of 

vitrification 

Numerical 5/6 

ICM ICM Grade Numerical 1-2 

TE TE Grade Numerical 1-2 

Blast Blastocyst 

Grade 

Numerical 1-2 

Date of Warm Date of Warm Date dd/mm/yyyy 

Time of Warm Time of Warm Time hh:mm 

Exp Time till 

expansion 

commences 

Time 

(minutes) 

mmm 

Survival Proportion of 

cells survived 

Numerical 

(%) 

%% 
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Fate Whether 

Transferred or 

Discarded 

Nominal R or D 

Date of Transfer Date of 

Embryo 

Transfer 

Date dd/mm/yyyy 

Time of Transfer Time of 

embryo 

transfer 

Time hh:mm 

#ET Number of 

embryos 

transferred 

Numerical 1-3 

Cycle Type of 

replacement 

cycle  

Nominal LDS,NAT,HRT 

qhCG Quantitative 

hCG level at 

pregnancy 

test 

Numerical Nnn (IU) 

SACS Number of 

sacs on US 

Numerical  

FH Number of 

heart beats on 

ultrasound 

Numerical  

LMP Date of last 

menstrual 

Date dd/mm/yyyy 



106 
 

period (start 

of cycle) 

DOB Date of Birth Date dd/mm/yyyy 

1SEX Sex of Baby1 Nominal Male or Female 

1BW Weight of 

Baby1 

Numerical grams 

1BIRTH Mortality of 

Baby1 

Nominal Live or Still 

1GEN Any genetic 

malformations 

of Baby1? 

Nominal Yes or No 

2SEX Sex of Baby2 Nominal Male or Female 

2BW Weight of 

Baby2 

Numerical grams 

2BIRTH Mortality of 

Baby2 

Nominal Live or Still 

2GEN Any genetic 

malformations 

of Baby2? 

Nominal Yes or No 

3BW Sex of Baby3 Nominal Male or Female 

3SEX Weight of 

Baby3 

Numerical grams 

3BIRTH Mortality of 

Baby3 

Nominal Live or Still 
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3GEN Any genetic 

malformations 

of Baby3? 

Nominal Yes or No 

 



7.3 Product Inserts and Detailed Protocols 

 

Appendix 7.3 is not available in this version of the thesis. 
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