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Abstract

The Nelson–Siegel (NS) model is widely used in practice to fit the term struc-

ture of interest rates largely due to its high efficacy in the in-sample fit and

out-of-sample forecasting of bond yields. In this paper, we compare forecasting

performances of estimated yields from the Nelson–Siegel-based models and

some simpler time series models, using the daily, weekly, and monthly data

during a prolong period of liquidity trap in Japan. We find that the out-of-

sample expanding window forecasts by NS-based models in general perform

less satisfactory than the competitor models. However, the NS-based models

can be useful in forecasting yields over longer horizons and can work well with

GARCH-type structures in modeling the conditional volatility.

KEYWORD S

in-sample fitting and out-of-sample forecasting, Japanese bond yields, liquidity trap, Nelson–
Siegel model

1 | INTRODUCTION

The term structure of interest rates, popularly known as
the yield curve, is a one-to-one mapping between time to
maturity and spot rate1 of government bonds at a given
point in time. In practice, the entire term structure is not
observable and must be estimated from observed prices
of government bonds. Because of its importance in
finance and macroeconomic policy, substantial research
has been conducted on modeling and forecasting the
yield curve during the past four decades. A variety of
diverse yield models in the literature can be roughly clas-
sified into two groups. The first group consists of models
based on economics theory, for example, the no-arbitrage
affine models by Vasicek (1977), Cox et al. (1985), Duffie
and Kan (1996), Dai and Singleton (2000), and Piazzesi
and Schneider (2006). The second group consists of

statistical models without economic foundations. They
include the three-factor Nelson–Siegel (NS) model by
Nelson and Siegel (1987), the dynamic Nelson-Siegel
(DNS) model by Diebold and Li (2006), and the affine
arbitrage-free term structure model by Christensen et al.
(2008), among others. However, despite tremendous
advances in modeling yield curves, Duffee (2011) and
Diebold and Rudebusch (2013) observe that most yield
curve models tend to be either theoretically vigorous but
empirically poor in forecasting, or empirically successful
in forecasting but theoretically lacking.

In this paper, we adopt the NS-based model as our
baseline model because our aim is to compare forecasting
performances of estimated yields from the NS-based
models and some simpler time series models. The NS-
based models are preferred because they have been cred-
ited for their high efficacy in the in-sample fitting and
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out-of-sample forecasting of the term structures of inter-
est rates. The classic NS model for a given time consists
of three latent factors representing the level, slope and
curvature of the yield curve. It is used to fit the cross
section of term structure using a parsimonious model,
reportedly with success in capturing the general shapes
of the yield curves. Litterman and Scheinkman (1991)
find that the three latent factors of the NS model can
explain up to 97% of return variance. Svensson (1994)
extends the prototypical NS model by adding a second
curvature factor with a separate decay parameter to
improve the smoothness of the fitted humps often pre-
sent in the yield curves. Other extensions include the four
factor parametric model of Björk and Christensen (1999),
the five-factor generalization of the Svensson model by
Christensen et al. (2008), and more recently the extended
NS model with quantile autoregression by de Rezende
and Ferreira (2013). According to Bank for International
Settlements (2005), both the NS model and the Svensson-
type extensions are heavily used in central banks to con-
struct zero-coupon yield curves in the past two decades.

Moreover, Diebold and Li (2006) dynamize the NS
model by allowing the three latent factors to be time-
varying. They show that the proposed model can predict
the US yield curve more accurately than other competing
models, especially at longer horizons. The model is typi-
cally able to explain a large part of variance that is
observed in the government bond yields. In addition,
Bolder (2006) reports the superiority of the dynamized
NS model for estimation and forecasting purposes when
compared with other parametric models. Yu and Zivot
(2011) find that the DNS factor with autoregressive lag
order 1 model outperforms other competitors in the out-
of-sample forecast accuracy, and the DNS factor state
space model becomes appealing on the high-yield bonds
in the short-term forecast horizons. Steeley (2014)
engages both the DNS model and the less-structured
models to forecast the UK term structure when short-
term rates are near zero. It is found that the random walk
(RW) and the AR(1) model have better forecasting perfor-
mances. More recently, Ullah (2016) applies an extended
dynamic affine NS model with macroeconomic factors to
the Japanese bond market, reporting that the affine NS-
type models outperform the benchmark simple time
series forecasting models. Other studies based on the
DNS specification are conducted in both developed and
emerging markets (see Audzeyeva & Fuertes, 2018;
Carriero et al., 2018; Kanjilal, 2013; Kaya, 2013;
Nyholm & Rebonato, 2008). Although apparently, adding
no-arbitrage restrictions and inclusion of macroeconomic
variables to the DNS model have been the subject of more
recent research, there is still a continuing interest in the
less complicated DNS model.

The primary goal of this paper is to compare the
forecasting performances of the DNS model with some
simpler time series models in capturing the term struc-
ture of the Japanese government bond yields during a
period of prolonged liquidity trap. We use the daily,
weekly, and monthly yield data obtained from the
Bank of Japan covering the period spanning from
January 2000 to November 2007. The sample
period was chosen as it clearly exhibits a prolonged
duration of liquidity trap, which forces all short-term
yields to remain close to zero for an extended period
of time.

In our study, we consider two categories of models.
The first group consists of NS-type models, with three
specifications in the conditional mean equations with
constant volatility, and two specifications in the condi-
tional mean equations with time-varying conditional vol-
atility. In the second group, we fit the competitors
directly to the yields data. There are three specifications
in the mean equations with constant volatility, and four
specifications in the mean equations with time-varying
conditional volatility. Forecasts of yields are generated by
plugging the estimated parameters into the respective
models under study.

Our empirical findings indicate that, in the pres-
ence of liquidity trap in Japan, the out-of-sample
expanding window forecasts of the NS-based models in
general perform inferiorly vis-à-vis competitor models,
particularly those of simpler specifications such as the
RW model. Moreover, within the NS-based models, the
RW and AR(1) specifications of the level, slope and
curvature series under the OLS estimation tend to out-
perform those under the NLS, and performance of
the model by the state space method of estimation
is ranked the least. Our results are reasonably
robust to time to maturity, in-sample fitting period,
and to the daily, weekly, and monthly frequency
windows of the yields through a period of
liquidity trap.

The rest of this paper is organized as follows. Section 2
discusses the DNS model as well as the methodology
adopted in this study. Section 3 introduces the data sets,
Section 4 discusses the in-sample fitting procedure and
results, whereas Section 5 reports the out-of-sample fore-
casting procedures and performances among the NS-
based and competitor models. Section 6 concludes with
some remarks and implications.

2 | METHODOLOGY

We adopt the DNS model suggested by Diebold and Li
(2006) and Diebold et al. (2006) as our baseline model.

2 TSUI ET AL.
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The idea of their approach is to produce a set of estimated
parameters of the monthly NS yield curves over a period
of time that can be modeled and forecasted with standard
time series methods. Forecasts of yields with various matu-
rities can be generated by inserting the forecasted parame-
ters into the structure of the yield curve. Diebold and Li
(2006) show that their model is capable of replicating the
main empirical facts of the term structure of interest rates
in the United States over time. In what follows, we high-
light the gist of the well-established DNS model proposed
by Diebold and Li (2006), which is based on the classic
work of Nelson and Siegel (1987) for fitting the cross
section of yields. The original static Nelson–Siegel frame-
work provides a parsimonious and flexible approximation
to the spot rate with maturity τ in a yield curve, namely:

yðτÞ¼ β1þβ2
1� e�λτ

λτ

� �
þβ3

1� e�λτ

λτ
� e�λτ

� �
, ð1Þ

where β1,β2,β3, and λ are parameters, with λ governing
the exponential decay rate.

Working on the idea that the NS parameters should
be time-varying if yield curves are time-varying, Diebold
and Li (2006) dynamize the static NS model to produce
the DNS model:

ytðτÞ¼ β1,tþβ2,t
1� e�λtτ

λtτ

� �
þβ3,t

1� e�λtτ

λtτ
� e�λtτ

� �
, ð2Þ

where β1,t,β2,t,β3,t and λt are the time-varying version of
parameters β1,β2,β3 and λ as specified in the static NS
model.

The DNS specification in Equation (2) decomposes
the spot rate ytðτÞ with maturity τ at time t into three fac-
tor loadings 1, 1�e�λt τ

λtτ
, 1�e�λt τ

λtτ
� e�λtτ

n o
, which are flexible

enough to represent a range of monotonic, humped and
S-type shapes generally associated with the yield curve
data. Diebold and Li (2006) show that the corresponding
factors fβ1,t,β2,t,β3,tg can be interpreted as long-term,
short-term, and medium-term factors, respectively. The
long-term factor ðβ1,tÞ governs the yield curve level
because an increase in this coefficient raises all short-
and long-term yields equally, thereby changing the level
of the yield curve. The short-term ðβ2,tÞ and medium-
term ðβ3,tÞ factors are closely associated with the slope
and the curvature of the yield curve.

Diebold and Li (2006) further show that the DNS
parameter λt controls the exponential rate of decay. For
instance, smaller values of λt tend to produce slower
decay and can better fit the yield curve with longer

maturities, while larger values of λt exhibit faster decay
and can better fit the yield curve at relatively shorter
maturities. In addition, the decay parameter λt deter-
mines the time to maturity of the yield curve such that
the medium-term factor loading attains its maximum.

The DNS parameters can be estimated by three esti-
mation procedures: Two-step OLS, one-step nonlinear
least squares (NLS), and the state-space method (SSM)
with the Kalman filter. These approaches are described
briefly as below.

In the first step of the two-step OLS approach, the
parameter λt is calibrated at which the loading on the
curvature factor achieves its maximum at a medium
maturity. We fix this calibrated λt and use it to compute
values of the two regressors (short-term and medium-
term factor loadings). In the second step, the OLS is used
to regress the spot rates at different maturities on the
long-term, short-term and medium-term regressors to
produce estimates of β1,β2, and β3, for each frequency
window of the yield curves in the sample period, say
t¼ 1,2,3,…,T. This generates a three-dimensional time
series of estimated factors, fβ̂1,t, β̂2,t, β̂3,tg

T

t¼1.
We now turn to the one-step NLS approach. The

static NS model in Equation (1) is estimated using non-
linear least squares to produce estimates of the level,
slope, curvature factors, and the decay parameter for
each t¼ 1,2,3,…,T. This generates a four-dimensional
time series of estimated model parameters,
fβ̂1, β̂2, β̂3, λ̂tg

T
t¼1.

In the SSM with the Kalman filter, we follow the
approach of Diebold et al. (2006) to engage a state-space
framework to estimate the factors and their autoregres-
sive parameters simultaneously. The observation equa-
tion of the state-space structure of the DNS model is

yτ1,t
yτ2,t

..

.

yτN ,t

2
666664

3
777775
¼

1
1� e�λτ1

λτ1

1� e�λτ1

λτ1
� e�λτ1

1
1� e�λτ2

λτ2

1� e�λτ2

λτ2
� e�λτ2

..

. ..
. ..

.

1
1� e�λτN

λτN

1� e�λτN

λτN
� e�λτN

2
66666666664

3
77777777775

β1,t
β2,t
β3,t

2
64

3
75

þ

wτ1,t

wτ2,t

..

.

wτN ,t

2
66664

3
77775: ð3Þ

The observed spot rates are linked to the unobserva-
ble factors (state variables) and measurement errors in
the transition equation via a vector autoregressive process
of first order, which is specified as
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β1,t�μ1
β2,t�μ2
β3,t�μ3

2
64

3
75¼

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
64

3
75

β1,t�1�μ1
β2,t�1�μ2
β3,t�1�μ3

2
64

3
75þ

η1,t
η2,t
η3,t

2
64

3
75,

ð4Þ

where μi is the mean of factor i, for i¼ 1,2,3, and aij for
i, j¼ 1,2,3 are elements of the transition matrix. We
assume that the disturbance terms in both the observa-
tion and transition equations are Gaussian white noise.
In addition, ηt and ωt are orthogonal. The error terms in
the observation equation are uncorrelated, with a diago-
nal covariance matrix, whereas the error terms in the
transition equation are contemporaneously correlated,
implying that the covariance matrix of error terms is non-
diagonal. The method of maximum likelihood with the
Kalman filter algorithm is used to obtain the optimal fil-
tered and smoothed estimates of the underlying factors.
As such, the state-space approach produces a three-
dimensional time series of estimated factors,
fβ̂1, β̂2, β̂3g

T
t¼1.

For simplicity and tractability, we model the series of
the estimated NS factors according to two specifications:
The conditional mean equation with time-invariant
variance and the conditional mean equation with time-
varying conditional variance. Models under the condi-
tional mean specification with constant conditional
variance include the RW model, univariate AR(1) model,
and the trivariate AR(1) model, whereas models under
the conditional mean specification with time-varying
conditional variance include the GARCH(1,1) and the
EGARCH(1,1,1) models. They are highlighted are as
follows:

1. RW model
β̂i,t ¼ β̂i,t�1þϵi,t, where ϵi,t �Nð0,σ2i Þ, for i¼ 1,2,3.

2. AR(1) model Δβ̂i,t ¼ μiþϕiΔβ̂i,t�1þϵi,t
where ϵi,t �Nð0,σ2i Þ, and Δβ̂i,t ¼ β̂i,t� β̂i,t�1, for
i¼ 1,2,3.

3. VAR(1) model Δθt ¼ μþΦΔθt�1þϵt, where
ϵt �Nð0,ΩÞ,
where Δθt ¼ ½β̂1,t� β̂1,t�1, β̂2,t� β̂2,t�1, β̂3,t� β̂3,t�1�

0
, μ is

the 3 x 1 constant vector, Φ is the 3 x 3 transition
matrix and Ω is the 3 x 3 nondiagonal variance–
covariance matrix.

4. GARCH(1,1) model Conditional mean equation:
Δβ̂i,t ¼ μiþϕiΔβ̂i,t�1þϵi,t, where ϵi,t �Nð0,σ2i,tÞ, and
the conditional variance equation:
σ2i,t ¼ωiþα1,iϵ2i,t�1þα2,iσ2i,t�1, for i¼ 1,2,3.

5. EGARCH(1,1,1) model Conditional mean equation:
Δβ̂i,t ¼ μiþϕiΔβ̂i,t�1þϵi,t, where ϵi,t �Nð0,σ2i,tÞ,
and the conditional variance equation:

lnðσ2i,tÞ¼ωiþα1,ijϵi,t�1

σi,t�1
jþα2,i lnðσ2i,t�1Þþ γi

ϵi,t�1

σi,t�1

� �
, for

i¼ 1,2,3.

We have experimented with other structures in
modeling the series of estimated NS factors. They include
the vector error correction (VECM) model in the condi-
tional mean equation and multivariate GARCH and
EGARCH models in the conditional variance equation.
However, preliminary results are not promising as the
out-of-sample forecasts by VECM do not outperform its
counterpart VAR, and the multivariate GARCH/
EGARCH do not outperform univariate GARCH/
EGARCH. As such, they are not included in our study.
Indeed, accumulated experience indicate that there is
always a trade-off between in-sample fit and out-of-
sample forecasting performance, and as remarked by
Diebold (2001), parsimonious models are often more
successful for out-of-sample forecasting.

3 | DATA

Our data set contains the daily, weekly, and monthly
yield curves culled from the Bank of Japan archives,
spanning almost 8 years from January 2000 to November
2007.2 Each yield curve contains 15 spot rates with matu-
rities of 3, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120,
180, 240, and 360 months. There are 1888 observations
for yield curves on daily frequency, 408 observations for
weekly frequency, and 94 observations for monthly. As
can be gleamed from Figure 1, the chosen period of study
clearly exhibits the presence of liquidity trap, which
forces all short-term yields to remain close to zero for an
extended period. Similar to the United States, Japan
applies a particular variant of the “smoothing splines”
method to the estimation of zero-coupon yields. The
instantaneous forward rate curves, expressed as a linear
combination of cubic B-splines, are constructed from
price quotes on selected risk-free fixed income assets: 3-,
6-, 120-, and 240-month bonds. The forward rate curves
are interpolated by using smoothing splines, after which
the spot rates can then be computed by taking an average
of the forward rates. We fit the NS-based and competitor
models to spot rates in each of the daily, weekly, and
monthly frequencies. This enables one to check whether
empirical findings of the models are insensitive to fre-
quency window of yields.

An issue with the Japanese securities market is that,
before FY2008, there was a dual system of bill issuance
for the short-term securities, namely, financing bills
(FB) and treasury bills (TB).3 As such, there may be an
FB and a TB issued on the same date sharing a common

4 TSUI ET AL.
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term-to-maturity, but with different yields. In this study,
we only choose one set of data for the short-term bonds,
such as the 3-month FB (GJFB3MO), 6-month TB
(GJTB6MO), and the 1-year bond (GJGB1).4

Because of space limitation, we plot in Figure 1 the
spot rates at maturities of 3, 12, 60, 120, and 240 months,
which are based on the monthly data from January 2000
to November 2007. Two features can be observed. First,
there is a low-yield period between 24 to 36 months for
all five maturities after January 2000. Second, spot rates
with maturities of 12 months or less are close to zero
from January 2001 onwards until the end of 2006. The
former observation may be associated with the privatiza-
tion of the Postal Savings System as well as a complete
overhaul of the existing financial structure in Japan dur-
ing the period under study. The latter observation can be
regarded as a classic example of liquidity trap.

Figure 2 displays a three-dimensional plot of the
Japanese yield curves ranging from January 2000 to
November 2007, covering 15 maturities of 3, 6, 12, 24,
36, 48, 60, 72, 84, 96, 108, 120, 180, 240, and 360 months.
It can be seen that the level, slope, and curvature of the
term structure fluctuates over time, while taking on vari-
ous humped and S-type shapes.

Table 1 reports the descriptive statistics for monthly,
weekly and daily yields with maturities at 3, 12, 60, 120,
and 240 months. The sample period is from January 2000
to November 2007. Some of the stylized facts discussed in
Diebold and Li (2006) can be observed. For example,
mean values of yields increase with maturities, thereby
indicating a standard upward sloping shape of the aver-
age yield curve. As indicated by magnitudes of the stan-
dard deviations, yields with medium-to-long-term
maturities are more volatile than those with shorter-term
maturities. In addition, the sample skewness decreases
with increases in maturities, and kurtosis of the shorter

rates are smaller than those of longer rates. Moreover,
yields for all maturities are highly persistent, as the sam-
ple autocorrelation coefficients at orders 1 and 12 are
quite closer to 1, except for the monthly yields with auto-
correlation coefficient at lag order 12. The observed pat-
terns are reasonably robust to the frequency window of
the yield curves.

Furthermore, the last two columns of Table 1 display,
respectively, the augmented Dickey–Fuller (ADF) unit-
root tests with intercept, and with intercept and a time
trend under the null hypothesis that the yield series have
a unit root. We use the Bayesian information criterion to
choose the lag order in the ADF test. The lower tail criti-
cal values for rejection of the null hypothesis are �2.86
and �3.41 at the 5% level of significance, respectively. As
expected, the ADF tests suggest that all yield series in
levels are nonstationary, which provides some justifica-
tion for taking the first differencing. Though not reported
here, after taking the first differencing of the yield levels,
all series in yield changes are stationary.

4 | IN-SAMPLE FITTING RESULTS

The NS-based models specified in Section 2 are fitted to
spot rates using each of the daily, weekly, and monthly
data for the full sample period. Both mean absolute error
(MAE) and root mean square error (RMSE) as measures
of forecast errors (residual statistics) are used to gauge
the forecasting performances from our baseline model
with different methods of estimation.

First, following Diebold and Li (2006), we employ a
two-stage OLS estimation method to fit the NS model in
Equation (2) with different values of the decay parameter
λ. To determine the optimal decay parameter that maxi-
mizes the loading on the medium-term factor, we

FIGURE 1 Monthly yields with selected maturities. Notes: The figure depicts yields with various maturities from January 2000 to

October 2007 (94 observations). Yields with maturities of 12 months and less are near zero after January 2001, followed by a mild increase

after 2006

TSUI ET AL. 5
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conduct full scale in-sample estimations by systematically
choosing λ in the range of [0.005, 0.5978], with an incre-
mental step of 0.025. The range is chosen because when
λ¼ 0:005, it maximizes the loading on the medium-term
factor with a maturity of 360 months, and when
λ¼ 0:5978, it maximizes the loading on the medium term
with a maturity of 3 months. The decay rate with the
smallest RMSE and MAE and the maximum loading on
the medium-term factor is selected as the optimal value.
When λ is fixed at 0.0299, the average RMSE and MAE
across all maturities are minimized (results are available
upon request). This optimal decay rate corresponds to
maximizing the loading on the curvature (the medium-
term factor) at a maturity of exactly 60 months (see
Figure 3). It is interesting that our calibrated decay rate is
about half of what Diebold and Li (2006) reported for
maximizing the loading on the medium-term factor at
the maturity of 30 months in their study of the US yield
curves with maturities ranging from 3 to 120 months.

Next, we fit the baseline model by NLS estimation
method to spot rates under each of the daily, weekly, and
monthly data, assuming that the decay parameter λt is
time varying over the sample period. The NLS approach
essentially fits the model via a one-step estimation proce-
dure, though it does not necessarily provide better in-
sample fitting and out-of-sample forecasting results, as
demonstrated in de Pooter (2007). As can be observed
from Table 2, the average of the estimated time-varying
decay parameter is about 0.032 for various spot rates from
the yield curves at different window frequencies, with the
median ranging from 0.031 to 0.032. This is slightly
higher than the optimal value of 0.0299 when using a
two-stage OLS estimation method.

Finally, we fit the baseline model by the state-space
method (SSM) of estimation to the same dataset as used
for the OLS and NLS estimation. In this approach, we

treat the decay parameter as time-invariant, which is to
be estimated jointly with the three time-varying latent
factors by the method maximum likelihood with the Kal-
man filter algorithm. Estimates of the decay parameter
are 0.0307, 0.0311 and 0.0310 for monthly, weekly and
daily yields, respectively. These values exceed the esti-
mated optimal decay under the OLS method, but are
smaller than the median of the estimated values under
the NLS method.

The estimation results of our baseline model by
method of estimation are reported in Table 2. As can be
seen in this table, the summary statistics of the estimated
level, slope and curvature factors are robust to sample
data based on daily, weekly, and monthly frequency win-
dows. In addition, all skewness of the long-term factor
(β̂1) are negative, hovering between �1.728 and �1.381.
In contrast, all skewness of the short-term and medium-
term factors (β̂2, β̂3) are positive, with values ranging
from 0.486 to 1.117. All kurtosis of the factor series are
greater than 3, except for β̂3 under SSM. Based on these
patterns, we may infer that the factor series follow asym-
metrical distributions with heavier tails than the standard
normal distribution.

Moreover, except for the monthly series, all autocor-
relation coefficients at lag orders of 1 and 12 for the esti-
mated factors are above 0.65. The persistence is most
notably under SSM, followed by OLS and NLS methods.
The persistence increases as data frequency increases
from monthly through daily frequencies, and tends to
fade away as the number of displacement periods
increases. These findings are consistent with the stylized
facts in Diebold and Li (2006). As for correlation between
the estimated factors, the long-term factor is significantly
negatively correlated with the short-term factor and is
moderately and negatively correlated with the medium-
term factor. In contrast, the medium-term factor is

FIGURE 2 Yield curves, January 2000 to

October 2007. Notes: The figure plots yield

curves from January 2000 to October 2007, with

maturities at 3, 6, 12, 24, 36, 48, 60, 72, 84, 96,

108, 120, 180, 240, and 360 months
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moderately and positively correlated with the short-term
factor.

Furthermore, we perform two variations of the ADF
tests, one with an intercept and the other with both an
intercept and a time trend. The ADF test statistics are
reported in the last two columns of Table 2. They are all
insignificant at the 5% level of significance, indicating
that the estimated factor series may have unit roots. As
such, we find some supports for taking first differences of
the series in order to make it stationary prior to
modeling.

Table 3 contains summary statistics of the fitted resid-
uals from the NS-based models for selected maturities at
3, 12, 60, 120, and 240 months. It can be observed that
the NLS estimation method consistently produces the
best overall fit among the other NS-based models with
the lowest MAEs and RMSEs for all the maturities and at
different frequencies of the yield curves, followed by the
two-step OLS method and the state-space method. In
addition, all three NS-based models produce reasonably
close MAE and RMSE for yields with maturities at 3, 12,
60, and 120 months. In contrast, the MAE and RMSE for
yields with 240 months maturity by the state space
method of estimation are about threefold of those
obtained by the OLS and NLS methods. Such observed
patterns are robust to the window frequency of the yield
curves. We note in passing that the two-step OLS method
with the decay parameter λt fixed at 0.0609, as proposed
in Diebold and Li (2006), does not provide a good fit for
the Japanese bond yields. Results are available upon
request.

Panel A of Tables 4A–4C report estimation results of
the first-differenced factor series using daily, weekly, and
monthly data. The model specifications include AR(1) in
the conditional mean equation, and GARCH(1,1) and
EGARCH(1,1,1) structures in the conditional variance
equations. As can be gleaned from the tables, the

autoregressive coefficients are significant at the 5% level
for all three methods of estimation, whereas most of the
intercepts of the AR(1) structure are not significant
(results available upon request). In addition, Columns
4 and 5 display magnitudes of Q2 and LM test statistics,
which are used to detect autocorrelation in the squared
series of the residuals after applying the AR(1) filter to
the factor series. More specifically, Q2 denotes the Ljung-
Box Q statistic of the squares of the standardized resid-
uals based on autocorrelation coefficients of order up to
10. In addition, LM denotes Engle's Lagrange multiplier
test, which is employed to assess autoregressive condi-
tional heteroskedastic (ARCH) effects in the residuals.
We use Bayesian information criterion to choose the lag
order in Engle's ARCH test. As can be seen in the tables
for daily and weekly frequencies, both Q2 and LM test
statistics are significant at the 5% level, thereby suggest-
ing that the nonlinear dependencies could be due to the
presence of conditional heteroskedasticity.

Columns 7–9 and Columns 13–16 report estimation
results of GARCH(1,1) and EGARCH(1,1,1) models spec-
ified in the conditional variance equations. The estimated
values of α1 and α2 in the GARCH structure are all signif-
icant at the 5% level for all three models, which are quite
robust to the weekly and daily frequency windows and
with little GARCH effect from the monthly yield data.
Similar patterns are observed for estimated values of α1
and α2 in the EGARCH structure, which are all signifi-
cant at the 5% level for all three models. However, results
are mixed for the possible presence of asymmetric volatil-
ity captured by γ in the EGARCH structure. There are no
signs of asymmetric effects in all level, slope and curva-
ture factors for the monthly data, and some evidence for
the level and slope factors estimated by the state space
methods. In contrast, we detect evidence of asymmetric
volatility in all three models for the daily data. There are
indication of positive asymmetric volatility in the level

FIGURE 3 Average MAE and

RMSE versus rate of decay. Notes: The

figure displays average MAE and RMSE

of residuals fitted by the NS-based

model by the two-step OLS method for

monthly yields, with different values of

the decay parameter. Note that when

λ¼ 0:0299, it minimizes both the

average MAE and RMSE

8 TSUI ET AL.
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and curvature factors, whereas negative asymmetric vola-
tility in the slope factor among the NS-based models.
Moreover, it can be seen that the Q2 statistics under the
GARCH and EGARCH specifications in Columns 11 and
18 of Tables 4B and 4C have dropped significantly com-
pared with those Q2 under the AR specification in Col-
umn 4. Also, there are moderate improvement in the log-
likelihood values as we move from AR structure to
GARCH structures. Our findings provide evidence of
modeling the factor series with GARCH-type structures.

Panel B of Tables 4A–4C report estimation results of
the series of yield changes with maturities at 3, 12,
60, 120, and 240 months using daily, weekly, and
monthly data. The model specifications include AR(1) in
the conditional mean equation, and GARCH(1,1) and
EGARCH(1,1,1) structures in the conditional variance
equations. As can be observed from Column 2, the auto-
regressive coefficients are mostly significant at the 5%
level for yields of weekly and daily frequencies with
maturities at 12, 60, 120, and 240 months, whereas all
intercepts are not significant. In addition, the Q2 and LM
test statistics in Columns 4 and 5 are mostly significant at
the 5% level. These provide support for modeling with
the GARCH-type structure in the conditional variance
equation.

Columns 7–9 and Columns 13–16 of Panel B of
Tables 4A–4C contain estimation results of GARCH(1,1)
and EGARCH(1,1,1) specifications. The estimated values
of α1 and α2 in the GARCH structure are all significant at
the 5% level for yields based on weekly and daily frequen-
cies with various time to maturities. We observe similar
patterns for estimated values of α1 and α2 in the
EGARCH structure, which are all significant at the 5%
level. Moreover, we detect evidence of asymmetric vola-
tility, with positive γ for yields with maturities of
60 months and above, and negative γ for monthly and
daily yields with maturity of 3 months. Apparently, this
implies that positive shocks in the yield changes of longer
term yields induce higher volatility than negative shocks.
Similarly, there are moderate improvement in the log
likelihood values as we move from AR structure to
GARCH structures. As such, we find support for model-
ing the series of yield changes with GARCH-type
structures.

5 | OUT-OF-SAMPLE FORECASTS

In this section, we compare the forecasting performances
of the h-period-ahead expanding window forecasts by
NS-based models and the competitor models. For the NS-
based models, we consider three specifications in the con-
ditional mean equation with constant volatility, and twoT
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TABLE 3 Descriptive statistics for yield residuals.

Maturities Mean Median Maximum Minimum Std. dev. MAE RMSE

Panel A: Monthly frequency

OLS (λ̂¼ 0:0299)

3 0.781 0.784 10.141 �4.942 3.389 0.028 0.035

12 �0.341 0.333 4.314 �14.774 3.190 0.022 0.032

60 �1.959 �2.431 5.102 �8.300 3.175 0.032 0.037

120 4.583 4.891 12.682 �3.347 4.389 0.052 0.063

240 �1.146 �1.278 8.244 �9.706 3.764 0.032 0.039

NLS

3 �0.443 �0.732 6.358 �4.361 1.950 0.016 0.020

12 0.456 0.916 7.628 �14.489 3.460 0.025 0.035

60 �2.057 �2.577 4.785 �7.742 3.008 0.031 0.036

120 4.023 4.299 12.553 �4.028 3.994 0.047 0.057

240 �0.714 �1.080 10.295 �7.832 3.726 0.031 0.038

SSM (λ̂¼ 0:0307)

3 �0.453 �0.867 7.679 �5.974 2.333 0.019 0.024

12 0.617 1.531 6.839 �14.659 3.459 0.027 0.035

60 �0.336 �0.175 6.717 �5.956 3.081 0.026 0.031

120 2.650 2.680 14.014 �8.085 4.899 0.044 0.055

240 �6.335 �7.080 18.264 �29.631 11.169 0.108 0.128

Panel B: Weekly frequency

OLS (λ̂¼ 0:0299)

3 0.838 0.847 10.375 �7.298 3.395 0.028 0.035

12 �0.267 0.343 5.325 �14.774 3.132 0.023 0.031

60 �1.906 �2.291 5.545 �9.481 3.211 0.031 0.037

120 4.355 5.036 14.307 �4.926 4.313 0.052 0.061

240 �1.206 �1.551 9.915 �9.706 3.783 0.032 0.040

NLS

3 �0.505 �0.708 6.435 �4.464 1.835 0.015 0.019

12 0.599 1.108 8.756 �14.489 3.227 0.025 0.033

60 �2.016 �2.425 5.210 �9.001 3.012 0.030 0.036

120 3.719 3.914 12.796 �6.142 4.015 0.045 0.055

240 �0.718 �1.250 12.263 �8.552 3.758 0.031 0.038

SSM (λ̂¼ 0:0311)

3 �0.635 �1.027 10.732 �5.969 2.119 0.018 0.022

12 0.652 1.391 7.534 �14.574 3.513 0.027 0.036

60 �0.506 �0.562 8.318 �7.314 3.084 0.027 0.031

120 2.071 2.336 18.175 �10.211 4.534 0.040 0.050

240 �6.371 �6.849 19.117 �34.530 10.805 0.105 0.125

Panel C: Daily frequency

OLS (λ̂¼ 0:0299)

3 0.661 0.627 11.317 �8.155 3.256 0.027 0.033

12 �0.247 0.356 5.336 �14.774 3.096 0.023 0.031

60 �1.857 �2.273 5.769 �9.481 3.212 0.031 0.037

(Continues)
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specifications in the conditional mean equation with
time-varying conditional volatility. As for the competitor
models, we consider three specifications in the condi-
tional mean equation with constant volatility, and four
specifications in the conditional mean equation with
time-varying volatility. They are described briefly as
follows:

NS-based models

1. RW specification ŷtþhðτÞ¼ β̂1,tþhþ β̂2,t
þh 1�e�λ̂τ

λ̂τ

� �
þ β̂3,tþh

1�e�λ̂τ

λ̂τ
� e�λ̂τ

� �
, where

β̂i,tþh ¼ β̂i,tþh�1, for i¼ 1,2,3. For convenience, we
denote models under the RW specification as OLS-
RW and NLS-RW.

2. AR(1) specification ŷtþhðτÞ¼ β̂1,tþhþ β̂2,t

þh 1�e�λ̂τ

λ̂τ

� �
þ β̂3,tþh

1�e�λ̂τ

λ̂τ
� e�λ̂τ

� �
, Δβ̂i,tþh ¼ μ̂iþ

ϕ̂iΔβ̂i,tþh�1 where Δβ̂i,tþh ¼ β̂i,tþh� β̂i,tþh�1, for
i¼ 1,2,3. The NS-based models with
AR(1) specification are denoted as OLS-AR and NLS-AR.

3. VAR(1) specification ŷtþhðτÞ¼ β̂1,tþhþ β̂2,tþh
1�e�λ̂τ

λ̂τ

� �
þβ̂3,tþh

1�e�λ̂τ

λ̂τ
� e�λ̂τ

� �
, Δβ̂tþh ¼ μ̂þ Φ̂Δβ̂tþh�1 where

Δβ̂tþh ¼ ½β̂1,tþh� β̂1,tþh�1, β̂2,tþh� β̂2,tþh�1, β̂3,tþh� β̂3,tþh�1�
0, μ̂ is

a 3 x 1 vector and Φ̂ is a 3 x 3 matrix of constants. The
NS-based models with VAR(1) specification are
denoted as OLS-VAR and NLS-VAR.

4. GARCH(1,1) specification ŷtþhðτÞ¼ β̂1,tþhþ β̂2,t

þh 1�e�λ̂τ

λ̂τ

� �
þ β̂3,tþh

1�e�λ̂τ

λ̂τ
� e�λ̂τ

� �
, with the conditional

mean equation: Δβ̂i,tþh ¼ μiþϕiΔβ̂i,tþh�1þϵi,t, where
ϵi,t �Nð0,σ2i,tÞ, and the conditional variance equation:

σ2i,t ¼ωiþα1,iϵ2i,t�1þα2,iσ2i,t�1, i¼ 1,2,3. We denote

models with AR(1) and GARCH(1,1) structures as
OLS-AR-GARCH, NLS-AR-GARCH, and SSM-AR-
GARCH. For those with only a constant in the mean
equation, we denote them as OLS-GARCH, NLS-
GARCH, and SSM-GARCH, respectively.

5. EGARCH(1,1,1) specification ŷtþhðτÞ¼ β̂1,tþhþ β̂2,t

þh 1�e�λ̂τ

λ̂τ

� �
þ β̂3,tþh

1�e�λ̂τ

λ̂τ
� e�λ̂τ

� �
, with the conditional

mean equation: Δβ̂i,tþh ¼ μiþϕiΔβ̂i,tþh�1þϵi,t, where
ϵi,t �Nð0,σ2i,tÞ, and the conditional variance equation:

lnðσ2i,tÞ¼ωiþα1,ijϵi,t�1

σi,t�1
jþα2,i lnðσ2i,t�1Þþ γi

ϵi,t�1

σi,t�1

� �
, for

i¼ 1,2,3.
Similar to the GARCH specification, we denote
models with AR(1) and EGARCH(1,1,1) structures as
OLS-AR-EGARCH, NLS-AR-EGARCH, and SSM-AR-
EGARCH. For those with only a constant in the mean
equation, we denote them as OLS-EGARCH, NLS-
EGARCH, and SSM-EGARCH, respectively.

The competitor models with specifications of constant
volatility and time-varying volatility are listed as follows:

Constant volatility

(a) RW on yield levels ŷtþhðτÞ¼ ŷtþh�1ðτÞ.

TABLE 3 (Continued)

Maturities Mean Median Maximum Minimum Std. dev. MAE RMSE

120 4.230 4.929 14.307 �5.208 4.311 0.051 0.060

240 �1.324 �1.632 10.188 �9.706 3.706 0.032 0.039

NLS

3 �0.461 �0.638 7.980 �4.755 1.874 0.016 0.019

12 0.498 0.988 8.756 �14.489 3.144 0.025 0.032

60 �1.971 �2.331 5.756 �9.001 2.993 0.030 0.036

120 3.714 3.798 13.524 �6.142 4.001 0.045 0.055

240 �0.886 �1.319 12.473 �8.552 3.603 0.030 0.037

SSM (λ̂¼ 0:0310)

3 �0.758 �1.061 12.340 �10.688 2.159 0.018 0.023

12 0.670 1.439 7.907 �15.567 3.473 0.028 0.035

60 �0.431 �0.455 9.330 �7.577 3.169 0.027 0.031

120 1.995 2.099 17.819 �9.444 4.185 0.037 0.046

240 �6.539 �7.663 18.663 �40.651 10.527 0.103 0.124

Note: This table presents various statistics that describe the in-sample fit by the NS-based models, with two-step OLS, NLS and state space method (SSM) of
estimation. MAE stands for mean absolute error and RMSE stands for root mean square error. The summary statistics including mean, median, maximum,

minimum and standard deviation of residuals are reported in percentages. MAE and RMSE are reported in real numbers.
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(b) AR(1) on yield changes (AR) ΔŷtþhðτÞ¼ μ̂ðτÞ
þϕ̂ðτÞΔŷtþh�1ðτÞ.

(c) VAR(1) on yield changes (VAR) ΔŶ tþh ¼ μ̂þ
Φ̂ΔŶ tþh�1 for ΔYt ¼ ½ytð3Þ� yt�1ð3Þ, …,ytð360Þ�
yt�1ð360Þ�0, μ̂ is a 15 � 1 vector and Φ̂ is a 15 � 15
matrix.

Time-Varying Volatility

(d) GARCH(1,1) on yield changes (GARCH-C)
ΔytþhðτÞ¼ μðτÞþϵtþhðτÞ, ϵtþhðτÞ�N ð0,σ2tþhðτÞÞ, where
σ2tþhðτÞ¼ωðτÞþα1ðτÞϵ2tþh�1ðτÞþα2ðτÞσ2tþh�1ðτÞ.

(e) GARCH(1,1) with AR(1) in mean on yield changes
(AR-GARCH) ΔytþhðτÞ¼ μðτÞþϕðτÞΔytþh�1ðτÞþ
ϵtþhðτÞ, ϵtþhðτÞ�N ð0,σ2tþhðτÞÞ, where σ2tþhðτÞ¼
ωðτÞþα1ðτÞϵ2tþh�1ðτÞþα2ðτÞσ2tþh�1ðτÞ.

(f) EGARCH(1,1,1) on yield changes (EGARCH)
ΔytþhðτÞ¼ μðτÞþϵtþhðτÞ, ϵtþhðτÞ�N ð0,σ2tþhðτÞÞ,
where lnðσ2tþhðτÞÞ¼ωðτÞþα1ðτÞϵtþh�1ðτÞσtþh�
1ðτÞþ α2ðτÞ lnðσ2tþh�1ðτÞÞþ γðτÞ ϵtþh�1ðτÞ

σtþh�1ðτÞ
� �

.
(g) EGARCH(1,1,1) with AR(1) in mean on yield

changes (AR-EGARCH-C) ΔytþhðτÞ¼ μðτÞþϕðτÞ
Δytþh�1ðτÞþϵtþhðτÞ, ϵtþhðτÞ�N ð0,σ2tþhðτÞÞ, where
lnðσ2tþhðτÞÞ¼ωðτÞþα1ðτÞϵtþh�1ðτÞσtþh�1ðτÞþ
α2ðτÞ lnðσ2tþh�1ðτÞÞþ γðτÞ ϵtþh�1ðτÞ

σtþh�1ðτÞ
� �

.

Steps taken to compute the h-step-ahead forecast by
the expanding window approach are highlighted as below:

1. For each of the daily, weekly, and monthly yield
curves, set the initial window from the date of the first
data to half of the full sample size.

2. Fit a model (either the NS-based model or the com-
petitor model) under study to the dataset generated in Step
1. To reduce computational burden, fix the decay parame-
ters at 0.0299 and 0.0314 for the NS-based models with OLS
and NLS estimations, and ð0:0310,0:0311,0:0307Þ for the
SSM with daily, weekly, and monthly data,5 respectively.

3. Obtain the h-period ahead forecasts of yields using
estimation results from Step 2. For daily data, set h¼ 1,2,3
and 5 days; for weekly data, set h¼ 1,2,3, and 4 weeks;
and for monthly data, set h¼ 1,3,6, and 12 months.

4. Expand the in-sample fitting window by one
period, thereby increasing the sample size by 1 unit.
Repeat Steps 1–3 to obtain new h-step ahead forecasts
based on the expanded window.

5. Repeat Step 4 recursively until the appropriate ter-
minal of the out-of-sample period.

5.1 | Forecasting results

The MAE and RMSE residual statistics are employed to
evaluate the forecasting performances of the h-step-ahead

forecasts of yields by both the NS-based and competitor
models. For each of the daily, weekly, and monthly fre-
quency windows, we obtain the h-step-ahead forecasts of
yields at maturities of 3, 6, 12, 24, 36, 48, 60, 72, 84, 96,
108, 120, 180, 240, and 360 months, respectively. For the
daily window, we set h¼ 1,2,3, and 5 days; for the weekly
window, h¼ 1,2,3, and 4 weeks; and for monthly win-
dow, we set h¼ 1,3,6, and 12 months. We mention in
passing that the AR(1) and VAR(1) structures are largely
adequate for the conditional mean equation and the
GARCH(1,1) and EGARCH(1,1,1) structures are adequate
for the conditional variance equation in the NS-based and
competitor models.6 Because of space limitation, we report
selectively in Tables 5–7 the out-of-sample forecasting
results at two forecasting horizons by frequency window
for yields with maturities of 3, 12, 60, 120, and 240 months
only. Full results are available upon request.

Constant volatility
Panel A of Tables 5–7 report the h-step-ahead out-of-

sample forecasting results by models with constant vola-
tility for monthly, weekly, and daily data. As indicated by
MAE and RMSE measures, there is supporting evidence
that the NS-based models do not perform as good as the
competitor models, especially for 1- and 3-day-ahead
forecasts and 1- and 4-week-ahead forecasts, during the
period of prolonged liquidity trap in the Japanese bond
market. However, there are improvements in the NS-
based models as the forecast horizon lengthens, espe-
cially by the NLS method using the monthly data. Our
findings are in contrast to some studies (such as
Diebold & Li, 2006, and Nyholm & Vidova-Koleva, 2012)
that the NS-based models outperform the RW when
liquidity trap is not present. However, our results are
largely consistent with respect to Steeley (2014), who
reports that simple competitor models (in particular, the
RW model) seem to provide better out-of-sample fore-
casts in the presence of liquidity trap.

Among the NS-based models, performances by the
OLS method of estimation with the decay parameter
fixed at 0.0299 is ranked the first for most of the
monthly, weekly and daily frequency windows,
whereas performances by SSM is ranked the lowest. In
contrast, as the ‘best’ performer in in-sample fitting,
the NLS method performs inferiorly as compared with
the two-step OLS estimation method on weekly and
daily forecasts, though the NLS forecasts are slightly
better than the latter with the decay parameter set to
0.0299. Our findings indicate that the NS-RW model
tends to provide relatively better forecasting results,
while the NS-AR and the NS-VAR specifications
compete similarly in most of the cases.

Among the competitors models, the RW model
outperforms the AR and VAR models for better short-
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to-medium term forecasts at most of the maturities, fol-
lowed by the AR and the VAR models. The possible
explanation is that in the presence of liquidity trap, yields
of short-to-medium term maturities tend to cluster
around the lower bound which is near zero with minimal
deviation. This leads to extremely highly correlated yields
between the previous period and the next period. How-
ever, the RW model performs less satisfactory for yields
at longer-term maturities, which in part reflects
investors expectation that the liquidity traps do not
sustain and affect permanently the Japanese bond
market.

It is worth noting that the AR model dominates the
VAR model with lower RMSE, AMAE, and ARMSE in all
1-month, 3-month, 6-month, and 12-month ahead fore-
casting results of yields at all maturities ranging from 3 to
360 months. The AR model still moderately outperforms
the VAR model by similar measures of residual statistics
in most of the forecasting horizons on weekly and daily
basis. The relatively poor forecasts by the VAR model
may be explained by the large number of included
parameters and the not highly correlated members in the
transition matrix. Our findings are robust to the in-
sample fitting period.7

Time-varying volatility
Panel B of Tables 5–7 reports the h-step-ahead fore-

casting results of the yield models with specification of
time-varying volatility for monthly, weekly, and daily
data, respectively. As can be gleaned from the panels, we
observe features similar to forecasting results based on
models with constant volatility. For example, forecasts by
the competitor models with time-varying volatility speci-
fication consistently outperform the NS-based models for
most of the maturities and with forecasts over both the
short-horizon and the long-horizon. Most notably, for the
6- and 12-month ahead and the 1- and 3-day-ahead fore-
casts, the GARCH and AR-GARCH models on yield
changes generate more accurate forecasts than the
EGARCH models when gauged by average MAE and
RMSE on daily and monthly frequencies. However, the
EGARCH models on yield changes outperform for most
of the maturities on weekly frequency for the 1- and
4-week-ahead forecasts.

Within the NS-based models with GARCH-type struc-
tures, forecasting performances by the SSM-(E)GARCH
are only marginally inferior to those by OLS-EGARCH
when assessed by the average MAE and RMSE. However,
the SSM-(E)GARCH outperform for some maturities,
such as for the horizon forecasts of 6- and 12-month-
ahead for maturities of 6 and/or 12 months on monthly
yields, the 4-week-ahead for maturities of 12 months on
weekly yields and the 1- and 3-day-ahead for maturities
of 6 months on daily yields, respectively. In contrast, theT
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NLS-(E)GARCH consistently perform the worst with var-
ious horizon forecasts at all maturities in terms of MAE
and RMSE as well as their average values. In summary,
we find evidence that in the presence of liquidity trap,
the competitor models with simpler structures outper-
form the NS based models. Our findings are reasonably
robust to yields with different window frequencies and to
yields with a wide range of maturities.

6 | CONCLUDING REMARKS

In this study, we have examined the term structure of the
Japanese government bond yields by employing both the
NS-based models and competitor models in a period of
prolonged liquidity trap. Our dataset consists of yields
with various maturities at daily, weekly, and monthly fre-
quencies. We have conducted both the in-sample fitting
and out-of-sample forecasting exercises with different
decay parameters. Our in-sample fit results show that the
NS-based models are capable of not only producing accu-
rate fits for the yield data, but also replicating the com-
mon stylized facts of the yield curve as identified in the
literature. It is also found that the long-term and the
medium-term factors are more persistent than the short-
term factor and the spread dynamics are less persistent.
Our findings are consistent with the stylized facts dis-
cussed in Diebold and Li (2006) and others.

Our h-step-ahead out-of-sample forecasting results
indicate that, in the presence of liquidity trap, the com-
petitor models always outperform the NS-based models
when assessed by the residual statistics. Our findings are
robust to the specification of volatility structures. Most
notably, the short-to-medium term forecasts of yields by
the RW model outperform those forecasts by other
models under study at most of the maturities. Moreover,
AR-GARCH models on yield changes produce more ade-
quate forecasts than their counterpart NS-based models
on monthly and daily yields, while the AR-EGARCH
models outperform for most of the maturities on weekly
yields. Nevertheless, the NS-based models can be useful
in forecasting yields over longer horizons and can work
well with the GARCH-type structure of time-varying
volatility, especially when using the OLS and SSM esti-
mation procedures. Comparatively, the NS-based OLS-
GARCH models with fixed decay parameter at 0.0299
produce relatively more adequate out-of-sample forecast-
ing results, while the NS-based SSM-GARCH models
show better performance only for monthly yields, and
the performance by the NS-based NLS model is ranked
the least. Our findings have important implications for
forecasting the Japanese bond yields in the presence of a
liquidity trap.

ACKNOWLEDGMENTS
The authors wish to thank the Journal Editor, Derek
Bunn, Dave Allen, Kiyotaka Sato, two anonymous ref-
erees, and participants in the MODSIM Convention for
their helpful comments and suggestions, which have
greatly improved the quality of this paper. The third
author wishes to acknowledge the financial support from
the Sumitomo Foundation. Open access publishing facili-
tated by Edith Cowan University, as part of the Wiley -
Edith Cowan University agreement via the Council of
Australian University Librarians.

DATA AVAILABILITY STATEMENT
Data will be made available upon request.

ORCID
Zhaoyong Zhang https://orcid.org/0000-0001-9596-
2648

ENDNOTES
1 Note that the yield (yield-to-maturity) and the spot rate of a zero-
coupon bond are the same, and hence the terms will be used
interchangeably.

2 End-of-month yield rates are culled from January 2000 to October
2007 instead.

3 According to the Ministry of Finance of Japan, FBs and TBs were
unified from FY2008 to ensure common term-to-maturity and
issuance date.

4 Currently, 2-, 5-, and 10-year bonds are issued every month;
15-year bonds are issued quarterly; 20-year bonds are issued every
other month; and 30-year bonds are issued twice a year. The
Japanese government issued 4-year bonds in February 2001,
6-year bonds in March 2001 but has stopped the issuance of these
bonds ever since. For discounted government bonds, September
2000 marked the final issuance of 5-year discounted bonds,
though 3-year discounted bonds continue to be issued every other
month.

5 Nelson and Siegel (1987) found that in-sample fit is not degraded
much when the sample median of the decay parameter is used in
place of the actual estimates. Similarly, de Pooter (2007) experi-
mented with the most recent decay parameter and the mean esti-
mates, and found that the median estimate is comparatively more
stable than others.

6 Based on the Bayesian information criteria, we find that
AR(1) models are largely suitable for the mean equation, and the
Ljung-Box Q-statistics provides some support for the GARCH(1,1)
and EGARCH(1,1,1) structures in the conditional variance equa-
tion. To avoid computational complexity, we do not consider the
VAR(2) model and higher order GARCH and EGARCH
structures.

7 In order to further compare the performances of the AR and VAR
models, we divide yield data of different frequencies into the
pre-evaluation and forecasting sub-samples. We then perform in-
sample fitting exercises using both two models in both subsam-
ples. The pre-evaluation period is taken from the first observation
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to half of the sample period, while the forecasting period contains
the remaining half. Based on the residual analysis, we find that
the summary statistics generated by both models are largely con-
sistent in the two periods, with similar MAE and RMSE statistics
particularly for the shorter term maturities across all data fre-
quencies. We have also conducted an out-of-sample forecasting
exercise in which 2/3 of the yield sample are treated as in-sample
window, while the remaining 1/3 as forecasting window. Our
results are qualitatively consistent to those reported in Tables 5–7.
These results are available upon request. We thank one anony-
mous referee for pointing out this issue.
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