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EXECUTIVE SUMMARY 

 
Throughout past decades, the management of solid waste by producing methane gas, as a 

renewable source of energy, has featured as an important research objective. Anaerobic 

digesters are widely used in countries with environmental initiatives and green approaches, 

where biogas produced from a bioreactor is a carbon neutral source of energy. Biogas contains 

70% methane, 30% CO2 and some other gases. The by-product of an anaerobic digester is solid 

sludge that can be used as either fertilizer or compost. 

Anaerobic digestion biogas plants can benefit industries by adding value to solid organic waste, 

reducing fossil fuel usage, eliminating solid waste disposal costs, in addition to generating 

power. Setting up an anaerobic digestion biogas plant is a green investment for industries 

interested in environmentally friendly biological processes.  A variety of organic solid waste 

including municipal, industrial, livestock, poultry, meat, and food waste can be digested in an 

anaerobic system. 

To treat the large volume of waste generated by industries and urban sewerage systems, more 

efficient digesters and a continuous improvement of digestion processes are required. To 

accomplish these objectives, crucial factors including the size, design, and shape of a 

bioreactor, its working temperature, pH and the hydrodynamics of a system need to be studied. 

A considerable amount of literature has been published regarding the hydrodynamics of 

anaerobic digesters. Further, several studies have explored the factors thought to influence the 

hydrodynamics of anaerobic digesters. These studies have identified that the hydrodynamics 

of a system could be influenced by the rheological characteristics of sludge, as well as mixer 

type and shape. Inadequate and poor mixing in a digester can cause the failure of a reactor, 

non-uniform distribution of mass and heat, imbalanced microbial activity, as well as formation 

of sediment and scum. Although studies have successfully demonstrated that close-clearance 
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mixers (screw, helical, anchor impellers) increase biogas production, the information about 

hydrodynamic characteristics and flow field generated by these types of agitators is inadequate. 

Although hydrodynamics and the rheology of sludge have been studied in the past, more 

research is required to address these gaps. The application of visual and measuring instruments 

could facilitate further research on sludge behaviour in an agitated anaerobic digester, but this 

type of study is not possible due to the opaque nature of real sludge. 

The main objectives of this project are (i) to find a safe, cheap, clear and stable material that 

can emulate digested sludge rheological characteristics in a laboratory; (ii) to study and 

optimize the mixing performance of a dual helical ribbon as an efficient impeller to create an 

ideal mixing pattern (iii) to investigate the flow pattern and hydrodynamics of a shear thinning 

fluid in a batch gas-liquid reactor using a combination of a computational fluid dynamics 

(CFD) simulation and a population balance model (PBM). 

Study 1 has analysed and compared the Zeta potential, pH resistance, flow curve, 

viscoelasticity, and thixotropy of four popular model fluids reported previously as ideal 

simulant of primary, activated, and digested sludge. The results of the correlational analysis 

indicate that xanthan gum is the best simulant to mimic the rheological characteristics of 

activated sludge that is sheared less than 100 S-1. There are similarities between the viscosity 

and flow curve of activated sludge and xanthan gum which can be described by its internal 

network and molecular structure. This study also compares rheological properties of 2% 

NaCMC solution and digested sludge containing 3.23% solid sheared between 10-300 S-1, 

concluding that they behave in an essentially identical manner. The findings from this study 

provide several contributions towards selecting and applying a clear and safe polymer that 

emulates the rheological behaviour of sludge. 
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Study 2 has evaluated the performance of a dual helical ribbon impeller in agitating shear 

thinning fluid. The effects of impeller rotational speed, gas flow rate, clearance to the bottom, 

and viscosity on power uptake and mixing time have been studied. This study suggests that 

determining optimum operating conditions can minimize power consumption and time 

required to achieve the maximum volume of uniformity in reactor. Although the study 

successfully reports a significant positive correlation between the rotational speed of the 

impeller and the performance of mixing, there is still a threshold limit for rotational speed. 

Experimental data shows that power consumption would increase with rotational speed 

however increasing the rotational speed beyond the certain level does not affect the mixing 

time significantly. This study suggests two practical equations to estimate power consumption 

and mixing time under specific operating conditions by applying an ANOVA method. 

To cover some of the limitations related to the experimental study of hydrodynamics of gas-

liquid systems, a combination of computational fluid dynamics (CFD) simulation and 

population balance model (PBM) has been used in the third study. The main purpose of this 

work is to evaluate the impacts of using a dual helical ribbon on the hydrodynamics of a 

multiphase reactor. The governing equations and turbulent model of agitated bubbly flow have 

been solved through a standard � − � model and Eulerian-Eulerian (E-E) multiphase approach. 

Following grid sensitivity analyses, findings through simulation have been verified by PIV 

measuring tests. Further, the PBM model has been discretized into five bubble size groups. The 

results show a positive relationship between rotational speed and bubble breakage. The 

comparative study indicates an increase in the likelihood of bubble channeling when the 

rotational speed is insufficient to break the gel-like structure of the liquid. By increasing 

rotational speed, the bubble hits the blades, breaks, and disperses, leading to improved 

interfacial area between phases. Further, rotating mechanical blades induce shear stress to bulk 

of liquid, resulting in a significant drop in viscosity and diminishing the stagnant regions.    
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Chapter 1: Introduction 

1 

Chapter 1: Introduction 

1.1 Project rationale 

A continuous increase in the generation and accumulation of solid waste is a crisis that 

threatens the future of the planet. Waste-to-energy processes can be used to manage and control 

solid waste, and to reuse, recover, and recycle natural resources. In recent years, biological 

treatment systems have become more popular as a means of degrading: wastewater; 

agricultural, municipal and food industry wastes; and plant residue, into organic and 

environmentally friendly products. Anaerobic digestion is an efficient process that degrades 

different types of organic solid waste into biosolids and biogas under oxygen free and warm 

conditions, which is an ideal environment for microorganism activities. Produced biogas 

typically contains around 50-75% methane, whereby it can be considered a carbon neutral and 

valuable source of renewable energy (Rasi, Läntelä, and Rintala 2011; Rasi, Veijanen, and 

Rintala 2007; Axelsson et al. 2012). The by-product of anaerobic process could be applied as 

a rich source of nutrients for agricultural and fertilizing purposes. Table 1-1 lists some benefits 

of anaerobic digesters from the environmental and economic standpoints.  

Table 1-1 Pros and cons of anaerobic digester 

Environmental Advantages Economic Benefits 

Elimination of landfill 

Control and management of solid 

wastes 

Elimination of odours 

Removal of pathogens 

Protection of surface water and 

groundwater 

Production of biogas as a renewable and carbon-neutral source 

of energy 

Reduction of the time needed for handling and moving manure 

Creation of a source of income including biogas, electricity, and 

bio solids 

Reduction of water consumption 
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Production of compost 

In initial stages of the digestion process, enzymes produced by hydrolytic microorganisms 

hydrolyse and decompose complex organic polymers into simple and soluble monomers. For 

instance, starch molecules are broken into glucose, carbohydrates into sugars, proteins into 

amino acids, and lipids into fatty acids. In the next stage of acidogenesis, fermentative bacteria 

convert products from hydrolysis stages into various types of volatile fatty acids (VFAs) such 

as butyric and propionic acids. Then, all volatile fatty acids are converted to hydrogen, acetate, 

and carbon dioxide by acetogenic bacteria. Finally, all products are converted into methane and 

bio solids. The digestion processes have been summarized in Fig. 1-1. 

 

Figure 1-1 Different stages of the anaerobic digestion process 

Since all these stages occur under microbial dependent reactions, some factors including pH 

level, temperature, and nutrient concentration have the maximum impact on the yield of 

bioreactor and quality and composition of the end products (Tira, Padang, and Supriadi 2019; 

Cioabla et al. 2012). Some of bio digestion steps contain the rate-limiting reactions. The first 

two stages (hydrolysis and acidogenesis) shown in Fig. 1-1 are the fastest, however, they are 

the most sensitive ones to pH level, initial substrate concentration and temperature changes. 

Several novel multi-stage bioreactors have been recently designed and built. In some of them, 

hydrolysis and acidogenesis reactions occur in the first bioreactor, while acetogenesis and 

methanogenesis processes take place in the second digester. Most industrial full-scale reactors 

(around 95% of the plants in Europe) are still single stage, which means that all of the reactions 

(ranging from hydrolysis to methanogenesis) take place in one stage at the same time (Nagao 

et al. 2012; Zhang et al. 2014). 

The design and configuration of anaerobic digesters determines efficiency, conversion rate, 

and capital costs of the plant (Vilms Pedersen et al. 2020; Kumar and Ramanathan 2020; Irizar 

2020). Bioprocess inside anaerobic digesters is severely affected by the hydrodynamics of a 
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system, which is governed by size, type, and design of the impeller. An ideal anaerobic digester 

should be able to produce a maximum volume of methane in a minimum size reactor. Reactor 

shape should comply with construction practices related to both heat loss and mixing pattern. 

Typically, the configuration of engineered digesters is classified into three categories: 

completely mixed digesters, plug flow digesters and fixed film digesters. The characteristics of 

these digesters are illustrated in Figure 1-2 and summarized in Table 1-2.  

This research focuses on the completely mixed digester, which is the conventional and most 

commonly used system and is suitable for all climate conditions and most types of 

wastewater(Roos, Martin Jr., and Moser 2004). 

Having a proper mixing pattern is essential in an anaerobic digester to (i) achieve adequate 

contact between substrate and microorganism (ii) release trapped bubbles, (iii) prevent solid 

sedimentation and scum formation,  and (iv) to create a homogenous environment for 

bacterial growth (Ward et al. 2008). Poor mixing leads to sludge thickening, non-uniformity 

of pH and 

Figure 1-2 Different types of anaerobic digester https://farm-energy.extension.org/types-of-
anaerobic-digesters/  

Figure 1-2 Different types of anaerobic digester https://farm-energy.extension.org/types-of-anaerobic-digesters/
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temperature, short circuiting levels, aggregation, high energy consumption and finally, failure 

of the system. To overcome poor mixing efficiency, oversizing the digester would be necessary 

for industries which increases unnecessary capital cast of plant (Bhattacharjee et al. 2015).  

Table 1-2 Different types of industrial anaerobic digesters 

Operating a digester at maximum efficiency is the ideal goal, which may be achieved by 

combining various mixing methods and evaluating the hydraulics of a system. In practice, 

mixing can progress through three different methods, including installing internal multiple 

impellers (Stroot et al. 2001; Gómez et al. 2006; Karim et al. 2005), recirculating biogas 

through the sparger (Bobade et al. 2017; Vesvikar and Al-Dahhan 2016; Bassani et al. 2017), 

and recirculating the substrate (Low et al. 2017; S. Kennedy et al. 2014; Meister et al. 2018; 

Ratanatamskul and Saleart 2016; Bhattacharjee et al. 2015).  

Increasing impeller rotational speed appears as a good way for enhancing the mixing pattern 

of bioreactors; however, excessive power uptake and failure of microbial activity are the main 

drawbacks of high rotational speed. Some research has noted that microorganisms are 

Reactor Types Characteristics 

Completely Mixed - Equal inflow and outflow rate

- Retention time is more than 20 days

- Requires mixing

- Manure percentage is about 3-13% by solid mass

Plug Digester - Equal inflow and outflow rate

- Retention time is less than 15 days

- Mixing not necessary

- Manure percentage is about 10-20% by solid mass

Fixed Film Digester - It is a column packed reactor containing small wood chips or plastic rings

- Retention time is less than 5 days

- Mixing not necessary

- Manure percentage is about 1-5% by solid mass
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extremely shear-sensitive (Lamberto et al. 1996). Additionally, some studies indicate that 

excessive mixing may reduce biogas production and mass transfer due to decreasing the gas 

hold up (Stroot et al. 2001; Gómez et al. 2006; De Bok, Plugge, and Stams 2004). Sindall et 

al., (2013) has reported a significant drop in biogas production and counterproductivity as the 

intensity of mixing exceeds thresholds (Stroot et al. 2001; Sindall, Bridgeman, and Carliell-

Marquet 2013).  

Although applying the coaxial mixer in a bioreactor seems to be highly efficient, the shear- 

thinning characteristics of working fluid acts negatively (Kazemzadeh et al. 2016; Pakzad et 

al. 2012, 2013; Bonnot et al. 2007). The main drawback of using coaxial impellers is rotating 

two impellers with a central shaft at the same speed. Recently, multi-shaft impellers rotating in 

different speeds and directions have become favourable in literature, for dispersion and mixing 

of non-Newtonian fluids and emulsification (Kazemzadeh et al. 2016; Pakzad et al. 2012, 2013; 

Bonnot et al. 2007). High power consumption is the main disadvantage of using multi-impeller 

systems in industry (Kazemzadeh et al. 2016; Pakzad et al. 2012, 2013; Bonnot et al. 2007). 

Additionally, there are some complex close-clearance single-shaft impellers, including helical 

ribbon, anchor, and screw, that have rarely been studied in the literature. Some close-clearance 

impellers are illustrated and demonstrated in Fig. 1-3. The helical ribbon is one of the most 

efficient impellers applied in agitated bioreactors containing non-Newtonian fluids, while the 

anchor is not a popular impeller in the industry because of its low efficiency (Anne-Archard, 

Marouche, and Boisson 2006; Doraiswamy, Grenville, and Etchells 1994). The high efficiency 

of using a dual helical ribbon in biogas production in an anaerobic digester has been reported 

in the literature (Lebranchu et al. 2017). 

Figure 1-3 Different types of close-clearance impellers 

According to the author’s knowledge, the hydrodynamics of a multi-phase bioreactor equipped 

with a dual helical ribbon has been rarely studied. This occurs because hydrodynamic 
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visualization methods have been unsuccessful in an anaerobic digester due to the opaque nature 

of sludge. This explains why most researchers have considered hydrodynamics of a digester as 

a ‘black box’, and have focused on simulation and mathematical modelling of sludge behaviour 

as a non-Newtonian fluid (Meroney and Colorado 2009; Delafosse et al. 2014; Samstag et al. 

2016; Craig, Nieuwoudt, and Niemand 2013; B. Wu 2010, 2011). Although extensive CFD 

simulations have been carried out on the performance of close-clearance impellers in single-

phase shear-thinning liquids, there is yet to be a study working on bubble size and distribution 

in multiphase bioreactors equipped with a helical ribbon impeller.  

In some studies, different approaches have been applied to visualize phases trajectory inside a 

multiphase bioreactor. Some of these methods are chemical tracer, Computer Automated 

Radioactive Particle Tracking (CARPT), Electrical Resistivity Tomography (ERT), shadow 

imaging, Laser Doppler Velocimeter (LDV), and Particle Image Velocimetry (PIV) 

(Wiedemann et al. 2017; Siverts-Wong et al. 2017; Pakzad, Ein-Mozaffari, and Chan 2008; 

Low et al. 2018; S. Kennedy et al. 2014; S. Kennedy, Bhattacharjee, and Eshtiaghi 2015; S. 

Kennedy et al. 2018; S. Kennedy 2017; Karim, Thoma, and Al-Dahhan 2007; Karim et al. 

2005; Babaei, Bonakdarpour, and Ein-Mozaffari 2015; Houari Ameur, Bouzit, and Helmaoui 

2011). The current study applies an optically transparent fluid to mimic the behaviour of real 

sludge. To investigate the bubbly flow pattern inside the reactor under agitation, high speed 

camera and PIV technique as well as CFD-PBM modelling approach have been applied.   

To analyse the hydrodynamics of an agitated gas-liquid anaerobic digester, several critical 

factors should be separately studied including the rotational speed of the impeller, gas flow 

rate, the impeller distance from the base of the reactor, and rheological characteristics of a shear 

thinning fluid.  The impacts of these factors on performance of bioreactor have been evaluated 

by measuring the mixing time and power consumption. Image processing technique will be 

used to assess the impacts of the aforementioned parameters on mixing performance and 

hydrodynamics of the fluid. In addition, optimal mixing time and power consumption, as well 

as the relation between these factors, have been explored by response surface methodology 

(RSM).   

Finally, experimental results have been compared to the outcomes predicted by a combination 

of computational fluid dynamics (CFD) and population balance model (PBM) methods. The 

simulation results have been validated by data collected through particle image velocimetry 

(PIV) as a non-intrusive laser optical measurement technique. 
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1.2 Scope, significance, and objectives 

The significance of this project is underpinned by the need for an appropriate understanding of 

multiphase non-Newtonian flow hydrodynamics inside an agitated anaerobic digester. 

Information from this research can be of significant value to industries and researchers in the 

field of design and operation of bioreactors. Project deliverables include scientific publications 

at various stages and detailed descriptions of the overall research in a PhD thesis. 

Some objectives of this research project are classified as follows: 

1. Analysis and investigation of pH sensitivity, stability, Zeta potential, and rheological

characteristics of four polymers to select a clear, safe, stable, and cheap alternative for

sludge.

2. Comparing the viscoelasticity, thixotropy and flow curve of simulant polymers to

primary, activated, and digested sludge.

3. Evaluating the rheological characteristics of sludge and its effects on mixing.

4. Analyzing the power uptake and mixing time required by a dual helical ribbon impeller

under different operating conditions including impeller speed, gas flow rate, and

various concentration. Then, rotational speed can be optimized based on the power

curve (a correlation between gas flow number and power number).

5. Identifying the threshold level of impeller rotational speed considering economic

mixing in a shorter period of time.

6. Understanding the impacts of gas flow rate and dispersion on mixing time and power

consumption.

7. Optimizing the operating conditions in a mixed two-phase reactor to maximize the

mixing performance of a dual helical ribbon impeller.

8. Applying RSM techniques to understand how critical operating parameters, including,

rotational speed, the viscosity of working fluid and gas flow rate, influence the reactor

performance and correlate with each other.

9. Applying experimental investigation and CFD-PBM modelling to analyze the

hydrodynamic characteristics including velocity field, viscosity gradient, bubble size
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and distribution, and flow pattern of a multiphase mixed bioreactor filled with non-

Newtonian fluid equipped with a dual helical ribbon impeller. 

This study seeks to address the following research questions which will help to respond to the 

aforementioned research gaps: 

1. Which simulant polymers emulate the rheological behaviour of sludge under a specific

shear stress range? To examine the general hypothesis of whether clear model fluids

can mimic the rheological behaviour of sludge.

2. How do rheological characteristics of sludge change the mixing pattern in a bioreactor?

3. Amongst liquid viscosity, rotational speed, and gas flow rate, which factor/element has

the most influence on mixing time and power consumption, and how are these critical

factors interlinked?

4. How do gas flow rate and dispersion reduce viscosity and enhance the mixing pattern

in a mixing vessel using a dual helical ribbon impeller?

5. Can CFD modelling successfully predict hydrodynamic characteristics of simulant

polymers that can be used to emulate the rheological behaviour of sludge?

1.3 Thesis outline 

Chapter 1 provides an overview of the thesis and takes the form of seven chapters, including 

this introductory chapter. 

Chapter 2 lays out the theoretical dimensions of the research and provides a comprehensive 

literature review. This chapter begins by examining basic concepts of complex rheological 

characteristics of sludge as a non-Newtonian fluid, along with several limitations in 

experimental studies of sludge. The chapter will then explain the theoretical concept of 

mechanical mixing, the definition of mixing time, power consumption, complicated 

interactions between agitated phases, the importance of size and distribution of bubbles, and 

three-dimensional CFD-PBM couple model theory.  

Chapter 3 focused on the methodology and research design used in this study. The system 

configuration and geometric details, qualitative and quantitative methods, instruments, and 

modelling software applied in this study will also be explained. 
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Chapter 4 compares the rheological characteristics of different simulants offered within 

literature to primary, activated, and digested sludge. The results reveal that xanthan gum can 

be an ideal candidate which demonstrate the same rheological behaviour to activated sludge in 

terms of yield stress and viscosity due to their similar molecular and internal network 

structures. Further, xanthan gum follows the Herschel-Bulkley model, which is one of the most 

popular practical equations to represent sludge rheology. Additionally, the results indicate that 

NaCMC in some working conditions behaves like the digested sludge. 

Chapter 5 discusses how a close-clearance impeller can increase the active region and reduce 

the time and energy required to achieve the completely mixed system. The findings suggest 

that there is a threshold for the rotational speed of an impeller, beyond which power 

consumption increases exponentially whilst mixing time fails to be enhanced. Within this 

chapter, the impacts of gas flow rate on mixing process has been investigated. Finally, the 

statistical analysis indicates that impeller speed and viscosity have the maximum impact on 

mixing performance.   

Chapter 6 verifies the results predicted by CFD simulation and compares them with the 

experimental data. CFD method is a feasible approach to understand the flow pattern inside an 

anaerobic digester, which is impossible to visualize using experimental techniques.  

Chapter 7 draws upon the entire thesis to highlights the potential of using a helical ribbon 

impeller as an ideal type of agitator in an anaerobic digester. Additionally, this chapter has 

summarized the key conclusion from this thesis and recommended some points for further 

research. 
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2.1 Background 

In recent years, handling the large quantity of agricultural, municipal, and industrial organic 

wastes has been a challenge for waste management authorities. Since the global urban 

population has grown at a very rapid pace, governments are obliged by environmental 

regulators to establish efficient and adequate waste treatment facilities. Different conventional 

waste management techniques like physical, chemical, and biological methods have been 

widely used in wastewater treatment plants. Physical techniques including sedimentation, 

screening and filtration are processes where no chemical material or biological activity is 

involved. When a chemical material is added to the process of treatment or a chemical reaction 

takes place, the process is classified as a chemical method (e.g. ozonation, coagulation and ion 

exchange). In a biological process, contaminants are removed by microbial activities in 

lagoons, and in aerobic and anaerobic digesters.  

Due to the better safety, less cost, and environmental sustainability, biological treatment 

methods have been very popular. Experimental limitation, complex physical and chemical 

characteristics of sludge, expensive analytical instrument, and complicated hydrodynamics of 

a multiphase flow lead to much uncertainty about the process and hydrodynamics of biological 

units.  

Non-homogenous distribution of temperature, pH, nutrient and substrate is increasingly 

recognised as a serious concern which may lead to the bioreactors failure (Houari Ameur, 

Bouzit, and Ghenaim 2013; Delafosse et al. 2014; Curry and Pillay 2012). Mechanical mixing 
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is used as an effective technique to make biological system homogenous and improve 

distribution of both nutrients and buffering agents while preventing production of metabolic 

by-products (Forster-Carneiro, Pérez, and Romero 2008; Singh, Szamosi, and Siménfalvi 

2019, 2020). Additionally, sparging gas has been reported as an another efficient mixing 

technique which has significant effect on velocity fields and hydrodynamics pattern (Anne-

Archard, Marouche, and Boisson 2006). Improved mixing pattern would stop the solid particles 

from settling and forming a thick unmixed zone. Poor mixing leads to the failure of the digester 

due to the formation of  viscous and stagnant regions (Low et al. 2013; Curry and Pillay 2012). 

A proper mixing method increases stability and productivity of process, prevents sludge from 

floating (scum) and settling (sediments), and  drives produced biogas out of the substrate 

(Kariyama, Zhai, and Wu 2018).  

The hydraulic regime in the bioreactor is controlled by different parameters including size and 

shape of the vessel, type of mixer, and substrate rheology. Agitation changes the rheology and 

hydrodynamic of the sludge which can affect the performance of bioreactor. Several 

researchers have used different visualization methods like computer automated radioactive 

particle tracking (CARPT) (Karim, Thoma, and Al-Dahhan 2007)  and electrical residence 

(Babaei, Bonakdarpour, and Ein-Mozaffari 2015) to evaluate the hydrodynamics of sludge. 

Due the experimental limitations, only average figures for hydrodynamic properties (e.g. mean 

liquid velocity and gas holdup) were obtained from visualization studies  (Ratanatamskul and 

Saleart 2016; Hui, Bennington, and Dumont 2009). Further, a few research have used computer 

and numerical models to simulate liquid hydrodynamic behaviour (Vesvikar and Al-Dahhan 

2015).  

Recently some studies have applied transparent non-Newtonian liquids with the hope that they 

can mimic sludge rheological behaviour (Eshtiaghi et al. 2012; Wiedemann et al. 2017). This 

method provided an opportunity to understand the flow field and streams inside the digester. 
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Generally, fluid can be visualized using optical measurement techniques such as shadow 

imaging, Laser Doppler Velocimeter (LDV), Electrical Resistivity Tomography (ERT), and 

Particle Image Velocimetry (PIV) (Wiedemann et al. 2017; Siverts-Wong et al. 2017; Pakzad, 

Ein-Mozaffari, and Chan 2008; S. Kennedy et al. 2014; S. Kennedy, Bhattacharjee, and 

Eshtiaghi 2015; S. Kennedy et al. 2018; S. Kennedy 2017; Houari Ameur, Bouzit, and 

Helmaoui 2011).  

To sum up, impeller shape, size and rotational speed, gas flow rate, and rheological properties 

of fluids are considered as the most influential factors which can change the hydrodynamics of 

bioreactors (Paul, Atiemo-obeng, and Kresta 2004; Crawford and Crawford 2006). 

Collectively, experimental studies outline a critical role of mixing in the performance of 

bioreactors (Lindmark et al. 2014). To examine the aims and objectives described in the 

previous chapters, a transparent simulant liquid should be selected as a working fluid, due to 

the complexity of pseudoplastic materials including different types of sludge as a time 

dependent fluid. Therefore, this study will employ different transparent non-Newtonian 

materials as clear simulant to visualise the hydrodynamics of system. As the rheological 

characteristics of pseudoplastic fluids and hydrodynamics of system are linked together, this 

work will investigate both characteristics at the same time.  

The focus of this work is to investigate the performance and hydrodynamics of an agitated 

multiphase anaerobic digester equipped with a dual helical ribbon impeller. To maximize the 

mixing performance, it is necessary to optimize operating conditions whereas mixing process 

occurs in a minimum time with lowest energy input. Hydrodynamics of an agitated anaerobic 

digester will be examined and optimized through experimental, statistical, and modelling 

methods to broaden detailed knowledge of mixing process in bioreactor.  
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2.2 Sludge 

Sludge is a form of fluid containing different types of organic wastes, microorganisms, 

protozoa, solids, and agglomerated particles resulting in thixotropic behaviour (Bhattacharjee 

et al. 2015; Baudez et al. 2013, 2011; Holliger et al. 2016). Accordingly, the rheological 

characteristics of sludge have been considered an influential factor in the design, sizing, and 

performance of bioreactors (Bhattacharjee et al. 2015; Baudez et al. 2013, 2011; Holliger et al. 

2016). Increasing the shear rate affects the internal structure of a thixotropic fluid and viscosity 

of would drop consequently. Due to lower viscosity, handling the sheared sludge is much easier 

than unmixed sludge (Ruiz-Hernando, Labanda, and Llorens 2015). In addition, viscosity 

would drop by increasing temperature levels or decreasing the solid contents (Farno, 

Parthasarathy, and Eshtiaghi 2015; Ratkovich et al. 2013; Tixier, Guibaud, and Baudu 2003).  

Sludge granulation process is divided into two different stages: nucleation and maturation (Jing 

Wu et al. 2009). Nucleation is the initial and core phase of sludge flocculation, and it is closely 

related to the hydrodynamics of system. Nucleation process under optimum shear rates is faster 

than nucleation process under weak shear rates since heat and nutrient would be distributed 

uniformly under optimum operating conditions. When shear rate goes beyond the threshold 

level of mixing, poor nucleation would occur, and extracellular protein segregation would 

happen in sludge (Kaparaju et al. 2008). Additionally, mixing can prevent the short-circuiting 

and settlement of solid materials and particles inside a digester (Jing Wu et al. 2009).  

Most of the granules formed are particles with a diameter between 0.1-0.6 mm. Average 

diameter (ASD) and nucleus ratio (NR) of p[articles are two important factors for 

characterising sludge rheological behaviour (Jing Wu et al. 2009). 
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2.2.1 Working fluid 

Optimizing the design and operation of a bio-digester is important to reduce the running cost 

and increase the biogas production rate. Further, the sludge mixing pattern can affect the total 

energy consumption in biodigester (Wiedemann et al. 2017). Studying the mixing pattern 

inside the bioreactor can be challenging and impractical, since the opaque nature of sludge 

limits the visualising the flow behaviour inside the digester. Therefore, transparent substances 

with similar rheological behaviour to real sludge may provide reliable information about the 

digester. Some of these clear model fluids and their main applications are summarized in Table 

2-1.

It should be noted that there is a significant knowledge gap regarding the efficiency and the 

productivity of the mixing pattern inside bioreactor. Fluid rheological behaviour in an agitated 

digester is vitally important as it can affect energy consumption and biogas production.  Having 

a good understanding about behaviour of sludge during digestion process is essential to 

optimize the design factors, to maximize the productivity and to minimize the operational cost. 

Table 2-1 Commercial Non-Newtonian fluids applied as simulant in different papers (Wiedemann et al. 

2017; Eshtiaghi et al. 2012) 

No. Working Fluid Application 

1 Xanthan gum Thickening agent 

2 Ply Ethylene Glycol Gel-forming 

3 Sodium alginate Gel-forming 

4 Walocel 30000 Gel-forming 

5 NaCMC Gel-forming 

2.3 Importance of mixing in digesters 

Understanding the mixing process is important to design and operate of an anaerobic digester. 

An optimum mixing pattern is necessary to achieve uniform heat and nutrient transfer, to 

prevent settled and scum layers, to maximise the suspension of solids, and to enhance microbial 
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activity (Forster-Carneiro, Pérez, and Romero 2008; Singh, Szamosi, and Siménfalvi 2019, 

2020). Although the mechanical mixer enhances biogas production in a digester, auxiliary 

methods of mixing including gas injection and recirculation of a part of substrate are suggested 

to obtain optimum performance (Turovskiy 2006). The effectiveness of mixing process can be 

evaluated through measuring the mixing time, energy consumed, volume of dead zone, forming 

the scum and settlement layers, and biogas production (Forster-Carneiro, Pérez, and Romero 

2008; Singh, Szamosi, and Siménfalvi 2019, 2020).  

2.3.1 Mechanical mixing 

The mechanical mixer is an internal system that employs a rotating impeller, usually mounted 

at the centre or corner of a bioreactor. The performance of mechanical mixing depends on 

several factors such as power consumption, stirring speed, type and design of impeller, 

rheological characteristics of the fluid, and other operating conditions. Mechanical agitators, 

as the best method of mixing, can ensure high mixing efficiency and can disperse solid particles 

(Kariyama, Zhai, and Wu 2018). However, the most serious disadvantage of this method is 

high-power consumption. Ideally mixing power consumption is estimated at around 0.007 

kW/m3, as based on the digester’s volume (Metcalf & Eddy, George Tchobanoglous, H. David 

Stensel, Ryujiro Tsuchihashi 2003). To optimize the mixing process, it is essential to maintain 

a balance between short mixing time and power consumed by the impeller. However, there is 

a threshold level where beyond that the mixing process can negatively affects the biological 

activity and subsequently biogas production (Wiedemann et al. 2017; Kariyama, Zhai, and Wu 

2018).  

Impellers are the main mechanical devices responsible for mixing fluid in a bioreactor. Impeller 

blades transmit shear forces to nearby fluid, and gradually transfer shear alongside the stagnant 

parts of the fluid. Therefore, it can be concluded that impellers with different shapes will 
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generate different flow patterns inside stirring vessels. Various types of agitators, including 

turbine stirrers, propellers, crossbeams, frames, blade stirrers, pitched blades, anchors, inter 

migs, anchors, and helical ribbon impellers have been examined within the literature to 

determine an optimum shape, design and size (Kariyama, Zhai, and Wu 2018; Singh, Szamosi, 

and Siménfalvi 2019). These impellers differ from each other in terms of geometry, angle and 

number of blades, rotational speed, and the clearance from the wall and bottom of the tank. 

Some popular types of impellers previously studied have been demonstrated in Fig. 2-1.  

Figure 2-1 Different types of impeller 

Lebranchu et al. (2017) have studied the impact of impeller design on biogas production 

measuring by biogas production level. Both experimental and computational dynamic 

simulations were used to compare the impact of using a classical Rushton turbine with a dual 

helical ribbon on biogas production. The authors concluded that a dual helical ribbon increases 

the dispersion and uniformity of substrate that will lead to greater biogas production 

(Lebranchu et al. 2017). Subsequently, it is important to know that low speed scraping wall 

impellers, including anchor and helical ribbon forms, are the most effective types of mixers 
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inside bioreactors (Lebranchu et al. 2017). Dual helical ribbon impellers rotate with a low speed 

and can clean the vessel wall and return accumulated fluid to the centre of the reactor.  

2.3.2 Gas-lift loop mixing 

Hydrodynamics of multiphase gas-liquid system including aerated reactors, gas-liquid 

bioreactors, and biogas recirculation in agitated anaerobic digesters have not been studied and 

discuss much in available literature. The injection of produced biogas, air, nitrogen, and other 

gases back into the reactor is a popular method for improving the efficiency of agitation and 

accelerating the reaction. Recycling the gas proportion offers advantages including higher 

reactor yield, lower power consumption and less shear stress and tension (Vesvikar and Al-

Dahhan 2015). Some research has shown that injecting gas decreases the viscosity by inducing 

shear stress in working fluid (Meng et al. 2008; Bobade et al. 2018). A gas injection method 

applies a theory first suggested by Verhoff et. al (Verhoff, Tenney, and Echelberger 1974). 

Overall, there are two different types of biogas injections: confined and unconfined methods. 

In the confined method, a small part of a produced biogas is injected through the cylindrical 

tube at the top of the reactor. While in unconfined method the small amount of produced biogas 

is injected through diffuser pipes located at the bottom of reactor. In this proposed study, the 

unconfined method will be applied. According to this technique, the gas will be injected using a 

sparger located at the bottom of the tank.  

Generally, the flow regime inside a stirred multiphase reactor can vary based on the impeller 

rotational speed and gas flow rate. Three different flow regimes can form, including flooding (F), 

loading (L), and complete dispersion (CD) (Paglianti, Pintus, and Giona 2000). Figure 2-2 (a) 

shows the flooding regime, where high gas flow rate or low impeller speed leads to inefficient 

mixing. 

In this situation, the quickly rising gas bubbles are not affected by impeller speed. Loading 

regime can also be observed in Figure 2-2 (c), whereby decreasing gas flow rate or increasing 
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impeller velocity, the loading occurs. In this case, bubbles are trapped behind the blade and 

consequently accumulate. The most desired scenario is complete dispersion, where bubbles are 

evenly distributed. Figure 2-2 (b) represents the optimum impeller speed and gas flow rate 

leading to complete dispersion. 

2.3.3 Mixing time 

Uniformity of temperature, pH, nutrient, and substrate is the main targets of agitation within 

the industrial processes. Mixing time is a quantitative term that commonly defines the 

required time to achieve the maximum level of uniformity in agitated systems (Houari 

Ameur, Bouzit, and Ghenaim 2013). As mentioned above, inadequate, and poor mixing or 

over-mixing can lead to the failure of system and the death of microorganisms in 

bioreactors. Some literature 

Figure 2-2 Gas-Liquid flow pattern in an agitated vessel; a) Flooding; b) Complete Dispersion; 
c) Loading (Paglianti, Pintus, and Giona 2000).  
https://doi.org/10.1016/S0009-2509(00)00125-1 

https://doi.org/10.1016/S0009-2509(00)00125-1


Chapter 2: Literature review 

23 

has defined mixing time as the recorded time to reach 95% of full homogeneity degree 

(Delafosse et al. 2014; Curry and Pillay 2012). Studies have indicated that impeller geometries 

have significant impact on mixing time. Dieulot et al. (2002) have investigated the impact of 

mixing time on improving the performance of agitation using a special type of helical ribbon 

impeller when a vessel is filled with a highly viscous fluid (Dieulot et al. 2002). Additionally, 

the authors determined that variable time-dependent rotational speed is more energy efficient 

than mixing at a constant speed. 

To date, various methods have been developed and employed to measure mixing time including 

conductivity (Bouaifi and Roustan 2001), pH meter (Guillard, Trägårdh, and Fuchs 2000), 

coloured dye addition method and colorimetry (F. Cabaret, Fradette, and Tanguy 2008; Bobade 

et al. 2018), radioactive thermal tracing (Pant et al. 2015), and electrical resistance tomography 

(ERT)(Pakzad, Ein-Mozaffari, and Chan 2008). 

This study follows available practical guidelines for titration techniques as a most popular 

method for measuring mixing time (Paul, Atiemo-obeng, and Kresta 2004). This method is 

non-intrusive and suitable for clear and pH resistant liquids. 

2.4 Two distinctive regions 

Based on the specific rheological characteristics of non-Newtonian fluids such as sludge, two 

distinctive volumes will form during agitation process: inactive and active volume. An 

‘inactive volume’ is a region where fluid is stagnant and there is no specific contribution to 

chemical or biological activities (Bhattacharjee et al. 2015). In this region, settling of solids 

and particles may be observed. However, the region of ‘active volume’ is mobile, where 

maximum microbial and chemical activities can occur. To reach an optimum point with 

minimum costs and maximum efficiency, entire inactive regions should be converted into 
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active regions. This target may be achieved by improving agitation patterns through three 

different methods of mixing: recirculation, mechanical mixing, and gas sparging.  

2.5 Shear rate 

In this study, the maximum shear rate will be imposed on the fluid by the rotational part. 

However, rising gas bubbles can also cause deformation of the gel network structure. 

Therefore, it is essential to consider a combination of both gas shear rate (γg) and impeller shear 

rate (γi) expressed as: ��� = �� ! + ��!

 Equation 2-1 

�� = �#$  Equation 2-2 

In this equation, N is the rotational speed, γi refers to the effective shear rate, and Ks is the 

Metzner–Otto coefficient differing for each type of impeller (A. Metzner and Otto 1957).  

Several studies have explored the factors to influence Ks. The literature offers contradictory 

findings regarding the relationship between these factors. Some research has indicated a 

significant positive correlation between flow index behaviour (n) which shows the degree of 

non-Newtonian characteristics of the fluid and Ks (Carreau, Chhabra, and Cheng 1993; Brito-

De La Fuente, Choplin, and Tanguy 1997; Tangup, Polytechnique, and Centre-ville 1996), 

whilst others have  reported an inverse correlation between n and Ks (S. Nagata et al. 1970; 

Houska 1986). 

There are many correlation in literature addressing a significant positive correlation between 

shear rates (γg) and superficial gas velocity (ug )(Cheng and Carreau 1994; Al-Masry and 

Chetty 1998). The most common used equation for expressing the correlation between shear 

rates (γg) and superficial gas velocity (ug) for non-Newtonian fluids and air interactions has 

been considered in this study. 
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� = 1500�  Equation 2-3 

2.6 Dimensionless numbers 

Mixing patterns inside a tank may be evaluated by considering different dimensionless 

numbers including Froude number (Fr), power number (Np), and Reynolds number (Re). These 

dimensionless numbers scale up the mixing process and correlate flow structures to impeller 

and vessel geometry. If we assume that gravity force is negligible, then only the Reynolds 

number and the Power number can be applied. Many researchers have calculated power 

consumption and heat transfer coefficient in a vessel equipped with a helical ribbon impeller 

operating in a laminar regime (Niedzielska and Kuncewicz 2005). A correlation between a Power 

number and Reynolds number for a Newtonian fluid inside a mixer has been suggested by 

Metzner and Otto, based on the flow regime (A. Metzner and Otto 1957). Accordingly, they 

considered Power number as a constant term in turbulent fluids (high Reynolds number), while 

for a laminar regime they demonstrated the power number to be reversely proportional to the 

Reynolds number. 

$(�) = �(  Equation 2-4 

whereas Kp refers the geometric factor related to geometry of the system. This equation has been 

widely applied within the literature.  

The value of Kp has been widely reported in the literature for helical ribbon and other types of 

impellers. Novak and Rieger have reported Kp=296 for a dual helical ribbon installed in a 

cylindrical flat bottom vessel (Re<60, d/D=0.95, H/D=1.1)(Novak and Rieger 1975). Kp=351.1 has 

been calculated for a flat bottom cylindrical vessel equipped with a helical ribbon impeller 

(d/D=0.937, H/D=1)(Takahashi, Arai, and Saito 1980). Rieger et al. have reported Kp=276.6 for a 

dual helical ribbon installed in a cylindrical flat bottom vessel (Re<20, d/D=0.89, H/D=1)(Rieger, 

Novak, and Dagmar 1986). 
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Further, Metzner and Otto (1957) have defined two concepts including effective viscosity and 

shear stress in order to generalize this equation for shear-thinning fluids (A. Metzner and Otto 

1957). The correlation between effective shear stress and viscosity can be obtained for a vessel 

filled with non-Newtonian fluid equipped with a dual helical ribbon impeller in a laminar flow 

regime η(γi). Effective viscosity is the viscosity of a Newtonian fluid which consume the same 

power as a non-Newtonian system. Therefore, in the case of using a non-Newtonian fluid, the 

Reynolds number should be calculated based on the effective viscosity, after which Equation 

2-5 should be substituted in.

2.6.1 Reynolds number (Re) 

While a turbulent mixing mechanism is defined based on highly energetic eddies imposed on 

the fluid body, a laminar mixing regime is related to a folding, breaking, and stretching system. 

Hence, laminar flow is a favourable flow pattern in most biological systems. Reynolds number, 

as the ratio of internal to viscous forces, is the best method to distinguish between different 

flow regimes including turbulent, transitional, and laminar. The Reynolds number in this 

proposed study should be calculated based on the effective viscosity measured by a rheometer. 

In this system, effective viscosity and shear rate should be altered to normal viscosity and 

impeller shear rate. 

Re = ,-./
0122              Equation 2-5

whereas Re refers to the Reynolds number, the term ηeff refers to effective viscosity, N refers 

to the rotational speed of the mixer, and ρ shows density. 
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2.6.2 Power number (Np) 

The efficiency of impeller has been evaluated by measuring the input power (P0).  Rudolph (2007) 

defined power uptake as a function of various parameter including tank and impeller diameter (T 

and D), impeller bottom clearance (C), number of blade and blades, and liquid height (H). 

34 = 5�6, �, 7, 8, 9, :, ;, $, …                 Equation 2-6 

The rate of energy dissipation within the liquid can be represented by the Power number.  

$( = =>
?@ABC = 7 DE

BFG D�
BF� DB@/

 FH I?@B/
J)55

KL
               Equation 2-7 

where, NP indicates the power transferred by the shaft to the liquid, D is the propeller diameter, 

ηeff refers to the effective viscosity, N indicates the rotational speed of the impeller, ρ refers to 

density, P0 indicates power consumption as be obtained from the equation below: 

P4 = 2πNM             Equation 2-8 

where M is torque and calculated from the integrated pressure on impeller blade. 

2.6.3 Froude number (Fr) 

When a vortex exists, the Froude number is defined as based on inertial forces and gravitational 

force. Applying the Froude number is not a suitable technique for scaling-up a system (Rudolph 

et al. 2007). The result of the following equation shows the Re number is in the range of 10-

1000, as a transient flow(Jaszczur, Młynarczykowska, and Demurtas 2020). 

Fr = -/.
T                    Equation 2-9 

However, a combination of gas flow number and Froude number can be employed to evaluate 

liquid-gas flow patterns including flooding, loading, complete dispersion and their transitional 

states, as described in Section 3.7.1(Paul, Atiemo-obeng, and Kresta 2004). 
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2.6.4 Gas flow number (Flg) 

A gas flow dimensionless number is a term that defines the flow pattern occurring in an agitated 

vessel as gas bubbles rise. Nagata and Yamada (1972) have previously indicated that gas flow 

number is constant in a turbulent regime, whilst it calculated from the equation below in 

laminar flow (I. Nagata and Yamada 1972).  

FlT = VW
-.A                Equation 2-10  

Gas flow number indicates the correlation between impeller pumping capacity and gas 

volumetric flow rate (Qg). 

2.6.5 Mixing time number (Nθ) 

There are many studies that have investigated mixing time with a single impeller and have 

compare the degree of homogeneity. Some research has defined dimensionless mixing time 

number (Nθ) and related Nθ to other dimensionless numbers including Re and Fr. The 

dependency of mixing time number with Re and flow regime has been investigated within the 

literature (Tanguy and Takenaka 2005). Further, the relationship between dimensionless 

mixing time and impeller speed has been widely studied within  research (Gogate, Beenackers, 

and Pandit 2000). One study has reported that mixing time positively correlates with input 

power, while impeller type is an insignificant factor (Paul, Atiemo-obeng, and Kresta 2004). 

There is still a lack of knowledge about the effect of mechanical impeller systems coupled with 

sparging gas on mixing time number. Some researchers have indicated that sparging gas 

reduces mixing time number (Vrábel et al. 2000; Hadjiev, Sabiri, and Zanati 2006; Mcclintock 

1997). Bouaifi and Rouston (2001) indicate that gas flow do not influence mixing time when a 

regime is completely dispersed (Bouaifi and Roustan 2001). Further, many researchers have 

suggested a correlation between mixing time numbers and impeller speed and gas flow rate 



Chapter 2: Literature review 

 

29 
 

when a flow pattern is flooding or loading (Vrábel et al. 2000; Tanguy and Takenaka 2005; 

Hampel et al. 2007).  

2.7 Power consumption 

Power consumption is a key parameter in evaluating mixing performance, cost, and design. Power 

consumption is a reliable indicator of how much energy should be transferred to a system in order 

to obtain the best results. The ideal system consumes less power but provides a homogenous mixing 

pattern within a short time. 

In a gas-liquid agitated system, a combination of different dimensionless numbers, including 

Froude number, gas flow number, and Weber number, should be considered in calculating the 

whole power uptake. 

Power consumption in ungassed mixing systems with different impellers has been widely studied 

within the literature. Takahashi et al. (1980) have calculated the consumed power for different 

configuration of anchor and helical ribbon impellers (Takahashi, Arai, and Saito 1980). Carreau et 

al. (1993) have determined a correlation between power consumption and rheology of fluid in a 

vessel agitated by a helical ribbon impeller (Carreau, Chhabra, and Cheng 1993). Pakzad et al., 

have characterized flow pattern and measured the power consumed by a Scaba 6SRGT impeller, 

mounted in a  cylindrical vessel filled with a Herschel-Bulkely fluid (Pakzad et al. 2012, 2013; 

Pakzad, Ein-Mozaffari, and Chan 2008). Additionally, power consumption has been investigated 

for high viscous fluid agitated by coaxial mixers (Rudolph et al. 2007; Espinosa-Solares et al. 1997; 

Bao et al. 2018, 2015). The power consumed in an ungassed agitated vessel can be calculated from 

an equation combining Reynolds number and power number (Guillaume Delaplace et al. 2006). 

When gas is injected inside the system, cavities form near the blades and low-pressure areas are 

created around the impeller, leading to bubble accumulation. Thus, the power induced by an 

impeller into the fluid will drop, where the performance of the reactor is reduced (W. Wang, Mao, 

and Yang 2006). The power consumption for gas-liquid systems is a function of gas flow rate, 
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rotational speed, and impeller type. Some of the correlations relating to these parameters are 

summarized in Table 2-2. 

Table 2-2 The correlation between ungassed and gassed systems reported in literature (Luong and 

Volesky 1979) (Michel and Miller 1962) (Shewale and Pandit 2006) 

Impeller Fluids Correlation  

Six-blade 

turbine 

 

Water 38
30

= 0.497 I \8
$93K−0.38 _$2936`

a b
−0.18

 
(Luong and Volesky 

1979) 

CMC 38
30

= 0.514 I \8
$93K−0.38 _$2936`

a b
−0.194

 

Disk turbine Water 
38 = 0.812 _302$93

\80.56 b
0.45

 
(Michel and Miller 1962) 

Pitched blade 

turbine 

Water 
38 = 1.52 _302$93

\80.56 b
0.427

 
(Shewale and Pandit 

2006) 

2.8 Gas holdup 

In most gas-liquid systems, gas dispersion is a key parameter that impacts on the performance 

of mixing. Optimum gas dispersion leads to maximize heat and mass transfer, uniformity, and 

better mixing by improving the contact between gas and liquid. Gas hold-up is a function of 

gas phase volume (Vg) and total volume (Vt), characterized by gas dispersion quality. The total 

volume is defined as the whole volume of the system including gas and liquid volume (Vl). 

∅ = ef
eghef                 Equation 2-11 

Gas holdup has been classified into two different categories, locally and globally. The 

difference between the level of the liquid surface in ungassed and gassed situation is called 

global gas holdup. Measuring local gas holdup is a complicated task requiring accurate design 

and numerical validation. Much researcher have measured local gas holdup using different 

types of invasive methods including the suction method (Nagase and Yasui 1983), heat transfer 

probes (Boyer, Duquenne, and Wild 2002), as well as needle probes (W. Wang, Mao, and Yang 

2006). However, these intrusive techniques may interfere with the results and change the flow 
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pattern. To overcome these limitations, non-invasive methods including electrical resistance 

tomography (ERT)(Pakzad et al. 2013), X-ray and gamma rays (Hampel et al. 2007), using 

high-speed cameras (Chhabra et al. 2007; Behkish et al. 2007), PIV/LIF (S. Liu, Low, and 

Nickerson 2009), and ultrasonic modes (Supardan et al. 2007) have become popular amongst 

research studies.  

2.8.1 Influential factors on bubble deformation 

When bubbles form, they rise vertically to overcome the buoyancy force. Gas-liquid 

hydrodynamics and bubble size are proportional to impeller speed, viscosity of fluid, and gas 

flow rate. Smaller bubbles would from by increasing the rotational speed of impeller. Bubbles 

have accelerated by increasing the rotational speed of impeller leading to hitting the bubbles to 

the blades and wall. Bubble size determines the interfacial area between phases which can 

directly affect the mass transfer and biogas production rate. In accordance with the importance 

of bubble size and distribution many researchers have examined the hydrodynamics of gas-

liquid systems, particularly in agitated systems equipped with rotational impellers (Bouaifi and 

Roustan 2001; Hampel et al. 2007; Gumulya et al. 2016). 

Further, viscosity of fluid cause deformation in bubble shapes and changing the rising velocity. 

Travelling bubbles fastened by increasing the viscosity resulting in longer gas holdup time. Further, 

higher viscosity leads to less bubble deformation and to more changes of striking and coalescence. 

In this case, bubble shape is nearly rounded. Additionally, high viscosity of fluid reduces the 

turbulence and prevents bubbles from breaking up.  

Higher gas flow rate reduces the bubble deformation since bubbles rising quickly and reach to the 

surface in a short period of time. 
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2.9 Computational fluid dynamics (CFD) 

CFD modelling can be applied as a powerful tool to study the hydrodynamics of an agitated 

multi-phase bioreactor in detail. Within the past two decades, a number of researchers have 

sought to simulate different aspects of hydrodynamics of agitated multiphase systems including 

drag force (Trad et al. 2015), mass transfer and interactions between phases (Eftaxias et al. 

2020), rheological characteristics (Samandari-Masouleh et al. 2012c; Niño, Peñuela, and 

Gelves 2018; Fernandes del Pozo et al. 2020; Miryahyaei et al. 2020), energy demand (Houari 

Ameur 2015; Shahnazari, Ahmadi, and Masooleh 2017), and hydrodynamics (Gumulya et al. 

2016; Fernandes del Pozo et al. 2020; J. Jiang et al. 2016a). In addition, adjustment and 

optimization of operating conditions through experiment can be a demanding and sometimes 

impossible task because of the cost and limitations involved in applying instruments and 

equipment. Notwithstanding these limitations, the literature suggests using CFD simulation as 

an alternative method in order to specify different hydrodynamic characteristics of a multiphase 

system (Samandari-Masouleh et al. 2012a; J. Jiang et al. 2016a; Bao et al. 2018, 2015). The 

influence of geometry and type of impeller on the performance of a bioreactor filled with a 

non-Newtonian fluid have been widely investigated in single-phase, using different CFD 

approaches (Torotwa and Changying 2018; Singh, Szamosi, and Siménfalvi 2020; Tobo, 

Bartacek, and Nopens 2020; Meister et al. 2018). Many research has been conducted on biogas 

production that applies different CFD approaches (Shen et al. 2013; Kamla et al. 2019). 

Lebranchu et al. (2017) have carried out a series of experiments and used CFD modelling to 

compare the biogas production of a biodigester operated with different impeller types. They 

reported the higher efficiency of a dual helical ribbon agitator compared to other impellers 

(Lebranchu et al. 2017; Houari Ameur, Kamla, and Sahel 2017). It has been reported that effect 

of width of a helical ribbon blade on bioreactor efficiency is insignificant (Kuncewicz and 

Stelmach 2017). Detailed examination by Ameur and Ghenaim (2018) has shown that the 
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rheological characteristics of fluid dominate the hydrodynamics of a biodigester (Houari 

Ameur and Ghenaim 2018). The key outcome of this work is that sludge should be considered 

as a non-Newtonian fluid. However, most CFD studies have ignored the rheological behaviour 

of sludge, due to its complex nature (Oyegbile and Akdogan 2018; Basavarajappa et al. 2015).  

In most of previous studies, it has been assumed that bioreactors contain a single-phase fluid, 

and this assumption is far from reality. The interaction between phases is an influential factor 

in modelling bioreactors, and it plays a key role in hydrodynamics, and gauging the efficiency 

of a system. Mutual dynamic interactions between gas and liquid phases, including drag forces, 

gas holdup, liquid viscoelastic behaviour, velocity field, and bubble size distribution, can alter 

the efficiency of a system. Smaller, fully dispersed bubbles expand within the interfacial area 

between phases and facilitate mass and heat transfer. Most CFD simulation studies have only 

focused on modelling the liquid phase, because CFD modelling was not specifically designed 

to evaluate factors related to breakage and coalescence of bubbles in detail. As a result, a 

combination of CFD-PBM methods has been suggested in the literature to model the interaction 

between phases (Dhanasekharan et al. 2005; Venneker, Derksen, and Van den Akker 2002; 

Niño, Peñuela, and Gelves 2018). 

2.9.1 Governing equations 

Previous studies have identified the Eulerian-Eulerian (E-E) multiphase approach as a suitable 

numerical method to solve continuity and momentum equations. This method suggests two 

phases as continuous (Ali and Pushpavanam 2011). The continuity and conversion of 

momentum equations for phase i have been reported in Equations 2-12 and 2-13. 

j
j� ���6� + ∇. ���6��� = 0              Equation 2-12 

j
j� ���6��� + ∇. ���6����� = −��∇l + ��6�8 + ∇. :m� + ��6��⃗� + ∑ ��⃗��o�pq         Equation 2-13 

�� + �� = 1                Equation 2-14 
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Where �� refers to the volume fraction of the continuous phase, �� refers to the liquid mean 

velocity, ∇. :m� refers to the shear stress, �⃗� refers the momentum between gas and liquid phases, 

and ��⃗�� shows the interphase forces. The following equation shows the shear rate caused by 

laminar and turbulent momentum fluxes: 

:m� = ��r����st∇�⃗� + �⃗��u − D!
vF ��r����s∇�⃗�w ̅           Equation 2-15 

The term ���� refers to the liquid effective viscosity characterised by shear induced viscosity 

(��,�, molecular viscosity (��, and turbulence viscosity (��,� (Sato and Sadatomi 1981).  

���� = �� + ��,� + ��,�              Equation 2-16 

The gradian of cohesion, pressure, and friction alter interphase forces, which can be 

characterized by the classical drag model of Schiller and Naumann. Where CD refers to the 

drag coefficient of a gas phase (Guan et al. 2019). 

7B = y !z
{�| �0.15�)�4.}~�                 �) ≤ 1000  

0.44                                      �) > 1000            Equation 2-17 

The � − � model is employed to explain the turbulence based on two equations. This model is 

a combination of the two equations below. 

j
j� �6�� + ∇. �6��⃗�� = ∇. D��,�

�� ∇�F + ��,� − 6��         Equation 2-18 

j
j� �6�� + ∇. �6��⃗�� = ∇. D��,�

�� ∇�F + 7q���,� − 7!�6��        Equation 2-19 

where � refers the dissipation rate, k refers to turbulent kinetic energy, and G is defined as the 

generation of turbulent kinetic energy.  

The following equations explain the properties of the mixture, where  7� = 0.09, 7q� = 1.44, 

and 7!� = 1.92 are constants, as mentioned in the literature (Ranade 2001). 

6� = ∑ ��6�o�pq                Equation 2-20 

�⃗� = ∑ ��?���⃗ �����∑ ��?�����
          

                 Equation 2-21 
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��,� = 6�7� �/
�                Equation 2-22 

2.9.2 Population balance model (PBM) 

PBM is a powerful method for predicting changes in bubble size during a mixing process 

(Marchisio, Vigil, and Fox 2003). Developing a comprehensive understanding about bubble 

breakage and coalescence is essential in understanding the hydrodynamics of two-phase 

systems. A combination of the CFD-PBM method has been applied in literature to predict the 

characteristics of an unsteady multiphase system including drag (X. Jiang, Yang, and Yang 

2016), lift (Tomiyama et al. 1997) and mass transfer. 

j
j� ���⃗, 
�, � + j

j� [�r��⃗, 
� , �����⃗, 
�u + j
je| [���⃗, 
� , � j

j� 
���⃗, 
� = ���⃗, 
�, �  Equation 

2-23 

Whilst the first term on the left refers to the bubble density distribution function position of �⃗, 


�  and time t. ���⃗, 
� , � refer to phase interactions while ��  refers to the local velocity of 

bubbles. 

Although extensive research has been carried out on CFD modelling of helical ribbon 

impellers, to the researcher’s knowledge no single study exists that considers helical ribbon 

impellers in two-phase systems. This study focuses on CFD modelling of a helical ribbon 

impeller where gas is injected inside a pseudoplastic fluid. 
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methods 

3.1 Reactor setup 

The experiments were carried out in a flat bottom cylindrical vessel with an internal diameter 

of 19 cm, which is shown in Figure 3-1. The setup was fixed on top of a cast iron bench to 

support the motor, shaft, mixer, tank, and air entrance valve installed at the bottom. For the 

purpose of flow field analysis, the reactor was made from transparent plexiglass, located in a 

rectangular tank filled with water to eliminate the reflection of light. Height-to-diameter 

(Aspect ratio) was designed to be adjusted to 1.4. The working volume of the reactor was 7 

litres, furnished by an aluminum dual helical ribbon (H:15 cm, D:16 cm, and W:2 cm) rotated 

by an an electrical motor adjusted to 50-100 rpm. The driven motor was equipped with a digital 

monitor, torque meter and controller. The geometric configuration of the stirred system is 

shown in Table 3-1. The air flows coming from a compressed air pipeline, has been controlled 

by a regulator toward a flowmeter (Omega engineering flow meter with accuracy of ±2% Full 

Scale) ranging from 0-2.2 LPM. A hose connected the flow meter to the surface sparger with 

a non-return valve installed at the bottom of the tank. The surface sparger was fixed at the 

bottom of the tank, using 10 drilled holes of 0.00025 m diameter.

Table 3-1 The geometric configuration of the stirred system 

Vessel inner 

diameter (m) 

Vessel 

height (m) 

Impeller 

height (m) 

Impeller 

diameter (m) 

Impeller blade 

diameter (m) 

Impeller 

clearance (m) 

Shaft diameter 

(m) 

D H h d di IC ds 

0.19 0.4 0.155 0.14 0.02 0.02, 0.04, 0.06 0.015 
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Figure 3-1: The Schematic of experimental setup 
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3.2 Sample preparation 

Transparent sludge simulants were provided by Rowe Company (Sydney, Australia) including 

PEG 400,000 with 2.25-4.5 Pa.s, 5 % in H2O, NaCMC with a viscosity of 0.1-1 Pa.s, 2 % in 

H2O, and XG from Xanthomonas campestris with a viscosity of 0.8-1.2 Pa.s,. Further, alginate 

with a viscosity of 0.3-0.4 Pa.s, 1% in H2O was supplied by Novachem Company (Australia). 

All these polymers have been verified as safe, extracted from natural resources and applicable 

within the food industry (Wasikiewicz et al. 2005).  

The process of dissolving these four polymers in water was time consuming, requiring gentle 

agitation at 500 rpm for 12-24 hours using a magnetic stirrer. Because of the large size of the 

polymer molecules, it is suggested to gradually dissolve the polymers in deionized water to 

avoid agglomeration. Six solutions of varied concentrations (0.1, 0.5, 1, 1.5, 2, and 3 wt%) 

were prepared for each polymer. Following this, the samples were refrigerated and stored 

overnight to release any trapped bubbles.  

The first series of result in Chapter 4 shows the strong similarity between rheological properties 

of XG and sludge compared to other polymers. However, NaCMC as a clear simulant fluid has 

been used in this study to facilitate the image processing procedure and PIV tests. Because XG 

solution clarity is poor for applying the visualization method. 

3.3 Measurement of pH and zeta potential 

A total of 24 samples were tested in terms of their stability and pH resistance. The major source 

of uncertainty in using these solutions is the likelihood of forming floccules, leading to 

instability. Therefore, the stability of the solution was examined by measuring Zeta potential 

(ζ-potential). An unstable solution shows particle surface charge between the range of -30 mv 

and +30 mv (Alexandru Grumezescu 2016). The Stable range of Zeta Potential is less than -30 

mv and more than +30 mv. If the magnitude of particle surface charge (ζ-potential) in a solution 
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shows a higher value, the likelihood of being agglomerated reduces. In this study, a Malvern 

zeta sizer (Malvern series ZEN 3500, Malvern Instruments Ltd., Worcester, UK) with a normal 

accuracy ± 0.1 mv, was used to measure ζ-potentials of solution. 

The acid-base method was applied to measure mixing time in this study, where it was essential 

to control the level of pH tolerance of solutions. Therefore, a glass pH electrode (EUTECH, 

pH 700 with normal accuracy ± 0.1) was applied to evaluate the resistance of the solution to 

pH changes. 

All experiments were repeated twice to account for human and instrument error. 

3.4 Rheological measurement and test procedures  

A DHR-3, TA Instruments rheometer with normal accuracy ± 0.005 was applied to measure 

the rheological characteristics of the solutions. The series of experiment were repeated under 

the same conditions, whereby poor signal/noise ratio was improved. The data collected from 

the rheometer was analysed to enable the formation of flow curves and to measure the level of 

viscoelasticity and thixotropy of solutions. The experiment was conducted in a coaxial cylinder 

cup (diameter 30.4 mm) and a bob (diameter 28 mm and height 42 mm) with a gap distance of 

1 mm. The tests were carried out at a constant temperature of 25C. The cup was filled with 20 

ml of solution and pre-sheared for 15 min at 300 s-1 in order to erase the previous memory. 

Following this, the samples were rested for 5 min at zero shear rate (Baudez, Slatter, and 

Eshtiaghi 2013). Then, the viscoelasticity of solutions was examined with amplitude sweep 

oscillation tests at 1 Hz through an increasing ramp of strain from 1% to 300%. By conducting 

the amplitude sweep oscillation tests, the solid-like (storage moduli, G′) and liquid-like (loss 

Moduli, G″) behaviour of simulant materials can be clarified. To plot the flow curve, a flow 

sweep test was carried out through decreasing the ramp of shear rate from 1 to 300 s-1 up to 15 
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minutes (Deborah and De 2008). The gap between increasing and decreasing shear ramps 

identify the thixotropic level of fluid. 

3.5 Mixing pattern 

The performance of the impeller can be evaluated by measuring consumed power and mixing 

time. The ideal mixing process occurs when the complete mixed system is achieved with the 

shortest amount of time and minimum consumed power. Further, the intensity and duration of 

the mixing process plays a key role in digester throughput in terms of destroying the 

microorganism environment (Ward et al. 2008).   

3.5.1 Mixing time 

The most popular method to investigate mixing time is the Acid-Base technique (Taylor et al., 

n.d.; Foucault, Ascanio, and Tanguy 2004; Hari-prajitno et al. 1998; Deans, n.d.). By adding 7 

ml of purple NaOH-Phenolphthalein solution to the agitated system, the solution starts to 

become purple. Following this 2 ml HCl acid was injected close to the central shaft on the top 

surface of liquid. All this process was recorded and captured with a high-speed camera 

(Samsung digital Camera 12 MP with dual pixel autofocus speed of 1.4 μm) for further 

analysis. This method makes it possible to detect the vanishing of dye throughout the system. 

The final point of mixing cannot be seen by just colouring method due to exitance of dye both 

in front and behind the point. The decolorization method can help to address this issue. In 

decolorization, the last point of mixing remains coloured and can be detected through the image 

processing method. In this study, an acid- base indicator dye was used to measure the mixing 

time (Paul, Atiemo-obeng, and Kresta 2004). 
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3.6 Experimental design 

The main objectives of the proposed study evaluate the influence of impeller speed, gas flow 

rate, viscosity, and impeller clearance from bottom of the tank in relation to mixing time and 

power consumption. Table 3-2 demonstrates the list of variables and their levels (minimum, 

maximum, and average), as obtained in the preliminary study.  

Table 3-2 Variables applied in the optimization procedure of the impeller performance using RSM method  

Symbols Variables Low level Central level High level 

X1 Impeller speed (1/s) 50 75 100 

X2 Gas flow rate (l/min) 0.5 1.35 2.2 

X3 Impeller Clearance (m) 0.02 0.04 0.06 

X4 Concentration (Wt%) 0.1 0.8 1.5 

In the one-factor at one-time method (OFAT), there are unanswered questions about what the 

most influential factor is. Further, in this method interactions between parameters are 

completely neglected. To cover this gap, a full factorial method should be considered, requiring 

125 tests for 3 variables. Applying statistical method would help to reduce the number of 

laboratory experiment and to optimize the experiment condition (Zitrom 1999). 

The impacts and relationship between listed factors have been analysed through a three-factor 

three-level Box-Behnken method. Next, the optimization of factor levels was evaluated through 

response surface methodology (RSM). Accordingly, the most influential factor can be 

identified through this method. This process was repeated three times in order to ensure 

reproducibility of experiments.  

This method of analyses not only reduces the number of experiments, but also optimizes 

interactions and quadratic effects. Equation 3-1 can be considered as a suitable choice to 

correlate all associated variables. 
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� = �4 + ∑ ����v�pq + ∑ �����!v�pq + ∑ ∑ �������v�v�pq + )����            Equation 3-1 

In this equation, Y refers to the response, for example mixing time, while β0, βi, βii, and βij refer 

to regression coefficients. The most influential factors have been identified by drawing 3D 

surface plots (Zitrom 1999). 

3.6.1 Installing impeller 

In this part of the experiments, the helical ribbon impeller was installed inside the cylindrical 

reactor. The impeller shaft was rotated by an electric motor equipped with a speed controller 

installed outside the vessel. The power consumption was controlled between 5-8 W/m3, as 

recommended by the US EPA (U.S. Environmental Protection Agency, 1987). To monitor the 

inactive volume of fluid, 15 ml NaOH and florescent dye was well- stirred inside the digester 

to increase the pH until a green color appeared. Next, 20 ml of solution was collected and 

agitated with an adequate amount of HCl and injected near the impeller for visualization 

purposes. After injection, a discoloration process was observed and recorded during the time 

(t) by a high-speed camera. 

3.6.2 Data analysis 

The data gathered during the experiment was classified and analysed. Then, the results were 

interpreted and formed into graphs, tables, and charts using appropriate software. Some of the 

analysed and processed data has already been published in two high ranked scientific journals 

(M. Amiraftabi and Khiadani Mehdi 2019a; M. Amiraftabi, Khiadani, and Mohammed 2020). 

Additionally, the remainder of the experiments and numerical simulations are currently under 

review. 
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3.7 CFD simulation 

This study applied a combination of CFD- PBM models as well as a suitable drag model to 

predict the hydrodynamics of an agitated gas- liquid system. The first step involved developing 

3D geometry, like what is used in experiments, with a few simplifications. Following this, the 

mesh was generated in five different cell sizes, ranging from coarse to small. The whole 

geometry was divided into three separate zones. The impeller is defined as a stagnant first body, 

while the tank is divided into inner and outer bodies, where the inner body rotates with the 

impeller speed. Each body has then been divided into a number of small and non-overlapping 

grids, called mesh. After defining the boundary conditions, five mesh were imported to the 

solver to study the mesh independency and grid sensitivity analysis.   

The second phase of CFD modelling is putting the grid into the solver where the fluid variable, 

operating parameters, and physical boundary conditions are defined. The optimum operating 

conditions were determined from statistical analysis of previous experiments (M. Amiraftabi, 

Khiadani, and Mohammed 2020). Rotational speed was examined in three different rotational 

speeds of 25, 75, and 150 rpm when the gas flow rate was equal to 1.8 LPM and concentration 

at %0.5 Wt. Next, the governing equations were solved for each cell using a suitable numerical 

algorithm. Recent studies suggest this discrete method is a successful technique to solve the 

PBM model (Hounslow, Ryall, and Marshall 1988).  

Results including velocity field, pressure, and concentration were obtained during this 

procedure and extracted by post CFD software.  

Finally, the CFD simulation predictions were compared with PIV results to verify the CFD 

model. The findings were reported, analysed, and plotted to compare to experiment results 

using the post CFD software. 

This study divided bubble diameters to five different intervals in order to evaluate bubble 

deformation. The range of minimum and maximum bubble diameter can be investigated in a 
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series of experiment by image processing analysis. This study follows the imaging or 

photographing techniques identified within the literature to measure local bubble size and find 

average size in an agitated vessel (Pant et al. 2015; Hirata, Nienow, and Moore 1994; 

Laakkonen, Moilanen, et al. 2005; Vlaev and Martinov 1998).  

3.8 PIV measurements 

3.8.1 PIV setup 

The velocity field and bubble movement of agitated multiphase system were recorded and 

visualized using the Particle Image Velocimetry (PIV) technique. The 2D surface of the system 

was vertically divided into two zones to eliminate shadows. Figure 3-2 schematically shows 

how the PIV system works. The total number of images recorded by a PIV is 600, where seven 

samples were captured every second. In this work, an in-line dual-pulsed Nd:YAG laser (make: 

Dantec Dynamics, model: Dual Power 200-15) with 200mJ/pulse at λ=532nm has been 

applied. Images were captured by a monochromatic CCD camera (make: Dantec Dynamics, 

model: Flow Sense EO 16M-9) with a resolution of 4920 x 3280 pixels and coupled with a 

Carl Zeiss (T*1.4/50) lens with a 50mm focal length. The data was analysed and processed by 

Dynamic Studio 5.1 software. To counter the effects of rising bubbles and noises through the 

system, a filter lens and fluorescent polymer particles (PMMA-RhB-Frak-Particles) with a 

mean average diameter of 20-25 μm were applied. The movement of these fluorescent particles 

visualized the trajectory of liquid during the mixing process. 
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Figure 3-2 a) Schematic diagram of PIV system; and b) Real experimental setup. 
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Understanding the rheological characteristics of sludge is important for design and oper-

ation of water and wastewater treatment units including stirrers, mixers, pumps, and

separators. Studying the rheological characteristics of real sludge involves health risks and

complexity due to opaque nature of sludge and its time evolution caused by microbial activ-

ity and aging. Researchers have applied various simulants such as clay, minerals, and gels to

prepare synthetic sludge and to perform a lab-scale study on rheological properties and flow

behaviour of real sludge. Some of previous studies have ignored the stability and rheolog-

ical characteristics of simulant fluids, which might lead to less reliable results. Therefore,

selection of a safe, cheap and stable alternative that can mimic rheological behaviour of

real sludge is still open and challenging. The proposed study examined the pH sensitivity,

zeta potential characteristics and rheological properties of sodium carboxymethyl cellulose,

polyethylene glycol, sodium alginate, and xanthan gum as popular model fluids with dif-

ferent concentrations (0.1, 0.5, 1, 1.5, 2, and 3 wt%) in details. A comparison of rheological

properties of these fluids with the rheology of different types of sludge indicated that xan-

than gum is a preferred simulant fluid that mimic the behaviour of sludge for the shear rate

below 100 s−1. Analysis of zeta potential and pH sensitivity indicates that xanthan gum is

also a resistant solution to pH changes and agglomeration. In addition, it replicates sludge

behaviour in terms of viscosity, flow curve, and Herschel–Bulkely parameters. Nevertheless,

xanthan gum does not support thixotropy and viscoelastic characteristics of sludge.

© 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Increasing amounts of annually produced wastewater due to rapid

population growth and accelerated urbanization pose negative effects

on both the environment and human health. This rapid urbaniza-

tion applies pressure on municipal wastewater treatment plants to

increase the capacity and to reduce the size of treatment units.

Wastewater treatment authorities are now focused on optimizing the

design and efficiency of wastewater treatment units to minimize the

amount of produced sludge. Therefore, studies of the rheological and

hydrodynamic behaviour of municipal sludge including viscosity, flow

behaviour, viscoelasticity, and thixotropy have become an important

∗ Corresponding author.
E-mail addresses: m.amiraftabi@ecu.edu.au (M. Amiraftabi), m.khiadani@ecu.edu.au (M. Khiadani).

topic from both an industry and research perspective (Baroutian et al.,

2013; Dai et al., 2014; Feng et al., 2017; Liu et al., 2016; Markis et al., 2014;

Miryahyaei et al., 2018; Oz et al., 2014; Ratkovich et al., 2013; Zhang

et al., 2016). Some experimental works have proved that rheology of

fluid influences design factors, capital costs and performance of sludge

processing units (Baudez et al., 2007; Feng et al., 2017; Liu et al., 2016;

Papa et al., 2015; Ratkovich et al., 2013; Spinosa and Lotito, 2003). An

example of these variables are the contribution of rheology to pressure

drop in pipelines, energy consumption and fouling in membrane biore-

actors, aeration tanks and, anaerobic digesters, head loss in pumps and

surface area in heat exchangers (Amiraftabi et al., 2014; Ratkovich et al.,

2013).

https://doi.org/10.1016/j.cherd.2019.03.040
0263-8762/© 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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Table 1 – Summary of previous studies that have used simulant fluids to mimic  primary sludge (PS), activated sludge
(AS), and digested sludge (DS).

Materials Sludge Appearance Purpose Reference

Suspensions of kaolin and quartz sand in
water

AS Turbid
solution

To  study yield stress of sludge Spinosa and Lotito (2003)

Lanthanum chloride (LaCl3),
olyethyleneimine, and poly([3
(methacryloylamino)-propyl]-trimethyl-
am- monium
chloride)

AS/DS  – Investigation of deswelling and
flocculation of sludge

Legrand et al. (1998)

Suspension of glass bead and carbopol gel DS Transparent Simulation of elastic rheological
properties of sludge

Eshtiaghi et al. (2013)

Sulfate polystyrene latex particles
suspended in sodium alginate

AS  Transparent To understand bioflocculation of
sludge

Sanin and Vesilind (1996)

Kaolin suspensions AS Turbid
solution

Analysis of organic material and
sludge distribution pattern

Dieudé-Fauvel et al. (2016)

Carbopol, laponite, and carboxymethyl
cellulose sodium salt (NaCMC)

DS  Transparent Investigation of rheological
properties of thickened digested
sludge

Eshtiaghi et al. (2012)

Xanthan gum DS  Transparent To visualize rheological behaviour
of sludge when gas is injected

Bobade et al. (2018)

Xanthan gum DS  Transparent To improve mixing performance
inside the digester

Kennedy (2017)

Xanthan gum DS Transparent Visualization of the recirculation
pattern inside the digester

Kennedy et al. (2014)

Sodium carboxymethyl cellulose
(NaCMC), polyethylene glycol (PEG),
acrylamide-based Polysinth0 (PS), and
xanthan gum

DS  Transparent To improve mixing pattern inside
biogas digester

Wiedemann et al. (2017)

Despite great achievements in characterizing the rheological

behaviour of sludge as a non-Newtonian fluid, there are still some bar-

riers for effectively exploring the nature of sludge as the by-product of

wastewater treatment plants. One of these barriers is time-dependent

changes could take place in microbial conditions and activities of real

sludge which make it impractical to transport to laboratory as this

might not mimic the behaviour of sludge obtained at where it is orig-

inated (Baudez and Coussot, 2001; Dai et al., 2014; Guibaud et al.,

2004). Additionally, sludge is a complex product that contains various

organic and inorganic compounds making analytical study difficult.

Further, real sludge is unhygienic and may contain protozoa, bacteria

and viruses which can spread different types of diseases. Therewith, in

some countries working with real sludge requires approval from health

and safety authorities as a means of addressing these handling and

microbiological concerns (Baudez et al., 2007; Spinosa and Vignoles,

2013; Spinosa, 2016).

Since managing, handling, and disposing of sludge is a challeng-

ing and demanding task, researchers have been investigating safe and

easy alternatives (e.g. preparation of synthetic sludge) to facilitate an

in-depth research on sludge (Baudez et al., 2007; Bobade et al., 2018;

Eshtiaghi et al., 2013, 2012; Wiedemann et al., 2017). Therefore, work-

ing with a model fluid that mimic sludge characteristics is desirable and

can significantly assist in optimizing water and wastewater treatment

process (Baudez et al., 2007; Besra et al., 2000). A summary of previous

studies with focus on the use of simulant/model fluids to study sludge

behaviour is presented in Table 1.

Several researchers have focused on producing synthetic sludge

using various mineral substances such as calcite, talc, limestone,

kaolin, and barium sulphate as one of the sludge main component

(Dieudé-Fauvel et al., 2016; Legrand et al., 1998; Spinosa and Lotito,

2003). Whilst kaolin has frequently been used in previous studies

(Dieudé-Fauvel et al., 2016; Sanin, 2002), Baudez et al. explained that

kaolin solution is not a suitable model fluid for simulating viscoelastic

behaviour of sludge (Baudez et al., 2013a). Eshtiaghi et al. explored the

rheological behaviour of sodium carboxymethyl cellulose (NaCMC), car-

bopol gel and laponite clay solutions as shear-thinning fluids with yield

stress (Eshtiaghi et al., 2013, 2012). Previous studies have concluded that

NaCMC is a suitable material to mimic the thickened digested sludge in

higher shear rates and carbopol can be used as a simulant fluid to pre-

dict the behaviour of thickened sludge in short time operation including

pumping (Eshtiaghi et al., 2013, 2012; Flemming and Wingender, 2010;

Forster, 2008).

Recently, xanthan gum (XG) has been applied as a proxy simu-

lant fluid to study the shear behaviour of digested sludge (Bobade

et al., 2018; Kennedy et al., 2015, 2014; Kennedy, 2017). Wiedemann

et al. used different types of polymers including Walocel30000, NaCMC,

polyethylene glycol (PEG), acrylamide-based Polysinth0 (PS), and XG

and concluded NaCMC is the most suitable material (Wiedemann et al.,

2017).

Most of previous literature used glassy and clear polymers to

visualize qualitatively the flow pattern inside aerobic and anaerobic

digesters through colorimetry method (Bobade et al., 2018; Kennedy,

2017; Kennedy et al., 2014; Wiedemann et al., 2017). This non-intrusive

technique is based on injection of pH sensitive florescent dyes or tracer

into reactors followed by adding hydrochloric acid (HCl) and sodium

hydroxide (NaOH) to change the pH of solution. Therefore, simulant

fluid resistance to pH changes is one of the most critical criterion that

need to be considered for selecting a simulant.

Following the discussion elaborated above, the proposed study

pores over the pH stability, zeta potential analysis, and rheological

properties of several suggested simulant fluids applied as model flu-

ids in previous studies and compared with rheological behaviour of

different types of municipal sludge. First, a review is carried out to

explore some physical characteristics and composition of different

types of municipal sludge including primary, activated and digested

sludge. Municipal sludge is described as an odorous suspension includ-

ing water (80%), trapped gas bubbles, and solid particles (20%). The solid

particles consist of various components such as proteins, polysaccha-

rides, lipids, minerals, bacteria, microorganisms and other dissolved

materials (Neyens and Baeyens, 2003; Oz et al., 2014). Primary, activated

(secondary) and digested sludge originate from settling tank, aeration

system and digester, respectively (Baroutian et al., 2013; Markis et al.,

2014). They differ in their composition, type of microorganisms, tem-

perature, shape and size of solid particles, and pH. Some researchers

have demonstrated that polysaccharides mainly form the structure of

activated sludge (Seviour et al., 2012, 2009), while lipopolysaccharides
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and proteins are the main polymers constituent of digested sludge

(Baroutian et al., 2013; Flemming and Wingender, 2010; Forster, 2008;

Neyens et al., 2004).

Although several previous studies have applied different types of

polymers as synthetic sludge, there is no evidence for the suitability

of these simulants to mimic the sludge rheology. Therefore, this study

first explores and compares the rheological behaviour of four different

types of polymers including NaCMC, PEG, sodium alginate (Alg), and

XG for the concentration in the range of 0.5–3 wt%. To achieve this pur-

pose, the viscosity and flow curve of NaCMC, PEG, Alg, and XG have

been measured by applying the shear rates of low to medium range.

Additionally, parameters of Herschel–Bulkely equation have been cal-

culated for primary, activated and digested sludge using existing data in

the literatures. Then, a comparison has been made between the rheo-

logical properties of real sludge and simulant fluids. Further, this study

applied complimentary viscoelastic and thixotropic tests on the most

suitable polymer and highlighted the applicable range of shear rate and

concentration. The result of this study could be used to select and apply

a safe, cheap, stable and clear simulant fluid, assisting researchers and

practitioners to study the rheological and hydrodynamic behaviour of

municipal sludge.

2.  Materials  and  methods

2.1.  Sample  preparation

Technical polymer powders including NaCMC with viscosity
of 0.4–1 Pa s, 2% in H2O, PEG 400,000 with 2.25–4.5 Pa s, 5% in
H2O, and XG from Xanthomonas campestris with viscosity
of 0.8–1.2 Pa s, were purchased from Rowe Company (Sydney,
Australia). Both XG and NaCMC are organic matters originat-
ing from bacteria (Xanthomonas campestris) and cellulose,
respectively, while poly ethylene glycol is a clear synthetic
polymer widely applied in food industry. Additionally, Alg
with viscosity 0.3–0.4 Pa s, 1% in H2O was purchased from
Novachem Company (Australia). This biopolymer is also a nat-
ural substance extracted from the cell wall of brown seaweed
(Wasikiewicz et al., 2005).

Polymer powder requires time to dissolve in dionized water
completely. As the gel networks became strong and form a
paste for the concentration beyond 3 wt%, the solutions were
only prepared in concentrations 0.1, 0.5, 1, 1.5, 2, and 3 wt% by
dissolving the powders in ultrapure water. Homogenous solu-
tions were prepared by gently stirring the solutions at 500 rpm
for 12–24 h using a magnetic stirrer. All samples were refriger-
ated overnight at 4 ◦ to make sure the trapped air bubbles (if
any) are removed from the solution.

2.2.  Measurement  of  pH  and  zeta  potential

The preliminary tests were carried out to evaluate the resis-
tance of solution to pH changes. The pH values of simulant
polymers were measured using a glass pH electrode (EUTECH,
pH 700).

Zeta potential (�-potential) is a quantitative factor for
quantifying the magnitude of particle surface charge and con-
sequently the stability of particle in a continuous medium. A
particle with a �-potential outside the range of −30 mv  and
+30 mv  is considered stable. The higher value of �-potential
means there is stronger repulsion force between particles
which prevents agglomeration. Therefore, �-potential plays
a pivotal role in the theory of aggregation stability. In this
study, �-potentials of different polymers were measured using
Malvern zeta sizer (Malvern series ZEN 3500, Malvern Instru-
ments Ltd., Worcester, UK).

2.3.  Rheological  measurement  and  test  procedures

The rheological characteristics of polymers including flow
curve, viscoelasticity, thixotropy at various concentrations
were measured by DHR-3, TA Instruments rheometer
equipped with a coaxial cylinder cup having a diameter
30.4 mm,  bob diameter 28 mm,  bob height 42 mm,  and gap dis-
tance 1 mm.  In addition, a Peltier system was used to keep the
temperature constant at 25 ◦C during the tests.

After loading the cup with 20 mL  of solutions and reaching
the equilibrium temperature, samples were pre-sheared up to
300 s−1 for 15 min  to fade the previous memory completely,
followed by 5 min  rest at zero shear rate (Baudez et al., 2013b).
Next, amplitude sweep oscillation tests were carried out at
1 Hz through an increasing ramp of strain from 1% to 300%
to measure the viscoelastic characteristics including solid-like
(storage moduli, G′) and liquid-like (loss Moduli, G′′) behaviour
of simulant materials. The flows sweep test was carried out
under the imposed decreasing ramp of shear rate from 1 to
300 s−1 up to 15 min  for different concentration of polymers
(Goodwin and Hughes, 2008). Then the measured shear stress
and viscosity were plotted versus shear rate. The enclosed area
between shear stress as a function of ramp of shear rate shows
the thixotropic degree of the fluid.

Since low shear rates and laminar flow are more favourable
in most biological process units including pumps, pipelines,
reactors and mixers to provide a suitable environment for
microbial activities, the rheological behaviour of polymers at
higher shear rate was not investigated (Baroutian et al., 2013).
Further, Baudez et al. concluded that digested sludge could
show unusual rheological behaviour in higher shear stress and
shear rates (Baudez et al., 2011). Therefore, this study has only
focused on comparing the rheological behaviour of sludge and
polymers for shear rates of less than 300 s−1.

2.4.  Non-Newtonian  flow  models

The proposed study applied the most frequently used non-
Newtonian equations to model the rheological behaviour of
sludge. The fundamental basis of these mathematical equa-
tions is the correlation between yield stress (�y), apparent
viscosity and shear rate (�). In these equations, n is considered
as the flow behaviour index which shows the degree and the
type of non-Newtonian fluid, which for n > 1, the fluid is shear-
thickening; for 0 < n < 1, the fluid is shear-thinning and for n = 1,
the fluid is Newtonian. In addition, k is the fluid consistency
index, �y shows the critical shear stress (yield stress), and (�) is
shear stress (Brehmer et al., 2012; Wu  et al., 2011). Hong et al.,
explained non-Newtonian equations in detail which are listed
below (Hong et al., 2018).

� = k�n (Power − law/Ostwald − de Waele model) (1)

This model does not consider the yield stress which is one
of the most significant properties of sludge system.

� = �y + k� (Bingham model) (2)

This model is a linear equation which cannot emulate the
sludge flow curve in higher concentration where the shear
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stress as a function of increasing shear rates changes expo-
nentially (Baroutian et al., 2013; Eshtiaghi et al., 2013).

� = �y + k�n (Herschel − Bulkely model) (3)

The Herschel–Bulkely takes into consideration the yield
stress and non-linearity between shear rate and shear stress
of sludge (Baroutian et al., 2013; Baudez, 2008; Eshtiaghi et al.,
2012). Herschel–Bulkley equation is the modified form of
Power-law model emphasizing more  on the solid concentra-
tion of sludge as a shear thinning fluid (Baudez et al., 2011).
Therefore, this equation can mimic  not only yield stress and
shear-thinning characteristics of sludge but also the rheo-
logical behaviour of sludge under both stagnant and flowing
conditions (Baroutian et al., 2013).

Additionally, although power-law, Herschel–Bulkleuy and
Bingham models follow the same trend in lower concentra-
tion ranges, only Hershel–Bulkley and Power-law demonstrate
the exponential behaviour of sludge in high concentrations
(Baudez et al., 2011).

3.  Results  and  discussion

3.1.  Polymer  resistance  to  pH  changes

Some previous studies have considered transparency as a
critical criterion for selecting simulant fluids. Application of
transparency is in colorimetry where they injected pH sen-
sitive dyes to visualize particle trajectory and flow pattern
(Bobade et al., 2018; Kennedy, 2017; Kennedy et al., 2014;
Wiedemann et al., 2017). The sensitivity of polymers to pH
should be examined before using this method as pH variation
influence the rheological properties and natural gel network
structure of polymers (Alemdar et al., 2005). This study exam-
ined the pH effects on resistance of selected polymers by
adding sodium hydroxide (NaOH) and hydrochloric acid (HCl)
dropwise. Fig. 1(a) indicate the pH for the selected simulant flu-
ids without and with pH adjustment, respectively. The results
show that the viscosity of PEG and Alg changes dramatically
with increasing or decreasing the pH. While the viscosity of XG
and NaCMC shows strong stability to pH changes (for pH = 5–8).

Fig. 1(a) shows viscosity as a function of shear rate for dif-
ferent pH values (from 5 to 8) for XG 1 wt%. The results indicate
that the viscosity of XG solution is stable over the tested range
of pH. Some studies have also pointed out that the pH resis-
tance of XG is due to its gel network structure (Baxter et al.,
2008; Gilani et al., 2011; Santos et al., 2000). Therefore, the
results suggest that PEG, Alg are not suitable sludge simulant
where acid of alkaline are added to the system.

3.2.  Zeta-potential  analysis

Previous studies considered pH as the main factor that affects
the number of charged reactive groups on the surface of poly-
mers (Liu et al., 2009). Hence, a correlation between pH and
�-potential is expected (Wang et al., 2017). Fig. 1(b) presents the
�-potential of different simulant fluids and compares their �-
potential as a function of pH. The results show that Alg and XG
are relatively stable over different rang of pH (5–8) caused by
high and negative values of �-potential (below −30 mv). While
the �-potential of PEG and NaCMC are within an unstable range
(−30 mv  to +30 mv). Consequently, PEG and NaCMC are at the

Fig. 1 – (a) Marker represent change of viscosity with pH for
NaCMC, PEG, Alg, and XG (0.5% wt%), lines represent
change of viscosity with shear rate for XG (0.5% wt%)  for
pH = 5, 7, and 8, vertical arrows show the neutralized pH for
different polymers for 1 wt%  concentration), (b) zeta
potential of different simulant materials as a function of pH
(shown with markers).

high risk of agglomeration because the �-potential of solution
is located in the unstable range.

3.3.  Shear-thinning  behaviour  of  selected  polymers

Fig. 2 presents viscosity versus shear rate in the range
0.01–300 s−1 for NaCMC, PEG, Alg and XG. The results show that
these polymers have shear-thinning behaviour since viscos-
ity is inversely proportional to shear rate. A similar behaviour
has also been reported for different types of sludge (Ameur
et al., 2011; Karim et al., 2004; Yang et al., 2009). Correspond-
ing, Bhattacharya (1981) demonstrated the shear-thinning
behaviour for primary and digested sludge with total solid
concentration between 3 wt% and 8 wt%. Change in viscos-
ity of polymers is due to internal molecular forces, molecular
interactions and external resultant force-torque (Baudez et al.,
2011; Benchabane and Bekkour, 2008; Eshtiaghi et al., 2013,
2012). Shear thinning behaviour can be attributed to disen-
tanglement and orientation of the polymer coils set alongside
the direction of the flow leading to a sharp increase in the elas-
tic strain (Baudez et al., 2011; Benchabane and Bekkour, 2008;
Eshtiaghi et al., 2013, 2012).

Further, Fig. 2 demonstrates that diluted solutions of
NaCMC (Fig. 2(a)), PEG (Fig. 2(b), and Alg (Fig. 2(c)) below 0.5 wt%
concentration behave like Newtonian fluids until 10 s−1. The
main reason for this is the domination of water rheological
properties inside the solutions. However, increasing polymer
concentration elevates intensive non-Newtonian behaviour.
As the solution concentration increases, polymer coils inter-
penetrate and form stronger networks, which leads to an
increase in the viscosity of studied polymers (Baudez et al.,
2011; Benchabane and Bekkour, 2008; Eshtiaghi et al., 2013,
2012). In contrast, as demonstrated in Fig. 2(d) this behaviour
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Fig. 2 – Viscosity versus shear rate for NaCMC, PEG, Alg, and XG for different concentrations where �c in (a) is the critical
shear stress.

is absent in diluted solutions of XG. Furthermore, Fig. 2(a) rep-
resents a sigmoid curve in concentrations higher than 1 wt%
for NaCMC. The point of inflection of the curve for higher
concentrations indicates that the fluid behaviour changes
from shear-thickening to shear-thinning. Some studies have
observed a similar behaviour for NaCMC (Benchabane and
Bekkour, 2008), while others have reported uniform ascend-
ing change of viscosity versus shear rate (Eshtiaghi et al.,
2012; Wiedemann et al., 2017). Sigmoid curves in all concentra-
tions of NaCMC reflect the initial shear-thickening behaviour
below critical shear stress (�c). Similarly, previous studies have
reported that the initial shear-thickening behaviour is due to
formation of entanglements of coils, a stiffer inner structure,
and increase in intermolecular interactions (Benchabane and
Bekkour, 2008).

3.4.  Comparison  between  the  flow  behaviour  of  sludge
and polymers

Many  studies have focused on flow curve of real sludge
as it is a reliable indicator for sludge rheological behaviour
(Bhattacharya, 1981; Dai et al., 2014; Dieudé-Fauvel et al., 2016;
Eshtiaghi et al., 2012, 2003; Guibaud et al., 2004; Kennedy, 2017;
Liu et al., 2016). Flow curve provides basic information for
handling, processing, pumping, phase separation, sedimen-
tation and stirring of non-Newtonian fluids. In this study, flow
curves are plotted to compare rheological characteristics of
selected polymers with different types of sludge. The flow
curves of NaCMC and sludge for different concentrations are
plotted in Fig. 3. Fig. 3(a) and (b) show that the flow behaviour
of NaCMC and primary and digested sludge are different.
Fig. 3(c) shows that the flow behaviour of digested sludge
is also different form NaCMC excluding NaCMC with 2 wt%
concentration within the range of 10–300 s−1. At this concen-
tration, NaCMC behaves similar to digested sludge 3.23 wt%.
This similarity was also reported by Eshtiaghi et al., who con-

sidered NaCMC as a suitable simulant material for digested
sludge 3.23 wt%.

Fig. 4 compares the rheological behaviour of PEG with pri-
mary, activated and digested sludge. The results in this figure
show that there is no significant similarity between the flow
curve of PEG with primary, activated, and digested sludge. The
most striking observation emerging from the data comparison
is the similarity observed between flow behaviour of digested
sludge 3.23 wt% and PEG 2 wt%. Additionally, primary sludge
6.5 wt% and PEG 1 wt% concentrations have similar behaviour
in a limited range of shear rate according to the results shown
in Fig. 4(a).

Fig. 5 compares the flow curve of Alg with primary, acti-
vated and digested sludge. According to these results, Alg and
sludge show different flow behaviour, however, there are some
similarities in a limited range of shear rate in which Alg 2 wt%
can mimic  digested sludge 8 wt% and primary sludge 4.24 wt%
for the shear rate of 10–300 s−1.

Fig. 6 compares the flow curves of XG with different types of
sludge. The result indicates that the shear stress of XG and dif-
ferent types of sludge increase nonlinearly over the increasing
shear rate. Contrary to other polymers, these results indi-
cate that there is a strong similarity between the flow curve
of XG and different types of sludge for the shear rate of
1–100 s−1. However, Fig. 6(a) and (c) demonstrate insignifi-
cant inconsistencies between the rheological behaviour of XG
with concentration between 0.1–3 wt% and primary sludge
(3.7–6.5 TS%) and digested sludge (1.85%–3.23%) within 10%
difference. These similarities are also summarized in Table 2.
A possible explanation is the difference between semi-
solid network and molecular structures of XG and primary
and digested sludge. Primary sludge is a highly thixotropic
colloidal suspension containing suspended solid particles
(Baudez et al., 2013b; Markis et al., 2016) and digested sludge
consists of lipopolysaccharides and proteins (Baudez et al.,
2013b). Contrastingly, XG is a polysaccharide with a gel struc-
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Fig. 3 – Comparison of NaCMC flow behaviour with: (a) primary, (b) activated, and (c) digested sludge.

Table 2 – Recommended xanthan gum concentrations for
primary, activated and digested sludge of different TS%.

Sludge type TS% Xanthan gum
concentration
(wt%)

Shear rate
limit (s−1)

Primary
sludge

6.50% 1.10% 1–100
5.00% 0.55% 1–100
3.70% 0.25% 1–100

Activated
sludge

6.50% 1.25% 1–100
3.70% 0.75% 1–100
2.80% 0.25% 1–100
1.08% 0.20% 1–100

Digested
sludge

3.23% 2.00% 1–100
2.56% 0.20% 1–100
1.85% 0.10% 1–100

ture network similar to that of activated sludge (Seviour et al.,
2012, 2009). Fig. 6(b) shows that the flow behaviour of XG is
closely comparable to activated sludge. The main reason for
this close similarity is that both activated sludge and XG con-
sist of long chain polysaccharides containing hydrogen bonds
which can form a gel structure network (Seviour et al., 2012,
2009).

Further, for the shear rates more  than 100 s−1, the slope of
XG flow curve changes due to the creation of vortex. Therefore,
findings of this study are limited to shear rate 100 s−1. Addi-
tionally, Fig. 6(c) shows that XG cannot be used as a simulant
fluid for digested sludge for concentrations larger than 4 wt%.

With regards to the above results, XG is ranked as a
preferred simulant fluid to mimic  different types of sludge,
particularly activated sludge. Subsequently, an attempt was
made to draw a correlation between concentrations of XG
and TS% of sludge. Table 2 summarizes the relationship
between TS% and concentration of XG corresponding to a
shear rate smaller than 100 s−1 for primary, activated and
digested sludge. These results facilitate selection of an appro-
priate concentration of XG for simulating a particular sludge.
Other concentrations could be estimated by interpolation.

3.5.  Comparison  between  Herschel–Bulkely  parameters
of sludge  and  polymers

Herschel–Bulkely is a widely accepted equation for esti-
mating the rheological behaviour of primary, activated and
digested sludge (Eshtiaghi et al., 2013; Kennedy et al., 2016).
Table 3 shows the parameters of Herschel–Bulkley equation
were calculated for extracted data from literature for pri-
mary,  activated and digested sludge. The R-square values have



410  Chemical Engineering Research and Design 1 4 6 ( 2 0 1 9 ) 404–415

Fig. 4 – Comparison of PEG flow behaviour with: (a) primary, (b) activated, and (c) digested sludge.

Table 3 – Herschel-Bulkely parameters for primary, activated, and digested sludge.

Type of sludge TS (%) Parameters R2 Reference

k n �y

Primary
sludge

2.80%  0.02 0.90 0.16 0.98 Markis et al. (2014)
3.70% 0.09 0.75 0.87 0.97 Markis et al. (2014)
5.00% 0.38 0.59 2.12 0.99 Markis et al. (2014)
6.50% 0.79 0.52 15.04 0.99 Markis et al. (2014)
8.00% 9.34 0.38 67.26 0.96 Markis et al. (2014)

Activated
sludge

1.08%  0.24 0.61 0.15 0.99 Sanin (2002)
3.70% 0.65 0.59 1.56 0.98 Markis et al. (2014)
5.00% 1.22 0.56 3.20 0.99 Markis et al. (2014)
6.50% 1.45 0.55 5.31 0.99 Markis et al. (2014)
9.20% 22.20 0.44 95.02 0.99 Markis et al. (2014)

Digested
sludge

1.85%  0.02 0.79 0.31 0.99 Baudez et al. (2011)
2.56% 0.10 0.68 0.70 0.99 Baudez et al. (2011)
3.23% 5.31 0.48 2.30 0.98 Eshtiaghi et al. (2012)
4.24% 17.91 0.34 57.19 0.99 Markis et al. (2016)

been estimated to measure the degree of interrelation and
dependence between variables. The results demonstrate a
correlation between TS% and the Herschel–Bulkely parame-
ters. Additionally, there is an increase in the fluid consistency
index (k) and yield stress (�) when the sludge total solid

concentration increases. However, flow behaviour index (n)
is inversely proportional to TS%. Higher values of k and
�, and a lower value of n, demonstrates the higher vis-
cosity which is directly correlated with higher total solid
percentage.
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Fig. 5 – Comparison of Alg flow behaviour with: (a) primary, (b) activated, and (c) digested sludge.

Table 4 – Model parameters for polymers of different concentrations.

Polymer Fitted model Concentration (wt%) Parameters R2

k n �y

NaCMC Power-law

0.5%  0.13 0.92 – 0.99
1% 0.46 0.82 – 0.99
2% 6.08 0.54 – 0.99
3% 21.37 0.44 – 0.99

Alginate Power-law

0.5% 0.29 0.87 – 0.98
1% 1.17 0.70 0.99
2% 27.35 0.37 – 0.98
3% 32.81 0.27 – 0.98

PEG Power-law

0.5% 0.12 0.95 – 0.98
1% 0.78 0.73 – 0.95
2% 11.90 0.39 – 0.99
3% 18.53 0.32 – 0.99

XG Herschel–Bulkely

0.5% 0.35 0.62 2.26 0.99
1% 0.90 0.50 3.40 0.99
2% 6.64 0.32 8.54 0.99
3% 6.99 0.24 19.06 0.99
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Fig. 6 – Comparison of XG flow behaviour with: (a) primary, (b) activated, and (c) digested sludge.

Similarly, calculated Herschel–Bulkely parameters for
NaCMC, PEG, Alg, and XG, and are summarized in Table 4.
The R-square method has been used to evaluate the accu-
racy of obtained data. The results indicate that n is less than
unity for the used polymers, which suggest they are pseudo-
plastic fluids. Moreover, the best fitted non-Newtonian model
for NaCMC, PEG, Alg is power-law, whereas XG follows the
Herschel–Bulkely equation. As mentioned earlier, the main
difference between power-law and Herschel–Bulkely is the
yield stress, where XG requires an initial yield stress (�c) to
flow. This yield stress could be originated from a large num-
ber of hydrogen bonds in XG gel-like structure (Kennedy et al.,
2015). Also, sludge can flow when their stress overcome criti-
cal yield stress (Baroutian et al., 2013; Baudez, 2008; Eshtiaghi
et al., 2012). Therefore, both XG and sludge are considered an
elastic materials and flow after breaking their internal struc-
ture network. Altogether, the summarized results in Table 4
suggests that XG among all other polymers is the preferred
simulant to mimic  the shear stress, yield stress, and viscosity
of sludge.

3.6.  Comparison  between  the  viscoelastic  behaviour  of
digested  sludge  and  XG

This section compares viscoelastic behaviour of XG with
digested sludge. Due to lack of experimental data for vis-
coelastic behaviour of primary and activated sludge in
literature, this study focused on viscoelastic behaviour of
digested sludge. Fig. 7 shows the viscoelastic curve and its
stress response (storage modulus (G′) and loss modulus (G′′)
as a function of strain) for different concentration of XG and
digested sludge (3.23 wt %). Similar to viscosity and flow curve
as shown in Table 2, it is expected that moduli of XG 2 wt%
and digested sludge with 3.23 wt% TS show similar behaviour.
However, the result in Fig. 7 show that XG is unable to repli-
cate the viscoelasticity of digested sludge. Further study is
required to investigate the viscoelasticity of primary, sec-
ondary, and digested sludge. The elastic modulus G′ and G′′

remain almost constant when strain increases followed by a
sudden break in the gel network structures. Additionally, the
storage modulus is larger than the loss modulus, which means
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Fig. 7 – Storage modulus (G′) and loss modulus (G′′) as a function of strain for different concentration of xanthan gum and
digested sludge (3.23 wt%). The red circles are the break down  points in that G′ = G′′. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).

the gel structure dominates external forces before reaching
the cross-over point (G′ = G′′). This point is the intersection
where mechanical forces break down the microstructure of
the gel. Previous studies have also reported similar trends for
digested sludge (Baudez et al., 2013a; Feng et al., 2015, 2014).
Fig. 7 also indicates that in higher concentrations, cross-over
points shift to a lower strain. The main reason for this is
that the increased sensitivity of strain in higher concentration
enhances breaking structure of the gel networks. Eshtiaghi
et al. (2013, 2012) also reported similar behaviour for digested
sludge, where it was proved that the structure of digested
sludge is increasingly sensitive to strain when solid particles
are added. Overall, the results in Fig. 7 shows that XG cannot
exactly fit into the viscoelastic curve of digested sludge. There-
fore, there is some errors in viscoelastic behaviour if we  use
XG as a simulant fluid.

3.7.  Comparison  between  the  thixotropic  behaviour  of
activated  sludge  and  XG

Primary, activated and digested sludge are classified as
thixotropic materials, meaning that the viscosity of these
sludge depend not only on temperature and shear rate but
also on time (Baroutian et al., 2013; Baudez et al., 2013a; Lotito
et al., 1997; Markis et al., 2014). After increasing the shear
rate, its internal network requires some time to reform and
return to its equilibrium state. The flow curve of thixotropic
material does not follow an exact path on the network break-
down and rebuilding due to the stabilization of its structure
between these two. The enclosed area between the two shear
stress curves shaped by fluctuation of shear rates, forms a hys-
teresis loop which represents the energy consumed to break
the structure of the network (Perret et al., 1996). Fig. 8 com-
pares the hysteresis loop for activated sludge with 2.8 wt%
TS (Markis et al., 2014) with the corresponding XG concen-
tration of 0.25 wt% that is obtained from Table 2. Moreover,
the results show that although the flow curves of XG and acti-
vated sludge follow the same trend over the increasing shear
rates, their broken structures do not recover in the same way.
For this reason, it can be concluded that XG unable mimic
the thixotropic behaviour of activated sludge. In other words,
activated sludge is an extremely thixotropic material, while

Fig. 8 – Comparison of hysteresis loop of xanthan gum
0.25 wt% with activated sludge (AS) 2.8 wt%. The enclosed
area for xanthan gum is too small, while the gaps between
shear ramps for activated sludge is extremely wide.

thixotrpy of XG is not significant. There is a lack of experi-
mental data for thixotropy of digested and primary sludge in
the literatures, therefore this study just focused on thixotropic
behaviour of activated sludge.

4.  Conclusions

The purpose of this study was to investigate the rheological
properties of four different types of shear-thinning poly-
mers used as surrogate to replicate the rheological behaviour
of various types of sludge. Zeta potential characterization,
pH analysis, flow curve, viscoelasticity, and thixotropy were
measured to draw comparison between simulant fluids and
different types of sludge. Although xanthan gum, carboxyl
methyl cellulose, polyethylene glycol and sodium alginate
have been widely applied in previous studies, only a small
number of rheological tests have been performed to char-
acterise these simulant fluids. The proposed study shines a
new light on the feasibility of using these simulant polymers
through investigation of differences and similarities with
sludge. Additionally, transparent simulant fluids are widely
used to visualize the flow patterns and particle trajectory
through colorimetry method required to change pH dramati-
cally. The proposed study investigated the pH resistance and
zeta potential of these polymers as this has barely been stud-
ied in the literature. This study highlights that only xanthan
gum in low to medium shear rates (less than 100 s−1) offers
similarity to sludge. The flow curve and viscosity of xanthan
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gum is closely similar to activated sludge and the reason for
this might be the similar molecular and internal network
structures. In addition, among these four types of polymers
only xanthan gum follows the Herschel–Bulkely model as the
most suitable equation for mimicking the behaviour of differ-
ent types of sludge. However, xanthan gum and sludge seems
to not show similar behaviour in terms of thixotropy and vis-
coelasticity. Thus, more  study can be conducted to investigate
the similarity between thixotropy and viscoelasticity of XG
and different types of sludge.

The results of this study assist to select and apply a safe,
cheap, stable and clear simulant fluid to study the rheological
and hydrodynamic behaviours of sludge.
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Figure 4-2 Effect of pH changes on viscosity of XG with concentration of 0.5% wt%. 

4.4.2 Zeta-potential analysis 

Previous studies considered pH as the main factor that affects the number of charged reactive 

groups on the surface of polymers (S. Liu, Low, and Nickerson 2009). Hence, a correlation 

between pH and ζ-potential is expected (H. F. Wang et al. 2017). Figure 4-3 presents the ζ-

potential of different simulant fluids and compares their ζ-potential as a function of pH. Fig. 4-

3 shows Alg and XG relative stability over different rang of pH caused by high and negative 

values of ζ-potential (below -30 mv). While the ζ-potential of PEO and NaCMC are within an 

unstable range (-30 mv- +30 mv). Consequently, PEO and NaCMC are at the high risk of 

agglomeration because the ζ-potential of solution is located in the unstable range. 
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Figure 4-3 Zeta potential of different simulant materials as a function of pH. 

4.4.3 Shear-thinning behaviour of selected polymers 

Figure 4-4 presents viscosity versus shear rate in the range 0.01- 300s-1 for NaCMC, PEG, Alg 

and XG. The results show that these polymers have shear-thinning behaviour since viscosity is 

inversely proportional to shear rate. A similar behaviour has also been reported for different 

types of sludge (Houari Ameur, Bouzit, and Helmaoui 2011; Karim et al. 2004; F. Yang et al. 

2009). Corresponding, Markis et, al. (2014) demonstrated the shear-thinning behaviour for 

primary and digested sludge with total solid concentration between 3 wt% and 8 wt%. Change 

in viscosity of polymers is due to internal molecular forces, molecular interactions and external 

resultant force-torque (Baudez et al. 2011; Benchabane and Bekkour 2008; Eshtiaghi et al. 

2013, 2012). Shear thinning behaviour can be attributed to disentanglement and orientation of 

the polymer coils set alongside the direction of the flow leading to a sharp increase in the elastic 

strain (Baudez et al. 2011; Benchabane and Bekkour 2008; Eshtiaghi et al. 2013, 2012).  

Further, Fig. 4-4 demonstrates that diluted solutions of NaCMC (Fig. 4-4 a), PEG (Fig. 4-4 b), 

and Alg (Fig. 4-4 c) below 0.5 wt% concentration behave like Newtonian fluids. The main 

reason for this is the domination of water rheological properties inside the solutions. However, 
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increasing polymer concentration elevates intensive non-Newtonian behaviour. As the solution 

concentration increases, polymer coils interpenetrate and form stronger networks, which leads 

to an increase in the viscosity of studied polymers (Baudez et al. 2011; Benchabane and 

Bekkour 2008; Eshtiaghi et al. 2013, 2012).  

 

Figure 4-4 Viscosity versus shear rate for NaCMC, PEG, Alg, and XG for different concentrations 

where γc in (a) is the critical shear stress. 

In contrast, as demonstrated in Fig. 4-4(d) this behaviour is absent in diluted solutions of XG. 

Furthermore, Fig. 4-4 (a) represents a sigmoid curve in concentrations higher than 1wt% for 

NaCMC. The point of inflection of the curve for higher concentrations indicates that the fluid 

behaviour changes from shear-thickening to shear-thinning. Some studies have observed a 

similar behaviour for NaCMC (Benchabane and Bekkour 2008), while others have reported 

uniform ascending change of viscosity versus shear rate (Wiedemann et al. 2017; Eshtiaghi et 

al. 2012). Sigmoid curves in all concentrations of NaCMC reflect the initial shear-thickening 
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behaviour below critical shear stress (γc). Similarly, previous studies have reported that the 

initial shear-thickening behaviour is due to formation of entanglements of coils, a stiffer inner 

structure, and increase in intermolecular interactions (Benchabane and Bekkour 2008).  

4.4.4 Comparison between the flow behaviour of sludge and polymers 

Many studies have focused on flow curve of real sludge as it is a reliable indicator for sludge 

rheological behaviour (Eshtiaghi et al. 2012; Bhattacharya 1981; Dieudé-Fauvel, Héritier, and 

Roux 2016; Dai, Gai, and Dong 2014; Guibaud et al. 2004; S. Kennedy 2017; J. Liu et al. 

2016). Flow curve provides basic information for handling, processing, pumping, phase 

separation, sedimentation and stirring of non-Newtonian fluids. In this study, flow curves are 

plotted to compare rheological characteristics of selected polymers with different types of 

sludge. The flow curves of NaCMC and sludge for different concentrations are plotted in Fig. 

4-5. Figure 4-5(a) and (b) show that the flow behaviour of NaCMC and primary and digested 

sludge are different. Figure 4-5(c) shows that the flow behaviour of digested sludge is also 

different form NaCMC excluding NaCMC with 2 wt% concentration. At this concertation, 

NaCMC behaves similar to digested sludge 3.23 wt%. This similarity was also reported by 

Eshtiaghi et al., who considered NaCMC as a suitable simulant material for digested sludge 

3.23 wt%.  
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Figure 4-5 Comparison of NaCMC flow behaviour with: (a) primary, (b) activated, and (c) digested 

sludge. 
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Figure 4-6 compares the rheological behaviour of PEG with primary, activated, and digested 

sludge. 

 

Figure 4-6 Comparison of PEG flow behaviour with: (a) primary, (b) activated, and (c) digested sludge. 
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3.23 wt% and PEG 2 wt%. Additionally, primary sludge 6.5 wt% and PEG 1 wt% 

concentrations have similar behaviour in a limited range of shear rate according to the results 

shown in Fig. 4-6 (a). 

 

Figure 4-7 Comparison of Alg flow behaviour with: (a) primary, (b) activated, and (c) digested sludge 

Figure 4-7 compares the flow curve of Alg with primary, activated, and digested sludge. 
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some similarities in a limited range of shear rate in which Alg 2 wt% can mimic digested sludge 

8 wt% and primary sludge 4.24 wt% for the shear rate of 10-300s-1. 

Figure 4-8 compares the flow curves of XG with different types of sludge. The result indicates 

that the shear stress of XG and different types of sludge increase nonlinearly over the increasing 

shear rate. Contrary to other polymers, these results indicate that there is a strong similarity 

between the flow curve of XG and different types of sludge for the shear rate of 1-100 s-1. 

However, Fig. 4-8 (a) and (c) demonstrate insignificant inconsistencies between the rheological 

behaviour of XG and primary and digested sludge (10% difference). A possible explanation is 

the difference between semi-solid network and molecular structures of XG and primary and 

digested sludge. Primary sludge is a highly thixotropic colloidal suspension containing 

suspended solid particles (Flora Markis et al. 2016; Baudez, Slatter, and Eshtiaghi 2013) and 

digested sludge consists of lipopolysaccharides and proteins (Baudez, Slatter, and Eshtiaghi 

2013). Contrastingly, XG is a polysaccharide with a gel structure network similar to that of 

activated sludge (Seviour et al. 2009, 2012). Fig. 4-8 (b) shows that the flow behaviour of XG 

is closely comparable to activated sludge. The main reason for this close similarity is that both 

activated sludge and XG consist of long chain polysaccharides containing hydrogen bonds 

which can form a gel structure network (Seviour et al. 2009, 2012).  
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Figure 4-8 Comparison of XG flow behaviour with: (a) primary, (b) activated, and (c) digested sludge 
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Further, for the shear rates more than 100 s-1, the slope of XG flow curve changes due to the 

creation of vortex. Therefore, findings of this study are limited to shear rate 100 s-1. 

Additionally, Fig. 4-8(c) shows that XG cannot be used as a simulant fluid for digested sludge 

for concentrations larger than 4 wt%.  

With regards to the above results, XG is ranked as a preferred simulant fluid to mimic different 

types of sludge, particularly activated sludge. Subsequently, an attempt was made to draw a 

correlation between concentrations of XG and TS% of sludge. Table 4-3 summarizes the 

relationship between TS% and concentration of XG corresponding to a shear rate smaller than 

100 s-1 for primary, activated, and digested sludge. These results facilitate selection of an 

appropriate concentration of XG for simulating a particular sludge. Other concentrations could 

be estimated by interpolation. 

Table 4-3 Recommended xanthan gum concentrations for primary, activated and digested sludge of 

different TS%. 

Sludge type TS% 
Xanthan gum 

concentration (wt%) 
Shear rate limit (s-1) 

Primary sludge 

6.50% 1.10% 1-100 

5.00% 0.55% 1-100 

3.70% 0.25% 1-100 

Activated sludge 

6.50% 1.25% 1-100 

3.70% 0.75% 1-100 

2.80% 0.25% 1-100 

1.08% 0.20% 1-100 

Digested sludge 

3.23% 2.00% 1-100 

2.56% 0.20% 1-100 

1.85% 0.10% 1-100 

4.4.5 Comparison between Herschel- Bulkely parameters of sludge and 
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polymers 

Herschel-Bulkley is a widely accepted equation for estimating the rheological behaviour of 

primary, activated and digested sludge (Eshtiaghi et al. 2013; S. Kennedy et al. 2016).  Table 

4-4 shows the parameters of Herschel-Bulkley equation were calculated for extracted data from 

literature for primary, activated, and digested sludge. The R-square values have been estimated 

to measure the degree of interrelation and dependence between variables. The results 

demonstrate a correlation between TS% and the Herschel-Bulkley parameters. Additionally, 

there is an increase in the fluid consistency index (k) and yield stress (τ) when the sludge total 

solid concentration increases.  

Table 4-4 Herschel-Bulkley parameters for primary, activated, and digested sludge. 

Type of sludge TS (%) 
Parameters 

R2 Reference 
k n τy 

Primary 

Sludge 

2.80% 0.02 0.90 0.16 0.98 (Flora; Markis et al. 2014) 

3.70% 0.09 0.75 0.87 0.97 (Flora; Markis et al. 2014) 

5.00% 0.38 0.59 2.12 0.99 (Flora; Markis et al. 2014) 

6.50% 0.79 0.52 15.04 0.99 (Flora; Markis et al. 2014) 

8.00% 9.34 0.38 67.26 0.96 (Flora; Markis et al. 2014) 

Activated 

Sludge 

1.08% 0.24 0.61 0.15 0.99 (D. F. Sanin 2002) 

3.70% 0.65 0.59 1.56 0.98 (Flora; Markis et al. 2014) 

5.00% 1.22 0.56 3.20 0.99 (Flora; Markis et al. 2014) 

6.50% 1.45 0.55 5.31 0.99 (Flora; Markis et al. 2014) 

9.20% 22.20 0.44 95.02 0.99 (Flora; Markis et al. 2014) 

Digested 

Sludge 

1.85% 0.02 0.79 0.31 0.99 (Baudez et al. 2011) 

2.56% 0.10 0.68 0.70 0.99 (Baudez et al. 2011) 

3.23% 5.31 0.48 2.30 0.98 (Eshtiaghi et al. 2012) 

4.24% 17.91 0.34 57.19 0.99 (Flora Markis et al. 2016) 
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However, flow behaviour index (n) is inversely proportional to TS%. Higher values of k and 

τ, and a lower value of n, demonstrates the higher viscosity which is directly correlated with 

higher total solid percentage. 

Similarly, Herschel-Bulkley parameters have been calculated for NaCMC, PEG, Alg, and XG 

and are summarised in Table 4-5. The R-Square method has been used to evaluate the accuracy 

of obtained data. The results indicate that n < 1 for the used polymers, which suggest these 

polymers are pseudo-plastic fluids.  

Table 4-5 Model parameters for polymers of different concentrations. 

Polymer Fitted model 
Concentration 

(wt%) 

Parameters 
R2 

k n τy 

NaCMC Power-law 

0.5% 0.13 0.92 - 0.99 

1% 0.46 0.82 - 0.99 

2% 6.08 0.54 - 0.99 

3% 21.37 0.44 - 0.99 

Alginate Power-law 

0.5% 0.29 0.87 - 0.98 

1% 1.17 0.70  0.99 

2% 27.35 0.37 - 0.98 

3% 32.81 0.27 - 0.98 

PEG Power-law 

0.5% 0.12 0.95 - 0.98 

1% 0.78 0.73 - 0.95 

2% 11.90 0.39 - 0.99 

3% 18.53 0.32 - 0.99 

XG Herschel-Bulkley 

0.5% 0.35 0.62 2.26 0.99 

1% 0.90 0.50 3.40 0.99 

2% 6.64 0.32 8.54 0.99 

3% 6.99 0.24 19.06 0.99 

Moreover, the best fitted non-Newtonian model for NaCMC, PEG, Alg is power-law, whereas 

XG follows the Herschel-Bulkley equation. As mentioned earlier, the main difference between 

power-law and Herschel-Bulkley is the yield stress, where XG requires an initial yield stress 

(�H to flow. This yield stress could be originated from a large number of hydrogen bonds in 
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XG gel-like structure (J. R. M. Kennedy, Kent, and Brown 2015). Also, sludge can flow when 

their stress overcome critical yield stress (Baroutian, Eshtiaghi, and Gapes 2013; Baudez 2008; 

Eshtiaghi et al. 2012). Therefore, both XG and sludge are considered an elastic materials and 

flow after breaking their internal structure network. Altogether, the summarized results in 

Tables 4-4 and 4-5 suggest that XG among all other polymers is the preferred simulants to 

mimic the shear stress, yield stress, and viscosity of sludge.  

4.4.6 Comparison between the viscoelastic behaviour of digested sludge and 

XG 

This section compares the other rheological properties of XG including thixotropy and 

viscoelastic behaviour to digested sludge. Due to lack of experimental data for viscoelastic 

behaviour of primary and activated sludge in literature, this study focused on viscoelastic 

behaviour of digested sludge. Figure 4-9 shows the viscoelastic curve and its stress response 

(storage modulus (G′) and loss modulus (G″) as a function of strain) for different concentration 

of XG and digested sludge (3.23 wt%). The elastic modulus G′ and G″ remain almost constant 

when strain increases followed by a sudden break in the gel network structures. Additionally, 

the storage modulus is larger than the loss modulus, which means the gel structure dominates 

external forces before reaching the cross-over point (G′=G″). This point is the intersection 

where mechanical forces break down the microstructure of the gel. Previous studies have also 

reported similar trends for digested sludge (Feng, Guo, and Tan 2015; Feng, Liu, and Tan 2014; 

Baudez et al. 2013). Figure 4-9 also indicates that in higher concentrations, cross-over points 

shift to a lower strain. The main reason for this is that the increased sensitivity of strain in 

higher concentration enhances breaking structure of the gel networks. Eshtiaghi et al., (2013, 

2012) also reported similar behaviour for digested sludge, where it was proved that the structure 

of digested sludge is increasingly sensitive to strain when solid particles are added. Overall, 
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the results in Fig. 4-9 shows that XG is not a suitable material to mimic the viscoelastic 

behaviour of digested sludge. 

 

Figure 4-9 Storage modulus (G′) and loss modulus (G″)) as a function of strain for different concentration of 

xanthan gum and digested sludge (3.23 wt%) 

Figure 4-10 presents the cross-over points for various concentrations of XG. This confirms the 

presence of a three-dimensional network in higher concentrations. Additionally, this figure 

shows that the break down points shift upward as XG concentration increases. 
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Figure 4-10 Dependency of cross-over points (G′=G″) to xanthan gum concentration at 25℃ and one Hz 

4.4.7 Comparison between the thixotropic behaviour of activated sludge 

and XG 

Primary, activated and digested sludge are classified as thixotropic materials, meaning that the 

viscosity of these sludge depend not only on temperature and shear rate but also on time (Lotito 

et al. 1997; Flora; Markis et al. 2014; Baudez et al. 2013; Baroutian, Eshtiaghi, and Gapes 

2013). After increasing the shear rate, its internal network requires some time to reform and 

return to its equilibrium state. The flow curve of thixotropic material does not follow an exact 

path on the network breakdown and rebuilding due to the stabilization of its structure between 

these two. The enclosed area between the two shear stress curves shaped by  fluctuation of 

shear rates, forms a hysteresis loop which represents the energy consumed to break the structure 

of the network (Perret, Locat, and Martignoni 1996). Figure 4-11 compares the hysteresis loop 

for activated sludge with 2.8 wt% TS (Flora; Markis et al. 2014) with the corresponding XG 
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concentration of 0.25 wt% that is obtained from Table 4-5. Moreover, the results show that 

although the flow curves of XG and activated sludge follow the same trend over the increasing 

shear rates, their broken structures do not recover in the same way. For this reason, it is 

concluded that XG cannot mimic the thixotropic behaviour of activated sludge. There is a lack 

of experimental data for thixotropy of digested and primary sludge in the literatures, therefore 

this study just focused on thixotropic behaviour of activated sludge.  

 

Figure 4-11 Comparison of hysteresis loop of xanthan gum 0.3 wt% with activated sludge (AS) 2.8 wt% 

4.5 Conclusions 

The purpose of this study was to investigate the rheological properties of four different types 

of shear-thinning polymers used as surrogate to replicate the rheological behaviour of various 

types of sludge. Zeta potential characterization, pH analysis, flow curve, viscoelasticity, and 

thixotropy were measured to draw comparison between simulant fluids and different types of 

sludge. Although xanthan gum, carboxyl methyl cellulose, polyethylene glycol and sodium 

alginate have been widely applied in previous studies, only a small number of rheological tests 

have been performed to characterise these simulant fluids. The proposed study shines a new 
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light on the feasibility of using these simulant polymers through investigation of differences 

and similarities with sludge. Additionally, transparent simulant fluids are used widely to 

visualize the flow patterns and particle trajectory through colorimetry method required to 

change pH dramatically. The proposed study investigates the pH resistance and zeta potential 

of these polymers which have been studied barely in available literature. This study highlights 

that only xanthan gum in low to medium shear rates (less than 100 s-1) offers similarity to 

sludge. The flow curve and viscosity of xanthan gum is closely similar to activated sludge and 

the reason for this might be the similar molecular and internal network structures. In addition, 

among these four types of polymers only xanthan gum follows the Herschel-Bulkley model as 

the most suitable equation for mimicking the behaviour of different types of sludge. However, 

xanthan gum and sludge do not show similar behaviour in terms of thixotropy and 

viscoelasticity.  

The results of this study assist to select and apply a safe, cheap, stable, and clear simulant fluid 

to study the rheological and hydrodynamic behaviours of sludge. 
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A B S T R A C T

The performance of a dual helical ribbon impeller in a gassed stirred tank reactor filled with a shear-thinning
polymer has been investigated experimentally in this study. Sodium carboxymethyl cellulose with different
concentrations were applied to change the viscosity and rheological behaviour of working fluid. Titration re-
action between HCl and NaOH then took place inside the reactor under controlled pH, evaluating the influence
of a dual helical ribbon impeller on the performance of a two-phase agitated reactor. The impact of impeller
rotational speed, gas flow rate, viscosity, and clearance to the bottom on power uptake and mixing time are
explored. The results thus reveal that the presence of bubbles reduces both required power uptake and mixing
time to reach an endpoint reaction. Contrary to expectations, this study indicates that increasing the impeller's
speed beyond a certain level, not only fails to further reduction in mixing time, whilst the power uptake increases
exponentially.

Furthermore, for the first time, this study suggest that power number is inversely proportional to the square
root of Reynolds number when systems are equipped with a dual helical ribbon impeller. The response surface
method and quadratic numerical models are applied to suggest models in order to calculate the mixing time and
power consumption.

1. Introduction

Stirred tank reactors (STRs1) are one of the most widely used pieces
of equipment in process industries. Gas-liquid STRs are involved in
many chemical and biochemical processes including various multiphase
reactions, polymerization, fermentation, foam food processing, pro-
duction of antibiotics, and digestion [1–6]. The efficient and cost-ef-
fective heat and mass transfer and homogeneity of dispersed phase and
nutrients are the main objectives of these multiphase mixing processes
[7]. To date, various methods have been developed and introduced to
enhance the mixing performance of gas-liquid reactors that contain
shear-thinning fluids [8–13]. An increase in rotational speed seems to
be one promising method that prevents the development of unmixed
regions, of forming nutrient segregations and non-uniformity of the
dispersed phase. Although using a high rotational speed in some cases
might reduce mixing times, it also reduces the productivity of micro-
organisms in biological units, and the performance of final products,
where it similarly increases the operational costs of chemical processes.
The main explanation for this limitation is that some materials and
microorganisms are extremely shear-sensitive. For example, a high

rotational speed disturbs the environment in which microorganisms
seed and grow [11,12,14]. Microorganism cannot tolerate momentum,
heat, and mass variations in their living environment, where high ro-
tational speed or nonhomogeneous environments may consequently
lead to switching metabolic pathways [7]. In cases where the shear
sensitivity of substrate is an issue for reactor performance, using low
rotational speed impellers has been suggested within the literature
[14,15].

Using an ordinary small impeller including a Rushton turbine and
pitched blade in a vessel filled with a non-Newtonian fluid has been
shown to be inefficient and causes stagnant regions [16]. This phe-
nomenon occurs because the central impeller fails to generate effective
momentum and a sufficient shear rate in regions which are located far
from the impeller itself. Close-clearance impellers including gate, an-
chor, screw and helical ribbon have been identified as ideal impellers
by literature to complete mixing in a single-phase agitated systems in-
volving non-Newtonian fluids [14]. Close-clearance impellers provide
an almost tangential shear rate in the whole system, especially near the
wall of the vessel which remains stagnant when non-Newtonian fluids
rotate with an ordinary impeller [17]. In close-clearance agitator, the
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high shear rate region is located between the wall and impeller blade,
where the impeller sweeps wall and returns the stagnant volume of
fluid into the bulk.

Power consumption and levels of homogeneity are two main factors
affecting the design of an efficient reactor, have been investigated
widely in the literature [7,14,16]. Power consumption determines the
cost efficiency of using stirred tank reactors in process industries. Si-
milarly, mixing time is an indicator of homogeneity in stirrers. Ameur
and Bouzit [18] have indicated that a helical ribbon is the most efficient
impeller, reducing mixing time when a fluid is shear-thinning. Dela-
fosse et al. [19] have defined the mixing time as the time interval be-
tween the injection of the tracer and 95 % of the full homogeneity
degree. They further indicated that the mixing time is a function of
impeller geometry and tracer injection methods. The power consump-
tion and mixing time have been investigated by Bao et al. [17], with
different coaxial mixers for two different non-Newtonian fluids. The
above author concluded that a combination of Paddler and helical
ribbon impellers reduce the mixing time significantly.

To date, various methods including conductivity, thermal refractive
index, redox ionic reaction, and decolouration have been developed
and introduced to measure mixing time in agitated systems [20–25].
However, all of these techniques depend on the location of deliberately
placed detectors, lights and cameras [26–28]. Titration has typically
been applied as one of the most common techniques to evaluate mixing
time in agitated vessels without any physical interference [27,28]. This
non-intrusive technique has been used to measure the degree of
homogenization and qualitatively to visualize the flow pattern in-
cluding the formation of caverns, stagnant regions, and dead zones.
Since the titration method is based on human observation, com-
plementary approaches like the image processing method have been
developed to reduce errors related to human eyesight [26,29]. Titration
acid-base reaction has been used in this study to explore mixing times.

Apart from studies investigating the efficiency of agitators working
in single-phase systems, there is a general lack of research on the per-
formance of multiphase STRs filled with shear thinning fluid. Bouaif
and Roustan [30] developed a dimensionless correlation between
power consumption and mixing time in an aerated mixing system
equipped with multi-impellers. Machon and Jahoda [31] have studied
the effect of aeration on the mixing process in a multi-impeller vessel,
where they concluded that aeration improves homogeneity and reduces

the mixing time significantly. Further, Hashemi et al. [32] have mea-
sured bubble characteristics and gas holdup in mixing systems equipped
with a combination of an anchor and central impeller. Some researchers
have indicated that the presence of gas in gas-liquid systems enhances
the homogeneity of the system and reduces mixing time [33–35].
Furthermore, many studies have shown that the gas flow rate and im-
peller speeds play a pivotal role in forming different flow patterns
[36,37]. By changing the gas flow rate and rotational speed of an im-
peller, various flow patterns can be observed including flooding,
loading, and complete dispersion [38,39]. In flooding pattern, gas
bubbles rise quickly, thus the impeller speed fails to influence the
bubble behaviour. The loading regime occurs when the gas flow rate
decreases or the impeller speed increases. In this case, bubbles accu-
mulate and become trapped behind the impeller or around the impeller
shaft. The optimum scenario for gas-liquid systems is complete dis-
persion, where the gas bubble is well-distributed in the whole volume
of the vessel [40]. A well-distributed mixing system holds bubbles in-
side for sufficient time in order to maintain bubbles and optimize heat
and mass transfer [39].

A dual helical ribbon is a close-clearance impeller used in low
Reynolds number under laminar and transient flow regimes to agitate
shear sensitive non-Newtonian fluids. Dual helical ribbon impellers
have been extensively studied in single-phase to evaluate the effect of
geometry, rheology, kinematics (impeller speed), and impeller design
on mixing time, homogeneity, and power uptake [41–47]. Chavan and
Ulbrecht [47] have suggested a model based on geometry predicting
power consumption for different types of helical ribbon impellers in the
liquid phase. The influence of viscosity, viscoelasticity, and pseudo-
plasticity on the performance of an agitated system equipped with he-
lical ribbon and helical ribbon screw impellers has been investigated by
Brito-De La Fuente et al. [48]. They developed a model which indicates
the deviation of pseudoplasticity from Newtonian power uptake for a
helical ribbon impeller. Their findings are consistent with the general
equation reported by Mentzor and Otto [41], although more research is
needed to study the Mentzor- Otto correlation for strongly shear-thin-
ning fluids.

Many reactions occur in gas-liquid phases, where, the presence of
bubbles inside systems is unavoidable. Accordingly, researchers have
shown an increased interest in the behaviour of bubbles and their in-
fluence on the flow pattern. Apart from Espinosa-Solares et al. [7] and

Nomenclature

A Cross sectional area (m2)
AR Aspect Ratio
D Vessel inner diameter (m)
d Impeller Diameter (m)
di Impeller blade diameter (m)
ds Shaft diameter (m)
Flg Gas flow number
g Gravitational acceleration (m/s2)
Gf Gas Flow Rate (Lpm)
H Depth of Fluid (m)
h Impeller Height (m)
HCl Hydrochloric Acid
IC Impeller Clearance
K Consistency Index (Pa.sn)
Ks Metzner and Otto’s constant
MAdjusted Actual torque required to rotate the shaft (N.m)
Mdisplay Torque displayed by torquemeter (N.m)
Mfriction Friction torque (N.m)
N Impeller Rotational Speed (rpm)
NaCMC Sodium Carboxymethyl Cellulose
NaOH Sodium hydroxide

Np Power number (Dimensionless)
n Flow index behaviour
P0 Input power (W)
Pg Power consumption after injection of gas (W)
Qp Upward pumping rate by fluid (Lpm)
QAX Pumping rate by rising bubbles (Lpm)
Re Reynold number (Dimensionless)
RSM Response surface methodology
STR Stirred Tank Reactor
ug Superficial gas velocity (m/s)
wt% Weight percentage (%)
X Variables
Y RSM Response
β0 RSM regression coefficients
βi RSM regression coefficients
βii RSM interaction coefficient
βij RSM interaction coefficient
γg Gas shear rates (1/s)
γl Liquid shear rates (1/s)

T Average shear rates (1/s)
η Average apparent viscosity (Pa.s)
ρ Density (kg/m3)
τ Average shear stress (N/m2)
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Cheng and Carreau [45] who have reported the influence of the pre-
sence of bubbles on power consumption of dual helical ribbons, pre-
vious studies are limited to single phase agitated systems. Therefore,
little is known about the influence of impeller speed, gas flow rate,
impeller clearance, and viscosity on mixing time and power consump-
tion of multiphase agitated reactors driven by a dual helical ribbon
impeller. Further, it is not clear how these factors are related to the
desired mixing time and cost-effective power uptake when gassed STRs
are filled with shear-thinning fluids. Additionally, there has been little
information about the generalized correlation between power con-
sumption and Reynolds number when a reactor tank is equipped with a
dual helical ribbon impeller. Furthermore, little is known about the
impacts of sparging gas into the system agitated with a helical ribbon
impeller and it is not clear that rising bubbles has a positive or negative
impact on the mixing performance.

Thus, the major objective of this study is to investigate the mixing
performance of a helical ribbon impeller when the bubbles are dis-
persed, and the fluid phase is non-Newtonian. Further, this study
evaluates the impacts of impeller speed, gas flow rate, impeller clear-
ance from the bottom, and viscosity on mixing time and power con-
sumption. It is believed that the empirical findings in this study would
provide a new understanding of the flow pattern in the mixing process
of gas-liquid STRs. The findings confirm that the association between
impeller speed, gas flow rate, impeller clearance, and viscosity on the
mixing time and power uptake. Data gathered from the experiments
have identified that increases in impeller speed and gas flow rate are
not always connected with reducing the mixing time and power con-
sumption. Therefore, this study suggests a valuable correlation between
Reynolds number and power number which remarkably influence the
design, planning, and cost of gas-liquid reactors involving in process
industries. The relationships between mixing time and power con-
sumption with impeller speed, gas flow rate, impeller clearance, and
viscosity have been suggested by ANOVA test. Therefore, the optimum
response can be predicted in various operating conditions by using
these two statistical equations achieved through response surface
methodology (RSM2).

2. Materials and methods

2.1. Experimental setup

A transparent flat bottom and open-top cylindrical STR with an
aluminium central shaft is studied, where the driven force of the stirrer
is supplied by an electric motor. This type of system is widely used in
mineral processing and oil storage. The3 aspect ratio (AR: height to
diameter) of the reactor has been determined to be 1.4. This ratio is
kept in the range of 1–3 when an insoluble gas exists in the system
where higher heat and mass transfer is the main requirement. The
geometric configuration of the experimental set up is presented in
Table 1 and shown in Fig. 1.

Gas flow was supplied at the bottom of the stirred tank equipped
with a surface sparger consists of 10 equally spaced holes drilled on the
periphery of the surface, each having a diameter of 0.00025m. The
compressed air is supplied to the system through a central air system
and a flowmeter (Omega engineering flow meter with accuracy of± 2
% Full Scale) with the range of 0–2.2 LPM is applied to control the
airflow.

The calculated Reynolds number (Eq. 9) in the current experiment
was between 10–1000, therefore, the flow regime was considered as a
transient flow. While this study focuses on the transient regime, the
combination of both laminar and turbulent flows exist in the system.
This means that inertial forces dominate in turbulent regime, while

viscous forces overcome in laminar flow.
In this study, NaCMC was used as working fluid due to its optical

transparency and resistance to pH changes [49]. The reactor was filled
up to 0.27m of its height with NaCMC solution in four different con-
centrations of 0.1, 0.5, 1, and 1.5 wt%.

2.2. Acid-base reaction

Acid-Base titration reaction as an ordinary method of measuring the
mixing time has been applied in this work for two different purposes
[20–25]. The first one is to make it possible to see the evolution of
colourful mixed region throughout the reactor as the impeller rotates.
The second one is to find the mixing time by controlling the normality
and volume of acid, base, and pH of the NaCMC solution. Adding the
purple solution of NaOH and phenolphthalein into the agitated reactor
followed by acid injection helps to visualize the chaotic movement of
colour particles, homogenization process, and the formed vortices.

According to the previous study, to monitor fluid chaotic move-
ment, 7 ml NaOH of 2 N and phenolphthalein indicator was injected
closed the rotating shaft near the surface inside the reactor to raise pH
value until the working fluid colour turns into purple in all regions. The
reaction was recorded using a high-speed camera (Samsung digital
Camera 12M P with speed of 1.4 μm including dual-pixel autofocus) for
further evaluation. Then, 5ml of HCl solution was injected at the same
location (near the impeller shaft) to decolourize the working fluid and
the growth of decolouration of the working fluid was observed and
recorded by the camera [20–25].

In this paper, mixing time is considered as the time taken for the 95
% of complete mixing where the solution was homogenous. Mixing time
is determined by using RGB method and post processing software
(ImageJ). This method is presented and described in literature in a
systematic and detailed way [50,51].

Each experiment was repeated three times under the same condi-
tions to ensure the consistency of the results. Additionally, the nor-
mality and volume of the required solution of acid and base were
verified by titration before each set of experiments.

2.3. Torquemeters

The dissipated power of an impeller is correlated with impeller
speed and rheological properties of liquid in which agitator is carried
out. In this study, the power uptake by a mixing system was measured
by a commercial torquemeter (GUNT system with±0.1 N.m). The
consumed power and the adjusted torque were calculated from Eq. 11
and Eq. 12, respectively.

2.4. Rheometer

The viscoelastic characteristics of the polymer solutions was mea-
sured with a DHR-3, TA rheometer with normal accuracy±0.005,
equipped with a coaxial cylinder cup with a diameter of 0.304m, bob
diameter of 0.28m, bob height of 0.42m, and gap distance of 0.001m.
Further, the temperature was controlled to 25 °C with a Peltier system
during the tests.

Oscillation tests were carried out with increasing and decreasing
ramp of strain from 1 to 300 % and vice versa at a constant frequency of
1 Hz in order to collect 30 points per decade. To remove the molecular
network memory completely, the sample was pre-sheared at 300 s−1 up
to 15min, after loading the cup and reaching to the equilibrium stage.
Then, this procedure was followed by a 5min rest at zero shear rate
[49].

2.5. Theoretical considerations

Flow regime, formation, and distribution of bubbles, and fluid
rheological behaviour inside STRs are affected by the pumping rate of

2 Response surface methodology (RSM)
3 Aspect Ratio (AR)
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Table 1
The geometric configuration of the stirred system.

Vessel inner diameter (m) Vessel height (m) Impeller height (m) Impeller diameter (m) Impeller blade diameter (m) Impeller clearance (m) Shaft diameter (m)

D H h d di IC ds
0.19 0.4 0.155 0.14 0.02 0.02, 0.04, 0.06 0.015

Fig. 1. Schematic of experimental setup.
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the agitator which Qp
4 is upward pumping rate by fluid (Lpm) and QAX

5

is the volume rate of liquid pumping upwards by rising bubbles (Lpm)
[34]. Smith [34] has suggested the following two equations to predict
the flow regime of gas-liquid agitated systems. If Q QAX p, the reactor
flow pattern in loading/ flooding transition is not desirable.

G gHQ ( )AX f
5 (1)

NdQ ( )p
3 (2)

where H is the depth of fluid in the reactor (m), Gf is the gas flow rate
(LPM), D is the diameter of impeller (m), N is the impeller rotational
speed (rpm), and g is the gravitational acceleration constant (m/s2).

This study examines Qp and QAX for various impeller speeds and
different gas flow rates combined with visual observation in order to
assure the flow regime undergoes complete dispersion inside the re-
actor.

In gas-liquid agitation reactors, the maximum shear rate is imposed
by the rotary mechanical part. However, rising gas bubbles can also
have some impact on the fluid bulk. In this case, the average total shear
rate can be calculated from;

= +T g i
2 2

(3)

where, i is liquid shear rates (1/s), g is gas shear rates (1/s), and T is
average total shear rates (1/s).

According to Metzner and Otto’s correlation [52] the average shear
rate for shear-thinning fluids inside an agitated system ( )i can be de-
fined as follows:

= K Ni s (4)

where i is the average shear rate in a stirred vessel depending on the
impeller geometry and characteristics reflecting in Mentzer and Otto’s
constant (Ks) [52]. Additionally, the strong dependency of Ks to fluid
rheology has been widely investigated in the literature. Some re-
searchers have indicated that flow index behaviour (n) is proportional
to Ks [53], while others report the decreasing value of Ks is correlated to
increasing flow index behaviour [54,55].

Additionally, the gas shear rates (γg) can be calculated by
Hashikawa’s correlation [56], which shows the effect of bubble motion
on liquid and defined as;

= u1500g g (5)

=u
G
Ag

f
(6)

where ug is the superficial gas velocity (m/s) which is consider equal to
1500m/s as a proportional constant and A is Cross sectional area (m2).

η6 is the average apparent viscosity (Pa.s) and can be calculated by
the correlation between the T and τ7 as a shear stress (N/m2).

= =
+K N u( ) (1500 )T

s g
2 2 (7)

Further, a previous study noted NaCMC as a shear-thinning fluid
that follows the Power-Law equation [49].

= =K K K N( )n
s

n
i (8)

where n is the flow index, K is the consistency index (Pa.sn). All these
rheological parameters have been investigated in a previous study [49],
where the rheological factors for NaCMC are summarized in Table 2.

Eq. 9 shows the Reynolds number for a stirred system. Substitution
of the Power-Law model in Eq. 8 leads to obtaining Reynolds number

for a dual helical ribbon. Fuente et al. [48] have reported
Ks= 32.9–35.7 for a dual helical ribbon impeller in a shear-thinning
fluid, whereas n is close to 1.

=Re Nd2

(9)

In most recent studies, the mixing time as an indicator of homo-
geneity has been measured in different approaches including local and
general mixing time [57]. Within the realm of macromixing, bulk
mixing time t(s) is the time taken for the complete mixing, where the
solution is homogenous.

The Power number represents the rate of energy dissipation within
the liquid and the power consumption by impeller in a specific rota-
tional speed. Ungassed power number as the most important para-
meters in coaxial mixers have been studied widely [58,59].

=N P
N dp

0
3 5 (10)

where is density (kg/m3).
P0 as input power (W) is one of the main parameters evaluating the

efficiency of ungassed impeller which can be calculated by using the
following formula [60–62]:

=P N M2. . . Adjusted0 (11)

Furthermore, Bourne and Butler [63] have proven that there is a
correlation between Reynolds number and Power number in single
phase viscose fluid. Finally, torque should be obtained from the fol-
lowing formula:

MAdjusted= Mdisplay-Mfriction (12)

MAdjusted
8 is the actual torque required to rotate the shaft (N.m). It

can be calculated from the subtracting the friction torque (Mfriction
9)

from what is monitored on the power meter (Mdisplay
10) (N.m). If the

impeller rotates in the open air, the magnitude of torque will be con-
sidered as friction torque.

2.6. Response surface method

Response surface method (RSM) approach was used to predict the
mixing time and power consumption under different operating condi-
tions. The main objective of the RMS is e to identify the correlation
between variables including impeller speed, gas flow rate, impeller
clearance, and viscosity as well as responses including mixing time and
power consumption. For this purpose, the Box-Behnken method is used
to design the experiments. Next, the response surface methodology
(RSM) is applied to optimize the factor levels and find the most influ-
ential parameters. For each experiment, three replicates are considered
to ensure the reproducibility of the experiments. The correlation is
defined as:

= + + + +
= =

=
=

Y X X X X error
i

i i
i

ii i i
j

ij i j0
1

3

1

3
2

1

3

2

3

(13)

Table 2
The rheological parameters of NaCMC [49].

Concentration (wt%) n (-) K (Pa.sn)

0.1 0.98 0.08
0.5 0.92 0.13
1 0.82 0.46
1.5 0.58 4.3

4 Upward pumping rate (Qp)
5 Volume rate of liquid pumping upwards (QAX)
6 Average apparent viscosity (η)
7 Shear stress (τ)

8 Actual torque required to rotate the shaft (Madjusted)
9 Friction torque (Mfriction)
10 Torque displayed by torquemeter (Mdisplay)
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In this equation, X shows variables, Y indicates the response such as
mixing time, while β011, βi12, βii13, and βij14 are regression coefficients
and interaction terms. Different 3D surface plots are plotted to find the
most influential factor when the other factor are at optimized level
[64].

The list of variables and their maximum and minimum levels are
summarized in Table 3. These maximum and minimum levels are se-
lected based on the preliminary study.

Further, uncertainty analysis has been done for measured and cal-
culated data, as well as instrument accuracy. The result of uncertainty
analysis is summarized in Table 3.

3. Results and discussion

In this study, the impeller speed, gas flow rate, impeller clearance
from the bottom, and viscosity are considered as principal factors in-
fluencing the mixing process of a shear thinning fluid. It is worth noting
that the maximum impeller speed in the current investigation was
limited to 100 rpm. This limitation was considered because of the ex-
treme shear sensitivity of some materials and microorganisms [11,65].

As mentioned earlier, the experiments were carried out in the op-
timal range where the hydrodynamics of a gas-liquid system is com-
pletely dispersed. The influence of gas flow rates of 0.5–2.2 Lpm is
examined when the system is agitated by a dual helical ribbon impeller
between 50–100 rpm under transient flow regime. Generally, the effects
of bubble motion, impeller speed, gas flow rate, and viscosity on power
consumption and mixing time are discussed and interpreted in this
section.

3.1. Mixing pattern

The two-dimensional cross-section of the mixing pattern in the
vessel when the reaction between acid and base occurs is shown in
Fig. 2.

The visual evidence presented in this section shows that initially,
the radial movement of fluid bulk is stronger than the axial movement
for a dual helical ribbon. The impeller drives fluid towards the walls of
the vessel where the shear rate is at the maximum, where little move-
ment of fluid can be observed in the axial direction near the central
shaft. Then, fluid moves downward alongside the cylinder wall.
Following this, the axial movements become stronger and the top sur-
face becomes clear. Decolouration of the purple fluid shows that the
maximum mixing in this type of impeller happens close to the clearance
between the wall and impeller where the high shear imposes on the
fluid film as well as areas near to the inner edge of the blade. Whilst,
there is still an unmixed zone located at the bottom of the tank, the
efficiency of the impeller in the region near the wall is significant.
Therefore, the mixing time is controlled by the mixing pattern of the
low-shear central regions located far from the blade edges. A possible
explanation for these results may be the reduction in viscosity when the

high shear rate region rotates near the inner and outer edges of the
blade. The enclosed volume of fluid between impeller and wall as well
as the bulk of fluids around the inner edge of the blade can be con-
sidered as a low viscosity film which can be easily influenced by this
type of impeller. Generally, these regions are introduced as a stagnant
zone in other types of impellers.

Although extensive research has been carried out on the effects of
dual helical ribbon impellers on single phase flow pattern, few studies
have paid attention to the influence of chaotic bubble motion on multi
phases mixing process [56]. Fig. 3 indicates the qualitative mixing
pattern over time when air bubbles are introduced. Rising a bubble
from bottom of the tank imposes shear rate to the bulk of the fluid. As a
result, the viscosity of the shear-thinning fluid is reduced to some extent
depending on the gas flow rate, general gas hold-up, and rheology of
the fluid. The more reduction in viscosity, the more desirable results are
achieved including less energy consumption and shorter mixing time.
Since bubbles are dispersed everywhere, the mixed area near the cen-
tral shaft can gradually develop, which enhances the mixing perfor-
mance of the dual helical ribbon impeller.

Fig. 3 indicates that in a low rotational speed helical ribbon im-
peller, the formed bubbles rise without significant breakage or coales-
cence. They are trapped behind the impeller blade and form a film of
gas which follows the impeller patterns to reach the free surface. The
interesting point here is the enhancement of the uniformity of homo-
genization and dispersion of liquid inside the system. In the presence of
bubbles, after the injection of acid, clear liquid not only moves toward
the clearance of the vessel and impeller but also gradually penetrates
downward. Although this requires more investigation, this phenom-
enon could be interpreted by increasing the internal liquid shear stress
as a result of bubbles motions. In completely disperse mixing patterns,
bubbles disperse completely in the whole system, even in stagnant re-
gions. The presence of bubbles in the stagnant zones increases the shear
stress resulting in the breakdown of the NaCMC internal network [49].
Weakening the network structure of shear-thinning fluids increases
both molecular and bulk diffusions resulting in enhancement of the
mixing process.

3.2. Impact of impeller speed

The impact of various rotational speeds on the performance of the
mixing system has been studied widely in the literature. Results show
that an increase in rotational speed reduces the time of mixing and
improves the homogeneity of heat, mass, and nutrient [7,10,37,66,67].

Fig. 4a and b depict both mixing time and power consumption over
various rotational speeds for different concentration of NaCMC solu-
tions. The results indicate that a higher rotational speed leads to
shortened mixing time, while power uptake increases exponentially.
The results indicate that an increase in rotational speed up to 75 rpm
could reduce the mixing time of viscous fluid to some extent.

Fig. 4a shows the expected time to reach homogeneity in different
impeller rotational speeds. For the same rotational speed, the more
concentrated solution the more time required to reach homogenous
conditions, where the natural gel structure of polymer requires more
energy and time to destroy. Therefore, the diluted solution requires less
time in a lower rotational speed to reach a certain level of homogeneity.
Further, it can be noted that the homogeneity graphs are exponential

Table 3
Variables used in RSM method to optimize the mixer performance and uncertainty analysis for different variables.

Symbols Variables Low level Central level High level Instrument Systematic Uncertainty (±
%)

Random Uncertainty (±
%)

Total Uncertainty (±
%)

X1 Impeller speed (1/s) 50 75 100 Torquemeter – 1 1.00
X2 Gas flow rate (Lpm) 0.5 1.35 2.2 Flow meter 1.5 0.66 1.64
X3 Impeller clearance (m) 0.02 0.04 0.06 Ruler 0.5 0.83 0.97
X4 Concentration (wt %) 0.1 0.8 1.5 Scale 0.1 0.32 0.34

11 RSM regression coefficients ( )0
12 RSM regression coefficients ( )i
13 RSM interaction coefficient ( )ii
14 RSM interaction coefficient ( )ij

M. Amiraftabi, et al. Chemical Engineering & Processing: Process Intensification 148 (2020) 107811

6



which become level off at the end. Thus, it seems that the system has
become homogenous in somewhere between rotational speed of
0−50 rpm when the concentration of NaCMC solution is 0.1 %.

However, increasing the rotational speed beyond 75 rpm not only
has insignificant contribution in reducing the mixing time but also
exponentially increases power consumption. This finding suggests that
increasing the impeller speed up to optimum value could enhance the
performance of the mixing system. Whilst, after this certain level, the
power consumption increases sharply with a limited positive con-
tribution to mixing performance.

Two different dimensionless terms have been defined to investigate
the extra power consumed by the impeller compared to mixing time
reduction. The first term is the extra power consumed when the im-
peller speed increases from 75 to 85 and 100 rpm and the second term is
the decrease of the mixing time when the impeller speed increases to 85
and 100 rpm.

Fig. 5 represents these two dimensionless terms for different

concentrations of NaCMC. According to this figure, a remarkable in-
crease is observed in the percentage of power uptake compared to the
reduction in the percentage of mixing time when the solution is more
concentrated. For example, when impeller speed changes from 85 to
100 rpm in a concentration of 1.5 % solution, the power consumption
has been increased by 60 %, while the mixing time decreased by 10 %.
This finding is vital in terms of cost efficiency and scaling up the system.

3.3. Influence of bubble motion

The mixing time versus gas flow rate for gassed cases in both stirred
and non-stirred conditions is shown in Fig. 6. Hollow markers show the
mixing time in different gas flow rates for various concentrations of
NaCMC solutions when the impeller speed is 75 rpm. Filled markers
demonstrate the mixing time under the same operating conditions when
the impeller is off (impeller speed=0 rpm). The results in this figure
reveal that the gas flow rate is an influential factor in mixing time when

Fig. 2. The evolution of mixed area inside the reactor when the impeller speed is 75 rpm and concentration of NaCMC solution is 1 %.
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the mechanical agitator is not working. Increasing the gas flow rate
from 0.5 to 2.2 LPM could reduce the mixing time to half in non-stirred
systems. However, hollow markers show that the mechanical agitator is
more influential on mixing time compared to the gas flow rate.

Some previous studies suggest that for a system with a Rushton
turbine and PBD- anchor, the gas flow rate increases the mixing time
[36,37]. It has been argued that in high gas flow rate, the buoyancy
force overcomes the hydrodynamics of system and the gas-liquid system
flooded [36,37]. Other researchers, however, have reported an im-
provement in the mixing performance by the presence of bubbles inside
the system [33–35]. This inconsistency may be due to the complex
hydrodynamics of gas-liquid agitated flow patterns. The variety of hy-
drodynamics in gas-liquid STRs can be almost considered as a function
of impeller type, rheology of fluid, gas flow rate, impeller speed, and
bubble size [39].

3.4. Power consumption

Power uptake is another influential design parameter representing
the economic performance of a mixing system. The power consumption
of the impeller should be taken into account when the cost efficiency of
a mixing process is important. Power consumption displays the per-
formance of the agitating process depending on the geometry of im-
peller and physical properties of the fluid [68]. The power consumption

measurement has been carried out on NaCMC solution with different
concentrations of 0.1, 0.5, 1, and 1.5 wt% for five different impeller
speeds of 50, 65, 75, 85, and 100 rpm.

Fig. 7a indicates the power uptake by impeller versus Reynolds
number for the rotational speed of 50, 65, 75, 85, and 100 rpm for
different concentration of NaCMC solutions. The greater the viscoelas-
ticity of the fluid, the greater the energy required to achieve complete
mixing. It can be observed that an increase in viscosity shifts the power
curve to the lower Reynolds numbers and higher energy consumption.

Fig. 7b displays the dimensionless energy consumption (Np) as a
function of Reynolds number (Re) or power curve for a dual helical
ribbon in five different rotational speeds of 50, 65, 75, 85 and 100 rpm
and constant gas flow rate of 1 LPM. The power curve is unique for each
impeller type. The single most striking observation to emerge from the
plotted data is the relationship between Np and Re, which for the first
time this result has been presented. Regression analysis was used to
predict the correlation between these two parameters which is im-
portantly repeated for all concentrations of NaCMC, whereas the flow
regime is transient. This practical correlation has been reported in Eq.
14. It is noticed that this practical correlation is unique and demon-
strating how a dual helical ribbon impeller performs in a transient two
phases flow regime.

= =N Re N Re. or 918.9p p
0.5 (14)

Fig. 3. The evolution of mixed area inside the aerated reactor when the impeller speed is 75 rpm and concentration of NaCMC solution is 1 %.
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where, β=0.5 and α=918.9 are constant for a dual helical ribbon
impeller in different concentration of NaCMC solutions from 0.1 wt% to
1.5 wt%.

What is surprising here is that the trend of the power curve is not
influenced by changes in concentration. Patel et al. [69] have indicated
that Re.Np is a constant value for the Scaba and the A320 impellers in
single-phase flow. They also mentioned that the power number changes
slightly based on Reynolds number in transient flow for the Scaba and
the A320 impeller in single-phase flow. However, this correlation has
not previously been found for a dual helical ribbon impeller in gas-
liquid interactions.

Additionally, Fig. 8 shows the power consumption as a function of
mixing time at a constant impeller speed of 75 rpm. These results show
the effect of bubble motion on mixing time and power consumption.

Fig. 4. a) Mean mixing time and b) mean power consumption with error bars
over impeller speed in different concentration of NaCMC solutions.

Fig. 5. Comparison between the percentage of power consumption and per-
centage of enhancing mixing time.

Fig. 6. Comparison between the mean gassed mixing time with error bars in
both stirred and non-stirred conditions.

Fig. 7. a) Mean power curve and b) Power number (Np) vs. Reynolds number
(Re) for a dual helical ribbon in five different rotational speeds for various
concentrations of NaCMC.

Fig. 8. Influence of gas injection on mean mixing time with error bars over
power number (Np).
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Interestingly, a decrease in power consumption was observed when gas
was injected into the system. This 5–7 % reduction in power con-
sumption could be due to the presence of bubbles inside the reactor.
The reduction in power uptake by sparging bubbles in a mixing system
has also been observed by other researchers [30,70]. This finding can
be interpreted through the formation of gas pockets (cavities) under-
neath the impeller streamlining the blade movement and reducing fluid
drag resulting in lower power consumption. Further, reducing the
viscosity of shear thinning fluid as a result of axial and rotational

bubble movements can be considered as another influential factor.
In addition, Fig. 8 depicts that both power consumption and mixing

time are highly affected by the viscosity of the fluid. The higher the
viscosity of the fluid, the more power required to achieve complete
mixing. Therefore, when the viscosity of the shear-thinning fluid in-
creases, more power and time are required to achieve desirable mixing.

These results differ from most published studies that reported
bubble motion causes an increase in power consumption of an aerated
stirred system [30,70]. However, the present results are in agreement
with Cheng and Carreau’s [45] findings which show the presence of
bubbles leads to a reduction of power consumption by the impeller.

Fig. 9a and b clearly describes the role of gas flow rate on power
consumption where the impeller rotational speed is constant at 75 rpm.
According to Fig. 9a, an increase in gas flow rate from 1 to 2.2 LPM
reduces the mixing power to some extent. Further Fig. 9b, represents
the ratio of power uptake by impeller when the gas sparged (Pg), watt,

Fig. 9. The role of bubble motion around the impeller on mean power con-
sumption.

Table 4
Plan for ANOVA analysis.

Order Impeller speed (N) Gas flow rate (Gf) Impeller Clearance (IC)a Concentration (C) Mixing Time Power consumption

rpm LPM m wt% s W
1 100 0.5 0.04 0.8 57 30.8
2 75 0.5 0.04 1.5 102.4 27.88
3 75 1.35 0.02 0.1 34 10.6
4 75 0.5 0.04 0.1 48.7 10.6
5 75 1.35 0.06 0.1 45.5 10.6
6 75 1.35 0.06 1.5 91.1 27.1
7 75 0.5 0.02 0.8 65.5 16.3
8 75 2.2 0.04 0.1 27.8 10.2
9 75 1.35 0.02 1.5 88 27.1
10 50 1.35 0.06 0.8 63.25 6.5
11 75 2.2 0.02 0.8 31.5 15.3
12 50 1.35 0.02 0.8 42.8 6.5
13 100 1.35 0.04 1.5 95.8 52.8
14 75 2.2 0.06 0.8 42.8 15.3
15 75 0.5 0.06 0.8 75.8 16.3
16 100 1.35 0.06 0.8 46.5 32.46
17 75 1.35 0.04 0.8 57.1 15.1
18 50 2.2 0.04 0.8 39 6.54
19 50 1.35 0.04 0.1 49.8 4.45
20 75 2.2 0.04 1.5 61.7 26.31
21 100 1.35 0.04 0.1 23.9 20.94
22 100 2.2 0.04 0.8 26 31.4
23 50 0.5 0.04 0.8 68.8 6.28
24 100 1.35 0.02 0.8 46.5 30.9
25 50 1.35 0.04 1.5 90.7 11.8

a Impeller Clearance (IC).

Table 5
Results of ANOVA test for Quadratic model.

Response Mixing time Power consumption

Source F-value P-value F-value P-value

Model 45.37 < 0.0001* 128.1 < 0.0001*
A-Impeller Speed 14.52 0.0034* 1138.3 < 0.0001*
B-Gas Flow rate 151.38 < 0.0001* 0.4454 0.5197 ns

C-Concentration 379.81 < 0.0001* 513.47 < 0.0001*
D-Impeller Clearance 13.54 0.0042* 0.1121 0.7447 ns

AB 0.0182 0.8953 ns 0.016 0.9019 ns

AC 12.17 0.0058* 82.98 < 0.0001*
AD 5.29 0.0442* 0.3362 0.5749 ns

BC 4.96 0.051 ns 0.1891 0.6729 ns

BD 0.0127 0.9126 ns 0 1 ns

CD 0.8933 0.3669 ns 0 1 ns

A² 2.48 0.1466 ns 20.95 0.001*
B² 2.95 0.1165 ns 0.0326 0.8603 ns

C² 12.92 0.0049* 19.56 0.0013*
D² 0.2279 0.6433 ns 0.206 0.6596 ns

*: Not significant at P< 0.05, ns: Significant at P> 0.05.
P−value and F−value: Indicator of significance decision.
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to the power consumption of single-phase system (P0), watt, over the
gas flow number (flg15) which shows the flow developing in the im-
peller zone independent to impeller geometry.

This figure shows that power consumption experiences a significant
fall after a certain value of gas flow rate. Dispersed bubbles can reduce
the viscosity of the fluid around the blade to some extent and reduce the
power uptake. By increasing the impeller speed, the bubbles disperse
everywhere in the fluid bulk and some of them still follow the impeller
path. As a result, the impeller has the maximum level of contact with
the air bubbles trapped behind the blade which slightly decrease the
power consumption of the aerated system compared to single-phase
one.

3.5. Statistical analysis

This proposed study investigates the impacts of four listed factors
shown in Table 3 through the three-level Box-Behnken method [71].
Then, the response surface methodology (RSM) is applied to optimize
and to find the most influential factors and their interactions. Table 4
summarizes the plan, the number of experiments and variables applied
in RSM.

The result of statistical analysis suggests strong correlations be-
tween responses and all independent and dependent variables lead to
Eq. 15 and Eq. 16.

= + + +
× + × ×

× + × ×
+ +

=

Mixing time N Gf C IC
N Gf N conc N IC

Gf conc Gf IC Conc IC
N Gf C IC

1.26 0.88 5.5 11.31 13.56
0.014 0.44 . 0.1
8.3 . 0.14 1.5 .
0.0067 6.3 19.4 0.32 (Adjusted R2

0.9628)

2 2 2 2

(15)

=
+ × + × + ×

× + × ×
+ + +
+ =

Power Consumption N Gf IC C
N Gf N C N IC

Gf C E Gf IC C IC
IS Gf C

IC

28.53 0.67 0.75 1.25 24.58
0.004 0.35 0.007
0.49 3.9 1.07
0.0058 0.2 7.23
0.09 (Adjusted R2 0.9867)

16 15

2 2 2

2 (16)

where N is the impeller speed, Gf is the gas flow rate, C is the con-
centration of the solution, and IC is the impeller clearance.

Further, the result of ANOVA test has been summarized in Table 5
for the response surface quadratic model. This table demonstrates P-
values and F-values for all variables. In this case, A, B, C, D, AC, AD, BC,
A2, and C² are significant model parameters.

The Model F-values of 45.37 for mixing time and 128.1 for power
consumption confirm that the proposed Eq. 14 and Eq. 15 are reliable
and remarkably accurate to predict the mixing time and power con-
sumption in different operating conditions. These equations have sig-
nificant practical value for industrial designing, operating, and cost
studying of STRs.

To sum up, the statistical analysis indicates that impeller speed, gas

Fig. 10. Influential interaction model parameters analysed by ANOVA test.

15 Gas flow number (flg)
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flow rate, impeller clearance, and viscosity influence the mixing time
and power consumption, respectively.

Further, analysis of interactions between variables and the model
coefficients are displayed in three-dimensional response surfaces and
are shown in Fig. 10a, b. This figure displays the significant interaction
model parameters based on P-value<0.05. Fig. 10a shows the most
influential interactions on mixing time including impeller speed-con-
centration, and impeller clearance-impeller speed. Additionally, ac-
cording to P-value, the most influential model parameter on power
consumption is interaction of concentration-impeller speed as shown in
Fig. 10b.

4. Conclusions

Collectively, this study outlines the role of a helical ribbon impeller
on mixing performance and cost of operation of a gassed STR. The
range of gas flow rate and impeller speed has been adjusted in the
preliminary study. In addition, this work provides a conceptual un-
derstanding of the flow pattern inside a gassed reactor equipped with a
dual helical ribbon impeller and filled with a shear thinning fluid. The
findings of this study suggest that increasing the rotational speed more
than 75 rpm not only fails to reduce mixing time but also increases the
power consumption. It can be concluded that the optimum rotational
speed should be selected with caution because boosting impeller speed
may impose the extra operating cost while the efficiency of mixing
remains unchanged. Additionally, aeration enhances power uptake and
mixing time to some extent. Further, based on the experimental data in
this study, two equations are proposed using ANOVA test to predict the
mixing time and power uptake for a helical ribbon impeller in different
operating conditions. The statistical analysis demonstrates the sig-
nificant role of viscosity and impeller speed on the mixing performance.
Suggesting a practical correlation between Reynolds and power num-
bers, this study provides unique and valuable results that can be applied
to process industries.

Declaration of Competing Interest

The authors declare that there are no conflicts of interest.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.cep.2020.107811.

References

[1] L. Samandari-Masouleh, N. Mostoufi, A. Khodadadi, Y. Mortazavi, M. Maghrebi,
Modeling the growth of carbon nanotubes in a floating catalyst reactor, Ind. Eng.
Chem. Res. 51 (2012) 1143–1149, https://doi.org/10.1021/ie201137j.

[2] L. Samandari-Masouleh, N. Mostoufi, A.A. Khodadadi, Y. Mortazavi, M. Maghrebi,
Kinetic modeling of carbon nanotube production and minimization of amorphous
carbon overlayer deposition in floating catalyst method, Int. J. Chem. React. Eng.
10 (2012) 10–12, https://doi.org/10.1515/1542-6580.2972.

[3] S. Miryahyaei, K. Olinga, F.A. Abdul Muthalib, T. Das, M.S. Ab Aziz, M. Othman,
J.C. Baudez, D. Batstone, N. Eshtiaghi, Impact of rheological properties of substrate
on anaerobic digestion and digestate dewaterability: new insights through rheolo-
gical and physico-chemical interaction, Water Res. 150 (2019) 56–67, https://doi.
org/10.1016/j.watres.2018.11.049.

[4] M. Schrimpf, J. Esteban, T. Rösler, A.J. Vorholt, W. Leitner, Intensified reactors for
gas-liquid-Liquid multiphase catalysis: from chemistry to engineering, Chem. Eng.
J. 372 (2019) 917–939, https://doi.org/10.1016/j.cej.2019.03.133.

[5] F. Almeida, F. Rocha, A. Ferreira, Analysis of liquid flow and mixing in an oscil-
latory flow reactor provided with 2D smooth periodic constrictions, U. Porto J. Eng.
4 (2018) 1–15, https://doi.org/10.24840/2183-6493_004.002_0001.

[6] E.K. Nauha, Z. Kálal, J.M. Ali, V. Alopaeus, Compartmental modeling of large
stirred tank bioreactors with high gas volume fractions, Chem. Eng. J. 334 (2018)
2319–2334, https://doi.org/10.1016/j.cej.2017.11.182.

[7] T. Espinosa-Solares, E. Brito-De La Fuente, A. Tecante, L. Medina-Torres,
P.A. Tanguy, Mixing time in rheologically evolving model fluids by hybrid dual
mixing systems, Chem. Eng. Res. Des. 80 (2002) 817–823, https://doi.org/10.
1205/026387602321143345.

[8] L. Pakzad, F. Ein-mozaffari, S.R. Upreti, A. Lohi, Chemical engineering research and
design agitation of Herschel – bulkley fluids with the Scaba – anchor coaxial mixers,
Chem. Eng. Res. Des. 91 (2012) 761–777, https://doi.org/10.1016/j.cherd.2012.
09.008.

[9] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, Characterisation of the mixing of
non-newtonian fluids with a scaba 6SRGT impeller through ert and CFD, Can. J.
Chem. Eng. 91 (2013) 90–100, https://doi.org/10.1002/cjce.21616.

[10] L. Pakzad, F. Ein-Mozaffari, P. Chan, Measuring mixing time in the agitation of non-
Newtonian fluids through electrical resistance tomography, Chem. Eng. Technol. 31
(2008) 1838–1845, https://doi.org/10.1002/ceat.200800362.

[11] D.J. Lamberto, F.J. Muzzio, P.D. Swanson, A.L. Tonkovich, Using time-dependent
RPM to enhance mixing in stirred vessels, Chem. Eng. Sci. 51 (1996) 733–741,
https://doi.org/10.1016/0009-2509(95)00203-0.

[12] T. Espinosa-Solares, E. Brito-De La Fuente, A. Tecante, P.A. Tanguy, Power con-
sumption of a dual turbine-helical ribbon impeller mixer in ungassed conditions,
Chem. Eng. J. 67 (1997) 215–219, https://doi.org/10.1016/S1385-8947(97)
00040-5.

[13] M.S. Amiraftabi, N. Mostoufi, M. Hosseinzadeh, M.R. Mehrnia, Reduction of
membrane fouling by innovative method (injection of air jet), J. Environ. Health
Sci. Eng. 12 (2014) 1–8, https://doi.org/10.1186/s40201-014-0128-0.

[14] J. Jiang, J. Wu, S. Poncin, H.Z. Li, Effect of hydrodynamic shear on biogas pro-
duction and granule characteristics in a continuous stirred tank reactor, Process
Biochem. 51 (2016) 345–351, https://doi.org/10.1016/j.procbio.2015.12.014.

[15] K. Takahashi, Mixing of pseduplastic liquid in a vessel equipped with a variety of
helical ribbon impellers, J. Chem. Eng. Jpn. 45 (1979) 63–68.

[16] Y.Y. Tsui, Y.C. Hu, Flow characteristics in mixers agitated by helical ribbon blade
impeller, Eng. Appl. Comput. Fluid Mech. 5 (2011) 416–429, https://doi.org/10.
1080/19942060.2011.11015383.

[17] Y. Bao, Y. Lu, Q. Liang, L. Li, Z. Gao, X. Huang, S. Qin, Power demand and mixing
performance of coaxial mixers in a stirred tank with CMC solution, Chinese J. Chem.
Eng. 23 (2015) 623–632, https://doi.org/10.1016/j.cjche.2015.01.002.

[18] H. Ameur, M. Bouzit, Mixing in shear thinning fluids, Braz. J. Chem. Eng. 29 (2012)
349–358, https://doi.org/10.1590/S0104-66322012000200015.

[19] A. Delafosse, M.L. Collignon, S. Calvo, F. Delvigne, M. Crine, P. Thonart, D. Toye,
CFD-based compartment model for description of mixing in bioreactors, Chem. Eng.
Sci. 106 (2014) 76–85, https://doi.org/10.1016/j.ces.2013.11.033.

[20] P. Taylor, R.A. Ghotli, A.A.A. Raman, S. Ibrahim, LIQUID-LIQUID MIXING IN
STIRRED VESSELS : A REVIEW Liquid-Liquid Mixing in Stirred Vessels : A Review,
(n.d.) 37–41. doi:10.1080/00986445.2012.717313.

[21] B.S. Foucault, G. Ascanio, P.A. Tanguy, Coaxial Mixer Hydrodynamics With
Newtonian and Non-newtonian Fluids, (2004), https://doi.org/10.1002/ceat.
200401996.

[22] D.W.A.T.I. Hari-prajitno, P. Ved, T. Centre, B. Birmingham, Gas-Liquid Mixing
Studies With Multiple up- and Down- Pumping Hydrofoil Impellers : Power
Characteristics and Mixing Time, (1998), p. 76.

[23] Y. Kato, H. Furukawa, Y. Ikeda, T. Nakanishi, T. Sano, K. Tomioka, Development of
a mixing process using an HB-type impeller to easily achieve scale-up by main-
taining geometrical similarity, Int. J. Chem. Eng. 2018 (2018).

[24] Y. Bao, Y. Lu, Q. Liang, L. Li, Z. Gao, X. Huang, S. Qin, Power demand and mixing
performance of coaxial mixers in a stirred tank with CMC solution Chinese Journal
of Chemical Engineering Power demand and mixing performance of coaxial mixers
in a stirred tank with CMC solution, Chin. J. Chem. Eng. (2018), https://doi.org/10.
1016/j.cjche.2015.01.002.

[25] S. Deans, Techniques for Mixing and Scaling in Mechanically Agitated Vessels, (n.
d.).

[26] T. Kouda, H. Yano, F. Yoshinaga, M. Kaminoyama, M. Kamiwano, Characterization
of non-newtonian behavior during mixing of bacterial cellulose in a bioreactor, J.
Ferment. Bioeng. 82 (1996) 382–386, https://doi.org/10.1016/0922-338X(96)
89155-0.

[27] D. Hari-Prajitno, V.P. Mishra, K. Takenaka, W. Bujalski, A.W. Nienow,
J. McKemmie, Gas-liquid mixing studies with multiple up- and down-pumping
hydrofoil impellers: power characteristics and mixing time, Can. J. Chem. Eng. 76
(1998) 1056–1068, https://doi.org/10.1002/cjce.5450760612.

[28] K. Takahashi, N. Sugawara, Y. Takahata, Mixing time in an agitated vessel equipped
with large impeller, J. Chem. Eng. Jpn. 48 (2015) 513–517, https://doi.org/10.
1252/jcej.14we192.

[29] L. Lehrer, Mixing Time Prediction, Gas. 2, (1983), p. 2 http://www.mech.eng.
unimelb.edu.au/people/staffresearch/AFMSsite/8/Lehrer2.pdf.

[30] M. Bouaifi, M. Roustan, Power consumption, mixing time and homogenisation
energy in dual-impeller agitated gas-liquid reactors, Chem. Eng. Process. 40 (2001)
87–95, https://doi.org/10.1016/S0255-2701(00)00128-8.

[31] B.V. Machon, M. Jahoda, Liquid homogenization in aerated multi-impellers stirred
vessel, Chem. Eng. Technol. 23 (2012), https://doi.org/10.1201/b11330-2 1–1.

[32] N. Hashemi, F. Ein-Mozaffari, S.R. Upreti, D.K. Hwang, Experimental investigation
of the bubble behavior in an aerated coaxial mixing vessel through electrical re-
sistance tomography (ERT), Chem. Eng. J. 289 (2016) 402–412, https://doi.org/10.
1016/j.cej.2015.12.077.

[33] S.C. Low, D. Allitt, N. Eshtiaghi, R. Parthasarathy, Measuring active volume using
electrical resistance tomography in a gas-sparged model anaerobic digester, Chem.
Eng. Res. Des. 130 (2018) 42–51, https://doi.org/10.1016/j.cherd.2017.11.039.

[34] A. Einsele, R.K. Flnn, Influence of gas flow rates and gas holdup on blending effi-
ciency in stirred tanks - industrial & engineering chemistry process design and
development (ACS publications), Ind. Eng. Chem. (1980) 600–603.

[35] N. Blakebrough, K. Sambamurthy, Mass transfer and mixing rates in fermentation
vessels, Biotechnol. Bioeng. 8 (1966) 25–42, https://doi.org/10.1002/bit.
260080104.

M. Amiraftabi, et al. Chemical Engineering & Processing: Process Intensification 148 (2020) 107811

12



[36] B.V. Machon, M. Jahoda, Liquid homogenization in aerated multi-impeller stirred
vessel, Technol. Med. Sci. 23 (2012), https://doi.org/10.1201/b11330-2 1–1.

[37] N. Hashemi, F. Ein-Mozaffari, S.R. Upreti, D.K. Hwang, Analysis of mixing in an
aerated reactor equipped with the coaxial mixer through electrical resistance to-
mography and response surface method, Chem. Eng. Res. Des. 109 (2016) 734–752,
https://doi.org/10.1016/j.cherd.2016.03.028.

[38] J.C. Baudez, Physical aging and thixothropy in sludge rheology, Appl. Rheol. 18
(2007) 1–8.

[39] J.M. Smith, Dispersion of gases in liquids: the hydrodynamics of gas dispersion in
low viscosity liquids, Mix. Liq. by Mech. Agit. (1985) 342.

[40] A. Paglianti, S. Pintus, M. Giona, Time-series analysis approach for the identifica-
tion of flooding/loading transition in gas-liquid stirred tank reactors, Chem. Eng.
Sci. 55 (2000) 5793–5802, https://doi.org/10.1016/S0009-2509(00)00125-1.

[41] R.P. Chhabra, L. Bouvier, G. Delaplace, G. Cuvelier, S. Domenek, C. André,
Determination of mixing times with helical ribbon mipeller for non-Newtonian
viscous fluids using an advanced imaging method, Chem. Eng. Technol. 30 (2007)
1686–1691, https://doi.org/10.1002/ceat.200700320.

[42] P. Ayazi Shamlou, M.F. Edwards, Power consumption of helical ribbon mixers in
viscous newtonian and non-newtonian fluids, Chem. Eng. Sci. 40 (1985)
1773–1781, https://doi.org/10.1016/0009-2509(85)80040-3.

[43] F. Rieger, V. Novak, H. Dagmar, Homogenization efficiency of helical ribbon agi-
tators, Chem. Eng. J. J. 33 (1986) 143–150, https://doi.org/10.1016/0300-
9467(86)80013-2.

[44] H. Ameur, Y. Kamla, D. Sahel, Performance of helical ribbon and screw impellers for
mixing viscous fluids in cylindrical reactors, Chemeng. J. 2 (2018) 1–9, https://doi.
org/10.3390/chemengineering2020026.

[45] J. Cheng, P.I. Carreau, Aerated mixing of viscoelastic fluids with helical ribbon
impellers, Chem. Eng. Sci. 49 (1994) 1965–1972.

[46] K. Takahashi, T. Yokota, H. Konno, Power consumption of helical ribbon agitators
in highly viscous pseudoplastic liquids, J. Chem. Eng. Jpn. 17 (1984) 657–659,
https://doi.org/10.1252/jcej.17.657.

[47] V.V. Chavan, J. Ulbrecht, Power correlations for close-clearance helical impellers in
non-newtonian liquids, Ind. Eng. Chem. Process Des. Dev. 12 (1973) 472–476,
https://doi.org/10.1021/i260048a015.

[48] E. Brito-De La Fuente, L. Choplin, P.A. Tanguy, Mixing with helical ribbon im-
pellers: effect of highly shear thinning behaviour and impeller geometry, Chem.
Eng. Res. Des. 75 (1997) 45–52, https://doi.org/10.1205/026387697523381.

[49] M. Amiraftabi, Khiadani Mehdi, Transparent polymers to emulate the rheological
properties of primary, activated, and digested sludge authors, Chem. Eng. Res. Des.
(2019), https://doi.org/10.1016/j.mex.2019.03.017.

[50] G. Delaplace, L. Bouvier, A. Moreau, R. Guérin, J.C. Leuliet, Determination of
mixing time by colourimetric diagnosis - Application to a new mixing system, Exp.
Fluids 36 (2004) 437–443, https://doi.org/10.1007/s00348-003-0741-7.

[51] F. Cabaret, S. Bonnot, L. Fradette, P.A. Tanguy, Mixing time analysis using colori-
metric methods and image processing, Ind. Eng. Chem. Res. 46 (2007) 5032–5042,
https://doi.org/10.1021/ie0613265.

[52] A.B. Metzner, R.E. Otto, Agitation of non-Newtonian fluids, AIChE J. 3 (1957) 3–10,
https://doi.org/10.1002/aic.690030103.

[53] R. Baxter, N. Hastings, A. Law, E.J. Glass, Food Stabilisers, Thickeners and Gelling
Agent, (2008).

[54] S. Nagata, M. Nishikawa, T. Hisayuki, H. Hirabayashi, S. Gotoh, Power consumption
of mixing impellers Bingham plastic liquids, J. Chem. Eng. Jpn. 3 (1970) 237–243,

https://doi.org/10.1252/jcej.3.237.
[55] M. Houska, Anchor-agitated systems : power input correlation for pseudoplastic and

thixotropic fluids in equilibrium, AIChE J. 32 (1986) 155–158, https://doi.org/10.
1002/aic.690320119.

[56] J. Cheng, P.J. Carreau, Aerated mixing of viscoelastic fluids with helical ribbons
impellers, Chem. Eng. Sci. 49 (1994) 1965–1972, https://doi.org/10.1016/0009-
2509(94)80080-4.

[57] M. Moo‐Young, K. Tichar, F.A.L. Dullien, The blending efficiencies of some im-
pellers in batch mixing, AIChE J. 18 (1972) 178–182, https://doi.org/10.1002/aic.
690180133.

[58] H. Ameur, Energy efficiency of different impellers in stirred tank reactors, Energy
93 (2015) 1980–1988, https://doi.org/10.1016/j.energy.2015.10.084.

[59] J. Wu, Y. Zhu, L. Pullum, The effect of impeller pumping and fluid, Can. J. Chem.
Eng. 79 (2001) 177–186, https://doi.org/10.1002/cjce.5450790201.

[60] E.L. Paul, V. a Atiemo-obeng, S.M. Kresta, Handbook of Inductrial Mixing, (2004),
https://doi.org/10.1002/0471451452.

[61] J. Wu, H. ming Zhou, H. zhi Li, P. cheng Zhang, J. Jiang, Impacts of hydrodynamic
shear force on nucleation of flocculent sludge in anaerobic reactor, Water Res. 43
(2009) 3029–3036, https://doi.org/10.1016/j.watres.2009.04.026.

[62] M. hui Xie, J. ye Xia, Z. Zhou, G. zhong Zhou, J. Chu, Y. ping Zhuang, S. liang
Zhang, H. Noorman, Power consumption, local and average volumetric mass
transfer coefficient in multiple-impeller stirred bioreactors for xanthan gum solu-
tions, Chem. Eng. Sci. 106 (2014) 144–156, https://doi.org/10.1016/j.ces.2013.10.
032.

[63] H. Bourne, J.R. Buttler, Power consumption of helical ribbon impellers in viscose
liquids, Process Saf. Environ. Prot. 47 (1969).

[64] V.C. Zitrom, One-factor-at-a-time versus designed experiments, Am. Stat. 53 (1999)
126–131, https://doi.org/10.2307/2685731.

[65] L. Wiedemann, F. Conti, T. Janus, M. Sonnleitner, W. Zörner, M. Goldbrunner,
Mixing in biogas digesters and development of an artificial substrate for laboratory-
scale mixing optimization, Chem. Eng. Technol. 40 (2017) 238–247, https://doi.
org/10.1002/ceat.201600194.

[66] X.H. Yang, W.L. Zhu, Viscosity properties of sodium carboxymethylcellulose solu-
tions, Cellulose 14 (2007) 409–417, https://doi.org/10.1007/s10570-007-9137-9.

[67] D. Patel, F. Ein-Mozaffari, M. Mehrvar, Improving the dynamic performance of
continuous-flow mixing of pseudoplastic fluids possessing yield stress using
Maxblend impeller, Chem. Eng. Res. Des. 90 (2012) 514–523, https://doi.org/10.
1016/j.cherd.2011.08.022.

[68] M. Fujasová, V. Linek, T. Moucha, E. Prokopová, Energy demands of different im-
peller types in gas – liquid dispersions, Sep. Purif. Technol. 39 (2004) 123–131,
https://doi.org/10.1016/j.seppur.2003.12.015.

[69] D. Patel, F. Ein-Mozaffari, M. Mehrvar, Improving the dynamic performance of
continuous-flow mixing of pseudoplastic fluids possessing yield stress using
Maxblend impeller, Chem. Eng. Res. Des. 90 (2012) 514–523, https://doi.org/10.
1016/j.cherd.2011.08.022.

[70] A. Bombač, M. Žumer, I. Žun, Power consumption in mixing and aerating of shear
thinning fluid in a stirred vessel, Chem. Biochem. Eng. Q. 21 (2007) 131–138.

[71] S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão,
E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Box-
Behnken design: an alternative for the optimization of analytical methods, Anal.
Chim. Acta 597 (2007) 179–186, https://doi.org/10.1016/j.aca.2007.07.011.

M. Amiraftabi, et al. Chemical Engineering & Processing: Process Intensification 148 (2020) 107811

13



Chapter 5: Performance of a dual helical ribbon impeller in a two-phase (gas-liquid) stirred 
tank reactor 

105 
 

�) = ?@L/
                                                                                             Equation 5-9 

In most recent studies, the mixing time as an indicator of homogeneity has been measured in 

different approaches including local and general mixing time (Moo‐Young, Tichar, and Dullien 

1972). Within the realm of macromixing, bulk mixing time t (s) is the time taken for the 

complete mixing, where the solution is homogenous.  

The Power number represents the rate of energy dissipation within the liquid and the power 

consumption by impeller in a specific rotational speed. Ungassed power number as the most 

important parameters in coaxial mixers have been studied widely (Houari Ameur 2015; Jie Wu, 

Zhu, and Pullum 2001).  

$( = =>
?@ALC                  Equation 5-10 

where 6 is density (kg/m3). 
P0 as input power (W) is one of the main parameters evaluating the efficiency of ungassed impeller 

which can be calculated by using the following formula (Paul, Atiemo-obeng, and Kresta 2004; 

Jing Wu et al. 2009; Xie et al. 2014): 

34 = 2. °. $. ±�L�¬#��L              Equation 5-11 

Furthermore, Bourne and Butler(Bourne, J.R.; Buttler 1969) have proven that there is a 

correlation between Reynolds number and Power number in single phase viscous fluid. Finally, 

torque should be obtained from the following formula: 

MAdjusted= Mdisplay-Mfriction              Equation 5-12 

MAdjusted is the actual torque required to rotate the shaft (N.m). It can be calculated from 

subtracting the friction torque (Mfriction) from what is monitored on the power meter (Mdisplay) 
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(N.m). If the impeller rotates in the open air, the magnitude of torque will be considered as 

friction torque. 

5.3.6 Response Surface Method 

Response surface method (RSM) approach was used to predict the mixing time and power 

consumption under different operating conditions. The main objective of the RMS is to identify 

the correlation between variables including impeller speed, gas flow rate, impeller clearance, 

and viscosity as well as responses including mixing time and power consumption. For this 

purpose, the Box-Behnken method is used to design the experiments. Next, the response 

surface methodology (RSM) is applied to optimize the factor levels and find the most 

influential parameters. For each experiment, three replicates are considered to ensure the 

reproducibility of the experiments. The correlation is defined as:  

� = �4 + ∑ ����v�pq + ∑ �����!v�pq + ∑ ∑ �������v�p! + )����v�pq             Equation 5-13 

In this equation, X shows variables, Y indicates the response such as mixing time, while β0, βi, 

βii, and βij are regression coefficients and interaction terms. Different 3D surface graphs are 

plotted to find the most influential factor when the other factors are set at optimized level 

(Zitrom 1999). 

The list of variables and their maximum and minimum levels are summarized in Table 5-3. 

These maximum and minimum levels are selected based on the preliminary study.  

Further, uncertainty analysis has been done for measured and calculated data, as well as 

instrument accuracy. The result of uncertainty analysis is summarized in Table 5-3. 

Table 5-3 Variables used in RSM method to optimize the mixer performance and uncertainty analysis for 

different variables. 

Symbols Variables Low 

level 

Central 

level 

High 

level 

Instrument Systematic 

Uncertainty 

(± %) 

Random 

Uncertainty 

(± %) 

Total 

Uncertainty 

(± %) 
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X1 Impeller speed (1/s) 50 75 100 Torquemeter - 1 1.00 

X2 Gas flow rate (Lpm) 0.5 1.35 2.2 Flow meter 1.5 0.66 1.64 

X3 Impeller clearance (m) 0.02 0.04 0.06 Ruler 0.5 0.83 0.97 

X4 Concentration (wt %) 0.1 0.8 1.5 Scale 0.1 0.32 0.34 

5.4 Results and discussion 

In this study, the impeller speed, gas flow rate, impeller clearance from the bottom, and 

viscosity are considered as principal factors influencing the mixing process of a shear thinning 

fluid. It is worth noting that the maximum impeller speed in the current investigation was 

limited to 100 rpm. This limitation was considered because of the extreme shear sensitivity of 

some materials and microorganisms (Lamberto et al. 1996; Wiedemann et al. 2017).  

As mentioned earlier, the experiments were carried out in the optimal range where the 

hydrodynamics of a gas-liquid system is completely dispersed. The influence of gas flow rates 

of 0.5-2.2 Lpm is examined when the system is agitated by a dual helical ribbon impeller 

between 50 to 100 rpm under transient flow regime. Generally, the effects of bubble motion, 

impeller speed, gas flow rate, and viscosity on power consumption and mixing time are 

discussed and interpreted in this section.     

5.4.1 Mixing pattern 

The two-dimensional cross-section of the mixing pattern in the vessel when the reaction 

between acid and base occurs is shown in Figure 5-2. 

The visual evidence presented in this section shows that initially, the radial movement of fluid 

bulk is stronger than the axial movement for a dual helical ribbon. The impeller drives fluid 

towards the walls of the vessel where the shear rate is at the maximum, where little movement 

of fluid can be observed in the axial direction near the central shaft. Then, fluid moves 

downward alongside the cylinder wall. Following this, the axial movements become stronger 

and the top surface becomes clear. Decolouration of the purple fluid shows that the maximum 
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mixing in this type of impeller happens close to the clearance between the wall and impeller 

where the high shear imposes on the fluid film as well as areas near to the inner edge of the 

blade. Whilst there is still an unmixed zone located at the bottom of the tank, the efficiency of 

the impeller in the region near the wall is significant. Therefore, the mixing time is controlled 

by the mixing pattern of the low-shear central regions located far from the blade edges. A 

possible explanation for these results may be the reduction in viscosity when the high shear 

rate region rotates near the inner and outer edges of the blade. The enclosed volume of fluid 

between impeller and wall as well as the bulk of fluids around the inner edge of the blade can 

be considered as a low viscosity film which can be easily influenced by this type of impeller. 

Generally, these regions are introduced as a stagnant zone in other types of impellers.  

 

Figure 5-2 The evolution of mixed area inside the reactor when the impeller speed is 75 rpm and concentration 

of NaCMC solution is 1%. 

Although extensive research has been carried out on the effects of dual helical ribbon impellers 

on single phase flow pattern, few studies have paid attention to the influence of chaotic bubble 

motion on multi phases mixing process (Cheng and Carreau 1994). Figure 5-3 indicates the 
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qualitative mixing pattern over time when air bubbles are introduced. Rising a bubble from 

bottom of the tank imposes shear rate to the bulk of the fluid. As a result, the viscosity of the 

shear-thinning fluid is reduced to some extent depending on the gas flow rate, general gas hold-

up, and rheology of the fluid. The more reduction in viscosity, the more desirable results are 

achieved including less energy consumption and shorter mixing time. Since bubbles are 

dispersed everywhere, the mixed area near the central shaft can gradually develop, which 

enhances the mixing performance of the dual helical ribbon impeller. 

 

Figure 5-3 The evolution of mixed area inside the aerated reactor when the impeller speed is 75 rpm and 

concentration of NaCMC solution is 1%. 

Figure 5-3 indicates that in a low rotational speed helical ribbon impeller, the formed bubbles 

rise without significant breakage or coalescence. They are trapped behind the impeller blade 

and form a film of gas which follows the impeller patterns to reach the free surface. The 

interesting point here is the enhancement of the uniformity of homogenization and dispersion 

of liquid inside the system. In the presence of bubbles, after the injection of acid, clear liquid 
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not only moves toward the clearance of the vessel and impeller but also gradually penetrates 

downward. Although this requires more investigation, this phenomenon could be interpreted 

by increasing the internal liquid shear stress as a result of bubbles motions. In completely 

disperse mixing patterns, bubbles disperse completely in the whole system, even in stagnant 

regions. The presence of bubbles in the stagnant zones increases the shear stress resulting in 

the breakdown of the NaCMC internal network (M. Amiraftabi and Khiadani Mehdi 2019a). 

Weakening the network structure of shear-thinning fluids increases both molecular and bulk 

diffusions resulting in enhancement of the mixing process.  

5.4.2 Impact of impeller speed 

The impact of various rotational speeds on the performance of the mixing system has been 

studied widely in the literature. Results show that an increase in rotational speed reduces the 

time of mixing and improves the homogeneity of heat, mass, and nutrient (X. H. Yang and Zhu 

2007; Patel, Ein-Mozaffari, and Mehrvar 2012a; Pakzad, Ein-Mozaffari, and Chan 2008; 

Hashemi et al. 2016a; Espinosa-Solares et al. 2002).  

Figure 5-4a and 5-4b depict both mixing time and power consumption over various rotational 

speeds for different concentration of NaCMC solutions. The results indicate that a higher 

rotational speed leads to shortened mixing time, while power uptake increases exponentially. 

The results indicate that an increase in rotational speed up to 75 rpm could reduce the mixing 

time of viscous fluid to some extent. 

Figure 5-4 a shows the expected time to reach homogeneity in different impeller rotational 

speeds. For the same rotational speed, the more concentrated solution the more time required 

to reach homogenous conditions, where the natural gel structure of polymer requires more 

energy and time to destroy. Therefore, the diluted solution requires less time in a lower 

rotational speed to reach a certain level of homogeneity. Further, it can be noted that the 
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homogeneity graphs are exponential which become level off at the end. Thus, it seems that the 

system has become homogenous in somewhere between rotational speed of 0-50 rpm when the 

concentration of NaCMC solution is 0.1%.  

However, increasing the rotational speed beyond 75 rpm not only has insignificant contribution 

in reducing the mixing time but also exponentially increases power consumption. This finding 

suggests that increasing the impeller speed up to optimum value could enhance the performance 

of the mixing system. Whilst, after this certain level, the power consumption increases sharply 

with a limited positive contribution to mixing performance. This threshold level has been 

reported previously by literature for different types of digesters (McLeod, Othman, and 

Parthasarathy 2019).   
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Figure 5-4 a) Mean mixing time and b) mean power consumption with error bars over impeller speed in 

different concentration of NaCMC solutions. 

Two different dimensionless terms have been defined to investigate the extra power consumed 

by the impeller compared to mixing time reduction. The first term is the extra power consumed 

when the impeller speed increases from 75 to 85 and 100 rpm and the second term is the 

decrease of the mixing time when the impeller speed increases to 85 and 100 rpm.  

Figure 5-5 represents these two dimensionless terms for different concentrations of NaCMC. 

According to this figure, a remarkable increase is observed in the percentage of power uptake 
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compared to the reduction in the percentage of mixing time when the solution is more 

concentrated. For example, when impeller speed changes from 85 to 100 rpm in a concentration 

of 1.5% solution, the power consumption has been increased by 60%, while the mixing time 

decreased by 10%.  This finding is vital in terms of cost efficiency and scaling up the system. 

 

Figure 5-5 Comparison between the percentage of power consumption and percentage of enhancing mixing 

time. 

5.4.3 Influence of bubble motion 

The mixing time versus gas flow rate for gassed cases in both stirred and non-stirred conditions 

is shown in Figure 5-6. Hollow markers show the mixing time in different gas flow rates for 

various concentrations of NaCMC solutions when the impeller speed is 75 rpm. Filled markers 

demonstrate the mixing time under the same operating conditions when the impeller is off 

(impeller speed=0 rpm). The results in this figure reveal that the gas flow rate is an influential 

factor in mixing time when the mechanical agitator is not working. Increasing the gas flow rate 

from 0.5 to 2.2 LPM could reduce the mixing time to half in non-stirred systems. However, 
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hollow markers show that the mechanical agitator is more influential on mixing time compared 

to the gas flow rate.  

 

Figure 5-6 Comparison between the mean gassed mixing time with error bars in both stirred and non-stirred 

conditions 

Some previous studies suggest that for a system with a Rushton turbine and PBD- anchor, the 

gas flow rate increases the mixing time (B. V Machon and Jahoda 2012; Hashemi et al. 2016a). 

It has been argued that in high gas flow rate, the buoyancy force overcomes the hydrodynamics 

of system and the gas-liquid system flooded (Hashemi et al. 2016a). Other researchers, 

however, have reported an improvement in the mixing performance by the presence of bubbles 

inside the system (Low et al. 2018; Einsele and Flnn 1980; Blakebrough and Sambamurthy 

1966). Further, Xu. Et, al. (2018) indicated that injection of gas could improve the mixing 

performance (Xu et al. 2018). This inconsistency may be due to the complex hydrodynamics 
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of gas-liquid agitated flow patterns. The variety of hydrodynamics in gas-liquid STRs can be 

almost considered as a function of impeller type, rheology of fluid, gas flow rate, impeller 

speed, and bubble size (Smith 1985).  

5.4.4 Power consumption 

Power uptake is another influential design parameter representing the economic performance 

of a mixing system. The power consumption of the impeller should be taken into account when 

the cost efficiency of a mixing process is important. Power consumption displays the 

performance of the agitating process depending on the geometry of impeller and physical 

properties of the fluid (Fujasová et al. 2004). The power consumption measurement has been 

carried out on NaCMC solution with different concentrations of 0.1, 0.5, 1, and 1.5 wt% for 

five different impeller speeds of 50, 65, 75, 85, and 100 rpm.  

Figure 5-7 a indicates the power uptake by impeller versus Reynolds number for the rotational 

speed of 50, 65, 75, 85, and 100 rpm for different concentration of NaCMC solutions. The 

greater the viscoelasticity of the fluid, the greater the energy required to achieve complete 

mixing.  It can be observed that an increase in viscosity shifts the power curve to the lower 

Reynolds numbers and higher energy consumption. 

Figure 5-7 b displays the dimensionless energy consumption (Np) as a function of Reynolds 

number (Re) or power curve for a dual helical ribbon in five different rotational speeds of 50, 

65, 75, 85 and 100 rpm and constant gas flow rate of 1 LPM.  
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Figure 5-7 a) Mean power curve and b) Power number (Np) vs. Reynolds number (Re) for a dual helical ribbon 

in five different rotational speeds for various concentrations of NaCMC. 

The power curve is unique for each impeller type. The single most striking observation to 

emerge from the plotted data is the relationship between Np and Re, which for the first time 

this result has been presented. Regression analysis was used to predict the correlation between 

these two parameters which is importantly repeated for all concentrations of NaCMC, whereas 
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the flow regime is transient. This practical correlation has been reported in Equation 5-14. It is 

noticed that this practical correlation is unique and demonstrating how a dual helical ribbon 

impeller performs in a transient two phases flow regime. 

$(. �)² = �   or     $( = 918.9�)³4.¡                                                          Equation 5-14 

where, β=0.5 and α=918.9 are constant for a dual helical ribbon impeller in different 

concentration of NaCMC solutions from 0.1 wt% to 1.5 wt%.  

What is surprising here is that the trend of the power curve is not influenced by changes in 

concentration. Patel et al. (Patel, Ein-Mozaffari, and Mehrvar 2012b) have indicated that Re.Np 

is a constant value for the Scaba and the A320 impellers in single-phase flow. They also 

mentioned that the power number changes slightly based on Reynolds number in transient flow 

for the Scaba and the A320 impeller in single-phase flow. However, this correlation has not 

previously been found for a dual helical ribbon impeller in gas-liquid interactions. 

Additionally, Figure 5-8 shows the power consumption as a function of mixing time at a 

constant impeller speed of 75 rpm. These results show the effect of bubble motion on mixing 

time and power consumption. Interestingly, a decrease in power consumption was observed 

when gas was injected into the system. This 5-7% reduction in power consumption could be 

due to the presence of bubbles inside the reactor. The reduction in power uptake by sparging 

bubbles in a mixing system has also been observed by other researchers (Bouaifi and Roustan 

2001; Bombač, Žumer, and Žun 2007).  This finding can be interpreted through the formation 

of gas pockets (cavities) underneath the impeller streamlining the blade movement and 

reducing fluid drag resulting in lower power consumption. Further, reducing the viscosity of 

shear thinning fluid as a result of axial and rotational bubble movements can be considered as 

another influential factor.  

In addition, Figure 5-8 depicts that both power consumption and mixing time are highly 

affected by the viscosity of the fluid. The higher the viscosity of the fluid, the more power 
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required to achieve complete mixing. Therefore, when the viscosity of the shear-thinning fluid 

increases, more power and time are required to achieve desirable mixing. 

 

Figure 5-8 Influence of gas injection on mean mixing time with error bars over power number (Np) 

These results differ from most published studies that reported bubble motion causes an increase 

in power consumption of an aerated stirred system (Bouaifi and Roustan 2001; Bombač, 

Žumer, and Žun 2007). However, the present results are in agreement with Cheng and Carreau’s 

(Cheng and Carreau 1994) findings which show the presence of bubbles leads to a reduction 

of power consumption by the impeller. 

Figure 5-9 a and 5-9 b clearly describes the role of gas flow rate on power consumption where 

the impeller rotational speed is constant at 75 rpm.  
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Figure 5-9 The role of bubble motion around the impeller on mean power consumption 

According to Fig. 5-9 a, an increase in gas flow rate from 1 to 2.2 LPM reduces the mixing 

power to some extent. Further, Fig. 5-9 b, represents the ratio of power uptake by impeller 

when the gas sparged (Pg), watt, to the power consumption of single-phase system (P0), watt, 

over the gas flow number (flg) which shows the flow developing in the impeller zone 

independent to impeller geometry. 

This figure shows that power consumption experiences a significant fall after a certain value 

of gas flow rate. Dispersed bubbles can reduce the viscosity of the fluid around the blade to 
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some extent and reduce the power uptake. By increasing the impeller speed, the bubbles 

disperse everywhere in the fluid bulk and some of them still follow the impeller path. As a 

result, the impeller has the maximum level of contact with the air bubbles trapped behind the 

blade which slightly decrease the power consumption of the aerated system compared to single-

phase one. 

5.4.5 Statistical analysis 

This proposed study investigates the impacts of four listed factors shown in Table 5-3 through 

the three-level Box-Behnken method (Ferreira et al. 2007). Then, the response surface 

methodology (RSM) is applied to optimize and to find the most influential factors and their 

interactions. Table 5-4 summarizes the plan, the number of experiments and variables applied 

in RSM. 

The result of statistical analysis suggests strong correlations between responses and all 

independent and dependent variables lead to Equation 5-15 and Eq. 5-16. 

±´�´�8 �´µ) = −1.26 + 0.88 $ + 5.5 �5 − 11.31 7 + 13.56 w7 − 0.014 $ × �5 +
0.44 $ × ·��·. −0.1 $ × w7 − 8.3 �5 × ·��·. +0.14�5 × w7 − 1.5 7��·.× w7 +
0.0067 $! − 6.3 �5! + 19.4 7! − 0.32 w7!(Adjusted R2=0.9628)                Equation 5-15 

3�¸)� 7��¹�µl�´�� = 28.53 − 0.67 $ − 0.75 �5 − 1.25 w7 − 24.58 7 + 0.004 $ ×
�5 + 0.35 $ × 7 + 0.007 $ × w7 − 0.49�5 × 7 + 3.9º³q}�5 × w7 − 1.07³q¡7 × w7 +
0.0058 w�! + 0.2 �5! + 7.23 7! + 0.09 w7! (Adjusted R2=0.9867)      Equation 5-15 

Table 5-4 Plan for ANOVA analysis 

Order Impeller speed (N) Gas flow rate (Gf) Impeller 

Clearance 

(IC) 

Concentration (C) Mixing Time Power 

consumption 

 
rpm LPM  m  wt% s W 

1 100 0.5 0.04 0.8 57 30.8 

2 75 0.5 0.04 1.5 102.4 27.88 
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3 75 1.35 0.02 0.1 34 10.6 

4 75 0.5 0.04 0.1 48.7 10.6 

5 75 1.35 0.06 0.1 45.5 10.6 

6 75 1.35 0.06 1.5 91.1 27.1 

7 75 0.5 0.02 0.8 65.5 16.3 

8 75 2.2 0.04 0.1 27.8 10.2 

9 75 1.35 0.02 1.5 88 27.1 

10 50 1.35 0.06 0.8 63.25 6.5 

11 75 2.2 0.02 0.8 31.5 15.3 

12 50 1.35 0.02 0.8 42.8 6.5 

13 100 1.35 0.04 1.5 95.8 52.8 

14 75 2.2 0.06 0.8 42.8 15.3 

15 75 0.5 0.06 0.8 75.8 16.3 

16 100 1.35 0.06 0.8 46.5 32.46 

17 75 1.35 0.04 0.8 57.1 15.1 

18 50 2.2 0.04 0.8 39 6.54 

19 50 1.35 0.04 0.1 49.8 4.45 

20 75 2.2 0.04 1.5 61.7 26.31 

21 100 1.35 0.04 0.1 23.9 20.94 

22 100 2.2 0.04 0.8 26 31.4 

23 50 0.5 0.04 0.8 68.8 6.28 

24 100 1.35 0.02 0.8 46.5 30.9 

25 50 1.35 0.04 1.5 90.7 11.8 

where N is the impeller speed, Gf is the gas flow rate, C is the concentration of the solution, 

and IC is the impeller clearance. 

Further, the result of ANOVA test has been summarized in Table 5-5 for the response surface 

quadratic model. This table demonstrates P-values and F-values for all variables. In this case, 

A, B, C, D, AC, AD, BC, A2, and C² are significant model parameters.  

Table 5-5 Results of ANOVA test for Quadratic model 

Response Mixing time Power consumption 

Source F-value P-value F-value P-value 

Model 45.37 < 0.0001* 128.1 < 0.0001* 

A-Impeller Speed 14.52 0.0034* 1138.3 < 0.0001* 

B-Gas Flow rate 151.38 < 0.0001* 0.4454 0.5197 ns 

C-Concentration 379.81 < 0.0001* 513.47 < 0.0001* 

D-Impeller 

Clearance 
13.54 0.0042* 0.1121 0.7447 ns 

AB 0.0182 0.8953 ns 0.016 0.9019 ns 

AC 12.17 0.0058* 82.98 < 0.0001* 

AD 5.29 0.0442* 0.3362 0.5749 ns 
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BC 4.96 0.051 ns 0.1891 0.6729 ns 

BD 0.0127 0.9126 ns 0 1 ns 

CD 0.8933 0.3669 ns 0 1 ns 

A² 2.48 0.1466 ns 20.95 0.001* 

B² 2.95 0.1165 ns 0.0326 0.8603 ns 

C² 12.92 0.0049* 19.56 0.0013* 

D² 0.2279 0.6433 ns 0.206 0.6596 ns 

*: Not significant at P<0.05, ns: Significant at P>0.05 

P-value and F-value: Indicator of significance decision 

The Model F-values of 45.37 for mixing time and 128.1 for power consumption confirm that 

the proposed Equation 5-15 and Equation 5-16 are reliable and remarkably accurate to predict 

the mixing time and power consumption in different operating conditions. These equations 

have significant practical value for industrial designing, operating, and cost studying of STRs. 

To sum up, the statistical analysis indicates that impeller speed, gas flow rate, impeller 

clearance, and viscosity influence the mixing time and power consumption, respectively.  
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Figure 5-10 Influential interaction model parameters analysed by ANOVA test. 

Further, analysis of interactions between variables and the model coefficients are displayed in 

three-dimensional response surfaces and are shown in Figure 5-10 a, b. This figure displays the 

significant interaction model parameters based on P-value <0.05. Fig. 5-10 a shows the most 

influential interactions on mixing time including impeller speed-concentration, and impeller 

clearance-impeller speed. Additionally, according to P-value, the most influential model 

parameter on power consumption is interaction of concentration-impeller speed as shown in 

Fig. 5-10 b. 
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5.5 Conclusions 

Collectively, this study outlines the role of a helical ribbon impeller on mixing performance 

and cost of operation of a gassed STR. The range of gas flow rate and impeller speed has been 

adjusted in the preliminary study. In addition, this work provides a conceptual understanding 

of the flow pattern inside a gassed reactor equipped with a dual helical ribbon impeller and 

filled with a shear thinning fluid. The findings of this study suggest that increasing the 

rotational speed more than 75 rpm not only fails to reduce mixing time but also increases the 

power consumption. It can be concluded that the optimum rotational speed should be selected 

with caution because boosting impeller speed may impose the extra operating cost while the 

efficiency of mixing remains unchanged. Additionally, aeration enhances power uptake and 

mixing time to some extent. Further, based on the experimental data in this study, two equations 

are proposed using ANOVA test to predict the mixing time and power uptake for a helical 

ribbon impeller in different operating conditions. The statistical analysis demonstrates the 

significant role of viscosity and impeller speed on the mixing performance. Suggesting a 

practical correlation between Reynolds and power numbers, this study provides unique and 

valuable results that can be applied to process industries. 
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A B S T R A C T

This study focuses on hydrodynamic characteristics of a shear thinning fluid agitated in a 3D multiphase reactor 
using a dual helical ribbon impeller. A combination of Computational Fluid Dynamics (CFD) simulation and 
Population Balance Model (PBM) were employed to study the gas-liquid interactions at various impeller speeds. 
The standard k − ε model and Eulerian multiphase approach were used to predict better quantities of turbulent 
flow parameters and its characteristics. Particle Image Velocimetry (PIV) was used to measure the velocity field 
for the model validation. Simulation results indicated that the bubble breakage and coalescence rate was 
intensified due to an increase in rotational speed. However, bubble breakage is still the dominant phenomenon 
since the bubbles would hit the walls and blads due to the turbulent intensity. Further, the helical ribbon impeller 
significantly reduces the viscosity of the fluid and improves the mixing efficiency that is confirming the authors’ 
previous experimental results. Furthermore, formation of static vortices adversely affects the efficiency of mixing 
process proving that an increase in impeller speed does not necessarily enhance the mixing perfiormance. 

Further, the helical ribbon impeller significantly reduced the viscosity of the fluid and enhanced mixing ef-
ficiency, thereby confirming the authors’ previous experimental results.   

1. Introduction

The mixing process of non-Newtonian multiphase systems is
important as it influences the efficiency of aerobic/anaerobic digesters, 
and polymerization and fermentation reactors. Mixing parameters 
should be adjusted under optimum operating conditions to keep a bal-
ance between several contradictory factors. The higher rotational speed 
of the impeller offers many advantages including the uniformity of heat 
and mass transfer between phases, well distribution of gas-phase as the 
speed controlling parameter, and higher loading capacity. While an in-
crease in the rotational speed of the impeller not only disturbs the mi-
crobial environment, also it raises the operating and maintenance costs. 
Difficulties arise when an attempt is made to study the hydrodynamical 
behaviours of phases in detail and to find the optimum operating con-
ditions in order to maximise the efficiency of a bioreactor. Because of 
that many researchers in this field have paid attention to study hydro-
dynamical aspects of multiphase bioreactors including gas–liquid hy-
drodynamics [1–4], drag force [5], mass transfer and gas–liquid 
interactions[6], energy consumption [7,8], and rheological properties 
[3,9–11]. Adjusting and monitoring these parameters is demanding and 

sometimes impossible tasks as it involved some limitations. Expensive 
instrument and equipment, experimental limitation, the opaque nature 
of sludge, and complicated multiphase flow patterns make the practical 
study of multiphase mixing systems impossible. Notwithstanding these 
limitations, computational fluid dynamics (CFD) simulation as an 
alternative approach shining a new light on these debates through 
theoretical and mathematical approaches. 

Rotational speed and type of impeller are predominant factors con-
trolling the hydrodynamics of bioreactors, and uniformity of heat and 
mass transfer between phases. Close-clearance impellers have been 
known as an ideal and well performed type of blades, enhancing the bulk 
mixing of highly viscose fluid in single-phase bioreactors [1,12,13]. 
Lebranchu et al., 2015 [14] concluded that a dual helical ribbon 
impeller in comparison with other types improves the performance of 
aerated reactor up to 50%. They also indicated that the rheological 
behaviour of fluid is influenced by various parameters including tem-
perature, pH, and concentration gradient. Further, different CFD ap-
proaches have been designed to determine the effect of geometry and 
type of dual helical ribbon impellers on the mixing performance of 
single-phase fluid. Kamla et al., 2019 [9] investigated the effect of ge-
ometry and the number of blades on the performance of an anaerobic 
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digester filled with activated sludge. They found that an increase in the 
number of helical blades enhances the mixing efficiency. In addition, the 
performance of helical screw impellers in single phase flow was simu-
lated by Ameur et al.[15]. Further, Kuncewicz and Stelmach, 2016 [10] 
noted that the effect of the width of the helical ribbon impeller on power 
consumption can be ignored. Additionally, Mihailova et al., 2018 [11] 
optimised the overall performance of a new design impeller as a com-
bination of helical ribbon and screw impellers. Ameur and Ghenaim, 
2018 [15] made a comparison between the performance of the helical 
ribbon and screw impellers. They indicated that the rheological 
behaviour of working fluid dominates the level of power consumption 
and hydrodynamics of the system. The complexity of the rheological 
behaviour of materials has forced most of the studies to ignore the 
rheological properties in their research [16,17]. This complexity stems 
from the temperature and shear rate dependence of viscosity [18,19]. In 
the current study, Sodium Carboxyl Methyl Cellulose (NaCMC) as a 
transparent non-Newtonian fluid was applied to simulate the rheological 
characteristics of shear-thinning fluids inside the reactor [19]. 

Further, the flow pattern of multiphase bioreactor has not been well 
understood since most literature have investigated the hydrodynamics 
of a single-phase reactor. While the efficiency of gas–liquid system is 
affected by the dynamic behaviours of both gas and liquid phases 
including gas holdup, the size distribution of bubbles, liquid phase ve-
locity field, and viscosity. Clearly, the formation and interaction 
(breakage and coalescence) of rising bubbles and gas holdup determine 
the reaction rate, interfacial area, and mass transfer resistance. It is 
reasonable to state that higher interaction between phases is achieved 
by smaller fully dispersed bubbles, therefore, the breakage phenomenon 
is beneficial to the bioreactor performance. So, it is paramount to 

investigate the performance of gas–liquid mixing system by considering 
the detailed knowledge of bubble size and distribution, hydrodynamics, 
and flow field. To predict the size distribution and breakage/coalescence 
rates, a combination of Population Balance Model (PBM) as a semi- 
empirical equation and CFD has been suggested in the literature 
[10,20,21]. Therefore, this study applied the discrete method to solve 
the PBM model as a successful method in predicting the size and dis-
tribution of bubbles [22]. Operating conditions are adjusted based on 
the previous experimental study [23]. The impacts of various rotational 
speeds, gas flow rates, impeller clearance from the bottom, and con-
centration on mixing time and power consumption have all been 
investigated. The results are presented for rotational speeds of 25, 50, 
and 75 rpm for a gas flow rate of 1.8 LPM, with an impeller clearance of 
4 cm and concentration of 0.5 wt%, which is an optimum concentration 
to replicate municipal digested sludge [23]. 

This study seeks to obtain data that will assist in highlighting the 
effect of impeller rotational speeds on (i) hydrodynamics and viscosity 
of a shear-thinning liquid, and (ii) the bubble size distribution and gas 
holdup. Geometry and boundary conditions were defined based on the 
experimental setup. The grid sensitivity analysis was carried out for five 
different meshes. Further, the numerical model was verified separately 
for both phases including liquid and gas to compare; (i) CFD results with 
PIV tests for flow field and velocity magnitude of the liquid phase, (ii) 
the predicted bubble velocity obtained by CFD with the experimental 
average gas velocity achieved thorough image processing technique for 
the initial gas flow rates of 0.5 and 2 LPM. 

Nomenclature 

A cross sectional area (m2) 
AR aspect ratio 
C equation constant 
CFD computational fluid dynamics 
CD crag coefficient 
D vessel inner diameter (cm) 
d impeller diameter (cm) 
di impeller blade diameter (cm) 
ds shaft diameter (mm) 
E-E Eulerian-Eulerian 
F→i momentum transferred from bubbles to the liquid phase 
g gravitational acceleration (m/s2) 
G generation of turbulent kinetic energy 
HL depth of fluid (cm) 
h impeller height (cm) 
IC impeller clearance 
IS impeller speed 
K consistency index (Pa sn) 
k turbulent kinetic energy (m2/s2) 
Kji exchange coefficient for bubbly phase 
MRF multiple reference frame 
N impeller rotational speed (rpm) 
NaCMC sodium carboxymethyl cellulose 
n flow index behaviour 

n( x→,Vb, t) bubble density distribution function at the time of t and 
position of x→.Vb 

PBM population balanced model 
PIV particle image velocimetry 
R→ji interphase force 
Re Reynold number (Dimensionless) 
RSM response surface methodology 
STR stirred tank reactor 
S( x→,Vb, t) source term of breakage/coalescence 
t time (s) 
ub local velocity of bubbles (m/s) 
wt% weight percentage (%) 
αi volume fraction of the continuous phase 
ε dissipation rate 
γg gas shear rates (1/s) 
γl liquid shear rates (1/s) 
γ̇T average shear rates (1/s) 
μeff effective viscosity (Pa s) 
μi molecular viscosity (Pa s) 
μt,i shear induced viscosity (Pa s) 
μb,i turbulence viscosity (Pa s) 
vi liquid mean velocity (m/s) 
ρ density (kg/m3) 
τ average shear stress (N/m2)  

Table 1 
The geometric configuration of the stirred tank.  

Vessel inner diameter (m) Vessel height (m) Impeller height (m) Impeller diameter (m) Impeller blade diameter (m) Impeller clearance (m) Shaft diameter (m) 

D H h d di IC ds 

0.19 0.4 0.155 0.14 0.02 0.02, 0.04, 0.06 0.015  
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2. Experimental methodology 

2.1. Two-phase stirred tank reactor configuration 

The experiments were conducted in a 7 L plexiglass unbaffled cy-
lindrical vessel having 190 mm inner diameter equipped with a dual 
helical ribbon impeller. The system configurations and geometric details 
are presented in Table 1 and Fig. 1, respectively. The aspect ratio of the 
system (liquid level (HL) to reactor diameter (D)) is 1.4[24]. The central 
shaft is made of aluminum connected a variable speed electric motor. To 
avoid the light reflection during the tests and also facilitating the PIV 
measurements, the vessel is enclosed with a clear rectangular box. The 
box is filled with water to the level of liquid inside the vessel during PIV 
measurements. 

The gas distributor was a showerhead type sparger made of PVC with 
10 holes of 0.25 mm drilled on its periphery at an equal distance. The 
distributor was screwed at the base of the vessel connected to the air 

supply hose through a rotameter type flowmeter(Omega engineering, 
UK with an accuracy of ±2%). The gap between the top of the sparger 
and the bottom of the impeller was 40 mm. 

During the operation, the impeller rotational speed and aeration rate 
are kept constant at an optimum range of 75 rpm and 1.8 LPM, 
respectively. These optimum operating values were obtained using the 
response surface methodology (RSM) approach mentioned in the au-
thors’ previous study [23]. RSM approach was applied to identify cor-
relations between operating conditions including impeller speed, gas 
flow rate, impeller clearance, and viscosity with responses such as 
mixing time and power consumption of impeller. Further, the optimum 
working conditions were identified to minimize the mixing time and 
power consumption. 

Power uptake was calculated from the torque measured by a digital 
torque meter (GUNT system with an accuracy of ±0.1 N m). To calculate 
mixing time, a combination of decolorization and image processing 
methods was applied. Reynolds number calculated between 10 and 

Fig. 1. (a) Schematic diagram of high-speed camera, light source, and two-phase bioreactor; and (b) Experimental setup.  
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1000 based on effective viscosity [23]. Therefore, the flow regime in this 
study was a mix of turbulent and laminar flows. 

2.2. Rheological properties of working fluid (NaCMC) 

NaCMC has been applied as a safe and clear proxy simulant to 
emulate the shear behavior of digested sludge in an anaerobic digester. 
This polymer can replicate the rheological characteristics of digested 

sludge in the range of shearing rate between 10 and 300 s− 1. Technical 
NaCMC Powder has been purchased from Rowe Company (Sydney, 
Australia)[19]. 

The rheological characteristics of NaCMC including viscoelastic, 
sweep, and thixotropic tests (1–300%), were carried out by a DHR-3, TA 
rheometer with normal accuracy ±0.005 [25] and recorded in Table 2. 
The rheology was measured by a coaxial cylinder cup with a diameter of 
0.304 m, bob diameter of 0.28 m, bob height of 0.42 m, and a gap dis-
tance of 0.001 m. Further, a Peltier system was controlled and kept the 
temperature at 25 ◦C during the tests [19,23]. The pH resistance of 
working fluid was tested by measuring pH by Glass pH electrode 
(EUTECH, pH 700) and ʓ-potentials through a Malvern zeta sizer 
(Malvern series ZEN 3500, Malvern Instruments Ltd., Worcester, UK, ± 1 
mv). 

Table 2 
Rheological characteristics of NaCMC y[19].  

Concentration (wt%) n (-) K (Pa sn) 

0.1  0.98  0.08 
0.5  0.92  0.13 
1  0.82  0.46 
1.5  0.58  4.3  

Fig. 2. (a) Schematic view of PIV system, and two-phase reactor; and (b) Experimental setup for PIV measurements.  
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2.3. PIV measurements 

2.3.1. PIV set-up 
The particle Image Velocimetry (PIV) technique was used to visu-

alize the instantaneous velocity field of the liquid phase induced by 
rotary impeller and bubble movement. It was applied for a vertical cut of 
the system divided into two quarters to avoid shadow regions as indi-
cated in Fig. 2. Approximately, 600 images were captured at 7 images 
per second per experiment. The laser source was an in-line dual-pulsed 
Nd:YAG laser (Dantec Dynamics, model: Dual Power 200–15) having 
200 mJ/pulse at λ = 532 nm. A monochromatic CCD camera (Flow 
Sense EO 16M-9) having a resolution of 4920 × 3280 pixels which was 
equipped with a Carl Zeiss (T*1.4/50) lens having a 50 mm focal length 
was used for image acquisition. Dynamic Studio 5.1 software was used 
to analyse and process the images. To visualise the liquid phase trajec-
tory, filter lenses and fluorescent polymer particles (PMMA-RhB-Frak- 
Particles) with a mean average diameter of 20–25 μm were used to 
reduce the effect of sparging gas. 

3. Numerical simulation 

3.1. Governing equations 

The Eulerian-Eulerian (E-E) multiphase approach [26] was imple-
mented in this study to simulate the three-dimensional geometry of the 
experimental rig. In this approach, both continuous and disperse phases 
were considered as continuous interpenetrating media based on their 
volume fractions. This was followed by solving the continuity and mo-
mentum equations using E-E approach for both two phases. Eqs. (1) and 
(2) show the continuity and conversion of momentum for phase (i), 
respectively: 

Power-Law equation (μ = K⋅γ̇n) is often used to model the rheological 
characteristics of non-Newtonian fluids [19], whereas, γ̇ (s− 1) shows 
shear rate, μ (Pa s) indicates viscosity of fluid, n (–) and K (Pa s n) shows 
the flow and the consistency indexes, respectively. 

∂
∂t
(αiρi) + ∇.(αiρivi) = 0 (1)  

where αi is the volume fraction of the continuous phase and vi is the 
liquid mean velocity. 

∂
∂t
(αiρivi) + ∇.(αiρivivi) = − αi∇p + αiρig +∇.T

Ì¿
i + αiρi F→i +

∑n

j=1
R→ji (2)  

αi + αj = 1 (3)  

where ∇.T
Ì¿

i indicates the shear stress caused by laminar or turbulent 
momentum fluxes calculated from the following equation: 

T
Ì¿

i = αi
(
μeff

)
[

∇ v→i + v→i
T
]

−

(
2
3

)

αi
(
μeff

)
∇ v→iI (4)  

where μeff shows the liquid effective viscosity which is the result of 
molecular viscosity (μi), shear induced viscosity (μt,i), and turbulence 
viscosity (μb,i) [27]. 

μeff= μi + μt,i + μb,i (5) 

F→i shows the momentum transferred from bubbles to the liquid 
phase and the last term in the right side of Eq. (2) is the interphase 
forces. Other interphase forces including lift, virtual mass and turbu-
lence dissipation can be ignored because they are very small in com-
parison to the drag force [28,29]. In this study, Schiller and Naumann’s 
classical drag model was applied to simulate interphase forces where CD 
indicates the drag coefficient of a bubble in an infinite liquid phase [30]. 

CD =

⎧
⎪⎨

⎪⎩

24
Reb

(1 + 0.15Reb
0.687)Re ≤ 1000

0.44Re > 1000
(6)  

∑n

j=1
Rji
̅→

=
∑n

i=1
Kji

(

v→i − v→j

)

(7)  

whereas Kji is the exchange coefficient for bubbly or droplet phase (j) 
which is defined as follows 

Kji =
αiαjρjf

τi
(8)  

where f and τi are the drag force and the relaxation time, respectively. 
Also, Re number of the shear thinning fluid is calculated based on the 
effective viscosity of liquid. Eq. (9) indicates the Reynold number for a 
helical ribbon impeller which is obtained by Fuente et al. [31]. 

Re = ρ Nd2

μeff
(9)  

3.1.1. Turbulence model 
The k − ε model was adopted in the proposed study to model the 

turbulence. This model has two equations written for a mixture of two 
phases. 

∂
∂t
(ρmk) + ∇.

(

ρm v→mk
)

= ∇.

(μt,m

δk
∇k

)

+ Gk,m − ρmε (10)  

∂
∂t
(ρmε) + ∇.

(

ρm v→mε
)

= ∇.

(μt,m

δε
∇ε

)

+ C1εGk,m − C2ερmε (11)  

where k is the turbulent kinetic energy, G is the generation of turbulent 
kinetic energy, and ε is the dissipation rate. The mixture properties can 
be found from the following equations: 

ρm =
∑n

i=1
αiρi (12)  

v→m =

∑n
i=1αiρi v→i
∑n

i=1αiρi
(13)  

μt,m = ρmCμ
k2

ε (14) 

Further, values for these equations (Cμ = 0.09, C1ε = 1.44, and C2ε =

1.92) were extracted from previous literature [32]. 

3.1.2. Population balance model (PBM) 
Computational Fluid Dynamics (CFD) simulation is a powerful 

method for predicting the hydrodynamics of complex multiphase 
agitated systems, however, this method cannot show the change in 
bubble size. Thus, CFD-PBM coupled method was suggested by literature 
to calculate the bubble size change [33]. 

The size of bubbles can change during the process of mixing based on 
the change in liquid properties as most of the fluids are non-Newtonian. 
Therefore, it is important to use CFD-PBM method in order to have a 
better prediction of bubble coalescence and breakage 

The integrated CFD-PBM method is derived from the Boltzmann 
statistical transport equation to simulate the unsteady multiphase phe-
nomenon such as lift [34], drag [35], and mass transfer modeling. This 
method describes the bubble entering/ leaving defined control volume. 

∂
∂t

n( x→,Vb, t) +
∂
∂z

[n(( x→,Vb, t)ub( x→,Vb) ] +
∂

∂Vb
[n( x→,Vb, t)

∂
∂t

Vb( x→,Vb)

= S( x→,Vb, t)
(15) 
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where n( x→,Vb, t) indicates bubble density distribution function at the 
time of t and a position of x→. Vb refers to the volume of bubbles, ub 

shows the local velocity of bubbles, and S( x→,Vb, t) is a source term 
including bubble sink or source in different situations including coa-
lescence, breakage, phase interactions, reaction, and mass transfer. The 
Lue and Svendsen models suggested by ANSYS Fluent user guide has 
been considered in this study to model the bubble coalescence and 
breakup [36–38]. 

The discrete method was used to solve the PBM equation, discretised 
into five interval bubble diameters in this study. By using this method, 
the bubble breakage can be modelled based on the interaction between 
bubbles and turbulent eddies, which leads to simulate the bubble 
deformation. The average bubble diameter was calculated by tracking 
40 bubbles obtained through the experimental phase [23]. The 
maximum bubble size, which was observed in image processing anal-
ysis, was 7 mm and the smallest one was 0.1 mm. More than 80% of the 

bubbles had a diameter in the range of 3 to 5 mm, which can be cate-
gorized in the first and second bubble intervals. 

3.2. Solution domain, mesh generation and boundary conditions 

3.2.1. Mesh processing 
Design modeler and ICEM 18.2 were used to construct a three- 

dimensional geometry of the reactor used in the experiment. The un-
structured meshing method coupled with Multiple Reference Frame 
(MRF) approach was applied to generate five different 3-D mesh to-
pologies as shown in Fig. 3. In MRF method, the domain was divided 
into two different regions; the stationary outer region, and the rotating 
inner part, which is rotated by the impeller. A finer mesh was applied 
inside the inner cylinder surrounding the impeller because the flow 
pattern in this region is an important parameter. Having finer mesh can 
enhance capturing the flow and improving the accuracy of results 
around the impeller region. Additionally, the outer layer is defined as 
non-rotating domain with coarse mesh. 

The mesh independence study was carried out for five different 
numbers of cells by testing the average velocity of the liquid at 15 cm 
above the bottom of the reactor. Increasing cell numbers has changed 
the average velocity remarkably. However, the average velocity tends to 
be stable after 6 × 106 cells as is shown in Fig. 4. 

3.2.2. Solver setup and boundary conditions 
ANSYS Fluent R19.1 double precision solver was applied to run the 

simulation and to define boundary conditions. The Eulerian-Eulerian 
model has been applied in this study to build momentum and continu-
ity equation for phases. The convergence rate was enhanced by solving 
the momentum and pressure-based continuity equations using SIMPLE 
method [39]. The maximum iteration number is set to 1000 for a time 
step of 0.001 s. 

Further, the volume fraction parameters have been set in the 
multiphase model dialoge box as explicit scheme which is time- 
dependent. The modified HRIC is applied here because there are sharp 
interfaces between both phases. 

In addition, Reynolds number varied between 10 and 1000 according 
to previous experimental tests [23]. Reynolds number indicates the 
system is working in a transient regime involving both viscous and in-
ertial forces. For this reason, the system should be modeled by either 
laminar or turbulent flow regimes [40]. 

The initial and boundary conditions in the model were considered 
identical to the experimental operational conditions. The nozzle holes 
on the top surface of the sparger were assumed as velocity inlet with the 

Fig. 3. Schematic view of the reactor with dual helical ribbon impeller; (a) 
MRF zones, (b) mesh topology. 

Fig. 4. The model grid sensitivity analysis.  
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gas fraction equals 1. Further, the body of the cylinder should be treated 
as a standard no slipping wall. The boundary condition at the top of the 
cylinder which is the degassing part is considered as a pressure outlet. 
The whole cylinder was employed as a liquid region with a height of 
0.24 m and a gas volume fraction of 0. The rotating wall situation is 
applied for the impeller body and its shaft. In this work, the air bubble 
size was considered in the range of 0.1 and 7 mm based on the experi-
mental data gathered by the image processing method [23]. It should be 
mentioned that the rheological properties of the non-Newtonian fluid 
follow the Power-Law model based on previous studies [19]. 

3.2.3. Model validation 
Two different methods were applied to validate the CFD results in 

both gas and liquid phases. First, the average rising velocity for 40 
bubbles in pure water was considered to verify the gas velocity predicted 
by CFD simulation. Second, both the velocity magnitude and flow field 
of the liquid phase were captured using PIV measurement to validate the 
hydrodynamics of the liquid phase. 

3.2.4. Gas velocity 
The mean bubble velocity calculated by CFD-PBM was compared to 

the calculated average velocity obtained from the experiments and 
image processing. The validation tests were carried out in two different 
initial airflow rates of 0.5 and 2 LPM which are shown in Fig. 5. The 

bubble motion was recorded using a high-speed camera (Samsung dig-
ital Camera 12 M P with a speed of 1.4 μm including dual-pixel auto-
focus) for further evaluation by image J software. The mean velocity for 
bubbles has been calculated for 10 sec after stabilizing the system. 

3.2.5. Hydrodynamics 
Capturing and distinction of the flow field using PIV is extremely 

challenging when a large impeller rotating in a two-phase reactor due to 
the interference and interaction of moving bubbles with impeller 
shadow. To reduce the interference of gas flow, a filtered lens and 
fluorescent dye were applied. Despite this, PIV still captures some parts 
of sparged gas and accumulated bubbles on the back of the blades which 
interfere with the results. Fig. 6a, b shows both the velocity vectors and 
magnitude captured by CFD and PIV at 75 and 150 rpm. The overall flow 
shows a similar pattern in different regions including the upper, middle, 
and bottom of the impeller which are identified by large red vectors. In 
addition, the velocity magnitude captured by PIV is approximately equal 
to the CFD prediction when the rotational speed of the impeller is 75 
rpm. Although at 150 rpm, the direction of velocity vectors captured by 
PIV shows similar results to CFD results, the velocity magnitudes esti-
mated by CFD is higher than the values obtained from PIV 
measurements. 

Fig. 5. Comparison of average velocities obtained from experiment and CFD simulation for the initial gas flowrates: (a) 0.5 LPM and (b) 2 LPM.  
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4. Results and discussion 

4.1. Effect of impeller speed on bubble size distribution and gas holdup 

The size distribution of the bubbles can be evaluated by breakage and 
coalescence rates which is governed by the dissipation rate of kinetic 
energy. Fig. 7 shows the bubble size distribution in three rotational 
impeller speeds of 25, 75, and 150 rpm. In the lower rotational speed, it 
is observed that the flow is channelized in the outer edge of the blades. 
This can be also observed in Fig. 8 which indicates the total gas fractions 
for different rotational speeds of 25, 75, 150 rpm. Fig. 8 demonstrates 
that low impeller speed has an insignificant effect on the hydrodynamics 
of the gas phase. Therefore, bubbles skew, slowly move, and are possibly 

stuck in gel-like structure of the fluid. It can be concluded that coales-
cence is the predominant phenomenon when impeller speed is too low. 
As a result, the interfacial area between two phases reduces which 
negatively influences the interphase mass and heat transfer. The CFD 
result indicated that the bubble size is changing between 0.25 and 0.65 
mm due to the coalescence at 25 rpm. By increasing the impeller speed 
from 25 to 75 rpm, the bubbles scattered through the system due to the 
induced shear stress. Accelerated bubbles hit the wall of the vessel and 
blades resulting in breakage. Simultaneously, accelerated bubbles may 
strike together and merge to form a larger bubble through the coales-
cence process. Simultaneous breakage and coalescence of the bubbles 
resulting in a homogeneous distribution of various bubble size in the 
range of 0.25 to 0.65 at 75 rpm. Additionally, Fig. 8 confirms that the 
gas-phase is well distributed at 75 rpm leading to an increase in inter-
facial area between phases and gas hold up. Doubling the rotational 
speed of the impeller up to 150 rpm increases the rate of bubble 
breakage and coalescence, due to the intensity of turbulent flow. The 
size of the bubbles at 150 rpm varies in a wider range between 0.1 and 
0.65 mm. Further Fig. 8 illustrates that bubbles are well distributed in 
the radial direction. Although raising the rotational speed results in 
better distribution of bubbles and larger interfacial area, the limiting 
factors should be also considered. High shear stress not only increases 
the operating cost, power consumption, also distracts the suitable 
environment for bioactivity. Therefore, it cannot be concluded that 
increasing the rotational speed necessarily enhances the bioreactor ef-
ficiency and requires more investigation from the microbial view point 
[4]. 

4.2. Velocity contour 

A combined CFD-PBM model was applied in this study to enhance 
the understanding of flow visualization inside the multiphase stirred 
reactor as demonstrated in Fig. 9a, b, and c. To study the impact of 
impeller speed on the flow field, the gas flow rate is kept constant at 1.8 
LPM, and the impeller rotational speed varies from 25 to 150 rpm. The 
color intensity of contours and streamlines indicates the magnitude of 
velocity in each region. According to Fig. 9, the flow field generated by 
the impeller mostly develops in the axial direction leading to the weak 
flow movement near the bottom and top of the vessel and around the 
shaft. Fig. 9 also indicates that an increase in the rotational speed 
resulting in a higher liquid velocity in the system. The results in this 
figure demonstrate the insufficient mixing pattern in 25 rpm, where 
there are some stagnant regions at the top and bottom of the tank, as 
well as near the shaft. The stagnant regions have been highlighted by 
purple rectangular box and circles. As a result, the channelling happens 
around the impeller outer edge at 25 rpm. It can be seen that an increase 
in the rotational speed of the impeller leads to reducing the stagnant 
regions. However, having a higher rotational speed requires more en-
ergy consumption which influences the operational and maintenance 
costs. The flow field contours indicate that doubling the rotational speed 
from 75 to 150 rpm does not have any significant contribution to the 
removal of stagnant regions, while the energy consumption increases 
remarkably. In addition, a high rotational speed of more than a certain 
level could destroy the microbial growing and seedling environment. 

Additionally, the high performance of a dual helical ribbon rather 
than the other types of impellers has been confirmed previously by 
literature [7,41]. This study indicated that the uniformity of fluid 
approximately has been achieved at 75 rpm. Additionally, the stagnant 
regions are not observed in the whole system at 75 rpm. In this case, 
operating the system at a higher rotational speed does not contribute to 
mixing performance. Previous experimental findings also suggest that 
increasing the impeller speed up to an optimum certain level could 
enhance the performance of the mixing system [23]; While beyond that 
level, the power consumption only rises sharply with a limited positive 
contribution to the mixing performance [23]. 

Fig. 6. Comparison of the flow field and velocity magnitude between CFD 
simulation (left Image) and PIV measurements (right image); at (a) 75 rpm, and 
(b) 150 rpm. 
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4.3. Effective viscosity contour 

Fig. 10 shows the sensitivity and dependency of the effective vis-
cosity of NaCMC as a shear-thinning fluid to the shear stress induced by 
the blade rotating at various speeds of 25, 75, 150 rpm. The results are 

compared in two perpendicular positions of blades as shown in Fig. 10. 
According to the previous experiments carried out by the same authors 
[23], the viscosity of the diluted solution of NaCMC (0.5 %WT) varies 
between 0.15 and 0.3 Pa s when the shear rate is between 20 and 200 
rpm [19]. The CFD prediction contours shown in Fig. 10 indicate that 

Fig. 7. Bubble size distribution at rotational speed 25 rpm, column 2; 75 rpm, column 3; and 150 rpm, column 4.  
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the rotating blade causes fluid–structure destruction leading to a 
decrease in the effective viscosity to 0.17 Pa s. 

Fig. 10a indicates that when the rotational speed is around 25 rpm, 
the viscosity shows a significant drop leading to enhancement of the 
mixing pattern. In this case, the fluid polymer network is destroyed due 
to the shear stress induced by the blades and consequently, the bubble 
upward movement facilitates due to the lower effective viscosity of the 
fluid. By increasing the speed up to 75 and beyond, some high viscous 
regions were formed with a time delay where the blade passed quickly 
which are shown in Fig. 10b and 10c. Due to the high rotational speed, 
the contact time between the blade and fluid–structure is not enough to 
transfer the shear stress from the blade to the adjacent fluid layer. In 
other words, blades are quickly slipping over the layer of fluid, while the 
shear still has not completely transferred to the fluid layers leading to 
the development of several static vortices. Consequently, the likelihood 
of bubble trapping in static vortices increases leading to forming stag-
nant regions and incomplete mixing. 

It can be concluded that increasing the rotational speed of the 
impeller could not always contribute positively to enhancing the mixing 
pattern. By gradually increasing the rotational speed, vortices have been 
formed in some regions which disturb the biomass activities, the inter-
action between phases, and heat and mass transfer. Therefore, it is 
suggested that the best impeller speed and optimum mixing pattern 
should be studied for each non-Newtonian fluid separately based on its 
rheological characteristics. 

5. Conclusions 

A combination of CFD and Population balance model was applied to 
evaluate the performance of a dual helical ribbon impeller on the size 
distribution of bubbles, hydrodynamic behavior, and viscosity of a 
shear-thinning fluid. The standard k − ε model and Eulerian-Eulerian (E- 
E) multiphase approach was considered to solve the governing equa-
tions. Further, a discrete method was applied to predict the bubbles’ 
deformation. A mesh independence test was carried out to check the grid 
sensitivity of the model. The results of CFD simulation were verified by 
the PIV tests under the same operating conditions. 

By increasing the rotational speed of the impeller from 25 to 150 
rpm, the rate of bubble coalescence reduces, while the likelihood of 
bubble breakage increases. Bubble coalescence happens at a lower speed 
because the bubbles are skewed from the outer edge of the blades and 
trapped in gel-like structure of fluid leading to an increase in the chance 
of striking and merging. When the rotational speed increases, not only 

destroying the gel structure of the fluid, but also bubbles hit the blades 
and walls of the cylinder resulting in bubble breakage. Therefore, by 
increasing the rotational speed, bubble distribution improves and en-
hances the interfacial area. 

The CFD results showed that the gas holdup reduces when the 
impeller rotates with a low speed. The maximum gas hold-up occurs at 
150 rpm. It seems that maximizing the interfacial area and gas hold-up 
positively contributes to improving the mass transfer between the liquid 
and gas-phases. Therefore, the influence of rotational speed on heat and 
mass transfer for a shear-thinning fluid needs to be investigated further 
for this specific type of impeller. 

At lower rotational speed, poor mixing was observed in the system, 
which can be improved by increasing the speed of the impeller. How-
ever, after a certain level of shear stress, several parameters act as 
limiting factors like power consumption, operational and maintenance 
costs, the level of shear stress tolerating by substrate, and fluid. In other 
words, the working and operating conditions of a particular mixer 
should be specified through optimization methods based on the type and 
size of the impeller and vessel, rheological, chemical, and physical 
characteristics of the fluid, and the level of shear stress and temperature 
tolerated by microorganisms. 

The results obtained by experiment and CFD predictions indicated 
that by raising the impeller speed, viscosity drops from 0.3 to 0.17 Pa s. 
However, an increase in the rotational speed of the impeller does not 
necessarily enhance the mixing pattern of a shear thinning fluid. By 
increasing the rotational speed beyond 75 rpm, there is not enough time 
to transferring the shear stress from the blade to the non-Newtonian 
fluid surrounding the impeller. Consequently, some static vortices 
form leading to poor mixing. It is suggested that the sensitivity of 
microorganism to the different shear stress level to be tested. Since the 
desire and optimum mixing pattern should be achieved based on not 
only the rheological characteristics of a non-Newtonian fluid (substrate) 
but the level of shear stress which can be tolerated by microorganism. 
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the Reynold number for a helical ribbon impeller which is obtained by Fuente et al. (Brito-De 

La Fuente, Choplin, and Tanguy 1997). 

�) = 6 @L/
�¾¦¦                          Equation 6-9 

6.4.2 Turbulence model 

The � − � model was adopted in the proposed study to model the turbulence. This model has 

two equations written for a mixture of two phases. 

j
j� �6�� + ∇. �6��⃗�� = ∇. D��,�

�� ∇�F + ��,� − 6��            

                 Equation 6-10 

j
j� �6�� + ∇. �6��⃗�� = ∇. D��,�

�� ∇�F + 7q���,� − 7!�6��         Equation 6-11 

where, k is the turbulent kinetic energy, G is the generation of turbulent kinetic energy, and � 

is the dissipation rate. The mixture of these properties can be found from the following 

equations: 

 

6� = ∑ ��6�o�pq             

                      Equation 6-12 

�⃗� = ∑ ��?���⃗ �����∑ ��?�����
               Equation 6-13 

��,� = 6�7� �/
�                Equation 6-14 

Further, values for these equations (7� = 0.09, 7q� = 1.44, and 7!� = 1.92 )  were extracted 

from previous literature (Ranade 2001). 

6.4.3 Population balance model (PBM) 

Computational Fluid Dynamics (CFD) simulation is a powerful method for predicting the 

hydrodynamics of complex multiphase agitated systems; however, this method does not show 
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changea in bubble size. Thus, the CFD-PBM coupled method has been suggested within the 

literature in order to calculate change in bubble size (Marchisio, Vigil, and Fox 2003). 

The size of bubbles can change during the process of mixing based on changes in liquid 

properties as most of applied fluids are non-Newtonian. Therefore, it is important to use the 

CFD-PBM method in order to better predict bubble coalescence and breakage.   

The integrated CFD-PBM method is derived from the Boltzmann statistical transport equation, 

to simulate \ unsteady multiphase phenomenon such as lift (Tomiyama et al. 1997), drag (X. 

Jiang, Yang, and Yang 2016), and mass transfer modeling. This method describes the bubble 

entering/ leaving defined control volume. 

j
j� ���⃗, 
�, � + j

j� [�r��⃗, 
� , �����⃗, 
�u + j
je| [���⃗, 
� , � j

j� 
���⃗, 
� = ���⃗, 
�, �  Equation 

6-15 

where ���⃗, 
� , � indicates bubble density distribution function at the time of t and a position 

of �⃗. 
� refers to the volume of bubbles, �� shows the local velocity of bubbles, and ���⃗, 
� , � 

is a source term including bubble sink or source in different situations including coalescence, 

breakage, phase interactions, reaction, and mass transfer. The Lue and Svendsen models 

suggested by ANSYS Fluent user Guid has been considered in this study to model the bubble 

coalescence and breakup (Baudez, Slatter, and Eshtiaghi 2013; B. V Machon and Jahoda 2012; 

Canonsburg 2013). 

The discrete method was used to solve the PBM equation, discretised into five interval bubble 

diameters in this study. By using this method, the bubble breakage can be modelled based on 

the interaction between bubbles and turbulent eddies, which leads to simulate the bubble 

deformation. The average bubble diameter was calculated by tracking 40 bubbles obtained 

through the experimental phase (M. Amiraftabi, Khiadani, and Mohammed 2020). The 

maximum bubble size, which was observed in image processing analysis, was 7 mm and the 

smallest one was 0.1 mm. More than 80% of the bubbles had a diameter in the range of 3 to 5 
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mm, which can be categorized in the first and second bubble intervals (Laakkonen, Honkanen, 

et al. 2005).  

6.5 Solution domain, mesh generation and boundary conditions 

6.5.1 Mesh Processing 

Design modeler and ICEM 18.2 were used to construct three-dimensional geometry of the 

reactor used in the experiment. An unstructured meshing method, coupled with the Multiple 

Reference Frame (MRF) approach, was applied to generate five different 3-D mesh topologies 

as shown in Figure 6-3. In the MRF method, the domain was divided into two different regions; 

the stationary outer region, and the rotating inner part that is rotated by the impeller. A finer 

mesh was applied inside the inner cylinder surrounding the impeller as the flow pattern in this 

region is an important parameter. Having finer mesh can enhance flow capture and improve 

the accuracy of results around the impeller region. Additionally, the outer layer is defined as a 

non-rotating domain with coarse mesh. 
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Figure 6-3 Schematic view of the reactor with dual helical ribbon impeller; a) MRF zones, b) mesh 

topology. 

A mesh independence study was carried out for five different numbers of cells by testing the 

average velocity of the liquid at 15 cm above the bottom of the reactor. Increasing cell numbers 

changed the average velocity remarkably. However, the average velocity tended to be stable 

after 6x106 cells, as shown in Figure 6-4. 
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Figure 6-4 The model grid sensitivity analysis 

 

6.5.2 Solver setup and boundary conditions 

ANSYS Fluent R19.1 double precision solver was applied to run the simulation and to define 

boundary conditions. The Eulerian-Eulerian model has been applied in this study to build 

momentum and continuity equation for phases. The convergence rate was enhanced by solving 

the momentum and pressure-based continuity equations using SIMPLE method (ANSYS 

Fluent User’s Guide, n.d.). The maximum iteration number is set to 1000 for a time step of 

0.001 s.  

Further, the volume fraction parameters has been set in multiphase model dialoge box as 

explicite scheme which is time-dependent. The modified HRIC are applied here because there 

is a sharp interfaces between both phases. 

In addition, the Reynolds number varied between 10-1000 according to previous experimental 

tests (M. Amiraftabi, Khiadani, and Mohammed 2020). Reynolds numbers indicate a system 

is working in a transient regime involving both viscous and inertial forces. For this reason, the 

system should be modeled by either laminar or turbulent flow regimes (Chhabra and 

Richardson 1999). 
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The initial and boundary conditions in the model were considered identical to the experimental 

operational conditions. The nozzle holes on the top surface of the sparger were assumed as 

velocity inlet with a gas fraction equal to 1. Further, the body of the cylinder was treated as a 

standard with no slipping wall. The boundary condition at the top of the cylinder, which is the 

degassing part, is considered as a pressure outlet. The whole cylinder was employed as a liquid 

region with a height of 0.24 m and a gas volume fraction of 0. The rotating wall situation was 

applied for the impeller body and its shaft. In this work, the air bubble size was considered in 

the range of 0.1 and 7 mm based on experimental data gathered through the image processing 

method (Laakkonen, Honkanen, et al. 2005). It should be noted here that the rheological 

properties of the non-Newtonian fluid follow the Power-Law model based on previous studies 

(M. Amiraftabi and Khiadani Mehdi 2019a).   

6.5.3 Model validation 

Two different methods were applied to validate the CFD results in both gas and liquid phases. 

First, the average rising velocity for 40 bubbles in pure water was considered to in order verify 

gas velocity predicted by CFD simulation. Second, both the velocity magnitude and flow field 

of the liquid phase were captured using PIV measurement to validate the hydrodynamics of the 

liquid phase.  

6.6 Gas velocity 

The mean bubble velocity calculated by CFD-PBM was compared to the calculated average 

velocity obtained from the experiments and image processing (Laakkonen, Honkanen, et al. 

2005). The validation tests were carried out in two different initial airflow rates of 0.5 and 2 

LPM which are shown in Figure 6-5. The bubble motion was recorded using a high-speed 

camera (Samsung digital Camera 12 M P with speed of 1.4 μm including dual-pixel autofocus) 
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for further evaluation by image J software. The mean velocity for bubbles has been calculated 

for 10 sec after stabilizing the system. 

 
Figure 6-5 Comparison of average velocities obtained from experiment and CFD simulation for the initial gas 

flowrates: a) 0.5 LPM and b) 2 LPM when the impeller speed is equal to 0. 

6.7 Hydrodynamics 

The capture and distinction of the flow field using PIV is extremely challenging when a large 

impeller rotates in a two-phase reactor, due to the interference and interaction of moving 

bubbles with impeller shadows. To reduce the interference of gas flow, a filtered lens and 

fluorescent dye were applied. Despite this measure, the PIV still captured some sparged gas 
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and bubbles accumulated on the back of the blades, which interfered with the results. Figures 

6-6 a and 6-6 b show both the velocity vectors and magnitude captured by CFD and PIV at 75 

and 150 rpm, respectively.  

a) 

 
b) 

 
Figure 6-6 Comparison of the flow field and velocity magnitude between CFD simulation (left Image) 

and PIV measurements (right image); at a) 75 rpm, and b) 150 rpm 

The overall flow shows a similar pattern in different regions including the upper, middle, and 

bottom of the impeller, which are identified by large red vectors. In addition, the velocity 

magnitude captured by PIV is approximately equal to CFD prediction when the rotational speed 

of the impeller is at 75 rpm. Whilst at 150 rpm the direction of velocity vectors captured by the 
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PIV show similar results to CFD results, the velocity magnitudes estimated by CFD are higher 

than the values obtained from PIV measurements.  

6.8 Results and discussion 

6.8.1 Effect of impeller speed on bubble size distribution and gas holdup 

The size distribution of bubbles can be evaluated by breakage and coalescence rates, which are 

governed by the dissipation rate of kinetic energy. Figure 6-7 shows bubble size distribution at 

three rotational impeller speeds of 25, 75, and 150 rpm.  

At the lower rotational speed, it can be observed that the flow is chanelled into the outer edge 

of the blades. This can be also observed in Figure 6-8, indicating the total gas fractions for 

different rotational speeds of 25, 75, and 150 rpm. Fig. 6-8 also demonstrates that low impeller 

speed has an insignificant effect on the hydrodynamics of the gas phase. Therefore, bubbles 

can skew, move more slowly, or possibly become stuck in the gel-like structure of the fluid. 

Accordingly, it can be concluded that coalescence is a predominant phenomenon when impeller 

speed is too low. As a result, the interfacial area between two phases reduces, negatively 

influencing interphase mass and heat transfer. CFD results indicate that the bubble size changes 

between 0.25 to 0.65 mm due to coalescence at 25 rpm. When increasing impeller speed from 

25 to 75 rpm, bubbles scatter throughout the system due to induced shear stress. Accelerated 

bubbles hit the wall of the vessel and blades, resulting in breakage. Simultaneously, accelerated 

bubbles may strike together and merge to form a larger bubble through the coalescence process. 

Simultaneous breakage and coalescence of bubbles can result in homogeneous distribution of 

various bubble size in the range of 0.25 to 0.65 mm at 75 rpm. 
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Size Distribution 25 rpm 75 rpm 150 rpm 

Bin-0 (0.25-0.65 mm) 

   

Bin-1 (0.1-0.25 mm) 

   

Bin2 (0.03-0.1 mm) 
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Bin3 (0.01-0.03 mm) 

   

Bin4 (0-0.01mm) 

   

Figure 6-7 Bubble size distribution at rotational speed 25 rpm, column 2; 75 rpm, column 3; and 150 

rpm, column 4. 

Additionally, Fig. 6-8 confirms that the gas-phase is well distributed at 75 rpm leading to an 

increase in interfacial area between phases and gas hold up. Doubling the rotational speed of 

the impeller up to 150 rpm increases the rate of bubble breakage and coalescence, due to the 

intensity of turbulent flow. The size of the bubbles at 150 rpm varies in a wider range between 

0.1 to 0.65 mm. 

25 rpm 75 rpm 150 rpm 
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Figure 6-8 Gas volume fraction profile at rotational speed 25, 75, and 150 rpm. 

Further, Fig. 6-8 illustrates that bubbles are well distributed in the radial direction. Although 

increasing rotational speed results in better distribution of bubbles and a larger interfacial area, 

where the limiting factors should be also considered. High shear stress not only increases 

operating costs and power consumption, but also disturbs the environment’s bioactivity 

suitability. Therefore, it cannot be concluded that increasing the rotational speed necessarily 

enhances bioreactor efficiency, where more investigation is required from a microbial 

perspective (Doran 1995).. 

6.8.2 Liquid velocity contour  

A combined CFD-PBM model was applied in this study to enhance the understanding of flow 

visualization inside a multiphase stirred reactor, as demonstrated in Figures 6-9 a, b, and c. To 

study the impact of impeller speed on the flow field, the gas flow rate was kept constant at 1.8 

LPM, with the impeller rotational speed varying from 25 to 150 rpm. The color intensity of 

contours and streamlines indicate the magnitude of velocity in each region. According to Figure 

6-9, the flow field generated by the impeller mostly develops in the axial direction leading to 
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weak flow movement near the bottom and top of the vessel and around the shaft. The figure 

also indicates that an increase in rotational speed leads to a higher liquid velocity in the system. 

The results in this figure also indicate the mixing pattern at 25 rpm to be insufficient, where 

there are some stagnant regions at the top and bottom of the tank, as well as near the shaft. The 

stagnant regions have been highlighted by purple rectangular and circles. As a result, 

channelling happens around the impeller outer edge at 25 rpm. Further, it can be observed that 

an increase in the rotational speed of the impeller leads to a reduction of these stagnant regions. 

However, having a higher rotational speed requires more energy consumption, which increases 

operational and maintenance costs. The flow field contours indicate that doubling the rotational 

speed from 75 to 150 rpm does not produce any significant contribution to the removal of 

stagnant regions, while the energy consumption increases remarkably. In addition, a high 

rotational speed of more than a certain level could destroy the microbial growing and seedling 

environment. 
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Figure 6-9 Flow field and velocity magnitude at rotational speeds 25, 75, and 150 rpm at two perpendicular 

positions of blades. 

Additionally, the high performance of a dual helical ribbon in comparison with other types of 

impellers has been confirmed previously within research (Houari Ameur, Bouzit, and Ghenaim 
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2013; Houari Ameur 2015). This study indicates that the uniformity of fluid has been 

approximately achieved at 75 rpm. Additionally, stagnant regions are not observed in the whole 

system at 75 rpm. In this case, operating the system at a higher rotational speed does not 

contribute to mixing performance. Previous experimental findings also suggest that increasing 

the impeller speed up to a certain optimum level may enhance the performance of a mixing 

system (M. Amiraftabi, Khiadani, and Mohammed 2020); however, beyond this level power 

consumption rises sharply with limited positive contribution to mixing performance (M. 

Amiraftabi, Khiadani, and Mohammed 2020). 

6.8.3 Effective viscosity contour  

Figure 6-10 shows the sensitivity and dependency of the effective viscosity of NaCMC as a 

shear-thinning fluid to the shear stress induced by the blade rotating at various speeds of 25, 

75, and 150 rpm.  
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Figure 6-10 Changes in effective viscosity based at rotational speeds 25, 75, and 150 rpm and two perpendicular 

blade positions. 

The results have been compared in two perpendicular blade positions, as shown in Fig. 6-10.  
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According to previous experiments carried out by the same authors (M. Amiraftabi, Khiadani, 

and Mohammed 2020), the viscosity of the diluted solution of NaCMC (0.5 %WT) varies  

between 0.15 to 0.3 Pa.s when the shear rate is between 20-200 rpm (M. Amiraftabi and 

Khiadani Mehdi 2019a). The CFD prediction contours shown in Fig. 6-10 indicate that the 

rotating blade causes fluid-structure destruction, leading to a decrease in effective viscosity to 

0.17 Pa.s.  

Figure 6-10 a indicates that when the rotational speed is around 25 rpm, the viscosity shows a 

significant drop that leads to an enhancement of the mixing pattern. In this case, the fluid 

polymer network is destroyed due to the shear stress induced by the blades. Consequently, 

upward movement of bubbles occur due to the lower effective viscosity of the fluid. By 

increasing the speed up to 75 rpm and beyond, some high viscous regions were formed with a 

time delay where the blade passed quickly, as shown in Figs. 6-10 b and 6-10 c. Due to this 

high rotational speed, the contact time between the blade and fluid-structure is not enough to 

transfer shear stress from the blade to the adjacent fluid layer. In other words, the blades quickly 

slip over the layer of fluid, while the shear still has not completely transferred to the fluid 

layers, leading to the developing of several static vortices. Consequently, the likelihood of 

bubble trapping in static vortices increases, leading to the formation of stagnant regions and 

incomplete mixing.  

Thus, it can be concluded that increasing the rotational speed of the impeller may not always 

positively contribute to enhancing mixing patterns. By gradually increasing rotational speed, 

vortices can form in some regions, disturbing biomass activities, the interaction between 

phases, and heat and mass transfer. Therefore, it is suggested that the best impeller speed and 

optimum mixing pattern should be studied for each non-Newtonian fluid separately, based on 

its specific rheological characteristics. 
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6.9 Conclusions 

A combination of CFD and the Population balance model was applied to evaluate the 

performance of a dual helical ribbon impeller on the size distribution of bubbles, hydrodynamic 

behavior, and viscosity of a shear-thinning fluid. The standard � − �  model and Eulerian-

Eulerian (E-E) multiphase approach was considered to solve the governing equations. Further, 

a discrete method was applied to predict bubble deformation. A mesh independence test was 

carried out to check the grid sensitivity of the model. The results of CFD simulation were 

verified by the PIV tests under the same operating conditions. 

When increasing the rotational speed of an impeller from 25 to 150 rpm, the rate of coalescence 

reduces, while the likelihood of bubble breakage increases. Bubble coalescence happens at 

lower speed because the bubbles are skewed from the outer edge of the blades and trapped in 

the gel-like structure of the fluid, leading to an increase in the chance of striking and merging. 

When rotational speed increases, not only is the gel-like structure of the fluid destroyed, but 

bubbles also hit the blades and walls of the cylinder, resulting in bubble breakage. Therefore, 

by increasing the rotational speed, bubble distribution improves and enhances the interfacial 

area. 

The CFD results showed that gas holdup reduces as impeller speed decreases, where maximum 

gas hold-up occurs at 150 rpm. Thus, it appears that maximizing the interfacial area and gas 

hold-up positively contributes to improving mass transfer between the liquid and gas-phases. 

Accordingly, the influence of rotational speed on heat and mass transfer for a shear-thinning 

fluid for this specific type of impeller requires further investigation 

At lower rotational speed, poor mixing was observed in the system, which can be improved by 

increasing the speed of the impeller. However, after reaching a certain level of shear stress, 

several parameters act as limiting factors like power consumption, operational and maintenance 

costs, as well as the level of shear stress tolerated by substrate and fluid. Therefore, the working 
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and operating conditions of a particular mixer should be specified through optimization 

methods based on the type and size of the impeller and vessel, the rheological, chemical, and 

physical characteristics of the fluid, and the level of shear stress and temperature tolerated by 

microorganisms. 

The results obtained by experiment and CFD predictions indicate that by increasing impeller 

speed, viscosity drops from 0.3 to 0.17 Pa.s. However, an increase in the rotational speed of an 

impeller does not necessarily enhance the mixing pattern of a shear thinning fluid. When 

increasing the rotational speed beyond 75 rpm, there is not enough time to transfer shear stress 

from the blade to the non-Newtonian fluid surrounding the impeller. Consequently, some static 

vortices form that lead to poor mixing. To obtain the desired and optimum mixing pattern, it is 

essential to specify the rheological characteristics of a non-Newtonian fluid (substrate) as well 

as the shear stress level which can be tolerated by microorganisms, before adjusting the 

operating conditions. 
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Chapter 7: General discussion 

and conclusions 

7.1 General discussion 

This project was undertaken to evaluate the hydrodynamic characteristics and flow field 

generated by a dual helical ribbon impeller in a multiphase reactor filled with a non-Newtonian 

fluid. Referring to the experimental and numerical findings from this work and the review of 

literature, a helical ribbon impeller has a significant contribution to homogenizing a system 

that contains shear-thinning fluid such as polymers and sludge. Complexity of sludge rheology, 

expensive analytical instrument, safety and health regulations, opaque nature of sludge and 

complicated hydrodynamics of mixed bubbly flow make the study of hydrodynamic 

characteristics unfeasible. To overcome some of these limitations, CFD simulation has been 

considered as a complementary method in this thesis. Due to the opaque nature of sludge, 

hydrodynamic visualization methods have been unsuccessful. Thus, some research sought to 

find an alternative working fluid which emulate rheological behaviour of sludge to investigate 

the hydrodynamic properties of multiphase flow and the performance of mixing. The power 

consumption and mixing time are two quantitative factors which can be applied to evaluate the 

performance of a mechanical mixer. Mixing time and power uptake can be optimized for any 

kind of mixers by adjusting some effective factors including rotational speed of impeller, gas 

flowrate, rheological characteristics of fluid. These factors have been previously studied to a 

limited extent for a dual helical ribbon impeller.  
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This study has obtained experimental and numerical data which will help to understand the 

hydrodynamics of an agitated gas-liquid system and the mixing performance of a dual helical 

ribbon impeller. To aim this target, NaCMC as a clear simulant fluid has been used in this study 

to facilitate the image processing procedure and PIV tests.  All key research questions have 

been covered successfully (i) to make a comparison between the rheological behaviour of 

several polymers with activated and digested sludge to find the best simulant polymer 

(Chapter 4); (ii) to adjust rotational speed of impeller, gas flow rate, viscosity, and clearance 

to the bottom in order to reduce time and energy required to reach the complete mixed pattern 

(Chapter 5); (iii) to analyse the hydrodynamics ( flow field, velocity, bubble distribution, and 

viscosity) of an agitated multiphase system filled with non-Newtonian fluid (Chapter 6).  

Chapter 7 summarises the main objectives of this research. Further, the last part of this chapter 

includes some suggestions for improvement and speculating on future directions.  

7.1.1 Rheological study 

A series of experiment have been carried out to compare the rheological characteristics of 

simulant polymers with primary, activated, and digested sludge. Flow curve, thixotropy, and 

viscoelasticity of the polymers have been measured using a rheometer. Then the collected data 

has been fitted to the common practical equations like Herschel-Bulkley and Power-Law that 

describe the relation between shear stress and viscosity of shear thinning fluids. In addition, 

some complimentary tests have been conducted to evaluate the pH resistance of the polymers 

since the hydrodynamic visualization tests have been carried out using titration method. The 

chemical and physical stability of solution should be checked to ensure that the flocculation 

and settlement can be ignored during the rheological test. Although findings suggested xanthan 

gum solution’s rheological behavior is the closest to sludge, xanthan gum solution was semi-

clear which is a hindrance to visualization study.  Additionally, result indicated NaCMC is still 
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another popular alternative for digested sludge in terms of transparency and its similar 

rheological characteristics, therefore NaCMC was used in this project (Chapter 4).  

The present study confirms previous findings and provides evidence that suggests xanthan gum 

and NaCMC can be applied as a stable and safe simulant of sludge with different solid contents. 

Chapter 4 compared the rheological behavior of four polymers emulating the rheological 

characteristics of sludge which has practical applications from both industrial and scientific 

perspectives studying the rheological characteristics of sludge. 

7.1.2 Performance of a dual helical ribbon impeller 

In this research, the performance of a helical ribbon impeller in agitating a non-Newtonian fluid 

in a cylindrical two-phase reactor has been evaluated. The performance of impeller can be 

judged based on the mixing time and power consumption. Impeller rotational speed, gas flow 

rate, viscosity, and clearance to the bottom of the tanks have been mentioned in literature as 

the most influential factors which can change the power consumption and mixing time. To 

optimize these factors in the lab-scale tank, the RSM method has been applied. Two practical 

correlations have been suggested by applying ANOVA test to predict mixing time and power 

consumption under various operating conditions. Based on the ANOVA analysis and RSM 

approach, the following key parameters have a significant impact on mixing time and power 

consumption (Chapter 5), respectively. 

 Impeller rotational speed 

 Viscosity 

 Gas flow rate 

It has been indicated in Chapter 5 that the power number calculated for a dual helical ribbon 

impeller correlates inversely proportional to the square root of Reynolds number. 
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7.1.3 CFD Simulation 

Due to the experimental limitations, CFD simulation can be applied as a complementary 

method to investigate the hydrodynamic behaviour of gas-liquid system in detailed. A 3D 

geometry has been designed to put into the FLUENT solver to simulate the non-identical 

rotating shape of impeller. After mesh sensitivity analysis, the operating conditions have been 

adjusted based on the optimized data obtained in Chapter 5. A combination of CFD-PBM 

models has been applied to develop an understanding of bubble size and distribution. Bubbles 

have been discretised in five size categories in this research. A classic drag model of Schiller-

Naumann has been used to characterize interphase forces and gradient of pressure. PIV tests 

have been carried out to verify the reliability of CFD model. Velocity profile predicted by CFD 

complies PIV and experimental results.  

The results indicated that the impeller rotational speed has had a significant effect on bubble 

breakage and coalescence rates. The rate of bubble breakage and coalescence can control the 

mass and nutrient transfer between phases which can change the performance of a multiphase 

reactor. Further, an increase in rotational speed of impeller causes a remarkable drop in 

viscosity of fluid which improves mixing pattern and reduces the volume of inactive regions 

(Chapter 6). 
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7.2 Conclusions 

The final section draws upon the entire thesis, tying up the various theoretical, numerical, and 

experimental strands. The present study makes several noteworthy contributions to enhancing 

the mixing performance of an anaerobic digester in industries. The experimental and numerical 

findings in this study provide a new understanding of hydrodynamics of an agitated gas-liquid 

reactor filled with a non-Newtonian fluid. Some findings of this research project were classified 

as follows: 

I) Analysis of stability, pH sensitivity, Zeta potential, and rheological characteristics of

various polymers indicated that:

1. Xanthan gum is a pH resistant stimulant which can replicate the rheological

behavior of activated sludge. 

2. NaCMC is a clear polymer which shows the similar rheological behavior to

digested sludge in terms of flow curve and viscoelasticity. 

3. Polymers mentioned in this work are stable and there is no evidence of

agglomeration in solutions. 

4. Analysis data collected from rheometer demonstrated that the viscosity has an

adverse effect on mixing and shearing the material. 

II) The optimum level of operating conditions has been analyzed by statistical method to

achieve the maximum mixed volume, minimum mixing time and energy

consumption.

1. Rotational speed, viscosity, gas flow rate has the most influence on mixing time

and power consumption, respectively.

2. The clearance of impeller from bottom of the tank can be ignored since there is

insignificant effect on the rheological properties of fluid and hydrodynamics of

system.
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3. Presence of bubbles leads to a reduction in mixing time and power uptake. 

4. Reynolds and power numbers are correlated practically for helical ribbon 

agitator. 

5. The results show there is a threshold level for impeller rotational speed 

considering economic mixing in a shorter period. 

6. Power consumed by a helical ribbon impeller has a reverse proportional 

function with a square root of Re. 

III) The CFD-PBM simulation of an agitated gas-liquid mixed reactor filled with a non-

Newtonian fluid to analyse the velocity field, viscosity gradient, bubble size and 

distribution, and flow pattern. 

1. A comparative study indicates that the simulation predictions comply with PIV 

results. 

2. CFD modelling successfully predict hydrodynamic characteristics of both 

liquid and gas phases. 

3. By increasing the rotational speed of impeller, the rate of bubble breakage has 

been increased. The distribution of bubbles also improved by increasing the 

rotational speed. 

4. There is a threshold level in impeller rotational speed which beyond that the 

mixing time reduces insignificantly, while power consumption increases. 

5. A helical ribbon impeller shows a significant contribution to make a 

multiphase system homogenous where the liquid phase is shear thinning. 

6. The viscosity drops remarkably when the rotational speed of impeller 

increases. 



Chapter 7: General discussion and conclusions 

175 
 

7.3 Future recommendation 

The findings of this study have a number of important implications for future investigation. 

Several questions remain unanswered at present work suggested as future areas of research. 

I) Sludge always contains some floccules and solids which are ignored in most 

numerical studies. It is recommended to model sludge as a three-phase fluid to 

understand the influence of the presence of particles on viscosity, bubble deformation, 

volume of dead zone, and mixing patten. 

II) More detailed study is required to measure the biogas production in an anerobic 

digester to evaluate the mixing performance of a dual helical ribbon impeller to make 

the system homogenous. 

III) It is recommended to optimize the operating conditions for an agitated multiphase 

reactor equipped with other types of impellers to compare them from an economical 

point of view. 

IV) There is still a gap in the optimum number of blades in a helical ribbon impeller to 

enhance the biogas production. 

V) The impact of rotational speed of a dual helical ribbon in transferring mass and heat 

between phases and the speed of reactions taking place in system (hydrolysis, 

acidogenesis, acetogenic, and methanogenesis) need to be studied. 

VI) CFD-PBM method can be used to examine the effect of different drag models on 

bubble breakage and coalescence. 

VII) There are still many gaps in literature on how shear stress influences real sludge 

viscosity with different percentage of solid particles. 

VIII) In this study, power-law non-Newtonian fluid was used to represent rheological 

property. It is recommended that this study repeats for a thixotropic fluid following 

Herkel-Bulkley equation to compare the results. 
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IX) CFD-PBM method can be used to study the mixing time through injection function 

and compare to experimental data. 

X) This study compared the rheological behavior of polymers to municipal sludge. It 

would be suggested that the similar study extended to other types of sludge including 

poultry and animal farm. 
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