
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Theses: Doctorates and Masters Theses 

2021 

Power network and smart grids analysis from a graph theoretic Power network and smart grids analysis from a graph theoretic 

perspective perspective 

Hossein Parast Vand 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/theses 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Parast Vand, H. (2021). Power network and smart grids analysis from a graph theoretic perspective. Edith 
Cowan University. Retrieved from https://ro.ecu.edu.au/theses/2440 

This Thesis is posted at Research Online. 
https://ro.ecu.edu.au/theses/2440 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F2440&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=ro.ecu.edu.au%2Ftheses%2F2440&utm_medium=PDF&utm_campaign=PDFCoverPages


Edith Cowan University 

Copyright Warning 

You may print or download ONE copy of this document for the purpose 

of your own research or study. 

The University does not authorize you to copy, communicate or 

otherwise make available electronically to any other person any 

copyright material contained on this site. 

You are reminded of the following: 

 Copyright owners are entitled to take legal action against persons

who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.



Power Network and Smart Grids Analysis from a Graph
Theoretic Perspective

This thesis is submitted in partial fulfillment for
the award of degree of

Doctor of Phylosophy

in

Electrical Engineering

Hossein PARAST VAND

Under the supervision of
Principle supervisor: Dr. Octavian BASS

Coo-supervisor: Dr. Stefan W. LACHOWICZ
Adjunct supervisor: Dr. Airlie CHAPMAN

School of Engineering
Edith Cowan University

2021



Copyright and Access Declaration

I certify that this thesis does not, to the best of my knowledge and belief: (i) incorporate without
acknowledgment any material previously submitted for a degree or diploma in any institution
of higher education; (ii) contain any material previously published or written by another per-
son except where due reference is made in the text; or (iii) contain any defamatory material
Signed...Hossein PARAST VAND..........................................
Dated....20/04/2021...................................................

i



Acknowledgement

I would like to express my special thanks to my principle supervisor, Dr. Octavian Bass, not
only for his continuous support and suggestions but also for his trust in what I am doing in my
venturous research journey. This study is inspired by the great works of Dr. Airlie Chapman
who kindly accepted to be my adjunct supervisor. I am grateful for her comments specially
during the early stages of this research. I also express my deep and sincere gratitude to Dr.
Stefan W. Lachowicz for his suggestions and support in many occasions.

This study is also benefited from the insightful guidance of Prof. Mohammad A.S. Masoum.
His role on the developing of the theoretical results of the study to the network of electric vehi-
cles can not be ignored. I would like to also thank Dr. Valeh Moghaddam for her collaboration
on two of the published results.

My achievements are beholden on my great family and friends. My wife joined me in the
middle of my study and I can not thank her enough for being always there for me. Finally, I
dedicate this accomplishment to the soul of my parents who did more than they could to see me
at this stage.

ii



Abstract

The growing size and complexity of power systems has given raise to the use of complex net-
work theory in their modelling, analysis, and synthesis. Though most of the previous studies in
this area have focused on distributed control through well established protocols like synchro-
nization and consensus, recently, a few fundamental concepts from graph theory have also been
applied, for example in symmetry-based cluster synchronization. Among the existing notions
of graph theory, graph symmetry is the focus of this proposal. However, there are other de-
velopment around some concepts from complex network theory such as graph clustering in the
study.

In spite of the widespread applications of symmetry concepts in many real world complex
networks, one can rarely find an article exploiting the symmetry in power systems. In addition,
no study has been conducted in analysing controllability and robustness for a power network
employing graph symmetry. It has been verified that graph symmetry promotes robustness but
impedes controllability. A largely absent work, even in other fields outside power systems, is
the simultaneous investigation of the symmetry effect on controllability and robustness.

The thesis can be divided into two section. The first section, including Chapters 2-3, estab-
lishes the major theoretical development around the applications of graph symmetry in power
networks. A few important topics in power systems and smart grids such as controllability and
robustness are addressed using the symmetry concept. These topics are directed toward solving
specific problems in complex power networks. The controllability analysis will lead to new al-
gorithms elaborating current controllability benchmarks such as the maximum matching and the
minimum dominant set. The resulting algorithms will optimize the number of required driver
nodes indicated as FACTS devices in power networks. The second topic, robustness, will be
tackled by the symmetry analysis of the network to investigate three aspects of network robust-
ness: robustness of controllability, disturbance decoupling, and fault tolerance against failure in
a network element.

In the second section, including Chapters 4-8, in addition to theoretical development, a few
novel applications are proposed for the theoretical development proposed in both sections one
and two. In Chapter 4, an application for the proposed approaches is introduced and developed.
The placement of flexible AC transmission systems (FACTS) is investigated where the cyber-
security of the associated data exchange under the wide area power networks is also considered.
A new notion of security, i.e. moderated-k-symmetry, is introduced to leverage on the symmetry
characteristics of the network to obscure the network data from the adversary perspective. In
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chapters 5-8, the use of graph theory, and in particular, graph symmetry and centrality, are
adapted for the complex network of charging stations. In Chapter 5, the placement and sizing
of charging stations (CSs) of the network of electric vehicles are addressed by proposing a
novel complex network model of the charging stations. The problems of placement and sizing
are then reformulated in a control framework and the impact of symmetry on the number and
locations of charging stations is also investigated. These results are developed in Chapters 6-7
to "robust" placement and sizing of charging stations for the Tesla network of Sydney where
the problem of extending the capacity having a set of pre-existing CSs are addressed. The role
of centrality in placement of CSs is investigated in Chapter 8. Finally, concluding remarks and
future works are presented in Chapter 9.

The results of this study are published in five Q1 journals. Chapters 2-6 are published papers
in Journal of The Franklin Institute, Control Engineering Practice, IEEE Access, IEEE Trans-
action in Smart Grids, and IEEE Access, respectively. Chapter 7 is currently under review in
IEEE Transaction in Smart Grids. Chapter 8 is a paper presented in Intermountain Engineering,
Technology and Computing Conference (I-ETC) , Utah Valey University, UT, 2020. The list of
publications is as follows.

• H. Parastvand, A. Chapman, O. Bass, and S. Lachowicz, “Complex Network Controlla-
bility from a Topological Perspective,” Journal of The Franklin Institute, Vol. 358, no. 7,
2020 (Chapter 2).

• H. Parastvand, A. Chapman, O. Bass, and S. Lachowicz, “Graph Automorphic Approaches
to the Robustness of Complex Networks,” Control Engineering Practice, vol. 108, Mar
2021 (Chapter 3).

• H. Parastvand, O. Bass, M.A.S. Masoum, A. Chapman, and S. Lachowicz, “Cyber-
Security Constrained Placement of FACTS Devices in Power Networks from a Novel
Topological Perspective,” IEEE Access, vol. 8, pp. 108201 - 108215, Jun 2020 (Chapter
4).

• H. Parastvand, Z. Moghaddam, O. Bass, M.A.S. Masoum, A. Chapman, and S. Lachow-
icz, “A Graph Automorphic Approach for Placement and Sizing of Charging Stations
in EV Network Considering Traffic,” IEEE Transaction on Smart Grids, (Early Access)
DOI: 10.1109/TSG.2020.2984037, 2020 (Chapter 5).

• H. Parastvand, O. Bass, M.A.S. Masoum, A. Chapman, and S. Lachowicz, “Robust Place-
ment and Sizing of Charging Stations from a Novel Graph Theoretic Perspective,” IEEE
Access, vol. 8, pp. 118593 - 118602, 2020, DOI: 10.1109/ACCESS.2020.3005677
(Chapter 6).

• H. Parastvand, O. Bass, M.A.S. Masoum, A. Chapman, and S. Lachowicz, “Robust
Graph-Theoretic Placement and Sizing of Charging Stations to Extend Capacity of Exist-
ing EV Networks Considering Controllability and Dynamic Traffic Flow,” IEEE Trans-
action on Smart Grid, 2020 (Chapter 7).
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• H. Parastvand, O. Bass, M.A.S. Masoum, Z. Moghaddam, S. Lachowicz, and A. Chap-
man, “Placement and Sizing of EV Charging Stations According to Centrality of the Un-
derlying Network,” Intermountain Engineering, Technology and Computing Conference
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Chapter 1

Introduction

1.1 Overview

In this chapter, first, the motivation for this study is explained. It is stressed what is
absent in other techniques that could be potentially applied to the network by analysing its
complex network characteristics such as symmetry. It will be clarified that for each target
of this study, what features or performance measures of interest might be presented using the
symmetry perspective which could not be guaranteed by other existing methods. Then, a review
of the applications of graph theory and its concepts is presented. Finally, the research objectives
will be presented.

Since this study is prepared as a thesis by publication, the majority of literature review on
each topic is presented in the related chapter. Thus, I have avoided repeating the literature
review in this chapter. However, a brief review is provided in this chapter and readers are
referred to the targeted chapter for in-dept review of the existing works.
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1.2 Motivation

The growth of population and the expansion of cities and industries have increased the power
demand. Meanwhile, the structure of power networks has become more complex. Moreover,
the integration of renewable energy resources with power systems has made it even more com-
plicated to use the traditional management and control strategies. On the other hand, complex
network theory has emerged as a powerful tool in the design/analysis of large networks. Sym-
metry is an inherent feature of large networks which has been the focus of study for many years
in graph theory. During the last decade, some interesting applications of the graph symmetry
have been revealed in engineering and , in particular, power systems. However, many areas such
as the impacts of symmetry analysis/modification on the network resilience, restoration, and the
energy cost of control are still enigmatic. This study will try to narrow down the unknown about
the symmetry impact on the behavior of complex power networks.

Control is the main issue in a dynamic system such as a complex power network. However,
little is known about how to analytically control a complex network. The rank of Kalman filter
is computationally prohibitive in a network consisting of several nodes, which limits its applica-
tion to the small networks ( [1], [2], and [3]). The lack of a general controllability criterion has
driven the use of some tools from graph theory, mainly maximum matching principle (MMP)
and the minimum dominating set (MDS), to analyze the controllability of complex networks.
However, these tools have some drawbacks. Though, it is theoretically feasible to fully control a
network using MMP or MDS, without a balance between energy cost and the number of driver
nodes, realizing the physical control is not cost effective. This issue has not been addressed
neither by the maximum matching nor by the minimum dominant set. It will be shown that
the symmetry analysis could provide a quantitative tool to stress the degree of controllability.
The flexible structure of microgrids makes it possible to manipulate the network symmetry so
that the modified network has different degree of controllability, leading to lower number of re-
quired driver nodes, which in turn, will result in low energy cost of control. In addition, outside
microgrid area, this analysis could be useful in the planning phase of power systems.

The robustness of complex power network could also be investigated using the symmetry
analysis. It will be shown that robustness against line failure and disturbance could be im-
proved using graph symmetry. Also, current restoration techniques such as those implemented
in [4], [5], [45], and [44], and [6] do not investigate the changes in the symmetry strength of the
network in the post fault topology. Possibility of considering the symmetry strength as a con-
straint in the optimization problem is another unique feature which could provide a framework
for retaining the controllability and robustness of the post fault topology. The approach could
be implemented to microgrid where a flexible power topology is available. It could also be used
in the planning phase or whenever there is the need to expand the power system. As explained
in the Chapter 1.5, it is expected that the resulted optimization formulation will lead to better
controllability and robustness.
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1.3 Background

The concepts of complex networks (CN) and multi agent systems (MAS) have been employed in
many scientific areas including biology, physics, economy, mathematics, and engineering. Like
all implemented theories in engineering, the CN and MAS theories are rooted in mathematics,
and in particular, graph theory. Through this chapter, a review of CN applications in a broader
context is presented and then, in Section 1.5, the focus will be on literature review of CN
applications in power systems and microgrids.

The widespread application of graph theory has stimulated the advance in many new graph-
theoretical concepts and has resulted in lots of challenges. It is predictable that the increasing
trend in interplay between graph theory and other fields will ground significant developments in
future. Recently, there have been efforts in developing new tools from graph theory for network
study. Among those tools, graph partitioning and graph symmetry have been the focus of many
studies during the last decade. Symmetry in power systems is an inherent characteristic of the
network and usually can not be easily captured without some mathematical analysis. It is not
either intentionally developed in the network. Graph automorphism is the main tool to capture
the symmetry in complex networks.

The graph theory has provided a solid ground for developing new tools for analysis and
synthesis of complex networks. Many of those tools have already been implemented in other
branches of science while leaving a huge potential to be implemented in power systems as
well. Some applications of graph theory in other scientific areas are (i), graph coloring in
channel assignment ( [7]), traffic phasing ( [8]), fleet maintenance ( [9]), task assignment (
[10]), and mobile radio frequency assignment ( [15]), (ii), the intersection graph in following
problem ( [11]), a molecular genetic problem known as Benzer’s problem ( [12]), locating the
certain sites on a specific DNA ( [13]), the study of preference and indifference in economics
and psychology ( [14]), seriation or sequence dating in archaeology ( [16]), and seriation in
developmental psychology ( [17]), (iii) competition graph in ecology ( [18]), communication
over a noisy channel ( [22]), channel assignment ( [19]), modeling of complex systems ( [20]),
and phylogenetic tree reconstruction ( [21]). A review on the graph applications is shown in
Table 1.1. 1. Figure 1.1 shows the chronological development of graph theory from early
control engineering applications to the areas that will be covered by this study.

1Some of the information in Table 1.1 is taken from [?]
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Figure 1.1: The chronological development of graph theory into control applications

Table 1.1: Applications of graph theory in science and engineering

Application
field

Property and
concepts of
graph theory

Applications
area

Uses

Database
designing

Index-free adja-
cency

Graph
database

Analyzing interconnection,
Direct mapping and Natural
scaling to large data sets.

Archaeology Intersection
graph

seriation or se-
quence dating

Seriation from abundance
matrices, in f.r. hodson, et
al. (eds.),mathematics in the
archaeological and historical
sciences ( [16])

Ecology Competition
graph

Food webs and niche spaces
( [18])

develop-
mental psy-
chology

Intersection
graph

seriation Detection of structures in atti-
tudes and developmental pro-
cesses ( [17])

Communication Graph coloring Mobile radio
frequency
assignment

Traffic light phasing problem
( [10])
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Application
field

Property and
concepts of
graph theory

Applications
area

Uses

Communication Competition
graph

communication
over a noisy
channel

Associative graph products
and their independence, dom-
ination, and coloring numbers
( [22])

Software engi-
neering

Connectivity and
Data flow, Di-
rected graph, and
cyclomatic com-
plexity

DFD, Control
flow graph,
ER-diagram,
process se-
quencing
and software
quality

Transformations, Capturing
requirements, Describing re-
lations among modules, De-
signing system and in testing
process

Communication Competition
graph

Channel
assignment

Characterization of graphs
with interval squares ( [19])

Applied math-
ematics - Lin-
ear Algebra

Intersection
graph

Following
problem

( [11])

Computer
hardware

Graph color-
ing and Matrix
representation

Coloring
algorithms
Fine-grain
parallelism
analysis , Data
dependence
matrix

Compilers uses graph color-
ing algorithms for Register al-
location to variables , Calcu-
late parallelism degree, Very
useful in analytical model-
ing, Addressing the sequence
of instruction execution , Re-
source allocation and Econo-
mizing the memory space(file
organization).

Mathematics Competition
graph

Modeling
of complex
systems

Inverting signed graphs (
[20])

Applied math-
ematics

Intersection
graph

molecular ge-
netic problem
known as Ben-
zer’s problem

The fine structure of the gene(
[12])

Applied math-
ematics

Graph coloring Channel
assignment

Polynomial arrangements (
[7])
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Application
field

Property and
concepts of
graph theory

Applications
area

Uses

Network
design

Connectivity,
Traversing, Ad-
jacency, Vertex
cover algorithms
and Different
graph representa-
tion

Topological
control and
Weighted
graph, Butter-
fly network
and 2 − D

array

Finding shortest path,
Searching and Arrange-
ment of nodes in network
designing, Modeling commu-
nication networks [7], Traffic
analysis and in Network
security.

Computer sci-
ence

Intersection
graph

locating the
certain sites
on a specific
DNA

computational biology( [13])

Applied math-
ematics

Graph coloring Traffic phas-
ing

Optimal i-intersection ( [8])

Data Structure Directed graphs ,
Matrices and Ma-
trices operation

Array, Tree,
Linked list,
Pointers ,
Stacks, and
Queues

Efficient organization of data,
Finding minimum cost tree,
Minimizing data retrieval
times , Minimizing page
swapping in data structure
paging system and Provides
link structure in websites

economics and
psychology

Intersection
graph

The study of
preference and
indifference

Measurement theory, with
applications to decision-
making, utility,and the social
sciences ( [14])

Applied math-
ematics

Graph coloring fleet mainte-
nance

Perfect graphs ( [9])

Image pro-
cessing

Edge connec-
tivity, Regions,
Spanning tree

Edge bound-
aries, Entropy,
Shortest path
algorithms
and Search
algorithms

Segmentation and registra-
tion, Distance transform and
Center line extraction

Data mining Sub graphs, iso-
morphism

graph mining Sub-structure matching, Re-
ducing search space.
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Application
field

Property and
concepts of
graph theory

Applications
area

Uses

Operation sys-
tem

Graph coloring,
Directed graph

Job scheduling
problems and
Simultaneous
execution of
job

Provide feasible solution to
job scheduling and Efficient
resource(processor) alloca-
tion in solving simultaneous
job execution problems and
In process representation

Mathematics Competition
graph

phylogenetic
tree recon-
struction

Phylogeny numbers for
graphs with two triangles
( [21])

Web site de-
signing

Directed graph,
Undirected
graph, In de-
gree and out
degree, Search
algorithms and
Bipartite graph

Web graph,
Web pages and
Hyperlinks

Community discovery ,
Searching and Website
evaluation

Communication Graph coloring Mobile radio
frequency
assignment

Traffic light phasing problem
( [10])

Applied math-
ematics

Graph coloring Task assign-
ment

Applied combinatorics ( [10])

Figure 1.2 shows the number of published papers in IEEE Explore and Sciencedirect in the
area of CN-based smart grids during the last decade, indicating a trend in applying CN theories
in smart grids. This trend is mostly concerned with either modelling the grid using Laplacian
matrix or controlling the grid using the established protocols like synchronization, consensus,
and pinning control (for example see [24], [25], and [26]). However, there have been efforts
in developing an important concept from graph theory in engineering, graph symmetry. This
study will focus in developing this concept in the design and analysis of power systems. There
are some mathematical tools, mainly graph automorphism and equitable partitions, to describe
the network symmetry.

1.4 Aims

Through this study, a few important problems in power networks and renewable energy systems
such as controllability and robustness will be addressed using the graph symmetry. In fact, a
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Figure 1.2: Number of publications concerning MAS in smart grids( [23]).

quantified description of graph symmetry, graph automorphism, will be employed to compute
the symmetry level in the power grid. The established rules in graph theories about controlla-
bility and robustness of complex networks will be investigated in power systems. A common
network protocol in power grid, pinning control, is considered as the underlying network pro-
tocol upon which the controllability will be investigated. It is well accepted that symmetry
renders uncontrollability in complex networks while a symmetric system is in general more
robust than an asymmetric system. This conflict raises an important question that how one can
integrate both controllability and robustness in a complex symmetric (or asymmetric) network
simultaneously.

The potential outcome of this research can be used in the planning of complex power net-
works and microgrids. The expectation is that the results could demonstrate their effectiveness
when there are needs for expansion in power transmission, planning of generation, investment
decision making, integrated resource planning, and stimulation of energy systems and testing
the energy policies.

The objectives of the thesis are as follows:

• Clarifying the impacts of graph symmetry in the controllability of complex power net-
works;

• Establishing a theoretical framework for the relation between the number of required
driver nodes for controllability and the network’s symmetry level;

• Revealing the role of graph symmetry in improving the network robustness against dis-
turbance;

• Using graph symmetry in improving the network cyber security via the concept of "secu-
rity by obscurity";

• Implementing the findings of the thesis on graph of EV charging stations and reducing
the waiting times;
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• Placement and sizing of EV charging stations using the symmetry implications for the
network

1.5 Literature Review

The focus of this study is on employing the symmetry concept to address a few important prob-
lems in power systems such as controllabity and robustness. Though various control protocols
could be used, this study will focus on a particular network protocol, namely pinning control,
as the controllability of the network must be investigated under a specific network protocol.
The formulation of pinning control is presented in Section 1.5.1. Also, the robustness of the
network will be investigated under the line failure and disturbance. The effects of symmetry
on controllability and robustness have been investigated outside power systems. To justify the
feasibility of extending the existing results to power grids, Sections 1.5.2 and 1.5.3 provide the
literature review on specific applications of graph symmetry in controllability and robustness
of complex networks in general. Section 1.5.4 provides a few sample studies on real power
networks exploiting the symmetry. Finally, the research questions are presented in Section ??
based on the open areas discussed in Section 1.6.

1.5.1 Pinning control formulation

The control structure of distributed generation systems can be represented by the below dynam-
ical equations.

ẋi = fi(xi) + ki(xi)Di + gi(xi)ui

yi = hi(xi)
(1.1)

where ui is the control input, xi is the state vector of ith unit, Di, fi, ki, hi, and gi can be
extracted from the internal dynamics of the distributed units ( [27]). For the purpose of voltage
control, after feedback linearization, the dynamic model of each node can be written as

v̇i = Avi +Bui + di (1.2)

where di is the disturbance on yi caused by other nodes. Then the error is

ei = Aei +Bui + di (1.3)

where ei = vi − vref . To find a control signal such that the error converges to zero in the
presence of disturbance di, the pinning control approach will be used in this study. The general
dynamic equation of pinning control can be written as

ẋi = F (xi)− σ
N∑
j=1

lijHxj (1.4)
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where xi is the state vector, F is the individual systems’ dynamical equation which is considered
identical for all nodes, σ is the coupling strength, lij is the (i, j)th element of the Laplacian
matrix. The IEEE 30 bus system with pinned nodes is shown in Figure 1.3. The objective is to
synchronize all nodes to the desired state which can be defined as

ṡ = F (s(t)). (1.5)

Then the control signal should be designed for the following equation:

ẋi = F (xi)− σ
N∑
j=1

lijHxj + σbiiui, i = 1, 2, ..., N (1.6)

where non-zero elements ofH determine the coupled states of nodes in the network. bii is equal
to one for the pinned nodes and is zero for other nodes. The objective of pinning control is
to design control signals for driver nodes so that all states converge to the desired trajectory
specified by s(t) in a finite time.

Figure 1.3: IEEE 30-Bus system (A) the model; (B) graph-based representation with pinned
nodes( [28]).

1.5.2 Controllability: the impact of graph symmetry

Different tools from graph theory have been implemented to reveal the symmetry in a complex
network. Among them, graph automorphism and equitable partitions are the most frequently
used notions. The graph symmetry has been analyzed when the underlying dynamics are repre-
sented by the adjacency matrix, Laplacian matrix, and nonlinear systems.

Recently, the controllability of complex network has been a hot topic in literature (for ex-
ample see [29], [30], and [31]). Kalman’s rank provide the necessary and sufficient condition
for controllability. However, it is not possible to check that rank for every complex network
containing unknown parameters and exposed to variable topology. To target this drawback, the
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classic controllability criterion has been replaced by structural controllability (STC) criteria,
where system parameters, elements in A matrix representing the inter-agent interactions are not
precisely known, only the zero-nonzero pattern of A is known. Though network topology and
intrinsic dynamics of individual nodes can influence controllability, most chapters have only
considered the effect of network topology through analyzing the number and position of control
nodes.

Mathematically speaking, a system is controllable if the rank of corresponding controlla-
bility matrix is full. In general, symmetric graphs are not controllable from one or more input
nodes. In fact, they have two or more linearly dependent eigenvectors. However, symmetry is
not a necessary condition for uncontrollability. Breaking the symmetry by appropriate selection
of control input nodes, i.e. by modifying the B matrix in state space structure, is the major
approach to make a symmetric system controllable (see [32]).

In [33], based on symmetries in the structure of the grid eigenvectors and multiplicity of each
eigenvalue, suitable graph decomposition, and some rules from number theory, the problem of
observability and reachability (controllability) has been studied. The set of all and only the
unobservable nodes is identified. Also, a simple approach is proposed to determine the set of
observation nodes that guarantee observability. Using the existence of duality, all the results on
observability hold for controllability.

In [34], the link between symmetry and controllability of complex network is projected on
the relation between symmetry and multiplicity of the graph eigenvalues. Hence, controllabil-
ity analysis is defined as analyzing the eigenvalue multiplicity using Popov-Belevitch-Hautus
(PBH) test and Cauchy-Binet formula to reduce the controllability to examine non-singularity
of sub-matrices of its Laplacian eigenvectors.

In [35], it is illustrated how the symmetry structure of the system, in the context of auto-
morphisms, can negatively affect the controllability of multi-agent systems. Furthermore, it is
shown that the automorphism can be replaced by another graph theoretic tool, named equitable
partition, when the node selection as control input is involved in the consensus problem.

[32] have established a relation between graph symmetry and determining a set of a graph
and eigenvalue multiplicity from which, one can realize how the symmetry structure of the net-
work affects input nodes selection. Generalizing the graph automorphism to signed fractional
graph automorphisms using a semi-definite programming relaxation has led to a relationship
between graph automorphisms and uncontrollability to signed fractional graph automorphisms.
It has been shown that the symmetries that exactly correspond to controllability are in fact char-
acterized by signed fractional automorphism. Finally, the necessary and sufficient conditions
for controllability are presented. In fact, the paper has shown that symmetry is just a sufficient
condition for uncontrollability; and under certain mathematical graph property, i.e. k-regular
concept, a necessary condition for controllability has been obtained. In [36], it is illustrated that
the determining number of the graph (the minimum number of nodes that must be fixed to break
all graph symmetry) can be used to formalize the cardinality requirements on the number of in-
puts into the graph. Their results have been extended to output controllabity and stabilizability
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in [37]. They have shown that the symmetry perspective on system theoretic properties can be
extended to network outputs. The paper also extends the results on the network controllability
to stabilizability. A necessary and sufficient condition on input, output, non-output and leader
symmetry to make a system controllable and/or stabilizable is also presented.

To address the controllability of a consensus problem in a leader-follower setup using graph
theoretic approaches, most of the papers have focused on obtaining the sufficient condition for
uncontrollability while in [38] the necessary conditions for three classes of graph controllabil-
ity, namely, the classes of essentially controllable, completely uncontrollable, and conditionally
controllable graphs for Laplacian leader-follower system have been introduced. It is shown
that both topology of graph and control vectors influence the controllability. Essentially con-
trollable graphs are controllable for any choice of nontrivial control vectors. It is proven that
asymmetry is not a necessary condition for the class of essentially controllable graphs, but es-
sentially controllable graphs are necessarily asymmetric. Completely uncontrollable graphs are
uncontrollable for any choice of control vectors. Finally, conditionally controllable graphs are
controllable only for a strict set of the control vectors. Though based on the results of this paper,
there are a class of asymmetric uncontrollable graphs but this class covers a very small class of
graphs namely the class of large block graphs of Steiner triple systems. The authors have also
developed their work to multi-leaders symmetry with weighted digraphs in [29]. They have
obtained a new necessary condition for controllability using the almost equitable partitions.
It is shown that uncontrollability does not always arise from symmetry. Indeed, the number-
theoretic properties of the communities is responsible for uncontrollability of some complex
networks. While they have considered only linear time invariant dynamics for the agents, there
is a potential to generalize their approaches to nonlinear systems. Another development on
symmetric-based analysis of controllability is examined by [39] which uses a similar concept,
the relaxed equitable partitions. [40] addresses the relation between network symmetries (or
automorphism) and cluster formation with an emphasis on power grids. It is shown that some
clusters lose synchronism without disturbing the others. Using computational group theory the
hidden symmetries of networks are revealed and possible patterns of synchronization are pre-
dicted. The stability of clusters are predicted using irreducible group representation to find a
block diagonalization of the variational equations that can predict the stability of the clusters.
Then a symmetry breaking bifurcation, isolated desynchronization, is implemented in which
one or more clusters lose synchronism while the remaining clusters stay synchronized. As dis-
cussed above, symmetry is in general an obstruction to controllability. System designer should
try to avoid symmetry by appropriate choose of matrix B in state space model of network.
However, controllability is not the only criterion that can be influenced by symmetry. Network
robustness against disturbance, line failure, and parameter uncertainties is also characterized by
symmetry; and surprisingly, symmetry has positive effect on robustness. As presented in the
next section, in general, a symmetric system is more robust than asymmetric one. This is, to
some extent, because of redundant couplings provided by the automorphism groups.
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1.5.3 Robustness: the impact of graph symmetry

In [20], it is shown that many real world systems such as US power grid are highly symmetric.
The robustness of complex network is realized through the redundancy in alternative ways for
information exchange. To demonstrate how the symmetry can affect the redundancy and ro-
bustness, at first, the essential network symmetries have been identified. Considering the size
and structure of automorphism groups, they are decomposed into irreducible factors such as a
symmetric clique or a symmetric biclique (some sorts of symmetry factors in US power grid are
shown in Figure 1.4). Then a symmetric subgraph is associated to each factor and the generic
structure of symmetric subgraph is investigated. Finally, using automorphism group orbit, the
relation between symmetry and redundancy (robustness) is analyzed.

Figure 1.4: Symmetric sub-graphs in the US power grid. Vertices in white correspond to those
in the symmetric sub-graphs. Vertices in black are those adjacent to those in the symmetric
subgraph, and are shown to clarify subgraph structure ( [20]).

The main result of [42] is that an approximate symmetry is enough for a complex system
to be robust against perturbation. In fact, the underlying system can be a symmetric consensus
protocol with additional terms as perturbation on system dynamics, control vector fields or
on the control inputs. If an exactly symmetric structure has a very stable dynamics, then the
bounded perturbed terms result in deviation from asymptotically stable behavior by an amount
determined by the perturbation terms. In such cases, the perturbation may prevent asymptotic
stability but the solutions with unbounded growth will not be produced. An interesting result
of the paper is that one only needs to check one system in the whole class to ensure the stable
performance of the entire class of systems. While a special class of symmetry is considered in
that paper, a more general and realistic type of perturbation will be considered as one of the
directions of this thesis.

A graph theoretic-based definition for approximate graph symmetry is presented in [42]
upon which a Lyapunov stability criterion is developed to address the network robustness. In
fact, the paper is an extension of authors’ previous work ( [43]) on stability of a network with
identical nodes to an important case where not all agents are identical. The underlying con-
trol protocol is a nonlinear consensus dynamics. The main result of the paper is that if an
exactly symmetric system has very stable dynamics, then the bounded perturbed terms result
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in solutions which deviate from asymptotically stable behavior by an amount determined by
the perturbation terms. In addition, this result holds for the whole equivalent class of systems.
Hence, one only needs to check a system in the entire class to ensure the stable operation of the
whole class of systems.

1.5.4 Literature review on existence of symmetry in power systems

Symmetry in power grids is neither created intentionally nor detectable easily. In fact, to cap-
ture symmetry, some notions like graph automorphism and equitable partitions must be imple-
mented. Recently, graph symmetry in power grid is addressed by two studies. The relation
between graph symmetry and cluster formation (graph partitioning) is analyzed by [40]. After
identifying symmetry in the grid, the network nodes can be partitioned into clusters. It is verified
that if the symmetry induced clusters exist, cluster synchronization and global synchronization
are the solution of the equations of motion.

Figure 1.5: Geographical diagram of the Nepal power grid network. Colours are used to indi-
cate the computed cluster structure. The matrix (inset) shows the structure of the diagonalized
coupling matrix. The diagonal colours indicate which cluster is associated with each column.
( [40])

The small size power grid of Nepal and its block diagonalization of coupling matrix is shown
in Figure 1.5 in which all power stations and their bidirectional couplings are identical. The
Nepal power grid has 86,400 symmetries, three non-trivial clusters (two trivial ones) and three
subgroups (one for each nontrivial cluster). The grid is divided into three sets of synchronized
clusters. Based on dynamics, the parameters and the stability of global and cluster states, the
global and cluster states may provide a route to desynchronization of Nepal grid. The network
and cluster structure of the Mesa del Sol electric grid is shown in Figure 1.6 ( [40]). The network
size is 132 nodes and it has 4,096 symmetries, 20 non-trivial clusters and 10 subgroups. The
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Figure 1.6: Network and cluster structure of the Mesa del Sol electric grid. Colours are used to
denote clusters. Nodes coloured white are trivial clusters, containing only one element. ( [40])

Figure 1.7: A typical arrangement of symmetric sub-graphs in US power grid ( [20]).

network has three intertwined clusters, two with four clusters and one with five clusters. As
indicated by [40] the future analysis about symmetry considers only the topology without the
dynamics of real power networks.

In [20], it is mentioned that many real world complex networks such as US power grid
are richly symmetric. Complex symmetric sub-graphs of US power grid is shown in Figure 1.4
which shows that in complex real world power grids a certain degree of symmetry exists. Figure
1.7, illustrates how different symmetric sub-graphs compose an automorphism. In [20], these
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symmetries in the context of graph automorphism have been linked with graph redundancy
(robustness).

1.6 Open areas

In this section, based on the arguments presented in Sections 1.5.2, 1.5.3, and 9.2.1, some open
areas will be summarized to further develop the concept of graph symmetry into power systems.
In fact, two problems will be addressed by symmetry: controllability and robustness.

1.6.1 Controllability and robustness of power grids: symmetry context

Symmetry plays an important role in complex networks. In particular, controllability and ro-
bustness analysis and synthesis are two closely related issues to control that have been addressed
using graph symmetry. The investigation will be conducted under specific power network pro-
tocols such as pinning control. Surprisingly, symmetry has completely different effects on
controllability and robustness. Briefly explaining, in eigenvector decomposition of symmetric
system, there are one or more base vectors that have linear dependency. That, in turn, makes
the rank of controllability matrix be deficient (not being full rank). On the other side, symmetry
provides coupling redundancy in the network. This redundancy can be interpreted as robustness
since it establishes redundant paths for interaction among agents. That, in turn, makes room for
analysing the robustness against line failure in power networks. Also, through a comprehensive
symmetry analysis on the effect of failure in each line, the critical lines could be identified and
more protective strategies could be recommended for those lines. There is the potential to relate
the symmetry (or redundancy) strength of the power grid to its robustness. Robustness could
also be investigated under the pinning control protocol as presented by Equation 1.3 or Equation
1.6. In that case, the robustness will be investigated against the disturbance. Except for some
special graphs, in general, one can say:

• A symmetric network is not controllable;

• A symmetric network is more robust than asymmetric network.

There is a gap here since no paper has ever analyzed both controllability and robustness in the
network using graph theory (particularly using the symmetry feature). Motivated by this lack
of investigation, this study will try to find a solution for that problem.

Analyzing line failure impact on restoration strategy and robustness exploiting the graph
symmetry of the power grid could also be accompanied by investigating those failures that may
result in cascading failure leading to the whole grid failure. A very interesting result might be
obtained after comparing the critical lines obtained from symmetry analysis and those lines for
which failure could result in cascading failure. Having near equal results in both strategies is
an educated guess. Also, the symmetry based approach does not require knowing the weight of
each link or transmission line which is the case in the existing studies ( [17]).
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Table 1.2 shows which of the areas covered by this thesis have already been investigated in
literature and which parts will be targeted by this study.

Table 1.2: The open topics and applications related to this study and those which have already
been addressed in literature.

Topic
Application In general In power

systems

Existence of Symmetry in complex
networks Done Done

The effect of symmetry on control-
lability

The energy cost
of control Done Open

Symmetry impact on robustness Robustness
against cascading
failure

Done Open

Symmetry impact on Controllabil-
ity and Robustness Open Open

1.7 Conclusion

Motivated by the widespread symmetric structures in complex power networks, this study will
contribute to the application of graph-theoretic tools such as graph symmetry to the design and
analysis of power systems and microgrids. The existing results on controllability and robustness
of complex networks will be examined in power grids from the symmetry perspective. In par-
ticular, the energy cost of control will be optimized using symmetry analysis. In addition, the
line failure impact on symmetry strength will present a new framework to the analysis/design
of network’s robustness. Also, the conflict between the effects of symmetry on the network
behavior will be examined aiming at a trade off between the controllability and robustness.

To the best of the author’s knowledge, there is no study exploiting the symmetry character-
istics of the network, even outside of power systems, which has investigated controllability and
robustness simultaneously. Also, the problem of restoration under the symmetry related con-
straint has never been addressed. This is also the case for the energy cost of control and finding
the critical lines. Pursuing these issues will result in better understanding of the topology effects
on the behavior of complex power network.

17



Bibliography

1.8 References

[1] B. Liu, T. CHu. L. Wang, and G. Xie, "Controllability of a leader–follower dynamic net-
work with switching topology," IEEE Transactions on Automatic Control, vol. 53, 2008.

[2] A. Lombardi and M. Hornquist, "Controllability analysis of networks," Physical Review E,
vol. 75, 2007.

[3] H. G. Tanner, "On the controllability of nearest neighbor interconnections," 43rd IEEE
Conf. Decision Contr.In Proc., vol. 3, 2004.

[4] T. Ding, Y. Lin, Z. Bie, and C. Chen, "A resilient microgrid formation strategy for load
restoration considering master-slave distributed generators and topology reconfiguration,"
Applied Energy, vol. 199, 2017.

[5] S. Fukunagaa and T. Nagata, "A Decentralized Power System Restoration by means of
Multi-agent Approach," Energy Procedia, vol. 14, 2012.

[6] R. Sampaio, L. Silveira-Melo, R. P. S. Leao, G. C. Barroso, and J. R. Bezerra, "Auto-
matic restoration system for power distribution networks based on multi-agent systems,"
IET Generation, Transmission & Distribution, vol. 11, 2017.

[7] D. J. A. Welsh and G. P. Whittle, "Arrangements, channel assignments, and associated
polynomials," Advances in Applied Math, vol. 23, 1999.

[8] R. J. Opsut and F. S. Roberts, "Optimal I-intersection assignments for graphs: A linear
programming approach," Networks, vol. 13, 1983.

[9] M. C. Golumbic, "Algorithmic Graph Theory and Perfect Graphs," Academic Press, New
York, 1980, vol. 16, 1980.

[10] F. S. Roberts, "Applied Combinatorics," Prentice-Hall, Englewood Cliffs, NJ, 1984.

[11] S. R. Kim, T. McKee, F. McMorris, and F. S. Roberts, "p-competition graphs," Linear Alg.
Applications, vol. 217, 1995.

[12] S. Benzer, "The fine structure of the gene," Sci. Amer., vol. 206, 1962.

18



[13] D. Gusfield, "Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology," Cambridge University Press, Cambridge, UK, 1997.

[14] F. S. Roberts, "Measurement Theory, with Applications to Decisionmaking, Utility, and
the Social Sciences," Addison-Wesley, Reading, MA, 1979.

[15] F. S. Roberts, "On the mobile radio frequency assignment problem and the traffic light
phasing problem," Annals, NY Acad. Sci, vol. 319, 1979.

[16] D. G. Kendall, "Seriation from abundance matrices, in F.R. Hodson, et al. (eds.), Mathe-
matics in the Archaeological and Historical Sciences," Edinburgh University Press, Edin-
burgh, 1971.

[17] C. H. Coombs and J. E. K. Smith, "On the detection of structures in attitudes and devel-
opmental processe," Psych. Rev, vol. 80, 1973.

[18] J. E. Cohn, "Food Webs and Niche Space,"Princeton University Press, Princeton, NJ,
1978.

[19] J. R. Lundgren, S. K. Merz, and C. W. Rasmussen, "A characterization of graphs with
interval squares," Congr. Numer., vol. 98, 1993.

[20] H. J. Greenberg, J. R. Lundgren, and J. S. Maybee, "Inverting signed graphs," SIAM J.
Alg. & Discr. Meth., vol. 5, 1984.

[21] F. S. Roberts and L. Sheng, "Phylogeny numbers for graphs with two triangles," Discrete
Appl. Math., vol. 103, 2000.

[22] R. J. Nowakowski and D. F. Rall, "Associative graph products and their independence,
domination, and coloring numbers," Discussiones Math. Graph Theory, vol. 16, 1996.

[23] A. H. Moradi, and S. Razini, and S. M. Hosseinian, "State of art of multiagent systems in
power engineering: A review," Renewable and Sustainable Energy Reviews, vol. 58, 2016.

[24] Chu, Chia-Chi, H. Iu, and Cho-Ching, "Complex Networks Theory For Modern Smart
Grid Applications: A Survey," IEEE JOURNAL ON EMERGING AND SELECTED TOP-
ICS IN CIRCUITS AND SYSTEMS, vol. 17, 2017.

[25] F. Dorfler and F. Bullo, "Synchronization in complex networks of phase oscillators: A
survey," Automatica, vol. 50, 2014.

[26] A. Bidram, A. Davoudi, F. L. Lewis, and J. M. Guerrero, "Distributed cooperative sec-
ondary control of microgrids using feedback linearization," IEEE Trans. Power Syst, vol.
28, 2013.

[27] A. Bidram, F. L. Lewis, and A. Davoudi, "Distributed control systems for small-scale
power networks," IEEE Control Syst. Mag., vol. 34, 2014.

19



[28] A. Morasi-Amani, N. Gaeini, M. Jalili, and X. Yu, "Voltage control in distributed genera-
tion systems based on comple xnetwork approach," 1st International Conference on Energy
and Power, ICEP2016, 14-16 December 2016, RMITUniversity, Melbourne, Australia.

[29] C. O. Aguilar and B. Gharesifard, "Almost equitable partitions and new necessary condi-
tions for network controllability," Automatica, vol. 80, 2017.

[30] J. Ruths and D. Ruths, "Control Profiles of Complex Networks," Science, vol. 343, 2014.

[31] Y. Y. Liy, J. J. Slotine, and A. L. Barabasi, "Controllability of complex networks," Nature,
vol. 473, 2011.

[32] A. Chapman and M. Mesbahi, "On Symmetry and Controllability of Multi-Agent Sys-
tems," 53rd IEEE Conference on Decision and Control December 15-17, 2014. Los Ange-
les, California, USA.

[33] G. Notarsteano and G. Parlangeli, "Observability and reachability of grid graphs via reduc-
tion and symmetries," 2011 50th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC) Orlando, FL, USA.

[34] M. Nabi-Abdolyousefi and M. Mesbahi, "On the Controllability Properties of Circulant
Networks," IEEE TRANSACTIONS ON AUTOMATIC CONTROL, vol. 58, 2013.

[35] A. Rahmani, M. Ji, M. Mesbahi, and M. Eagerstedt, "CONTROLLABILITY OF MULTI-
AGENT SYSTEMS FROM A GRAPH-THEORETIC PERSPECTIVE," SIAM J. CON-
TROL OPTI, vol. 48, 2009.

[36] A. Chapman, M. Nabi-Abdolyousefi, and M. Mesbahi, "Controllability and observability
of networks-of-networks via Cartesian products," IEEE Transactions on Automatic Control,
vol. 59, 2011.

[37] A. Chapman, and M. Mesbahi, "State Controllability, Output Controllability and Stabi-
lizability of Networks: A Symmetry Perspective," 2015 IEEE 54th Annual Conference on
Decision and Control (CDC) December 15-18, 2015. Osaka, Japan.

[38] C. O. Aguilar and B. Gharesifard, "A graph-theoretic classification for the controllabil-
ity of the Laplacian leader-follower dynamics," 53rd IEEE Conference on Decision and
Control December 15-17, 2014. Los Angeles, California, USA.

[39] S. Martini, M. Eagerstedt, and A. Bicchi, "Controllability analysis of multi-agent systems
using relaxed equitable partitions," Int. J. Systems, Control and Communications, vol. 2,
2010.

[40] L. M. Pecora, F. Sorrentinio, A. M. Hagerstrom, T. E. Murphy, and R. Roy, "Cluster
synchronization and isolated desynchronization in complex networks with symmetries,"
Nature, Communication, 2014.

20



[41] B. D. MacArthur, R. J. Sanchez-Garcia, and J. W. Anderson, "Symmetry in complex net-
works," Discrete Applied Mathematics, vol. 156, 2008.

[42] B. Goodwine, "Nonlinear Stability and Boundedness of Approximately Symmetric Large-
Scale Systems,"Symmetry in complex networks," Proceedings of the 19th World Congress
The International Federation of Automatic Control Cape Town, South Africa. August 24-
29, 2014.

[43] B. Goodwine and G. P. Antsaklis, "Multi-agent compositional stability exploiting system
symmetries," Automatica, vol. 49, 2013.

[44] W. Khampanchai, M. Pipattanasomporn, and S. Rahman, "A Multi-Agent System for
Restoration of an Electric Power Distribution Network with Local Generation," Power and
Energy Society General Meeting, 2012 IEEE, 2012.

[45] F. Ren, M. Zhang, D. Soetanto, and X. D. Su, "Conceptual Design of A Multi-Agent Sys-
tem for Interconnected Power Systems Restoration," IEEE TRANSACTIONS ON POWER
SYSTEMS, vol. 27, 2012.

[46] Y.S. Li, D.Z. Ma, H.G. Zhang, and Q.Y. Sun, "Critical Nodes Identification of Power
Systems Based on Controllability of Complex Networks", Applied Sciencce, vol. 5, pp.
622-636, 2015.

[47] Y. Y. Liu, J. J. Slotine, and A. L. Barabasi, "Controllability transition and non-locality in
network control," Proc. Natl. Acad. Sci. USA, vol. 110, 2013.

[48] Z. Yuan and C. Zhao, Z. Di, W. X. Wang, and Y. C. Lai, "Exact controllability
of complex networks," Nature: Communincation, vol. 4, no.2447, Sep. 2013, DOI:
10.1038/ncomms3447.

[49] The GAP Group, "GAP: Groups, Algorithms, and Programming," GAP: Groups, Algo-
rithms, and Programming, 2005.

[50] W. Stein, "SAGE: Software for Algebra an Geometry Experimentation,"
http://www.sagemath.org/sage/; http://sage.scipy.org/, 2013.

[51] C. Zhao, W. X. Wang, Y. Y. Liu, amd J. Slotine, "Intrinsic dynamics induce global sym-
metry in network controllability," Nature, Scientific Report, vol. 5, no. 2015.

[52] A. J. Whalen, S. N. Brennan, T. D. Sauer, and S. J. Schiff, "Observability and Control-
lability of Nonlinear Networks: The Role of Symmetry," PHYSICAL REVIEW X, vol. 5,
2015.

[53] M. Mesbahi and M. Eagerstedt, "Graph Theoretic Methods in Multiagent Networks,"
Princeton University Press, 2010.

21



[54] F. Ball and A. Geyer-Schulz, "How Symmetric Are Real-World Graphs? A Large-Scale
Study," Symmetry, 2018.

[55] D. Leitold, A. Vath-Fogarassy, and J. Abonyi, "Controllability and observability in com-
plex networks – the effect of connection type," Nature, Scientific Report, 2017.

[56] J. L. Gross and J. Yellen, "Handbook of graph theory," CRC Press, 2000.

[57] D. M. Cardoso C. Delorme, P. Rama, "Laplacian eigenvectors and eigenvalues and almost
equitable partitions," European Journal of Combinatorics, vol. 28, 2007.

[58] F. Chung, T. G> Dewey, and D. J. Galas, "Duplication models for biological networks," J.
Comput. Biol., vol. 10, 2003.

[59] M. Golubitsky and I. Stewart, "Nonlinear dynamics of networks: The groupiod for-
malisms," Bull. Amer. Math. Soc., vol. 43, 2006.

[60] P. Holme, "Detecting degree symmetries in networks," Phys. Rev. E, vol. 74, 2006.

[61] I. Stewart, "Networking opportunity," Nature, vol. 427, 2004.

[62] L. Che, X. Zhang, and M. Shahidehpour, "Optimal Planning of Loop-Based Microgrid
Topology," IEEE TRANSACTIONS ON SMART GRID, vol. 8, 2017.

[63] C. A. Cortes, S. F. Contreras, and M. Shahidehpour, "Microgrid Topology Planning for
Enhancing the Reliability of Active Distribution Networks," IEEE Transactions on Smart
Grid, 2018.

[64] S. Hassanvand, M. Nayeripour, E. Waffenschmidt, and H. Fallahzadeh-Abarghouei, "A
new approach to transform an existing distribution network into a set of micro-grids for
enhancing reliability and sustainability," Applied Soft Computing, vol, 52, 2017.

[65] R. Jovanovich, M. Tuba, and S. Vob, "An ant colony optimization algorithm for partition-
ing graphs with supply and demand," Applied Soft Computing, vol. 41, 2016.

[66] M. E. J. Newman, "Networks," Oxford university press, 2010.

22



Chapter 2

The Impact of Graph Symmetry on the
Number of Driver Nodes in Complex
Networks

2.1 Overview

This study investigates on a strong correlation between complex network (CN) controllabil-
ity (characterized by the number of required driver nodes) and graph symmetry (described by
automorphism groups) in undirected and unweighted networks. Based on the properties of
permutation products of elementary automorphisms, novel necessary conditions for CN con-
trollability are presented which are computationally more effective than previous method. In
addition, a novel index of symmetry is proposed upon which a more meaningful understanding
of symmetry impact on CN controllability can be comprehended. Based on this new index, a
modification strategy is suggested aiming to satisfy CN controllability with a lower number of
driver nodes. The study shows that the proposed modification approach can result in a minimal
set of driver nodes with a reasonable computational complexity. Further, the critical compo-
nents of complex networks, in terms of their impact on the number of required driver nodes, are
identified. The results of the proposed methodologies have been verified for several synthetic
and real test systems including small, medium, and large power networks1.

1This chapter is published in Journal of The Franklin Institute
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2.2 Introduction

The interplay between various concepts from graph theory and other fields has stimulated signif-
icant advances in resolving widespread engineering problems. The reliability and functionality
of a network are highly dependent on the effectiveness of the external controls and reconfigu-
ration strategies [1]. In spite of advances in control theory, some network emergent behaviors
such as CN controllability can not be fully explained rendering network topology as a focal
point of research (for example see [2]- [5]).

Structural controllability is a measure of CN controllability where system parameters rep-
resenting inter-agent interactions are not precisely known. In fact, in most complex networks,
only the zero-nonzero pattern of the system state matrix is known ( [8]). In literature, the prob-
lem of CN controllability has been transformed to the problem of finding a set of driver nodes
that can drive the system into the desired states ( [2]- [6], and [9]). Better CN controllability is
then attributed to the lower number of required driver nodes.

The dominant approaches for finding the set of driver nodes in CNs are maximum match-
ing principle (MMP) [8] or minimum dominating set (MDS) ( [10]). Maximum matching is
equivalent to the maximum set of matched links that do not share any node in a graph. The set
of nodes that are not an end point of a matched link are called unmatched nodes. It is verified
in [8]- [10] that the network is controllable if one controls the set of unmatched nodes, also
known as driver nodes or input nodes. This structural controllability framework is applicable
to directed networks where all edges are independent free parameters [2]. In [4], the exact con-
trollability method is proposed as an alternative method to structural controllability, one that is
applicable to undirected networks as well.

Recently, the role of graph symmetry (described by automorphism groups) in controllabil-
ity of CNs has been revealed [11]- [19]. It is verified that the family of asymmetric graphs are
essentially controllable [11]. According to [12], the symmetry structure of the system, in the
form of graph automorphisms, can negatively affect the controllability of multi-agent systems.
Furthermore, equitable partition is an alternative concept for automorphism when the node se-
lection as control input is involved in the consensus problem [12]. These results are extended
in [13] to a more general condition based on equitable partitions of the underlying graph. Break-
ing the symmetry by appropriate selection of driver nodes, i.e. modifying the input matrix B in
state space structure, is a common approach to make a symmetric system controllable ( [14]).
In fact, a relation between graph symmetry and determining a set of eigenvalue multiplicities
has been established which shows how the symmetry structure of the network affects the se-
lection of input nodes. In [15], the determining number of the graph (the minimum number
of nodes that must be fixed to break all graph symmetries) is used to formalize the cardinality
requirements on the number of inputs into the graph. The results have been extended to output
controllability and stabilizability in [16], where the symmetry perspective on system theoretic
properties is extended to network outputs. The connection between structural controllability
and symmetry is established in [17] and is developed in [18] to the structural controllability
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of neural networks. In [19], the role of symmetry in controlling network dynamics is revealed
by decomposing the network into observable/controllable and unobservable/uncontrollable sub-
networks. Equivalently, it is studied as symmetry-driven vs. asymmetry-driven sub-networks.

All previous works on relation between controllability and symmetry ( [11]- [19]) have
limitations related to computation of the set of automorphism groups. The typical size of au-
tomorphism group for a medium/large network is a gigantic number [20]. Computing and
sweeping over this set (to find the determining set) is computationally prohibitive and limit the
implementation of the proposed symmetry-based methods to small networks. Moreover, since
the symmetry presence in network necessitates a higher number of driver nodes for CN con-
trollability it is expected that modifying the network topology aiming at reduced number of
automorphisms will reduce the number of required driver nodes. However, it will be shown
that, in some cases, the trend in reduction of the number of driver nodes is not always consis-
tent with reduction in the size of automorphism groups. This implies that relying on the size
of automorphism group can not sufficiently characterize the CN symmetry strength and a more
informative measure of symmetry is required. On the other hand, previous studies have shown
that sparse networks are difficult to control ( [21] and [22]) meaning a high number of driver
nodes are required compared to other networks such as biologic networks. Also, the number of
driver nodes attained based on maximum matching is highly dependent on the node degree dis-
tribution [2]. This makes it economically inefficient to modify the network since it necessitates
modifying a large number of edges in order to impact on degree distribution. Moreover, in net-
works with symmetric adjacency matrices, with a fixed number of driver nodes, an exponential
increase in energy cost of control occurs as network size increases ( [6]). To enhance the CN
controllability, the existing modification strategies mostly have relied on modifying the degree
distribution of the network based on rather complicated algorithms ( [2], [5] and [23]- [24]).
According to [24], adding 5% of additional edges are needed for optimizing the controllability.
On the other hand, the degree distribution can not sufficiently characterize the network control-
lability [24]. In addition, modifying a network’s degree distribution essences many structural
modifications ( [5] and [23]) or many edges must be added/deleted or their directions must be
reversed (for example see [25] and [26]). In many CNs such as power networks these modi-
fications in the grid topology are not economically feasible. To address the above issues, this
study leverages on the characteristics of permutation products of automorphisms in undirected
and unweighted networks to propose new solutions to investigate CN controllability, introduce
a new metric for symmetry, reduce the number of required driver nodes with minimal modifi-
cations, and identify the most critical nodes in terms of CN controllability.

The power networks are used as the simulation platforms for this study. The use of the term
“driver node” is not new and has been used for investigation of the controllability of power net-
works (for example see [27]- [28]). In the context of power networks, the so called driver nodes
are the well-known wide area controllers (WACs) [29]- [32] or flexible AC transmission sys-
tems (FACTS) devices [33]- [37]. A comprehensive review on various technologies of FACTS
devices is presented in [38]. WACs or FACTS devices are crucial in damping the inter-area os-
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cillations as the local controllers have only access to local measurements which can be used for
damping the local modes [31]. These controllers are vital from CN perspective since, unlike the
local and primary controller in power grids, they impact on emergent behaviour of the whole
network. Finding the optimal locations of these devices are vital for power system stability and
performance improvement against disturbances and has been a very recent line of research in
literature [33]- [34].

This study is motivated by (i) the lack of a computationally effective approach in finding the
number and locations of driver nodes based on symmetry, (ii) the increased cost and complexity
of controlling CNs via a high number of driver nodes, (iii) the lack of a consistent symmetry
index with the number of required driver nodes, and (iv) the high modification cost imposed by
the existing approaches which are based on modifying the degree distribution. The novelties of
this chapter are as follows:

• By investigating the properties of permutation products, novel necessary conditions for
controllability are attained which are, unlike previous approaches, computationally effec-
tive.

• A new index of symmetry is proposed which is more consistent with the trend in reducing
the number of driver nodes as the the network symmetry decreases.

• A new algorithm for reducing the number of required driver nodes based on the symmetry
index is proposed which, unlike the previous modification strategy based on modifying
the degree distribution, does not impose many modifications on the network topology.

• The network’s critical components, in terms of their impact on symmetry, and in turn
controllability, can be identified.

The organization of the chapter is as follows. The mathematical preliminaries on graph
theory, symmetry, and controllability are presented in Section 2.3. Section 2.4 contains the
main results of the chapter. Initially, new necessary conditions for controllability are attained.
Then, a new metric of controllability is adapted based on a new proposed index of symmetry
upon which an algorithm is proposed for modifying the network in order to reduce the number of
required driver nodes. The symmetry impact on controllability of complex networks is verified
on various power networks in Section 2.5. Concluding remarks and future works are presented
in Section 2.6.

2.3 Preliminaries

2.3.1 Graph theory

Graph theory rooted in discrete mathematics is the bedrock of network analyses. An abstract
model of a network with complex inter/intra agents dynamics can be represented by a finite
graph G = (V,E) characterized by a set of nodes V and a set of edges E. An edge exists from

26



node i to j if (i, j) ∈ E. The order of a graph G is the cardinality of its node set V , and the
size of a graph is the cardinality of its edge set E. For a simple graph, the adjacency matrix A
is a square |V | × |V | matrix whose element [Aij] is one when there is an edge from i to j, and
zero when there is no edge. A permutation σ on the set V translates through the act of node
reordering which is a bijection from V to itself.

2.3.2 Graph symmetry

Symmetry, in general, is an inherent property of complex networks which is not intentionally
built in the network and can not be intuitively captured. To reveal the network symmetry,
a notion from discrete algebra known as automorphism is implemented. Automorphism is a
node permutation that maps a graph to itself while preserving the graph structure. The set
of mappings that preserve the graph structure can then be detected and realized as the graph
symmetries.

Definition 2.3.1. For a graph G(V,E) with edge set E and node set V , an automorphism of G
is a permutation σ of nodes of G such that for any two nodes i and j in V (G), {i, j} ∈ E(G) if
and only if {σ(i), σ(j)} ∈ E(G).

The automorphism group of G represented by Aut(G) is a finite group under composition
operator and its size, |Aut(G)|, characterizes the symmetry strength of the network. The permu-
tation that fixes all nodes, i.e., σ(i) = i, is called identity I , also known as trivial automorphism.
Identity is an automorphism for any simple graph. The symmetric group Aut(G) is the group
of permutations σ : V → V . The cycle (ρ, ρ+ 1, ..., ρ+ r) of order r is the set of ordered nodes
V (G) for which σ(i) = i+ 1 for all ρ ≤ i ≤ ρ+ r − 1 and σ(ρ+ r) = ρ.

Remark 2.3.1. A sparse network usually has a gigantic number of automorphisms which can
not be computed with conventional computation tools. In this study, the Python programming
in Sage (System for Algebra and Geometry Experimentation) has been used for drawing the
network topology and computing the symmetry related parameters such as automorphism. Al-
though Sage is a prominent software for computing the symmetry it is unable to compute the
very large sets of automorphisms. In most cases, Sage can only derive the size of automorphisms
and is not able to generate the whole set of permutations within the automorphism group.

If ζ and δ are two permutations in a symmetric group, then the composition (or product) of
ζ and δ is the permutation ζ ◦ δ in the symmetry group so that (δ ◦ ζ)(i) = δ(ζ(i)). Generally,
the composition of permutations is not commutative, meaning that ζ ◦ δ may be different from
δ ◦ ζ .

Remark 2.3.2. The set of automorphisms Aut(G) can be constructed from a set of elemen-
tary factors called generators and represented by Gen(G). Throughout the chapter, the terms
elementary factors and generators convey the same meaning. The size of the generator set is
denoted by |Gen(G)|. The standard algorithm for computing Aut(G) is to generate a tree: the
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root is the identity element; and the nodes are elements of the group. If w is a node, it has as
children the nodes w ◦ q (product in the group). For each generator q, if w ◦ q is already a node
then w ◦ q is a leaf of the tree. If the group is finite, the algorithm stops and generates a finite
tree whose internal nodes are exactly all the elements of the group. This algorithm is a built-in
function of SAGE and can be easily implemented.

Definition 2.3.2. Let σ ∈ S be a permutation of set S. For {a, b} ∈ S, a and b are equivalent
(denoted by a ∼ b) if and only if b = σn(a) for some n ∈ Z. The equivalence classes described
are the orbits of S. Subsequently, the graph G can be partitioned into equivalence classes under
the action of Aut(G).

Definition 2.3.3. A permutation which belongs to the set Aut(G) is a cycle if it has at most one
orbit under the action of an automorphism group containing more than one element. The length
of the cycle is the number of elements in its largest orbit.

Definition 2.3.4. A set of nodes S is a determining set for a graph G if every automorphism of
G is uniquely determined by its action on S. Equivalently, a subset S of the nodes of a graph G
is called a determining set if whenever g, h ∈ Aut(G) so that g(s) = h(s) for all s ∈ S, then
g = h.

2.3.3 Controllability and exact controllability method

For a continuous linear time invariant system as

dx
dt

= Ax(t) +Bu(t) (2.1)

where x(t) is the state vector, u is the control vector, A is the n × n state matrix and B is the
n× r input matrix, the state controllability means that states can be driven from any initial state
to any final state in finite steps by a bounded control input injected to the selected nodes. The
n× nr controllability matrix is given by

R = [B AB A2B ... An−1B] (2.2)

and the system is controllable if the controllability matrix has full rank, i.e.,

Rank{R} = n. (2.3)

The dynamic equation (5.10) is controllable if the pair (A,B) is controllable, meaning the
matrix B sets the control inputs that can fully control the network. However, testing the con-
trollability of complex networks using Equation (7.3) is a challenging task since it involves a
computationally expensive rank condition calculation and is not feasible when the state and
control matrix have unknown nonzero. Hence the rank of controllability matrix is computa-
tionally prohibitive in a network consisting of many nodes which limits its application to the
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small networks [39]. These stimulate employing the exact controllability method [4] which is
based on finding the set of driver nodes that can fully control the network (CN controllability).
Throughout this chapter, the exact controllability method [4] is used to calculate the number of
driver nodes required for fully controlling the network. The method could be applied to undi-
rected networks based on maximum geometric multiplicity of eigenvalues. For system (5.10),
an equivalent to the controllability test in (7.3) is that the system is fully controllable if and only
if

rank(cIN − A,B) = N (2.4)

is satisfied for any complex number c, where IN is the identity matrix of dimension N . Accord-
ing to [4], the minimum number of driver nodes can be computed by the maximum geometric
multiplicity µ(λi) of the eigenvalue λi of A, i.e.,

Nd = maxi{µ(λi)} (2.5)

where
µ(λi) = N − rank(λiIN − A) (2.6)

and λi(i = 1, ..., l) represents the eigenvalues of A. For undirected networks, the maximum
algebraic multiplicity δ(λi) determines the number of driver nodes as

Nd = maxi{δ(λi)} (2.7)

where δ(λi) is also the eigenvalue degeneracy of matrix A [4]. According to the exact control-
lability method, the number of driver nodes can be determined from the maximum geometric
multiplicity µ of the eigenvalue λM . Therefore the control input matrix B has to satisfy

rank{λMIN − A,B} = N. (2.8)

The exact controllability method in [4] implements elementary column transformation on the
matrix (λMIN −A) to drive a reduced row echelon form of the adjacency matrix. Subsequently,
the set of linearly dependent rows corresponds to the driver nodes which is equivalent to the
maximum geometric multiplicity.

Before presenting the main results of the chapter, a few more terms shall be introduced. For
a given network, "symmetry group" and "graph symmetry" refer to sets of quantified notion
of symmetry such as the sets of automorphism, generators of automorphisms, or orbits of au-
tomorphism. Network "density" is the ratio of links to nodes within the network. The "node
multiplicity" means the number of repetition of a given node within the symmetry group.
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2.4 A more efficient method for investigating the controlla-
bility of complex networks

This section presents the main results of the chapter. All results are attained leveraging on
graph symmetry and its characteristics. First, the difficulty of checking the existing necessary
condition (based on automorphism groups) for controllability is verified. Then, novel necessary
conditions for controllability are presented which resolve this computation issues. A new index
of symmetry is then proposed upon which (i) the symmetry impact on controllability can be
better captured, (ii) an algorithm is proposed for network modification (with minimal structural
modification) to determine a lower number of required driver nodes and, in turn, lower cost and
complexity of control task, (iii) and the network’s critical elements can be identified.

2.4.1 The new necessary conditions for controllability

An adaption of the results in [12] on relation between controllability and symmetry is rewritten
in [14] as the proposition below.

Proposition 2.4.1. [14] The system of Equations (5.10) is uncontrollable if there exists a non-
trivial automorphism of G which fixes all inputs in the set S.

The condition of the Proposition 3.1 implies on breaking the symmetry structure of G to
satisfy CN controllability. In [15], the above result is restated employing the concept of deter-
mining sets.

Lemma 2.4.1. ( [15]) Assume that A(G) is diagonalizable and symmetry preserving. Then the
pair

(
A(G), B(S)

)
is uncontrollable if G admits a nontrivial automorphism σ which fixes the

input set S, i.e., σ(i) = i for all i ∈ S.

In practice, checking the above condition for medium/large networks is not feasible. In
particular, the size of automorphism group for sparse networks are gigantic ( [21] and [22]).
Although the conventional computing tools like Sage and GAP can calculate the cardinality
of these groups they are unable to generate all permutations. For example, the size of the au-
tomorphism group of 1176-bus system is approximately 10259 [20]. Even if the whole set of
automorphisms could be computed (which is not the case with current computation ability of
Sage and existing processors) it is not possible to sweep over this huge number of permuta-
tions to find the determining set and node multiplicities in the symmetry group. This is in-line
with the big number of driver nodes required to control these sparse networks discussed in [21]
and [22]. To resolve this issue, another method is proposed based on generators of automor-
phisms which results in a minimal determining set in a finite time. First, some properties of the
composition of permutations are introduced. Then, based on these properties, the finding of de-
termining set based on generators of automorphisms (which are very smaller groups compared
to Aut(G)) is established. Since Gen(G) is a very small group it is computationally efficient to
compute and sweep over it.
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Definition 2.4.1. Let σ : S → S be a permutation of a set S. An element s ∈ S is a fixed
point of σ if σ(s) = s. That is, the fixed points of a permutation are the points not moved
by the permutation. The permutation σ moves the point v if σ(v) 6= v. The fixed and moved
points by the permutation σ are denoted by Fix(σ) and Move(σ), respectively. Also, the set of
nodes permuted from node p by a permutation set P = {ζ1, ζ2, ..., ζ3} is denoted by Move(ζ1 ∪
ζ2 ∪ ... ∪ ζi)p if p is permuted by one or multiple of permutations in P , and is denoted by
Move(ζ1 ∩ ζ2 ∩ ... ∩ ζi)p if p is permuted by multiple permutation in P . The set of permutation
matrix J associated with σ fixes the matrix B(S), i.e., JB(S) = B(S).

Definition 2.4.2. Two permutations ζ and δ are disjoint if they do not share a common node,
that is Move(ζ) ∩Move(δ) = ∅, otherwise they are joint permutations.

Using the above definition, a preliminary result on the properties of permutations is pre-
sented below.

Theorem 2.4.1. [40] Every permutation in the symmetric group can be expressed as a compo-
sition of disjoint cycles uniquely up to a reordering of the cycles.

The disjoint cycles determine a partition of V (G) into orbits. The set of nodes in an orbit
have the same degree. There is an m such that the repeated application of a permutation σ will
lead back a node to itself, that means σ(v) = v. Now, based on the following properties of
permutation product, new necessary conditions for controllability can be established.

Proposition 2.4.2. If (
Move(ζ1) ∩Move(ζ2) ∩ ... ∩Move(ζi)

)
= ∅

where i is the number of permutations, then

(i) Move(ζn1
1 ◦ ζn2

2 ◦ ... ◦ ζ
nl
i )p 6= ∅ if Move(ζ1 ∪ ζ2 ∪ ... ∪ ζi)p 6= ∅, and

(ii) Move(ζn1
1 ◦ ζn2

2 ◦ ... ◦ ζ
nl
i ))p = ∅ if Move(ζ1 ∪ ζ2 ∪ ... ∪ ζi)p = ∅

where l is the order of permutation up to generating non-repeated permutations in the products
of permutations.

Proof. This proposition simply means if two or multiple permutations of a generator set are
disjoint then their composition of any order (i) does not fix an already moved node by one of
them, and (ii) does not move any node that is already fixed by multiple of them. Using an ad
absurdum statement, if the composition of disjoint permutations fixes an already moved node,
that node is essentially a joint node which contradicts the permutations being disjoint (proof of
(i)). Similarly, if the composition of disjoint permutations ζ ◦ δ moves an already fixed node,
that node has to be moved by one or some of the permutations. This contradicts the node being
already fixed by multiple permutations (proof of (ii)).
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Proposition 2.4.3. If there is at least one joint node between the set of permutations {ζ1, ζ2, ..., ζi} ∈
Gen(G), i.e. (

Move(ζ1) ∩Move(ζ2) ∩ ... ∩Move(ζi)
)
6= ∅

then Move(ζn1
1 ◦ ζn2

2 ◦ ... ◦ ζ
nl
i )p may fix or move p if

Move
(
ζ1 ∩ ζ2 ∩ ... ∩ ζi

)
p
6= ∅.

Proof. This proposition implies that if two or multiple permutations have a common node then
their compositions of any order may fix or move an unfixed node by multiple of them. The
proof is rather straightforward. Consider the two permutations below with the joint nodes a and
b:

ζ1 = (a b), δ1 = (a c b)

in which {a, b, c} are the node numbers, and a and b are two joint nodes. The composition of
these permutations can be written as

ζ1 ◦ δ1 = (a b) ◦ (a c b) = (a c)

by which a moved node by both permutations, i.e. node b, is now fixed. However, the other
moved node, i.e. node a, is moved again. Hence, it is both possible that compositions of joint
permutations of any order fix or move an unfixed node by all permutations.

Proposition 2.4.4. If Move(ζ1 ∪ ζ2 ∪ ... ∪ ζi)p 6= ∅ where {ζ1, ζ2, ..., ζi} ∈ Gen(G) then
Move(ζn1

1 ◦ ζn2
2 ◦ ... ◦ ζ

nl
i )p can fix p.

Proof. This proposition implies that if a node is not fixed by one or multiple permutations of a
generator set, it might be fixed by a function of their composition. The proof is straightforward
using Proposition 2.4.2 and 2.4.3.

Now a main result on new necessary conditions for controllability can be established using
the properties of permutation products presented in Propositions 3.2, 3.3, and 3.4. The below
lemma characterizes these necessary conditions for controllability which, unlike Lemma 5.4.1,
can be computed effectively by only computing and sweeping over the generators of automor-
phisms.

Lemma 2.4.2. Assume that A(G), the adjacency matrix of the underlying network, is diagonal-
izable and symmetry preserving and B is the input matrix applied to set S of Nd driver nodes.
Necessary conditions for controllability of the pair (A(G), B(S)) are

(i) σgt(i) 6= i for all i ∈ S and t = 1, 2, ..., k, where σgt(i) represents the set of generators
and k = |Gen(G)|,

(ii) S(i) 66= j for the set of pairwise joint generators with joint node j where i = 1, 2, ..., Nd,

(iii) If all nodes of generators gk are joint nodes then all of its joint nodes are in S.
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Proof. According to Proposition 2.4.2, if two or multiple permutations are disjoint then their
composition of any order does not fix any unfixed node by them, i.e., if

σt(i) 6= i , t = 1, 2, ..., k

then
σgt(i) 6= i for f

(∏
(σn1

g1
◦ σn2

g2
◦ ... ◦ σnh

gk
)
)

where n1, n2, ..., nh are the order of permutations in composition and are up to generating the
non-repeated automorphisms. This means that the determining set attained from a set of dis-
joint generators necessarily contains all nodes that can be attained by the corresponding auto-
morphism group. This condition is satisfied by (i). Condition (i) also considers the set of joint
generators which their compositions, according to Proposition 2.4.3, can result in two possible
cases as follows:

First, it fixes an unfixed node: According to condition (i), the unfixed node may have already
been selected as a node in S. According to Proposition 3.4, this node can be fixed after com-
position. Thus. it must not be included in the determining set attained from the corresponding
automorphism group. Therefore, these joint nodes have to be excluded from the determining
set in order to minimize Nd. Condition (ii) excludes the set of joint nodes from S by setting
S(i) 66= j. This simply means that for the set of joint generators only disjoint nodes have to be
selected as a driver node to be included in S.

Second, it moves an unfixed node: In this case, the unfixed node by generators will appear
in the corresponding automorphism group. That means selecting that node as a driver node in
S is a valid choice which is guaranteed by condition (i).

Therefore the determining set S attained from a set of disjoint and joint generators is a
minimal determining set as long as all joint nodes are excluded from the set. However, if all
nodes of a generator are joint nodes, then all nodes of that generator have to be included in
S since there might be an automorphism that fixes all joint nodes of that generator (condition
(iii)).

Lemma 8.2 characterizes the necessary conditions for controllability which, unlike the pre-
vious results in [12] and [14]- [15], are computationally effective. This is because it needs
to sweep over elementary factors of automorphism groups or generator sets which have very
smaller sizes compared to the associated automorphism groups.

2.4.2 New controllability metric via a new measure of symmetry

In general, a lower number of automorphisms leads tolower number of driver nodes and, in
turn, lower cost and complexity of control; see, e.g., [11]. However, using the number of driver
nodes (attained by exact controllability method) as a controllability metric, Nd does not always
perfectly correlates with the size of the automorphism group (This can be observed later in
Figure 2.1.(a)-(e)). This motivates seeking other avenues for a more comprehensive criterion
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for measuring symmetry strength which is more consistent with the associated number of driver
nodes.

To quantify graph symmetry in a more informative way, Shannon’s Entropy Formula is
employed to capture the impacts of (i) orbits of automorphisms and (ii), multiplicity of nodes
in Gen(G) as well as the impact of |Aut(G|. The entropy H of a discrete random variable
X ∈ {x1, x2, ..., xn} is defined as

H(X) = E[I(X)] = E[−ln(P (X))] (2.9)

where P (X) is the probability function. Then entropy can be written as

H(X) =
n∑
i=1

P (xi)I(xi) = −
n∑
i=1

P (xi)ln(P (xi)) (2.10)

and is often interpreted as a measure of disorder, uniformity, or randomness in system [41]. The
impact of orbits of automorphisms on symmetry can be realized from

SO(G) =

∑l
i=1 |Ol|ln|Ol|

n
(2.11)

where SO(G) is the impact of orbits of automorphisms on symmetry structure, |Ol| is the num-
ber of elements of lth orbit, and n is the number of nodes. The bigger the orbits are, the more
symmetric is the underlying graph. The below example reveals the importance of (3.22) when
two networks have equal size of automorphism groups but realize different orbit structures.

Example IV.1: As a rather extreme example, consider two networks with the same size;
one with only one orbit containing all nodes and the other with 5 orbits each containing only 2

nodes. The first network is clearly more symmetric for which (3.22) is equal to

SO1(G) =
(10)ln(10)

n
=

23.03

n

and for the second network, it can be written as

SO2(G) =
(5)(2)ln(2)

n
=

6.93

n

The difference between SO1(G) and SO2(G) could not be delivered by the traditional measure
of symmetry, i.e., the size of automorphism group. We redefine the symmetry as

SR(G) =

∑l
j=1 j.|Nj|
n

(2.12)

where SR(G) is the impact of multiplicity of nodes in Gen(G) and Nj is the number of nodes
with the multiplicity equal to j in generators. Equation (3.4.2) highlights the impact of multi-
plicity of each node in Gen(G), that is, the higher the number of nodes with higher multiplicity
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Figure 2.1: Symmetry impact on controllability of 1176-bus system: The number of driver
nodes Nd versus the size of automorphism group |Aut(G)| after adding (a) an edge between
two nodes with multiplicities 4 in generator set (F4 ↔ F4), (b) an edge between two nodes
with multiplicities 4 and 3 (F4 ↔ F3), (c) an edge between two nodes with multiplicities 4
and 2 (F4 ↔ F2), (d) an edge between two nodes with multiplicities 3 and 1 (F3 ↔ F1), (e)
an edge between two nodes with multiplicities 1 and 2 (F1 ↔ F2), and (f) number of driver
nodes nd versus the new index of symmetry IS after adding an edge between two nodes with
multiplicities p and q in generator set (Fp ↔ Fq)

in Gen(G), the higher is the symmetry index. Lastly, the traditional measure of symmetry, i.e.,
the size of automorphism groups, is reformulated as below

SA(G) = n
√
|Aut(G)| (2.13)

where SA(G) is the impact of the size of automorphism group on the symmetry of the graph.
Finally, all contributing factors to the symmetry profile of a network attained in (3.22)-(2.13)
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are integrated into the below equation

S(G) = SO(G) + SR(G) + SA(G). (2.14)

Example IV.2: Computing this new index for the 1176-bus system after several modifications
results in a more logical trend in improving the controllability with decreasing symmetry index
rendering a more reliable index for modifying the network. The number of driver nodes attained
with this new index is compared with the original index, i.e. the number of automorphisms, in
Figure 2.1. The 1176-bus system has approximately 10259 automorphisms and 402 driver nodes.
Adding an edge to the nodes contributing to the generator set results in a reduced number of
driver nodes and automorphisms as shown in Figure 2.1.(a)-(e). In the rest of the chapter,
Fp ↔ Fq resembles the network modification via adding an edge between two nodes with
multiplicities p and q. Although there is no monotonic trend in Nd as |Aut(G)| decreases, a
trend can be realized in monotonically decreasing the |Aut(G)| as an edge is added to those
nodes with higher multiplicities in Gen(G). The |Aut(G)| after adding an edge between nodes
with multiplicity 4 in Gen(G) (i.e., F4 ↔ F4) is approximately equal to 10256, while this
parameter for F4 ↔ F3, F4 ↔ F2, and F3 ↔ F1 is ≈ 10257 and for F1 ↔ F2 it is equal
to ≈ 10258. Figure 2.1.(f) demonstrates the number of driver nodes versus the new index of
symmetry (2.14). This new index is computed each time after adding an edge between two
nodes with multiplicities p and q. As can be seen, a monotonic decrease in Nd is realized as
S(G) decreases.

The proposed symmetry metric in (2.14) contains three symmetry factors. However, it is
not possible to conclude, as a general rule, which factor is more effective in the symmetry
strength due to the complexity and diversity of symmetry sub-structures within the network. A
given network can have a gigantic number of automorphisms but very small number of orbital
index and vice versa. Thus, concluding which factor is more contributing is totally case specific
meaning it only applies for the given network.

Based on findings of this section, algorithm 1 is proposed which summarizes the proposed
approach for improving the controllability of complex networks by reducing the number of
required driver nodes which, in turn, will lead to lower energy cost of control.

The cost of adding/removing a link between two nodes must be considered before selecting
the two associated nodes for modification. Adding a link between two nodes with large distance
is not practical as it impose huge infrastructure cost in physical networks such as power grids.
Once the set of nodes with maximum multiplicities are identified, a nearby node to a node
with maximum multiplicity can be selected for adding/removing a link. Also, by repeating this
with other nearby nodes, we can choose the best results by comparing (2.14) before and after
modification.
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Algorithm 1 Improving the controllability (reducing the number of required driver nodes)
of complex networks using the symmetry analysis and minimal network modifica-
tion
Input: The adjacency matrix A of the underlying graph
Output: The modified structure of network aiming at lower number of driver nodes

1: Compute the number of automorphisms |Aut(G)| using Sage.
2: Compute the generators set Gen(G) in Sage.
3: Compute the orbits of automorphisms O(G) in Sage.
4: Using (2.14) compute the symmetry index of network G.
5: Using exact controllability method, compute the number of required driver nodes Nd.
6: Cluster the nodes based on their multiplicities in generator set Gen(G).
7: Begin modifying the network by adding an edge to those nodes with higher multiplicity in
Gen(G) aiming at a lower symmetry index of Equation (2.14).

8: Choose the modified graph corresponding to the lower symmetry and, in turn, lower number
of required driver nodes.

2.5 Simulation results

In this section, the simulation is carried out on a few power grids modelled as complex networks.
Initially, as a proof of symmetry concept in power networks, the prevalence of symmetry in
these networks is verified. Then the impact of symmetry is investigated on controllability of a
few power networks of various sizes.

2.5.1 Modeling the voltage control of power systems as a complex net-
work controllability problem

The dynamics of ith generation unit in the dq frame ( [42]) is presented in [43] as

ẋi = fi(xi) + ki(xi)Di + gi(xi)ui

yi = hi(xi)
(2.15)

where fi, ki, and gi are attained from the internal dynamics of generation unit, Di is the distur-
bance at node ith, and ui and xi are the control signal and the state vector of the ith unit. The
detailed expression for these parameters can be extracted from []. Using feedback linearization,
the nonlinear model of ith generation unit can be written as

ḣ = Ahi +Bui + di (2.16)

in which hi = [νodi ν̇odi] and di is the disturbance on ith unit caused by other generation units.
Assuming νref as the reference voltage, ei = hi− href , and href = [vref , 0], the error dynamics
of unit i, ei, can be written as

ėi = Aei +Bui + di (2.17)
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Since the reference voltage is constant we can write ν̇ref = 0. The objective of control signal
design is to approach ei = 0 in the presence of disturbance di. The pinning control [44] can be
implemented for this purpose. In pinning control, the control signal ui should be designed for
the system below:

dxi
dt

= F (xi)− ρ
n∑
j=1

lijHxj (2.18)

where xi ∈ Rn is the state vector, F : Rn → Rn is the individual systems’ dynamical equation
(which is considered identical for all nodes), and ρ is the unified coupling strength. lij is the
(i, j)th element of the Laplacian matrix L, where L = D−A. D represents the degrees of nodes
in the network and A is the adjacency matrix. The couplings between nodes is represented by
non-zero elements of H . The pinning control objective is to synchronize all system states to the
desired state s(t), i.e., x1(t) = x2(t) = . . . = xn(t) = s(t). This implies that

d(s(t))

dt
= F (s(t)). (2.19)

To drive all nodes to the desired state, the control signal ui must be appropriately designed for
the equation below

dxi
dt

= F (xi)− ρ
n∑
j=1

lijHxj + ρbiiui, i = 1, 2, ..., n (2.20)

where for control node or driver node bii = 1, otherwise bii = 0. In power systems, the coupling
matrix between nodes is usually denoted by the admittance matrix representing the power flow.
From graph theory and Kirchhoff law, the coupling dynamics of power flow for a network
containing ng generation units can be written as below:

Y11 −Y12 · · · −Y1n

−Y21 Y22 · · · −Y2n

...
... . . . ...

−Yn1 −Yn2 · · · Ynn

 .


y1

y2

...
yn

 =
(

0
)

(2.21)

From ei = yi − yref one can write:

(
Y
)
.


e1

e2

...
en

 =
(

0
)

(2.22)
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where Yii =
∑

j Yij . Then the disturbance of other units that affect on the voltage error of unit
i can be written as:

di = Y −1
ii

N∑
j 6=i

Yijej (2.23)

From (2.17) and (2.23) one can write:

ėi = Aei +Bui + Y −1
ii

N∑
j 6=i

Yijej = (A− I)ei + Y −1
ii

N∑
j=1

Yijej +Bui (2.24)

Let Y −1
ii

∑N
j=1 Yij = A′. Then (2.24) can be written as:

ėi = (A− I)ei + A′ej +Bui (2.25)

The combination of (A− I) and A′ represented by [(A− I)|A′] = A constitutes the adjacency
matrix of the graph of system (5.4.1). Then

ė = Ae+Bui (2.26)

represents a model of voltage control in power networks under pinning protocol.

2.5.2 Symmetry prevalence in power networks: a proof of the concept

Since this research represents the first study connecting symmetry and controllability in power
networks, it is important to reveal the symmetry prevalence and its impact on the controllability
of complex power networks. To this end, a set of 99 complex power networks from [45] have
been examined. Each network contains a certain level of symmetry characterized by the size
of its automorphism group. Table 2.1 contains the number of nodes NV , number of edges NE ,
density D, and symmetry level indicated by the size of the automorphism group |Aut(G)| for 12

power networks. The graph automorphisms are computed in Sage. The bluesizes of Aut(G) for
that set of networks are between 4 and 10259. This symmetry prevalence and its independence
to network size, order, and degree distribution justifies applying new symmetry based results
to power networks of various sizes. Apart from the high cardinality of the networks, the large
number of automorphisms in most power networks relates to the sparseness of the correspond-
ing graphs, as denoted in Table 2.1. The sparse graphs, such as the underlying graph of power
networks, are difficult to control as they demand a high number of driver nodes [21]. These
issues justify employing symmetry as a concept independent to network size, order, and node
degree distribution in order to analyze and improve the controllability of power networks.

2.5.3 Symmetry impact on controllability of power networks

The impact of symmetry on controllability has been verified outside of power networks; see,
e.g., [11], [12], and [14]. To observe the impact of symmetry on controllability of power net-
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Table 2.1: The specification of the sample power networks

Power Network NV NE D |AutG|
39-Bus System 39 131 0.1768 4
49-Bus System 49 167 0.1420 144

118-Bus System 118 476 0.0689 4
US Power Grid 274 1612 0.0431 28311552
443-Bus System 443 1623 0.0165 1.252 ∗ 1013

685-Bus System 465 1300 0.0055 4096
662-Bus System 662 906 0.0041 16384

1176-Bus System 1176 18552 0.0268 ∼ 10259

768-Bus System 768 2943 0.0099 1.73 ∗ 1017

494-Bus System 494 586 0.0048 1.80 ∗ 1016

1138-Bus System 1138 1500 0.0024 8.84 ∗ 1037

US Power Grid 4941 13188 0.0010 5.19 ∗ 10152

works, the underlying graph is modified by adding an edge to a node that contributes to the
automorphism group. After each modification, the number of driver nodes is computed using
the exact controllability method proposed in [4].

Random trials have been performed on the 1176-bus system. The number of driver nodes
leading to exact controllability of this network is 402. This network contains a large automor-
phism group which cannot be computed with existing mathematical software (only the size of
automorphism group is computed in Sage, that is approximately 10259). However, the build-
ing blocks of automorphisms, i.e., generators of automorphisms Gen(G), can be derived using
Sage. The 1176-bus system has 381 generators. To run a more reasonable trial, first the nodes
are clustered based on their multiplicities in the generator set Gen(G). The 1176-bus system is
clustered into sets of 30, 102, 464, 400, and 180 nodes characterized by 4, 3, 2, 1, and 0 multi-
plicities in generators, respectively, denoted by Nj where j ∈ {0, 1, 2, 3, 4}. Then modification
types are defined as adding a distinct edge in Nt trials to each cluster. All edges are added
between two nearby nodes to comply with real power network scenarios.

The list of modification types, the number of trials Nt for each kind of modification, the
average number of driver nodes Nd after Nt trials, and the ratio Rdav of driver nodes to the
total number of nodes are presented in Table 2.2. As expected, the number of driver nodes
is decreased after modifying those nodes that are contributed in generators of automorphisms.
There is a correlation between the number of driver nodes and the size of automorphism group
as those nodes with a higher multiplicity in generators are modified by adding an edge to them.

The statistical results presented in Tables 2.1-2.2 inductively prove the existence of certain
level of symmetry in power networks which, in turn, motivate extending the symmetry-based
theories to power systems. The results also indicate that the traditional measure of symmetry,
i.e. |Aut(G)|, can not fully capture the correlation between symmetry and controllability. This
triggers including other parameters such as orbits of automorphisms in the symmetry index.
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Table 2.2: The symmetry modifications on 1176-bus system

Adding an Edge Nt Ndav Rdav

between 2 nodes in Vr0 533 403.1 0.34
between Vr0 and Vr3 30 390 0.332
between Vr0 and Vr4 30 379.7 0.323
between Vr1 and Vr2 38 369.2 0.250
between Vr1 and Vr3 18 381.5 0.324
between Vr1 and Vr4 26 376.6 0.320
between Vr2 and Vr4 28 361.2 0.307
between Vr3 and Vr4 28 363.8 0.309

between 2 nodes in Vr4 24 294.1 0.250

2.5.4 Simulation on power networks of various sizes

The simulation has been performed on various real and synthetic power networks. The compu-
tations related to symmetry structure of the networks such as the size of automorphism group
|Aut(G)|, generator set Gen(G), and orbits of automorphisms O(G) have been carried out in
Sage. The exact controllability method is implemented in MATLAB where the number of
driver nodes is attained using (3.2)) and the eigenvalue multiplicity is computed with tolerance
10−8. Unlike maximum matching, the proposed approach in this chapter is not dependent on the
node degree distribution. To show its independence to network size and order, the simulation
results on three power networks of various sizes are presented.

Small network: 49-bus system

The exact controllability method for the 49-bus system has resulted in 7 driver nodes denoted
by green rings in Figure 2.22. The 49-bus system has 144 automorphisms as listed in Ta-
ble 2.3. The determining set from this automorphism group can be computed from previ-
ous methods ( presented in Lemma 3.1). One such set is computed as the set of 10 nodes
[9, 10, 11, 24, 25, 26, 1, 4, 47, 48]. For this small network, the list of automorphisms can be com-
puted, and as such, the previous approach based on automorphism group can be implemented.
To modify the network symmetry, an edge is added to node 10 which has the maximum mul-
tiplicity in the automorphism group. This causes a drop in the number of automorphisms to
48 after adding an edge between nodes 4 and 10 (F12 ↔ F96) which is equal to 33% of the
|Aut(G)| of the original network. The new determining set is {0, 9, 10, 23, 24, 46} denoted by
red circles in Figure 2.2. The list of automorphisms of the modified network is presented in
Table 2.3. The number of driver nodes after modification has dropped to 5 as illustrated by
dashed blue rings in Figure 2.2. This indicates a 28% decrease in the number of control inputs.

However, to illustrate how the proposed approach is effective in reducing the computation
burden, we have computed the driver nodes from our proposed approach as follows: The set of

2In all computations/drawings by Sage, the node numbering begins with 0.
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Figure 2.2: The result of exact controllability method on a 49-bus system before and after
adding a link between nodes 4 and 10 (F12 ↔ F96). The number of driver nodes is reduced by
28% following by 67% reduction in the number of automorphism.

generators of automorphisms of 49-bus network is computed in Sage which contains 6 genera-
tors as

[(46, 47), (24, 25), (23, 24), (9, 10), (8, 9), (0, 3)]

which are indicated by g1,g2,...,g6 in Figure 2.2. A determining set from the above set can be
computed from our proposed method in Lemma 3.2 as [46, 24, 23, 10, 9, 3]. After adding an
edge between nodes 4 and 10, one of the generators (the generator (9,10)) will be omitted from
the symmetry group leaving the set of generators with 5 generators as the set below:

[(46, 47), (24, 25), (23, 24), (8, 9), (0, 3)]

A determining set from the above set can be [46, 24, 23, 9, 3]. Adding an edge to this network
has reduced the number of generators from 6 to 5. Clearly, computing and sweeping over the
generator sets are easier than automorphism groups. However, the real impact of the proposed
method can be observed in the next sections while computing the symmetry groups of the larger
networks.

An interesting result is the high overlap between driver nodes, determining set, and the
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generator set. A similar result is attained while examining other networks. This emphasizes the
importance of symmetry on the controllability of complex networks.

Table 2.3: The automorphisms groups of 49-bus system and its modified graph

The set of automorphisms 49-bus system

The set of automor-
phisms 49-bus system
after adding an edge be-
tween nodes 4 and 10

[(I), (23,24), (46,47), (0,3), (24,25), (9,10), (8,9), (23,24,25), (0,3)(8,9), (8,9,10), (0,3)(9,10),
(9,10)(46,47), (23,25,24), (9,10)(23,24), (24,25)(46,47), (8,9)(46,47), (23,24)(46,47),
(9,10)(24,25), (8,10,9), (8,9)(23,24), (8,9)(24,25), (0,3)(24,25), (0,3)(46,47), (0,3)(23,24),
(0,3)(9,10)(46,47), (23,24,25)(46,47), (0,3)(9,10)(23,24), (0,3)(8,9,10), (9,10)(23,24)(46,47),
(8,9)(23,24)(46,47), (8,10,9)(46,47), (0,3)(8,9)(46,47), (0,3)(23,24)(46,47), (8,10),
(8,9,10)(23,24), (0,3)(8,9)(23,24), (23,25,24)(46,47), (8,9)(23,25,24), (0,3)(9,10)(24,25),
(0,3)(23,25,24), (8,9)(23,24,25), (9,10)(24,25)(46,47), (8,9)(24,25)(46,47), (23,25),
(8,10,9)(23,24), (8,9,10)(46,47), (9,10)(23,25,24), (8,10,9)(24,25), (0,3)(8,9)(24,25),
(8,9,10)(24,25), (0,3)(24,25)(46,47), (9,10)(23,24,25), (0,3)(8,10,9), (0,3)(23,24,25),
(0,3)(8,9)(24,25)(46,47), (0,3)(23,24,25)(46,47), (8,9)(23,25,24)(46,47), (8,9,10)(23,24,25),
(8,10)(24,25), (8,9,10)(24,25)(46,47), (8,10,9)(23,24,25), (8,10,9)(23,24)(46,47),
(9,10)(23,24,25)(46,47), (0,3)(8,10,9)(46,47), (0,3)(8,10,9)(23,24), (0,3)(8,9,10)(24,25),
(0,3)(9,10)(23,24,25), (8,10,9)(23,25,24), (8,10)(46,47), (8,9,10)(23,24)(46,47),
(0,3)(9,10)(23,24)(46,47), (0,3)(8,10,9)(24,25), (8,10)(23,24), (0,3)(8,9,10)(46,47),
(8,9,10)(23,25,24), (0,3)(8,10), (9,10)(23,25), (0,3)(23,25), (0,3)(8,9)(23,25,24),
(8,9)(23,24,25)(46,47), (23,25)(46,47), (0,3)(8,9)(23,24)(46,47), (8,10,9)(24,25)(46,47),
(0,3)(8,9,10)(23,24), (0,3)(9,10)(24,25)(46,47), (9,10)(23,25,24)(46,47),
(0,3)(9,10)(23,25,24), (0,3)(23,25,24)(46,47), (8,9)(23,25), (0,3)(8,9)(23,24,25),
(0,3)(8,10)(46,47), (8,9,10)(23,25), (0,3)(8,10)(23,24), (0,3)(8,9,10)(23,24,25),
(0,3)(8,9)(23,25,24)(46,47), (0,3)(23,25)(46,47), (8,10,9)(23,25), (0,3)(8,9)(23,24,25)(46,47),
(0,3)(8,9,10)(23,24)(46,47), (0,3)(8,9,10)(23,25,24), (8,9,10)(23,24,25)(46,47),
(0,3)(8,10,9)(23,25,24), (8,10)(23,24,25), (8,10)(24,25)(46,47), (0,3)(9,10)(23,25,24)(46,47),
(0,3)(8,10,9)(23,24)(46,47), (0,3)(8,9)(23,25), (8,10)(23,24)(46,47), (0,3)(8,10,9)(23,24,25),
(0,3)(8,9,10)(24,25)(46,47), (0,3)(9,10)(23,24,25)(46,47), (8,10,9)(23,25,24)(46,47),
(9,10)(23,25)(46,47), (8,9)(23,25)(46,47), (0,3)(8,10,9)(24,25)(46,47),
(8,10)(23,25,24), (0,3)(9,10)(23,25), (8,9,10)(23,25,24)(46,47), (0,3)(8,10)(24,25),
(8,10,9)(23,24,25)(46,47), (0,3)(8,10)(23,24,25), (0,3)(8,10)(23,25,24),
(0,3)(8,9)(23,25)(46,47), (8,10)(23,24,25)(46,47), (8,10)(23,25,24)(46,47),
(0,3)(8,10)(24,25)(46,47), (0,3)(8,10,9)(23,24,25)(46,47), (8,10,9)(23,25)(46,47),
(8,10)(23,25), (0,3)(8,10)(23,24)(46,47), (0,3)(8,10,9)(23,25), (8,9,10)(23,25)(46,47),
(0,3)(8,9,10)(23,25,24)(46,47), (0,3)(8,9,10)(23,24,25)(46,47), (0,3)(8,9,10)(23,25),
(0,3)(8,10,9)(23,25,24)(46,47), (0,3)(9,10)(23,25)(46,47), (0,3)(8,9,10)(23,25)(46,47),
(0,3)(8,10,9)(23,25)(46,47), (0,3)(8,10)(23,24,25)(46,47), (0,3)(8,10)(23,25),
(0,3)(8,10)(23,25,24)(46,47), (8,10)(23,25)(46,47), (0,3)(8,10)(23,25)(46,47)]

(I), (23,24), (46,47), (8,9),
(0,3), (24,25), (23,24,25),
(0,3)(8,9), (8,9)(46,47), (23,25,24),
(8,9)(23,24), (23,24)(46,47),
(24,25)(46,47), (8,9)(24,25),
(0,3)(24,25), (0,3)(46,47),
(0,3)(23,24), (8,9)(23,24)(46,47),
(0,3)(8,9)(46,47),
(0,3)(24,25)(46,47),
(0,3)(23,25,24), (23,25,24)(46,47),
(8,9)(24,25)(46,47),
(23,24,25)(46,47),
(0,3)(23,24)(46,47), (23,25),
(0,3)(8,9)(23,24), (8,9)(23,24,25),
(8,9)(23,25,24), (0,3)(8,9)(24,25),
(0,3)(23,24,25), (0,3)(23,25),
(0,3)(8,9)(23,24)(46,47),
(8,9)(23,24,25)(46,47),
(23,25)(46,47),
(0,3)(8,9)(24,25)(46,47),
(8,9)(23,25,24)(46,47),
(0,3)(23,24,25)(46,47),
(0,3)(23,25,24)(46,47),
(8,9)(23,25), (0,3)(8,9)(23,25,24),
(0,3)(8,9)(23,24,25),
(0,3)(8,9)(23,24,25)(46,47),
(0,3)(8,9)(23,25),
(0,3)(8,9)(23,25,24)(46,47),
(8,9)(23,25)(46,47),
(0,3)(23,25)(46,47),
(0,3)(8,9)(23,25)(46,47)]

Table 2.4: The list of nodes with the highest multiplicities

Node Nr Node Nr

8 96 23 16
9 96 24 16
10 96 25 16
23 96 8 12
24 96 9 12
25 96 46 12
0 72 47 12
3 72
46 72
47 72
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Medium network: 274-bus system (US power grid)

The graph of 274-bus system representing the US power grid with 1612 edges which contains
28, 311, 552 automorphisms is shown in Figure 4.6. The number of driver nodes with exact
controllability method is 16 nodes denoted by green rings. The set of generators are as below.

Gen(G) = {(219, 220), (212, 267), (180, 270), (178, 179), (177, 178), (166, 167), (142, 193),

(111, 112), (95, 97), (74, 233), (73, 207), (67, 66), (58, 59), (58, 57), (54, 245), (32, 222),

(30, 43), (29, 145), (19, 87), (18, 142), (10, 35), (7, 132), (4, 3)}
(2.27)

The determining set from the above set of generators can be attained, that is 19 nodes as below
(red circles in Figure 4.6).

{219, 222, 178, 166, 142, 111, 95, 73, 65, 57, 54, 32, 30, 29, 19, 18, 10, 7, 3} (2.28)

The nodes 58, 142, and 178 are repeated two times (which is the maximum multiplicity for this
network) in generator set while the rest of nodes in generators are repeated only once. Accord-
ing to Table 2.1, the 274-bus system is less symmetric than the 49-bus system. Proceeding with
Algorithm 4, two edges are added between nodes 147 and 178 and nodes 142 and 258 (repre-
sented by dashed red lines). These modifications cause a decrease in the size of automorphism
group to 3, 145, 728 which is equal to 11% of the |Aut(G)| of the original network. Running the
exact controllability method for the modified network results in 14 driver nodes as demonstrated
with blue rings in Figure 2.3. This is equal to 88% of the Nd of the original network.

Large network: 1176-bus system

The 1176-bus system features 18, 552 edges and approximately 10259 automorphisms. The
modification results are presented in Table 2.2. The original network 402 driver nodes. Some
simulation outcomes of this network are already discussed in 2.5.2 upon which a few inferences
can be deducted: (i) modifying a node with higher multiplicity in generators will usually results
in lower symmetry, and in turn, lower the number of required driver nodes, (ii) there are other
factors such as generators and orbits of automorphisms that affect the symmetry index.

The index of symmetry in (2.1) is used to re-evaluate the symmetry level of the network.
For the original network S(G) is equal to 2.4104. The average symmetry index attained after 24

times modification of the nodes with maximum multiplicity in generators (equal to 4) is 2.1958.
The minimum symmetry index computed is 1.9129 attained after adding an edge between nodes
with maximum multiplicity (i.e., F4 ↔ F4) which resulted in 294 driver nodes, or equivalently
26% reduction in the number of required driver nodes.
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Figure 2.3: The result of exact controllability method for 274-bus system before and after adding
a link between nodes 147 and 178 (F0 ↔ F2), and the second link between nodes 142 and 258
and (F2 ↔ F0). These modifications have led to 12% reduction in the number of driver nodes
following by 89% reduction in following by 67% reduction in the number of automorphism.

2.5.5 Comparing the results of ECM with the set of driver nodes attained
from Lemma 3.2

In this section, we investigate the overlap between the set of driver nodes attained from ECM
with the set of driver nodes attained from satisfying the necessary conditions (for controllability)
of Lemma 3.2. This is shown in Figure 2.2 for 49-bus system. As can be seen, the number of
driver nodes for original 49-bus system is 7 which are node 3, 8, 10, 23, 24, 46, and 48. The set
of nodes satisfying the conditions of Lemma 3.2 are 6 nodes including nodes 0, 9, 10, 23, 24, 46.
Thus, the necessary conditions of Lemma 3.2 has led to only one driver node less than sufficient
number of nodes for controllability. Also, 4 nodes are exactly at the same locations. Even if we
replace node 0 with node 3 and nodes 9 with 8 (as they belong to the same generators and can
act interchangeably) then 6 out of 7 nodes are exactly at the same locations. The comparison
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results are presented in Table 2.5 for the three networks investigated in the previous sections. As
can be seen, the majority of nodes attained from ECM are also nodes selected in the determining
set satisfying the conditions of Lemma 3.2. This means that the proposed necessary conditions
is very close to be also sufficient conditions for controllability.

Table 2.5: The number of driver nodes attained from ECM and Lemma 3.2 showing consider-
able overlap of the nodes’ locations between two methods

Network Nd NdECM
Overlap

49-bus system 7 6 %86
274-bus system 16 9 %56

1176-bus system 402 309 %77

2.6 Conclusion

This chapter provides further insights into the controllability of complex networks. In particular,
the impact of graph symmetry on CN controllability is analyzed and the necessity of controlling
the highly symmetric networks via a high number of driver nodes is clarified. The challenge
in computing the determining set based on automorphism group is highlighted and a novel and
computationally effective solution is proposed which leverages on properties of generators of
automorphisms instead of automorphism groups. The new proposed metric of symmetry fea-
tures more correlation with controllability compared to the traditional measure of symmetry.
The proposed modification algorithm is implemented on several real and synthetic networks,
where it is verified that the number and locations of the driver nodes can be computed by the
proposed approach based on generators of automorphisms which is computationally more ef-
fective than the previous approach based on automorphism group. Also, based on a new index
of symmetry, the critical nodes of the networks, in terms of their impact on the number of re-
quired driver nodes, are identified. It is shown that adding an edge to these critical nodes can
significantly reduce the symmetry in the network and, in turn, a lower number of driver nodes
will be required for full controllability. Moreover, unlike the common CN modification strate-
gies which necessitate manipulating the node degree distribution, the proposed modification
strategy does not impose many modifications to the network topology.

In addition to reducing the number of driver nodes, the modification of the network based on
symmetry consideration can change the locations of the driver nodes as well. The implication
of this impact on the network operation is one of our future studies. Also, we are working
on analytical explanation of the overlap of the results attained from ECM and the results of
satisfying the proposed necessary conditions for controllability.
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Chapter 3

Graph Automorphic Approaches to the
Robustness of Complex Networks

3.1 Overview

Leveraging on graph automorphic properties of complex networks (CNs), this study investi-
gates three robustness aspects of CNs including the robustness of controllability, disturbance
decoupling, and fault tolerance against failure in a network element. All these aspects are in-
vestigated using a quantified notion of graph symmetry, namely the automorphism group, which
has been found implications for the network controllability during the last few years. The typ-
ical size of automorphism group is very big. The study raises a computational issue related to
determining the whole set of automorphism group and proposes an alternative approach which
can attain the emergent symmetry characteristics from the significantly smaller groups called
generators of automorphisms. Novel necessary conditions for network robust controllability
following a failure in a network element are attributed to the properties of the underlying graph
symmetry. Using a symmetry related concept called determining set and a geometric control
property called controlled invariant, the new necessary and sufficient conditions for disturbance
decoupling are proposed. In addition, the critical nodes/edges of the network are identified
by determining their role in automorphism groups. We verify that nodes with more repetition
in symmetry groups of the network are more critical in characterizing the network robustness.
Further, the impact of elimination of critical network elements on its robustness is analyzed by
calculating a new improved index of symmetry which considers the orbital impacts of auto-
morphisms. The importance of all symmetry inspired findings of this chapter is highlighted via
simulation on various networks1.

1This chapter is published in Control Engineering Practice
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Nomenclature

Abbreviations

PBH Popov-Belevitch-Hautus.

CEA Community energy association.

CN Complex network.

CN Complex network.

CN Complex network.

CS Charging station.

ECM Exact controllability method.

ECM Exact controllability method.

EV Electric vehicle.

FACTS Flexible AC transmission systems.

lcm The lowest common multiple.

LQR Linear quadratic regulator.

LTI Linear time invariant.

MMP Maximum matching principle.

PCS Portable charging station.

PEV Plug-in electric vehicle.

PID proportional integrative derivative.

VSC Voltage-source converter.

WAC Wide area controlled.

Constants
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ε Identity (or trivial) permutation.

ε Identity (or trivial) permutation.

c A complex number.

c A complex number.

Q,R, Y Arbitrary weights.

Parameters

αsh Angle of shunt VSC.

β The bus voltage angles.

δ A permutation.

δi Maximum algebraic multiplicity of λ(i).

δi Maximum algebraic multiplicity of λ(i).

δi The angle of voltage of node i.

γsh Conversion ratio signal.

λM Maximum algebraic multiplicity of teh eigenvalue λM .

λM Maximum algebraic multiplicity of the eigenvalue λM .

λi The ith eigenvalue.

λi The ith eigenvalue.

ν A point (node) of permutation.

σ An automorphism or a Permutation.

σ Permutation.

σ Permutation.

A Adjacency matrix.

A Adjacency matrix.

A,A Adjacency matrix.

D Degree matrix.

D The degree matrix.
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E The set of edges.

Ec The set of critical edges.

F The determining set attained from Gen(F).

G Graph.

G Graph.

G Graph.

Gk The released graph.

J The incidence vector of driver nodes.

K Optimal feedback gain vector.

L Laplacian matrix.

L Laplacian matrix.

L Laplacian matrix.

S Determining set.

S Determining set.

V Controlled invariant subspace.

V The set of nodes.

Vc The set of critical nodes.

Aut(G) Automorphism group.

Aut(G) Automorphism group.

Aut(G) Automorphism group.

dimVλi Dimension of eigenspace associated with λ(i).

dimVλi Dimension of eigenspace associated with λ(i).

Fix(σ) The set of fixed nodes by permutation.

Gen(G) Generators of automorphism.

Gen(G) Generators of automorphism.

Gen(G) Generators of automorphism.
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Gendis(G) Set of disjoint generators.

Move(σ) The set of moved nodes by permutation.

Move(σ) The set of moved nodes by permutation.

MovGenvl
the set of generators mapping vl.

µ(λi) Maximum geometric multiplicity of λ(i).

µ(λi) Maximum geometric multiplicity of λ(i).

ρO The orbital ratio of symmetry after node removal.

ρaut The ratio of symmetry after node removal.

σ A permutation.

ε Identity (or trivial) permutation.

ϕ A generator of automorphism.

ζ A permutation.

ζdis , δdis Disjoint generators.

A State matrix.

aij Element of A.

aij Weight of ijth element of A.

B Input matrix.

B Input matrix.

B Input matrix.

C Capacitor.

C Size (or capacity) of charging station [kW].

E The set of edges.

E The set of edges.

F (xi) the individual node’s dynamical equation.

FGen
vl The set of generators that fixes vl.

Idc Capacitor current.
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Ish Shunt reactive current setpoint.

I∗sh Reactive current of the outer loop.

ImC Image of C.

K The feedback gain.

k The number of distinct mappings.

km Conversion ration between the voltage of AC and DC sides.

ker L Kernel or null space of L.

lij The (i, j)th element of the Laplacian matrix.

M A matching.

m Index of a permutation.

MGen
vl The set of generators that moves vl.

ND Number of required driver nodes.

ND Number of required driver nodes.

P The solution of Riccati equation.

p Multiplicity of critical node in Gen(G).

Pac Active power on AC side.

Pij Active power flow between nodes i and j.

q The size of disjoint generators.

Qij Reactive power flow between nodes i and j.

r∗G Normalized measure of network redundancy.

rG Network redundancy.

S Determining set.

s(t) The desired state.

SO(G) Symmetry index based on orbits.

T Waiting time [min].

u Control signal (charging supply).
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u Control signal.

u Control signal.

V The set of nodes.

V The set of nodes.

V Voltage.

Vm Voltage magnitude.

Vdc Capacitor terminal voltage.

Vref Setpoint voltage.

w(t) Disturbance.

Z Line impedance.

3.2 Introduction

A review on the related works is presented in this section following by motivations on the neces-
sity for addressing CN robustness using graph symmetry. It then proceeds with the contributions
and organization of the chapter.

3.2.1 Literature review and motivations

Graph theory, rooted in discrete algebra, has formed increasing applications in CN analysis
during the last decade ( [1]- [18]). However, in spite of these extensions of graph properties
in complex networks, many other graph characteristics and their potential applications in net-
worked systems have remained rather unknown for the community. The wealth of fundamental
knowledge of graph theoretic properties that have not yet been widely studied, the significant
improvement in the analysis and synthesis of CNs using the abstract network modeling facili-
tated by CN theory [2], and the necessity to answer many open problems related to CN analy-
sis [3] motivate investigating the impact of other graph properties on network behavior. Among
these graph properties, graph symmetry, as described by automorphism group [4], is the focus
of this study.

Although the implications of graph symmetry in engineering is not investigated extensively,
significant results have attained in [4]- [7] (in a general form of networks) and [8]- [10] (in power
networks) explaining some emergent behaviors of complex networks by employing the under-
lying graph symmetry. In particular, symmetry has been employed to investigate the controlla-
bility [5] and robustness [4] of CN in general form of networked systems, and synchronization
in power networks ( [8]- [10]). It has been verified in [4]- [5] that symmetry is an obstruction
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to controllability but it reinforces the robustness. In fact, by attributing the controllability of
complex networks to the number of required driver nodes ( [11]- [12]), it is shown that the more
symmetric network necessitates more driver nodes to be fully controllable [5]. Conversely, a
network with higher number of automorphisms has more robust characteristics [4]. These sig-
nificant impacts of symmetry on fundamental network’s behavior stimulate conducting further
research in this direction. For this purpose, three aspects of network robustness, i.e., (i) the
robustness of controllability, (ii) disturbance decoupling, and (iii) fault tolerance against node
failure are discussed below and will be addressed by graph symmetry.

Serious concerns about the robustness of complex networks have been raised during the
last decade ( [13]- [21]) which necessitate a better understanding of influencing factors and
methods for protecting the network. Robustness and fault tolerance entail wide ranges of topics
in networked systems. However, here, fault tolerance is defined as the network’s ability to
tolerate failure in a network element with no significant performance degradation [22]. Also,
the robustness of controllability is defined as the network ability to preserve the controllablity
with a fixed number of driver nodes after a node failure.

It is important to know which network components are critical and if compromised can cause
significant malfunctioning of the whole network. For example, a failure in a critical element of a
power network can lead to cascading failure or large blackouts ( [14] and [19]- [20]). Robustness
and fault tolerance are addressed by improving the network’s ability to tolerate disturbance and
node elimination, respectively [22]. To this end, robustness is investigated via the impact of
graph symmetry on (1), robustness of controllability (2), disturbance decoupling and (3) fault
tolerance against node failure. The necessity to investigate on these issues using symmetry is
discussed below.

The traditional rank of controllability is not applicable, in particular, to complex networks
as the accurate system parameters are difficult to acquire ( [11]- [12] and [23]- [25]). Structural
controllability is proposed as a solution in [23] from the graph perspective. Then, the structural
controllability problem converted to the problem of finding the minimum number of external
inputs to fully control a network [24]. These external inputs are usually referred to as driver
nodes ( [11] and [26]- [32]) which act as the control nodes through which the control signals
can be injected. They could be specified as the non-zero elements of the input matrix of the
system. The external control vector is then applied to each node correspondent to each non-
zero element of the input matrix. This reformulation of controllability in CNs via finding the
set o required driver nodes stimulated many research studies in recent years ( [26]- [32]).

Symmetry has been verified to have an important role in controllability of complex net-
works [5]. However, the necessary conditions of CN controllability attained in [6]- [?] impose
a serious computation burden as it relies on computing and sweeping over a very big set of
automorphisms in order to find the set of driver nodes. The cardinality of automorphism group
of typical networks can be 1017 − 10159 (this is verified in [4] and also calculated in simulation
section). As a result, it is not practical to compute and sweep over all automorphisms.

Disturbance decoupling is another characteristics of a reliable network ( [33]- [36]) that is
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investigated in this chapter under the impact of symmetry. To decouple the disturbance, a state
feedback must be designed in such a way that the disturbance could not affect the output. Al-
though, various aspects of disturbance rejection in complex networks are addressed in literature,
the majority of the proposed approaches rely on designing a specific controller which can not
be used when the disturbance or operating conditions are changed.

All the proposed approaches in literature present a method for controller design to address
disturbance rejection for specific disturbance and system dynamics. The lack of a more compre-
hensive approach to deal with disturbance without depending to system’s dynamics motivates
exploring the common topological properties of the underlying networks. Symmetric struc-
tures, as verified in [4] and also in our simulation results, is present in all networks and can
be used to find the set of driver nodes [6]. This study verifies that, under a controlled invari-
ant subspace, the disturbance rejection is dependent to the selection of the set of driver nodes
attained from symmetry analysis. A significant advantage of the proposed approach is that,
instead of proceeding with complicated algorithms for controller design, the disturbance rejec-
tion is accomplished via a systematic selection of set of driver nodes under a controlled invariant
subspace.

Ideally, we try to protect all network elements. However, this is not feasible in practice as
it imposes a high cost, in particular, in physical systems such as power grids. Therefore, it is
crucial to identify and protect the most important (critical) nodes of the network. Previous stud-
ies on critical node/edge identification have mostly relied on an assessment of graph centrality
such as closeness, betweenness, and node degree distribution ( [16], [37]- [38]). The idea is
to find the set of hub nodes that have significant role in determining the network performance.
Node degree is verified as a key to characterize various properties of electricity distribution net-
works [18]. The node degree distribution then have a critical role in the network vulnerability
as nodes with higher degree are considered more critical ( [16] and [37]). Therefore, a com-
mon approach to enhance the network tolerance against a node failure is to manipulate the node
degree distribution. This can entail adding/eliminating lots of nodes/edges over the network
( [39]- [41]) or changing the directions of some edges ( [17] and [39]). As a result, the proposed
modification algorithms are not cost effective.

3.2.2 Contributions

In this chapter, computation issue related to calculating the whole set of automorphism groups
is resolved by proposing an alternative approach based on computing and sweeping over gen-
erators of automorphisms which are significantly smaller groups than automorphisms. The
necessary conditions for full controllability can then be computed effectively by the proposed
approach. Furthermore, the necessary conditions for robustness of controllability is attained in
this chapter. It is verified that the network can function after a change in its topology if some
conditions satisfy on its symmetry group determining the set of driver nodes.

An inherent network property, the multiplicity of a node in the network symmetry factors,
called the generator set, is leveraged to find the critical components of complex networks. This
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study verifies that even a node with low centrality can have significant impact on network per-
formance if it highly contributes to the construction of the generator set. It will be shown that,
using the symmetry analysis, it is enough to manipulate only one or two nodes to modify the
symmetry strength of the network. A significant advantage of using symmetry is that the idea
relies on an inherent characteristic of the networks, and no network synthesizing or severe struc-
tural manipulation are required. Moreover, the chapter will show that symmetry, in the context
of automorphisms, is present in all networks independent of network size, order, and degree
distribution.

Finally, some interesting results are observed in simulation section which further empha-
sises on the importance of symmetry in determining the network behaviour. For example, it is
observed that the network symmetry and in turn, its robustness, can be independent to nodes
degree distribution. This is not aligned with the majority of related literature where only the
importance of the most central nodes or hub nodes have been highlighted. According to our
symmetry analysis, even a node with low degree distribution can have significant impact on
the network robustness. Also, we noticed that there is an overlap between the set of driver
nodes attained from symmetry analysis and the set of driver nodes attained from another estab-
lished method called exact controllability method (ECM). Such observations motivate conduct-
ing more studies in this direction.

The rest of this article is organized as follows. Section 3.3 reviews the mathematical pre-
liminaries and definitions. The main results on network robustness using the symmetry charac-
teristics of the underlying graph of the network are presented in Section 3.4. The simulation is
carried out on various networked systems in Section 3.5. Finally, the conclusion is presented in
Section 3.6.

3.3 Preliminaries

Some mathematical preliminaries and definitions are given in this section. These include some
notions from linear algebra, graph theory and, in particular, graph symmetry.

Definition 3.3.1. The column space (also called image) of a matrix A is the set of all linear
combinations of its column vectors. If A is an m × n matrix where its column vectors are
v1, ...,vn and a linear combination of these vectors form

c1v1 + c2v2 + ...+ cnvn,

where c1, c2, ..., cn are scalars, the image of A is the column space of all possible compositions
Ax for x ∈ cn.

Definition 3.3.2. The kernel (also called null space) of a linear map L : V → W between two
vector spaces V and W is the set of all elements v of V for which L(v) = 0, where 0 denotes
the zero vector in W , i.e., ker L = {v ∈ V | L(v) = 0}.
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3.3.1 Graph theory

An undirected graph G is composed of a set of un-ordered pairs of nodes V and edges E and is
denoted by G(V,E) or simply G. Two nodes v1 and v2 are said to be adjacent if there is an edge
between them. The size and order of G are denoted by |V | and |E|, respectively. An adjacency
matrix, denoted by A, is a square |V | × |V | matrix whose element, aij , indicates whether pairs
of nodes i and j are connected together or not. For a simple graph, if there is an edge from node
i to node j then aij is one, otherwise it is zero. The degree matrix D is a diagonal matrix where
dii is the number of edges attached to node i. The Laplacian matrix is a form of representing G
and is defined as L = D −A where D is the degree matrix,.

Definition 3.3.3. A subgraph of G is a graph H such that VH ⊂ VG and EH ⊂ EG . In general,
any isomorphic graph to a subgraph of G is also said to be a subgraph of G.

Definition 3.3.4. The composition or product of two functions ζ and δ, denoted by ζ ◦ δ is the
pointwise action of ζ to the result of δ which generates a third function. The notation ζ ◦ δ is
read as "ζ composed with δ" and (ζ ◦ δ)

∣∣
(i)

denotes the pointwise composition of ζ and δ" on
point i. Intuitively, by composition of two functions, the pointwise output of the inner function
becomes the input of the outer function.

The composition of two permutations is calculated in the simple example below.

Example 3.3.1. Let ζ and δ be given by

ζ = (1 2 3 4) and δ = (1 3).

To compute the composition of ζ and δ, ζ◦δ, first we have to check the commutation (represented
by the symbol 7→) of element by δ and then its commutation by ζ . In this example

1 7→δ 3 7→ζ 4 ⇒ (ζ ◦ δ)
∣∣
(1)

= 4

4 7→δ 4 7→ζ 1 ⇒ (ζ ◦ δ)
∣∣
(4)

= 1

3 7→δ 1 7→ζ 2 ⇒ (ζ ◦ δ)
∣∣
(3)

= 2

2 7→δ 2 7→ζ 3 ⇒ (ζ ◦ δ)
∣∣
(2)

= 3.

Thus the composition of ζ and δ is ζ ◦ δ = (1 4)(3 2).

A permutation σ is defined as the act of rearranging a subset of nodes of G. The order of
permutation, denoted by order(σ), is the smallest positive integerm such that σ1◦σ2◦ ...◦σm =

σm = ε where ε is the identity (trivial) permutation.
Two permutations ζ and δ are disjoint if each node moved by ζ is fixed by δ, or equivalently,

every node moved by δ is fixed by ζ , otherwise they are called joint permutations. The set
of nodes that are not mapped by a permutation are fixed nodes, and the set of nodes that are
mapped is called moved nodes. Also the set of permutations that map a node vl is denoted by
Movvl .
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Definition 3.3.5. Two permutations ζ and δ commute if ζ ◦ δ = δ ◦ ζ .

Lemma 3.3.1. Disjoint cycles commute, i.e., if ζ = (u1...ur) and δ = (v1...vr) are disjoint
cycles then ζ ◦ δ = δ ◦ ζ .

Proposition 3.3.1. The composition of disjoint permutations does not move an already fixed
node by all of these permutations. Equivalently, the composition of disjoint permutations does
not fix an already moved node by one of the permutations.

3.3.2 Graph symmetry

Graph symmetry rooted in discrete mathematics can be revealed by automorphism groups. Au-
tomorphism is a form of symmetry in which the graph is mapped onto itself while preserving
the graph structure, meaning the adjacency or Laplacian matrix of the underlying graph remains
unchanged under mapping by an automorphism. This is illustrated by a simple example below.

Example 3.3.2. Consider the simple triangle graph of Figure 3.1. The adjacency matrix of this
graph is 0 1 1

1 0 1

1 1 0


An automorphism of this graph is (1 2 3) which permute nodes 1, 2, and 3 to nodes 2, 3, and 1,
respectively. However, the adjacency matrix of the graph remain the same as the above matrix
under the act of this automorphism.

Figure 3.1: The graph of Example 2.2

Definition 3.3.6. An automorphism of G is a permutation σ for which {i, j} ∈ E(G) (where
E(G) is the set of edges of G) if and only if

(
σ(i), σ(j)

)
∈ E(G). The automorphism group of

G and its size are denoted by Aut(G) and |Aut(G)|, respectively.

Each automorphism can be attained by the multiplication of some elementary automor-
phisms (also called generator of of automorphisms). Throughout this chapter, automorphisms
are divided into two categories: (i) generators of automorphisms, and (ii) ordinary automor-
phisms. Each ordinary automorphisms can be attained from the compositions of generators or
other ordinary automorphisms. This is illustrated by the simple example below.
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Example 3.3.3. For the simple graph of Figure 3.1.(a), the set of generators and automorphisms
are computed in Sage as

Gen(G) = {(1, 2), (0, 1)}
Aut(G) = {(I), (1, 2), (0, 1), (0, 2, 1), (0, 1, 2), (0, 2)}

In the above set of automorphism, (I) is identity or trivial automorphism. The second and
third automorphisms are also generators of automorphisms. The last three automorphisms can
be attained from the compositions of other automorphisms as:

(1, 2) ◦ (0, 1) = (0, 2, 1)

(0, 1) ◦ (0, 2, 1) = (0, 2)

(1, 2) ◦ (0, 2) = (0, 1, 2).

No non-repetitive automorphism can be generated by any composition of the automorphisms.
A permutation matrix, denoted by J , is a square binary matrix attained by permuting the rows
of an identity matrix where every permutation matrix associates to a unique permutation (here
the permutation is either an automorphism or a generator).

Definition 3.3.7. The incidence vector or indicator vector or characteristic vector of a subset
T of a set S is the vector xT := (xs)s∈S such that xs = 1 if s ∈ T and xs = 0 if s /∈ T .

Lemma 3.3.2. Let two nodes a, b ∈ G and σ be a permutation on G. By defining a ∼ b if and
only b = σn(a) for n ∈ Z, then ∼ is an equivalence relation on G. This equivalence classes are
called orbits of G.

3.3.3 The exact controllability method (ECM)

In this study, the exact controllability method ( [11]) is used to compute the number of re-
quired driver nodes satisfying the full CN controllability. The approach is based on maximum
multiplicity of eigenvalues to attain the number of driver nodes Nd after each modification. It
has been verified in [11] that the minimum number of driver nodes can be computed by the
maximum geometric multiplicity µ(λi) of the eigenvalue λi of the coupling matrix A:

Nd = maxi{µ(λi)} (3.1)

where
µ(λi) = dimVλi = N − rank(λiIN − A) (3.2)

and λi(i = 1, ..., l) represents the eigenvalues of A. For undirected weighted networks, the
maximum algebraic multiplicity δ(λi) determine the number of driver nodes as

Nd = maxi{δ(λi)} (3.3)
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where δ(λi) is also the eigenvalue degeneracy of matrix A [11]. Using the elementary column
transformation on the matrix (λMIN −A) a reduced row echelon form of the adjacency matrix
can be attained. Subsequently, the set of linearly dependent rows corresponds to the driver
nodes which is equivalent to the maximum geometric multiplicity. Consider the general form
of linear time invariant system as

ẋ = Ax(t) +Bu(t) (3.4)

where A is the coupling or (adjacency) matrix, B is the input matrix, x(t) is the state vector,
and u(t) is the control vector. According to the exact controllability method, system (3.4) is
controllable if and only if

rank(cIN − A,B) = N (3.5)

is satisfied for any complex number c, where IN is the identity matrix of dimension N .

3.4 Symmetry impact on complex network robustness

This section focuses on the concept of graph symmetry to address a few issues related to the
robustness of complex networks. Three aspects of network robustness are addressed. First, the
network’s ability to function after failure in a critical element is examined. This is attributed to
the robustness of controllability referring to network controllability after failure. This parameter
is assessed by the number of required driver nodes for full controllability before and after a node
failure. The Second aspect of robustness points to the robustness of the grid against disturbance
(disturbance decoupling) which is analyzed under the impact of symmetry. The third aspect
of robustness deals with the identification of the most critical network elements in terms of
their contributions in symmetry group and, in turn, grid robustness. Fault tolerance points
to the network ability to preserve controllability (or tolerate failure or loss of a node) with a
fixed set off driver nodes. The set of "critical" nodes/edges should be defined: A node/edge
that has the most impact on the cardinality of automorphism group is considered as a critical
element since, as will be verified, the elimination of nodes/edges with more multiplicity in the
symmetry group can significantly change the number of required driver nodes. Subsequently,
controllability means that the network can be driven from any initial state to any final state in
finite time using a set of driver nodes. All findings of this chapter are attained by leveraging on
the concept of symmetry.

In controlled consensus problem, the external control signal u(t) ∈ Rq should be applied to
node i through input matrix Bi ∈ Rq. The individual node’s dynamics can be written as

ẋi(t) = −
∑
{i,j}∈E

(xi − xj) +B
T

i u(t) (3.6)

where xi(t) ∈ R is the state of node i ∈ V at time t. The network’s dynamics at time t is
observed by a y(t) ∈ Rp via an output matrix C ∈ Rp×n. The full network dynamics is then
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given by
ẋ(t) = −L(G)x(t) +Bu(t)

y(t) = Cx(t)
(3.7)

where B = [B1, B1, ..., Bn]T ∈ Rn×q. For a set of input nodes or driver nodes in the graph
as S = [i1, i2, ..., iq] for i1 < i2 < ... < iq the associated input matrix is given by B(S) =

[ei1 , ei2 , ..., eiq ] ∈ Rn×q.
The network dynamics given in (3.7) is said to be controllable if the pair (−L(G), B) is

controllable. This criterion is restated in proposition below according to the network symmetric
characteristics.

Proposition 3.4.1. [5] A graph G is uncontrollable from any pair (−L(G), B(S)), if there exist
a nontrivial automorphism of G which fixes all inputs in the set S.

In [5], the choice of driver nodes is attributed to the determining set via Corollary 4.3.1
where the state matrix is replaced by the adjacency matrix.

Corollary 3.4.1. [5] Let A(G) represents the adjacency matrix of the graph H. A necessary
condition for controllability of the pair (A(G), B(S)) is that S is a determining set.

3.4.1 CN controllability and robustness of controllability based on sym-
metry groups

The necessary conditions for controllability (or sufficient conditions for uncontrollability) have
been attained in [5] as proposition below.

Proposition 3.4.2. [5] The system of Equations (3.4) is uncontrollable if there exists a nontriv-
ial automorphism of G which fixes all inputs in the set of driver nodes S (or equivalently matrix
B).

This proposition can be restated using the concept of determining set defined as below.

Definition 3.4.1. A set of vertices S is a determining set for a graph G if every automorphism of
G is uniquely determined by its action on S. Equivalently, a subset S of the vertices of a graph
G is called a determining set if whenever g, h ∈ Aut(G) so that g(s) = h(s) for all s ∈ S, then
g = h.

The above lemma implies that to find the whole set of driver nodes, one have to compute
and sweep over the whole set of automorphism group Aut(G). The typical cardinality of au-
tomorphism group for complex networks can be as big as 1017 (this is verified in [4] and also
computed in simulation section for several networks). Obviously, computing and sweeping over
this set is not computationally effective. Lemma below presents an alternative approach based
on generators of automorphisms.
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Lemma 3.4.1. Let σ be an automorphism attained from the composition of some generators
of automorphisms σ1, σ2, ..., σr where their orders are ε1, ε2, ..., εr, respectively. The necessary
conditions for controllability of G∗ are

(i) if order(σ) = lcm(ε1, ε2, ..., εr) where lcm stands for the lowest common multiple, then
there is at least one node n∗ in the set of nodes V ∗ ∈ {σ1∩σ2∩ ...σr} for which n∗ ∈ S∗,

(ii) if order(σ) 6= lcm(ε1, ε2, ..., εr) then for the joint node/s nj where nj ∈ V ∗, n∗j /∈ S∗,

(iii) if all nodes in V ∗ are joint nodes then V ∗ ∈ S∗, and

(iv) if a node na /∈ Gen(G) then na can be excluded from S∗.

Proof. Any automorphism σ is a composition of either joint or disjoint generators and/or me-
diator automorphisms. If σ1, σ2, ..., σr are disjoint, according to commuting property of permu-
tations, one can write

(σ1 ◦ σ2 ◦ ...σr)z = σz1 ◦ σz2 ◦ ... ◦ σzr

for all positive integers z. Let m be the lowest common multiple of the integers ε1, ε2, ..., εr.
Then

(σ1 ◦ σ2 ◦ ...σr)m = σm1 ◦ σm2 ◦ ...σmr

and clearly (σ1◦σ2◦ ...σr)m = ε. On the other hand, if (σ1◦σ2◦ ...σr)m = ε it follows (from the
permutations being disjoint) that the order of each σi is m or σmi = ε. Therefore m is divisible
by each εi which leads to

order(σ1 ◦ σ2 ◦ ...σr) = m = lcm(ε1, ε2, ..., εr).

Then for S∗ to be a determining set there should be at least one node n∗ in S∗ that also belongs
to set of nodes in σ1 ∩ σ2 ∩ ...σr. Similarly, if (σ1 ◦ σ2 ◦ ...σr) contain two or more joint
permutations then order(σ) 6= lcm(ε1, ε2, ..., εr). Consequently, joint nodes have to be excluded
from the determining set, i.e., nj /∈ S∗. Finally, if all nodes in the composition (σ1 ◦ σ2 ◦ ...σr)
are joint nodes (which is very rare) then all nodes V ∗ are in S∗. Finally, condition (iv) is
straightforward considering that if a node is fixed by all generators then the composition of
generators or/and mediator automorphisms will not move it.

The above lemma relates the necessary conditions of CN controllability to the selection of
a set of driver nodes attained from generators of automorphisms Gen(G). The cardinality of
Gen(G) is very smaller than Aut(G). It is thus computationally more effective to attain the set
of driver nodes from Gen(G) instead of Aut(G).

The network controllability (or the number of required drive nodes) can be affected once the
network topology is changed following a failure in a network element. Robustness of control-
lability can be guaranteed if the selection of nodes in determining set are constrained to some
conditions on generators of automorphisms. These conditions are formalized in the theorem
below.
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Theorem 3.4.1. Assume that the adjacency matrix of G is diagonalizable and symmetry pre-
serving and b is the indicator vector associated to the set S of Nd driver nodes. Let the network
topology after attacks be denoted by G∗. If the robustness of controllability of G in case of a
successful attack manipulating the network topology to G∗ is guaranteed then

(i) Given g∗k as a generator of automorphism of G∗, if all j ∈ Vg∗k are joint nodes then all
nodes of g∗k are in S, otherwise j /∈ S where j is the joint node/s of the pairwise joint
generators, and

(ii) there is no non-trivial generator g∗ of G that fixes S, and

(iii) if all eigenvalues ofM = J−I−2A, where I and J are the identity and unit matrices, be
simple then S * Φg where Φg is the set of fixed nodes by all generators of automorphisms.

Proof. Consider the matrix W defined as

W = [J AJ ... An−1J ] (3.8)

where J is the incidence vector associated with the set of driver nodes. Then W is invertible if
the network is robustly controllable. ConsideringMp as the permutation matrix associated with
Aut(G), then the set of generators that fix the driver nodes as a set need to satisfyMpJ = J .
Subsequently, it can be written

MpW = [MpJ MpAJ ... MpAn−1J ]

= [MpJ AMpJ ... An−1MpJ ]
(3.9)

where along withMpJ = J one can concludeMpW = W . Since W is invertible thenMp

needs to be identity matrix which, in turn, implies that the only generator of G that fixes the
driver nodes is the identity or trivial permutation. Contrastingly, the joint nodes of generators
have to be excluded from the driver nodes since the composition of joint generators may fix
the joint node. Consequently, there will be an automorphism that fixes the joint node which
is also a driver node. This contradicts the required conditions for controllability mentioned in
Corollary 4.3.1. In the case where all nodes of a generator are joint nodes all nodes need to be
included in driver nodes so that there won’t be an automorphism that fixes all nodes in S except
for identity. From the properties of compositions of permutations one can write

Mov{ζrdis ◦ δsdis} ⊂Mov{Gendis}

where ζdis and δdis are disjoint generators and r and s are the orders of generators in composi-
tion. This simply means that the compositions of disjoint generators does not move an already
fixed node by all of those generators. Then the proof of part (iii) is a straightforward result of
Theorem 5.8 in [44].

The above theorem relates the selection of driver nodes to some permutation properties of
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generator set. The use of this theorem is computationally effective as it relies on sweeping over
a limited number of permutations.

3.4.2 Robustness against disturbance by employing the concepts of deter-
mining set and controlled invariant subspace

In this section, a model of network with disturbance is considered as

ẋ(t) = f(x(t), u(t), w(t)) (3.10)

where w(t) ∈ Rn is the disturbance which can possibly represent external disturbances, mod-
eling uncertainty, parameter uncertainty, and unmodeled nonlinear dynamics, etc. The distur-
bance decoupling problem is thus to find a state feedback so that the outputs are not disturbed
by w.

Definition 3.4.2. In the state space model of the systems, if there is a subspace that contains
the initial states then it is possible to preserve the states in that subspace at all times. This
subspace is called a controlled invariant subspace. For the LTI system of (3.4), the subspace V
is an (A,B)-invariant or controlled invariant subspace if

(A+Bk)V ⊆ V (3.11)

where k is the feedback gain.

In configuring the choice of determining set of automorphism group (or generator set) ac-
cording to the concept of controlled invariant subspace, a new lemma is proposed below which
presents the necessary and sufficient conditions for disturbance decoupling. The resulted deter-
mining set also preserves the necessary condition of controllability as verified earlier in Theo-
rem 8.2.

The general form of LTI systems considering the disturbance can be written as

ẋ(t) = Ax(t) +Bu(t) + Ew(t)

y = Cx(t)
(3.12)

wherew(t) ∈ Rn is a vector of unmeasured signals which lumps the impacts of all disturbances.
In a network with controlled consensus protocol of (3.7), a node’s dynamics with disturbance is
given by

ẋ(t) = −Lx(t) +Bu(t) + Ew(t)

y = Cx(t),
(3.13)

where B = [B1, B2, ..., Bn]T ∈ Rn×q.
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Theorem 3.4.2. The set of driver nodes attained from the determining set characterizes the
network model of (3.13) as

ẋ(t) = −Lx(t) + Su(t) + Ew(t)

y = Cx(t)
(3.14)

where S ∈ Rq is the characteristic matrix associated to the determining set attained from the
Aut(G) or Gen(G) such that Si,1 = 1 if vi ∈ S otherwise Si,1 = 0. Assume that the adjacency
matrix of the network G is diagonalizable and symmetry preserving. With fixed control feedback
k, the disturbance E can be decoupled if S∗ satisfies

ImE ⊆ 〈−L+ S∗k | ImE〉 ⊆ ker C. (3.15)

Proof. The Equation (3.13) can be written as

ẏ(t) = C(−L+ Sk)x(t) + ECw(t)

To decoupe the disturbance, the second term in the above equation must be zero, i.e., CE = 0.
Subsequently, by assuming C(L+ Sk)i−2E = 0 where i ≥ 2, one can write

y(i) = C(−L+ Sk)ix+ C(−L+ Sk)i−1Ew.

Then the following conditions must be satisfied

CE = 0

C(−L+ Sk)i−1E = 0
(3.16)

where i = {0, 1, ..., n}. The above equation can be restated as

Im E ⊆ ker C

(−L+ Sk)i−1Im E ⊆ ker C.
(3.17)

Equivalently,
〈−L+ S∗k | Im E〉 ⊆ ker C (3.18)

i.e., 〈L + S∗k | Im E〉 ⊆ ker C features (L, B)-invariant or controlled invariant property. If
E ⊆ 〈L+ S∗k | Im E〉 then

〈−L+ S∗k | Im E〉 ⊆ 〈−L+ S∗k〉 ⊆ ker C

and it is necessary that
〈−L+ Sk | Im E〉 ⊆ ker C.

Since 〈−L + Sk | Im E〉 is an (−L,S) invariant subspace of ker C, then 〈−L + Sk | Im E〉 ⊆
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〈−L + S∗k | Im E〉. Subsequently Im E ⊆ 〈−L + Sk | Im E〉 results in Im E ⊆ 〈−L +

S∗k | Im E〉.

Theorem 3.4.2 presents the necessary and sufficient conditions for disturbance decoupling
in the networked system of (3.14). It relates the disturbance decoupling to the appropriate
selection of determining set (attained from symmetry groups, i.e., Aut(G) and Gen(G)) and
control feedback gain.

3.4.3 Critical nodes identification based on symmetry

As verified in [4], symmetry can improve the network’s robustness by inducing redundancy
which, in turn, provides structural backups against attacks [21]. The more often any given node
is repeated in Aut(G), the more effective it is in the structural robustness of the underlying net-
work. However, since |Aut(G)| for a typical network is usually a very big number ( [4]) it is not
cost effective to find the whole set of automorphisms (this is also verified in simulation section
in Table 1). Instead, we propose another criteria to quantify the role of each node in symmetry
and, in turn, in network robustness. To this end, the elementary factors of automorphisms or
generators of automorphisms (Gen(G)) are used. Lemma 3.4.2 formalizes this adaption from
automorphism group to the set of generators.

Lemma 3.4.2. For a given graph G, if the multiplicity of a node vl in Gen(G) is p, then the
multiplicity of vl in Aut(G) is greater or equal to p(1 + q) where q is the cardinality (size) of
the set of generators that fix vl.

Proof. Let the set of generators that map vl be denoted by

MovGenvl
:= {δ1, δ2, ..., δp}

and the set of generators that fix vl be denoted by {σ1, σ2, ..., σq}. Given the pointwise product
of {σ1, σ2, ..., σq} and {δ1, δ2, ..., δp} be denoted by ∆. ◦ Σ, we can write

|MovAutvl
| ≥ |MovGenvl

|+ |Mov∆.◦Σ
vl
|

where |.| stands for the cardinality of the set. Clearly, the above inequality can be written as

|MovAutvl
| ≥ (p+ p.q) = p(1 + q).

Lemma 3.4.2 guarantees a lower bound on the multiplicity of a node vl in Aut(G) as long
as vl is permuted by at least one generator. Implied by the above lemma, one can determine
the most repeated nodes in Aut(G) by only assessing Gen(G) without imposing a large compu-
tation burden. The node multiplicity can be used as a measure of each node/edge’s impact on
symmetry strength of the network. In fact, it is enough to compute the size of automorphism
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group |Aut(G)| after deleting each node with maximum multiplicity. The higher increase in
|Aut(G)| after each modification means that the modified node/edge is more effective in the
structural robustness of the network and, in turn, is considered as a more critical node. This is
also verified by simulation on several networks and discussed in the simulation section.

3.4.4 Fault tolerance against node elimination based on a novel symmetry
index

We can compute the size of automorphism group before and after node elimination. Then the
consistency between the number of required driver nodes with the network’s symmetry level
can be investigated. We attain the ratio of the symmetry after node removal to the original
network’s symmetry using equation below:

ρaut = %
|Aut(G)|
|Aut∗(G)|

× 100 (3.19)

where |Aut∗(G)| and |Aut(G)| are the size of automorphism group of original network and the
average size of automorphism group of the network after removing a node. The size of the
automorphism group, as the traditional measure of symmetry, provides a fair approximation of
symmetry. However, to create a metric that realizes the complex structure of symmetry, a novel
notion of symmetry, network redundancy, has been proposed in [4] as

rG =
|O| − 1

V
(3.20)

where rG is a measure of network redundancy and |O| is the number of orbits. A normalized
measure of redundancy is

r∗G = 1− |O| − 1

V − 1
(3.21)

presented in [42] that captures the asymmetric case as well. In (3.20) and (3.21), the presence of
symmetric structures in a graph is quantified employing the orbits of automorphisms. In fact, all
nodes in the same orbit are structurally equivalent. Consequently, non-trivial orbits have been
associated with structural redundancy which according to [4] and [21] reinforces the robustness
of the network against attacks on the nodes by providing structural backups. However, the
difference between the induced symmetry by two orbits of different sizes can not be projected
by (3.20) and (3.21).

Inspired by Shannon’s entropy formula that provides a measure of disorder, uniformity,
or randomness in networks [43], the orbits’ impact on the network symmetry could be better
described as

SO(G) =

∑l
i=1 |Ol|ln|Ol|

n
(3.22)

where SO(G) is the impact of orbits of automorphisms on symmetry level featuring the orbits’
structures, |Ol| is the number of elements of the lth orbit, and n is the number of nodes. The
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Table 3.1: The symmetry specifications of various networks including the sizes of automor-
phism group |Aut(G)|, generator set Gen(G), orbits of automorphisms |O|, maximum multi-
plicity of nodes in generator set denoted byMmax, cardinality of the set of nodes with maximum
multiplicity |Mmax|, and the symmetry index SO(G) associated with the impact of orbits of au-
tomorphisms

Network Name |V | |E| |Gen(G)| Mmax |Mmax| |Aut(G)| |O(G)| SO(G)

Net. of Figure
3.2.a

101 380 53 5 42 1.27× 1020 7 4.22

Net. of Figure
3.2.b

273 1474 23 2 43 28× 106 251 0.12

Net. of Figure
3.2.c

332 4252 54 3 2 2.5× 1024 276 0.30

Net. of Figure
3.2.d

47 264 2 22 2 6 44 0.07

US Power Grid 4941 13188 420 2 143 5.2× 10152 4466 0.15
QHPS 882 3354 82 3 52 8.5× 1027 336 1.08
NEPS 66 1194 35 2 52 1.7× 1025 7 2.25

bigger the orbit sizes, the more symmetric the underlying graph is. Computing (3.22) before
and after node elimination determines how robust the network is against node elimination. We
define the ratio of symmetry after a node removal to the original network’s symmetry as

ρO = %
SO(G)

S∗O(G)
× 100 (3.23)

where S∗O(G) and SO(G) are the symmetry index of the original network and the average sym-
metry index of the network after removing a node.

3.5 Simulation

The symmetric characteristics of several networks are initially investigated to verify that the
quantified form of symmetry studied in this chapter is present in all networks independent of
network size and order. This is carried out on Sage with Python programming for several real
and synthetic networks of various sizes and orders. The symmetry specifications of a few of
these networks are presented in Table 3.1. It is observed that all networks of various sizes entail
a certain level of symmetry.

The detailed simulation is accomplished on two synthetic networks with 101 nodes and
273 nodes illustrated in Figures 3.2.a-b. The symmetry specifications of these networks are
presented in Table 1, rows 2-3. The network of Figure 3.2.a is selected as an illustrative example
to examine the symmetry characteristics and the proposed adaption (of Lemma 4.3.1, Theorem
8.2, and Lemma 3.4.2) from automorphism to generators of automorphisms. As explained in
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Section 3, nodes with more multiplicities in symmetry group are more critical for the network
robustness. The 101-node network of Figure 3.2.a has 1.27 × 1020 automorphisms. According
to Table 1, this can be considered as a medium cardinality for the size of automorphism group as
there are networks with 10152 automorphisms in the Table 3.1. Since computing and sweeping
over these large sets of automorphism groups is computationally inefficient, we implement the
proposed adaption of this chapter, presented in Lemma 4.3.1, Theorem 8.2, and Lemma 3.4.2,
in order to investigate the symmetry characteristics of the network and its impact on the network
robustness.

Figure 3.2: Four networks with (a) 101 nodes, (b) 273 nodes, (c) 332 nodes, and (d) 47 nodes

The set of generators of automorphism of the network of Figure 3.2.a are computed in
Sage and, unlike the automorphism group, its size is small and is equal to 53. The full set
of generators of automorphisms of this network is presented in Table 2, row 2. The number
of required driver nodes can be attained by ECM explained in Section 2.3. The set of essential
driver nodes for full controllability is attained in MATLAB and a big portion of nodes, 81 nodes
which is approximately %81 percent of all nodes, are selected as drive nodes. This set of nodes
are presented in Table 2, row 4 and also indicated in Figure 3.3 with green rings.

To investigate the robustness of controllability in case of failure in a network critical ele-
ment, first, we determine the set of critical nodes in terms of their impact on the cardinality of
the symmetry group. Since the cardinality of Aut(G) for the network of Figure 3.3 is too big,
we need to implement the proposed approach of this study for finding the most critical nodes.
To this end, the corresponding generator set is calculated via Python programming in Sage and
53 generators are attained (see Table 2, row 2).

The set of nodes with maximum multiplicity in the Gen(G) is computed in Sage and the
results are presented in Table 2, row 5. As indicated, there are 42 nodes which are repeated 5
times (maximum multiplicity) in Gen(G). There are also 28 nodes with multiplicity 4 (Table
2, row 6), 16 nodes with multiplicity 3 (Table 2, row 7), 12 nodes with multiplicity 2 (Table 2,
row 8), and 2 nodes with multiplicity 1 (Table 2, row 9). These sets of nodes are illustrated in
Figure 3.3 with distinct colours.

Now, we compare the characteristics of the network symmetry after failure (removing) of
nodes with different multiplicity. The cardinality of automorphism group of the modified net-
work after removing a node is computed for nodes with different multiplicities in Gen(G) and
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the average cardinality of Aut(G) is computed and the results are presented in Table 3, row 3.
As can be seen, removing the nodes with more multiplicities is more effective in reducing the
cardinality of Aut(G). The average cardinality of Aut(G) has reduced to 1.4× 1018, 1.8× 1018,
2.3 × 1018, 1.3 × 1019, and 1.5 × 1019 after removing a node with multiplicities 5, 4, 3, 2,
and 1, respectively. This entail a significant reduction of %98.9 in |Aut(G)| when we remove
a node with 5 times repetitions in the Gen(G). However, this dramatic change does not reflect
on the number of required driver nodes after removing a nodes. As indicated in Table 3, row
5, the number of required driver nodes has remained unchanged (equal to 81) after removing a
node with different multiplicities. This means that the cardinality of automorphism group, as
a quantified measure of symmetry, is not consistent with the controllability requirement of the
network. We investigate this proportional relation between symmetry level and the number of
required driver nodes via the proposed index of symmetry in Equation (3.22).

The set of orbits of automorphisms for the network of Figure 3.3 is computed in Sage and
7 orbits are identified as listed in Table 3.2, row 3. Computing (3.22) leads to SO = 4.22

which, compared to other networks in Table I, is considered a high value of symmetry. The
number of nodes in the 7 orbits are 8, 32, 56, 2, 1, 1, and 1. The symmetry index has reduced
to 3.76 for any node removal. This leads to the fixed ratio index equal to %88.89 after node
removal. Comparing to the size of automorphism groups, this index indicates a significant lower
reduction in the symmetry level which can explain why there is no reduction in the number of
required driver nodes. This is in line with high robustness of strongly symmetric networks. The
significance of index (3.22) could be better realized for less symmetric networks like 273-node
network.

The 273-node network has the orbital symmetry index equal to SO = 0.1221 which is con-
sidered a very less symmetric network compared to 101-node network. Modifying this network
by removing nodes with multiplicities 2 (maximum multiplicity) and 1 has resulted to the or-
bital symmetry index equal to 0.1195 and 0.1202 which means %2.13 and %1.56 reduction
in the symmetry index. This reduction is in line with the reduction in the average number of
required driver nodes from 16 driver nodes for original network to 13.7 and 14.6 driver nodes
after removing a node with multiplicities 2 and 1, respectively. As expected, removing a node
with more multiplicity in Gen(G) is more effective in reducing the number of required driver
nodes attained by ECM. This consistence between the number of required driver nodes and the
network symmetry level highlights the importance of (3.22) in capturing the symmetry impact
on the robustness of controllability.

It should be noted that although reducing the symmetry index can reduce the number of
required driver nodes but the configuration of these driver nodes after node removal might
totally differ from their original configuration. Thus, after network manipulation, it might not
be controllable by the fixed set of initial driver nodes.
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Table 3.2: The symmetry specifications of 101-node network including the elements of gener-
ator set Gen(G), orbits of automorphisms |O|, the set of driver nodes Nd, set of nodes in Mi

where i is the multiplicity of nodes in the generator set denoted, cardinality of the set of nodes
with maximum multiplicity |Mmax|, and the symmetry index SO(G) associated with the impact
of orbits of automorphisms.

Param. Elements of the symmetry parameter

Gen(G)

(89,98), (79,97), (78,87), (69,96), (68,86), (67,76), (59,95), (58,85), (57,75), (56,65), (49,94), (48,84),
(47,74), (46,64), (45,54), (39,93), (38,83), (37,73), (36,63), (35,53), (34,43), (29,92), (28,82), (27,72),
(26,62), (25,52), (24,42), (23,32), (19,91), (18,81), (17,71), (16,61), (15,51), (14,41), (13,31), (12,21),
(9,90), (8,9) (18,19) (28,29) (38,39) (48,49) (58,59) (68,69) (78,79) (80,90) (81,91) (82,92) (83,93)
(84,94) (85,95) (86,96) (87,97) (88,99), (8,80), (7,8) (17,18) (27,28) (37,38) (47,48) (57,58) (67,68)
(70,80) (71,81) (72,82) (73,83) (74,84) (75,85) (76,86) (77,88) (79,89) (97,98), (7,70), (6,7) (16,17)
(26,27) (36,37) (46,47) (56,57) (60,70) (61,71) (62,72) (63,73) (64,74) (65,75) (66,77) (68,78) (69,79)
(86,87) (96,97), (6,60), (5,6) (15,16) (25,26) (35,36) (45,46) (50,60) (51,61) (52,62) (53,63) (54,64)
(55,66) (57,67) (58,68) (59,69) (75,76) (85,86) (95,96), (5,50), (4,5) (14,15) (24,25) (34,35) (40,50)
(41,51) (42,52) (43,53) (44,55) (46,56) (47,57) (48,58) (49,59) (64,65) (74,75) (84,85) (94,95), (4,40),
(3,4) (13,14) (23,24) (30,40) (31,41) (32,42) (33,44) (35,45) (36,46) (37,47) (38,48) (39,49) (53,54)
(63,64) (73,74) (83,84) (93,94), (3,30), (2,3) (12,13) (20,30) (21,31) (22,33) (24,34) (25,35) (26,36)
(27,37) (28,38) (29,39) (42,43) (52,53) (62,63) (72,73) (82,83) (92,93), (2,20), (1,2) (10,20) (11,22)
(13,23) (14,24) (15,25) (16,26) (17,27) (18,28) (19,29) (31,32) (41,42) (51,52) (61,62) (71,72) (81,82)
(91,92), (1,10), (0,11) (2,12) (3,13) (4,14) (5,15) (6,16) (7,17) (8,18) (9,19) (20,21) (30,31) (40,41)
(50,51) (60,61) (70,71) (80,81) (90,91)

O(G)

[0, 11, 22, 33, 44, 55, 66, 77, 88, 99], [1, 2, 10, 3, 20, 12, 4, 30, 13, 21, 5, 40, 14, 31, 23, 6, 50, 15, 41,
24, 32, 7, 60, 16, 51, 25, 42, 34, 8, 70, 17, 61, 26, 52, 35, 43, 9, 80, 18, 71, 27, 62, 36, 53, 45, 90, 19,
81, 28, 72, 37, 63, 46, 54, 91, 29, 82, 38, 73, 47, 64, 56, 92, 39, 83, 48, 74, 57, 65, 93, 49, 84, 58, 75,
67, 94, 59, 85, 68, 76, 95, 69, 86, 78, 96, 79, 87, 97, 89, 98], [100]

Nd

5, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30,31,32,33,35,36,37,38,39, 40,
42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61,62,63,64,65, 66, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101

v ∈M5

13, 14, 15, 16, 17, 18, 24, 25, 26, 27, 28, 31, 35, 36, 37, 38, 41, 42, 46, 47, 48, 51, 52, 53, 57, 58, 61,
62, 63, 64, 68, 71, 72, 73 , 74 , 75 , 81 , 82 , 83 , 84 , 85 , 86

v ∈M4 2 ,3 ,4 ,5 ,6 ,7 ,8 ,19 ,20 ,29 ,30 ,39 ,40 ,49 ,50 ,59 ,60 ,69 ,70 ,79 ,80 ,91 ,92 ,93 ,94 ,95 ,96 ,97
v ∈M3 9 , 12 , 21 , 23 , 32 , 34 , 43 , 45 , 54 , 56 , 65 , 67 , 76 , 78 , 87 , 90
v ∈M2 1 ,10 ,11 ,22 ,33 ,44 ,55 ,66 ,77 ,88 ,89 ,98
v ∈M1 0, 99

3.5.1 Discussing the results

Equation (3.22), as the proposed measure of symmetry impact on the number of required driver
nodes, captures the importance of orbits with bigger sizes. According to Table 1, the 332-node
network of Figure 3.2.c with 276 orbits has a small SO equal to 0.30. This is because the sizes of
majority of 276 orbits are 1 and, in practice, have no contribution in characterizing the network’s
symmetry strength. In contrast, the 101-node network of Figure 3.2.a has only 7 orbits but it
has a high symmetry index equal to 4.44 because the sizes of orbits are big (as listed in Table 2.
row 3). The importance of the index (3.22) is more realizable when we also compare the size of
automorphism groups of these two networks. According to Table 1, the size of automorphism
group of 273-node network is 19,685 times bigger than 101 node network.
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Table 3.3: The impact of removing the nodes with different multiplicities (indicated by Mi

where i represents the multiplicity of the deleted nodes) on the symmetry indexes and the num-
ber of required driver nodes

Network name 101-node network 273-node network

Parameter G M5 M4 M3 M2 M1 G M2 M1

|Aut(G)| - 1.4e18 1.8e18 2.3e18 1.3e19 1.5e19 - 3, 545, 168 9, 437, 184

ρaut - %1.10 %1.42 %1.81 %10.24 %11.81 - %12.6 %33.70

Nd 81 81 81 81 81 81 16 13.7 14.6
SO - 3.76 3.76 3.76 3.76 3.76 - 0.1195 0.1202

%
Sav
O

SO
× 100 - %88.89 %88.89 %88.89 %88.89 %88.89 - %97.87 %98.44

Figure 3.3: 101-node system, driver nodes (green rings), nodes with maximum multiplicity
Mmax = 96 (red circles), nodes withMmax = 72 (orange circles)
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One interesting result that can be observed in most networks is that the majority of driver
nodes are also nodes with maximum multiplicity in Aut(G) (or Gen(G)). This is the case, in
particular, in networks with less symmetry than 101-node network. In fact, high symmetric
networks necessitate to pin a big portion of nodes as driver node and, as such, it is some-
times unclear to realize this impact of symmetry on the selection of driver nodes. However, for
networks with lower symmetry, such as the 273-node network, this is very common that the
majority of driver nodes attained by ECM belong to the symmetry groups. To illustrate this, the
273-node network of Figure 3.2.b with 273 nodes and 1475 edges are examined. The symmetry
characteristics of this network are attained in Sage and presented in Table 1, row 3. Implement-
ing ECM (explained in Section 2.3) has resulted in 16 driver nodes. Interestingly, 10 out of 16

driver nodes belong to the set of generator set. Considering only 46 nodes are in the generator
set, this means that the nodes in symmetry group are crucial for the network controllability.

Another interesting observation is that, unlike the majority of network studies which em-
phasise on the impact of nodes with high centrality or high degree distribution, nodes with low
degree distribution may also have significant influence on network performance. As illustrated
in Figures 3.3, the degree of some nodes in symmetry group is 2 while there are nodes that have
higher degree but are not selected as driver nodes. For example, node 66 in Figure 3.3 with
degree 19 is neither a driver node nor within the symmetry group.

The impact of symmetry on the robustness of controllability (number of driver nodes) de-
pends on the symmetry level of the network. The highly symmetric networks are very robust
against node removal but, at the same time, necessitate that a high portion of nodes be driver
node. It can be concluded that symmetry reinforces the robustness of controllability meaning a
network with higher symmetry index of Equation (our index) is controllable with, naturally, a
fixed and bigger set of driver nodes. Moreover, the highly symmetric networks are more tolerant
against node failure.

Although the number of required driver nodes can be changed by the variations in the cardi-
nality of symmetry groups, the energy cost of control is not proportionally impacted. A bigger
control signal might be required when a lower number of driver nodes are needed. A future
research focus can be on a trade off between the number of driver nodes and energy cost of
control.

3.6 Conclusion

This study highlights the importance of the inherent networks’ symmetry in addressing three
issues related to the network robustness. The robustness of controllability is guaranteed under
satisfying some conditions related to the properties of the underlying symmetry group while
selecting the set of driver nodes. By incorporating the concept of controlled invariant subspace
and determining set, a new necessary and sufficient condition for disturbance decoupling is
presented while guaranteeing a necessary condition for CN controllability. Finally, the critical
nodes and edges of the network, in terms of their impact on symmetry and in turn, robustness,
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are identified and the network robustness against node failure is investigated.
The proposed approach in this study is unique as it leverages on an inherent feature of

complex networks, i.e., symmetry, to describe novel notions of robustness. The study shows
that graph symmetry is independent of network size, order, node degree distribution or any
measure of centrality. Additionally, the findings of this chapter emphasise on the necessity of
considering network symmetry in the pre-design and development of networks.
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Chapter 4

Cyber-Security Constrained Placement of
FACTS Devices in Power Networks from a
Novel Topological Perspective

4.1 Overview

Optimal placement of flexible AC transmission systems (FACTS) devices and the cyber-security
of associated data exchange are crucial for the controllability of wide area power networks. The
placement of FACTS devices is studied in this chapter from a novel graph theoretic perspec-
tive, which unlike the existing approaches, purely relies on topological characteristics of the
underlying physical graphs of power networks. To this end, the maximum matching principle
(MMP) is used to find the set of required FACTS devices for the grid controllability. In addition,
the cyber-security of the most critical data related to the FACTS controllers is guaranteed by
introducing the concept of moderated-k-security where k is a measure of data obscurity from
the adversary perspective. The idea of moderated-k-symmetry is proposed to facilitate the ar-
rangement of the published cyber graph based on a permutation of nodes within the symmetry
group of the grid, called generator of automorphism. It is then verified that the published cyber-
graph can significantly obscure the data exchange over the cyber graph for adversaries. Finally,
a similarity is observed and demonstrated between the set of critical nodes attained from the
symmetry analysis and the solution of the FACTS devices placement that further highlights the
importance of symmetry for the analysis and design of complex power networks. Detailed sim-
ulations are applied to three power networks and analyzed to demonstrate the performance and
eligibility of the proposed methods and results1.

1This chapter is published in IEEE Access
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Nomenclature

Abbreviations

PBH Popov-Belevitch-Hautus.

CEA Community energy association.

CN Complex network.

CN Complex network.

CN Complex network.

CS Charging station.

ECM Exact controllability method.

ECM Exact controllability method.

EV Electric vehicle.

FACTS Flexible AC transmission systems.

lcm The lowest common multiple.

LQR Linear quadratic regulator.

LTI Linear time invariant.

MMP Maximum matching principle.

PCS Portable charging station.

PEV Plug-in electric vehicle.

PID proportional integrative derivative.

VSC Voltage-source converter.

WAC Wide area controlled.

Constants
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ε Identity (or trivial) permutation.

ε Identity (or trivial) permutation.

c A complex number.

c A complex number.

Q,R, Y Arbitrary weights.

Parameters

αsh Angle of shunt VSC.

β The bus voltage angles.

δ A permutation.

δi Maximum algebraic multiplicity of λ(i).

δi Maximum algebraic multiplicity of λ(i).

δi The angle of voltage of node i.

γsh Conversion ratio signal.

λM Maximum algebraic multiplicity of teh eigenvalue λM .

λM Maximum algebraic multiplicity of the eigenvalue λM .

λi The ith eigenvalue.

λi The ith eigenvalue.

ν A point (node) of permutation.

σ An automorphism or a Permutation.

σ Permutation.

σ Permutation.

A Adjacency matrix.

A Adjacency matrix.

A,A Adjacency matrix.

D Degree matrix.

D The degree matrix.
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E The set of edges.

Ec The set of critical edges.

F The determining set attained from Gen(F).

G Graph.

G Graph.

G Graph.

Gk The released graph.

J The incidence vector of driver nodes.

K Optimal feedback gain vector.

L Laplacian matrix.

L Laplacian matrix.

L Laplacian matrix.

S Determining set.

S Determining set.

V Controlled invariant subspace.

V The set of nodes.

Vc The set of critical nodes.

Aut(G) Automorphism group.

Aut(G) Automorphism group.

Aut(G) Automorphism group.

dimVλi Dimension of eigenspace associated with λ(i).

dimVλi Dimension of eigenspace associated with λ(i).

Fix(σ) The set of fixed nodes by permutation.

Gen(G) Generators of automorphism.

Gen(G) Generators of automorphism.

Gen(G) Generators of automorphism.

86



Gendis(G) Set of disjoint generators.

Move(σ) The set of moved nodes by permutation.

Move(σ) The set of moved nodes by permutation.

MovGenvl
the set of generators mapping vl.

µ(λi) Maximum geometric multiplicity of λ(i).

µ(λi) Maximum geometric multiplicity of λ(i).

ρO The orbital ratio of symmetry after node removal.

ρaut The ratio of symmetry after node removal.

σ A permutation.

ε Identity (or trivial) permutation.

ϕ A generator of automorphism.

ζ A permutation.

ζdis , δdis Disjoint generators.

A State matrix.

aij Element of A.

aij Weight of ijth element of A.

B Input matrix.

B Input matrix.

B Input matrix.

C Capacitor.

C Size (or capacity) of charging station [kW].

E The set of edges.

E The set of edges.

F (xi) the individual node’s dynamical equation.

FGen
vl The set of generators that fixes vl.

Idc Capacitor current.
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Ish Shunt reactive current setpoint.

I∗sh Reactive current of the outer loop.

ImC Image of C.

K The feedback gain.

k The number of distinct mappings.

km Conversion ration between the voltage of AC and DC sides.

ker L Kernel or null space of L.

lij The (i, j)th element of the Laplacian matrix.

M A matching.

m Index of a permutation.

MGen
vl The set of generators that moves vl.

ND Number of required driver nodes.

ND Number of required driver nodes.

P The solution of Riccati equation.

p Multiplicity of critical node in Gen(G).

Pac Active power on AC side.

Pij Active power flow between nodes i and j.

q The size of disjoint generators.

Qij Reactive power flow between nodes i and j.

r∗G Normalized measure of network redundancy.

rG Network redundancy.

S Determining set.

s(t) The desired state.

SO(G) Symmetry index based on orbits.

T Waiting time [min].

u Control signal (charging supply).
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u Control signal.

u Control signal.

V The set of nodes.

V The set of nodes.

V Voltage.

Vm Voltage magnitude.

Vdc Capacitor terminal voltage.

Vref Setpoint voltage.

w(t) Disturbance.

Z Line impedance.

4.2 Introduction

The imbalance between reactive power at the generating side and the network demand causes
voltage instability. The wide area active compensation devices, collectively known as flexible
AC transmission systems (FACTS) devices ( [1]- [9]) are power electronic based equipment
which play a vital role in enhancing the power system controllability and power flow capability.
The importance of FACTS devices for the grid operation raises serious concerns about the
cyber-security of data exchange over these controllers as the false data injection to one of the
critical FACTS devices can lead to cascading failure in the grid [10]. In this chapter, these two
problems are addressed from a novel topological perspective.

4.2.1 State of the art

The optimal placement of FACTS devices is a common yet important research topic in literature
and has been investigated via various approaches. These include (1) conventional methods (such
as indexing [11], controlling [12], residue analysis [13], numerical optimization [14], sensitiv-
ity [15], and eigenvalue [16]), (2) optimization methods (such as optimal power flow [17], linear
programming [18], dynamic programming [19], mixed integer programming [20], stochastic
load flow [21], and adaptive control law [22]), (3) artificial intelligence techniques (such as
Monte Carlo simulation [23], artificial bee colony [24], artificial neural network [25], symbiotic
organism search algorithm [26], fuzzy systems [27], and particle swarm optimization [28]), (4)
hybrid techniques (such as hybrid of bee colony and neural networks [29], hybrid of genetic
algorithm and fuzzy systems [30], mixed optimal power flow and particle swarm optimiza-
tion [31], mixed bee colony and optimal power flow [32], and hybrid of fuzzy systems and
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Lyapunov theory [33]), and (5) other approaches (such as energy approach [34], active con-
trol [35], graph search algorithms [36], whale optimization [37], Gray Wolf optimizer [38], salp
swarm optimizer [39], Grasshooper optimization [40], ant lion optimization [41], and spider
monkey optimization [42]).

At the same time, cyber-security has been one of the hot topics related to the management,
operation, and control of power systems [49]- [52]. The reliability of wide area controlled
(WAC) power systems highly depends on the security of the underlying communication net-
works. Information exchange via cyber graph is one of the underpinning platforms of all net-
works including power networks and smart grids that has significant role in grid control and
operation. The interplay between power systems and the underlying communication platforms
raises various security concerns about attacks from adversary agents. Thus the important grid
information such as the data associated with the critical transmission lines, generation units,
and the locations of FACTS devices must be hidden or obscured for adversary agents.

Due to its significant impacts on various aspects of network, graph topology has drawn the
attention of engineering communities including power system community during the last two
decades. The role of network topology is investigated for a few power system problems such
as synchronization [44], flexibility of transmission lines for day-ahead scheduling [45], and the
patterns of attacks to power networks [46]. Recently, graph symmetry, described by automor-
phism groups, has been leveraged in literature to address important network behaviors such
as its controllability [62], robustness [59], and synchronization [47]. It has been verified that
symmetry is an obstruction to controllability [62] meaning that systems with larger number of
automorphisms require more driver nodes to satisfy the network controllability. In contrast,
network robustness can be improved by increasing the network symmetry (or the size of auto-
morphism group) [59]. Also, power networks with high symmetry are more resilient towards
desynchronization propagation [48].

Early applications of symmetry in security emerged in the computer science community
targeting the cyber-security of social networks ( [53]- [55]) by proposing the concepts of k-
symmetry, k-isomorphic, and k-automorphic. In fact, these studies found that releasing a per-
muted graph by an automorphism or isomorphism instead of original cyber graph makes it dif-
ficult for adversary agents to distinguish their targets. During the last decade, the applications
of automorphisms in cyber-security, categorized under the concept of "security via obscurity",
have been the main focus when implementing the symmetry characteristics for investigating
the networks’ cyber-security. However, the use of symmetry gives rise to some practical chal-
lenges. Computing and sweeping over all automorphisms to find the set of nodes with maximum
multiplicities for a large network is a computationally challenging task. Moreover, important
questions arise when identifying priorities for design and protection: Which cyber components,
if compromised, can lead to significant power delivery disruption? What grid topologies are in-
herently robust to classes of cyber attack? Is the information available through advanced cyber
infrastructure worth the increased security risk?

k-isomorphic graphs can be attained only by adding/deleting many edges through some
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modification algorithms (for example see [53]- [56]). Satisfying k-automorphism for a real
world network imposes many modifications on the original network which compromises its cost
efficiency. In k-symmetry it is enough that k distinct mappings exist where for each node the set
of k automorphisms may be different. In practice, it is not computationally efficient to impose
such modifications. Furthermore, for k automorphisms, the same set of k automorphisms have
to be applied to all nodes. This makes k-automorphism an even more difficult property to
satisfy. In k-isomorphism, in addition to the above issues, connections among sub-graphs are
deleted in the released graph. This, in turn, causes the loss of data utility in the published graph.

4.2.2 Research gaps and contributions

Although the placement of FACTS controllers has been widely studied during the last decade,
no study has considered the possible impacts of network topology on the solutions. Moreover,
the majority of the existing approaches have computational issues such as intractable nature of
optimization techniques [17]- [25] which is caused by the lack of an analytical, non-heuristic, or
systematic approach for finding the solution. In addition, the cyber-security of FACTS devices
have not been investigated in literature. In this chapter, an analytical approach for the placement
of FACTS controllers is proposed based on the topological characteristics of the network which
does not suffer from the computational issues. To this end, the maximum matching principle
is implemented which is a mechanism to find the set of unmatched nodes that are considered
as the set of driver nodes which are able to drive the states of system from any initial state
to any desired state in reasonable time (network controllability). The controllability of the
complex networks (CNs) is then attributed to the number of required driver nodes for full state
controllability [43].

In this chapter, the placement of FACTS controllers is constrained to the controllability of
the power grid. By realizing the power grid as a complex network, the grid controllability
is attributed to the number of required driver nodes for full state controllability. The FACTS
controllers act as these driver nodes which can be found by performing the maximum match-
ing principle on the physical graph of power systems. To overcome the computational issues
related to computing the whole set of automorphisms, we adapt a symmetry benchmark accord-
ing to a set of elementary automorphisms, known as generators of automorphisms. It will be
verified that all essential symmetry characteristics can be realized via this set which has a sig-
nificantly smaller size than automorphism groups and it is computationally effective to calculate
and sweep over them. In addition, the graph symmetry is implemented to find the most critical
components of power system in terms of their impact on the network controllability. Nodes
with bigger multiplicities in the automorphism group, or in generators of automorphisms, are
considered as the most critical nodes. The computation of the symmetry groups and the asso-
ciated computation complexity are discussed in details. Throughout simulation, it is observed
that the set of critical nodes identified by symmetry analysis is a subset of unmatched nodes cor-
responding to the locations of FACTS controllers. This overlap further reveals the importance
of symmetry in power network analysis and synthesis.
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This study proposes an approach to secure the critical elements of power networks via ob-
scuring the published graph of the grid and, in turn, reducing the chance of distinguishing and
manipulating the critical data of FACTS devices by adversaries. This has been accomplished
via introducing a new concept, namely moderated-k-security, which provides new necessary
and sufficient conditions for obscuring the network critical data.

The rest of the chapter is organized as follows. In Section 4.3, a topology-based solution to
the placement of FACTS controllers is presented using the maximum matching principle. The
cyber-security of the critical data of the network including the data exchange between FACTS
controllers is addressed in section 4.4 using the concept of symmetry groups. The simulation is
carried out on the 49-bus, 274-bus, and 1, 176-bus systems in section 4.5 and the effectiveness
of the proposed approaches are verified.

4.3 A topological approach to the placement and control of
FACTS devices in power networks

In this section, we look at the placement of FACTS devices from a controllability perspective.
To this end, the problem of FACTS placement is transformed to the problem of finding the
number and locations of the required FACTS devices that can structurally control the system.
First, some preliminaries on graph theory and symmetry are reviewed and then the main result
of this section is presented.

4.3.1 Preliminaries on graph theory and symmetry groups

A graph G is a composition of a set of nodes V and edges E denoted by G(V , E). Two nodes
are adjacent if there is an edge between them. The size and order of G are denoted by |V| and
|E|, respectively. An adjacency matrix A is a square |V| × |V| whose elements aij indicate
the connection between every pair of nodes within the graph. aij = 1 if there is an edge
between nodes i and j, otherwise aij = 0. The degree matrix D is a diagonal matrix whose
diagonal elements dii is equal to the number of nodes connected via an edge to node i. The
Laplacican matrix L is defined as L = D−A. A permutation σ of a set of ordered nodes V is a
rearrangement of its members into a sequence. The order of σ is the smallest positive integer m
such that σm = ε where ε is the identity (also known as trivial) permutation. The composition
of two permutations σ1 and σ2, denoted by σ1 ◦ σ2 is the point-wise product of them. If a node
is rearranged by a permutation it is called a moved node by that permutation, otherwise it is
a fixed node. The set of all permutations that rearrange a node vl is denoted by Movvl . Two
permutations σ1 and σ2 are disjoint if each moved node by σ1 is fixed by σ2, or equivalently,
every moved node by σ2 is fixed by σ1, otherwise, σ1 and σ2 are joint permutations.

Proposition 4.3.1. If a node is rearranged by a permutation σ on G, it can not be fixed by the
composition of σ and its disjoint permutations on G.
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Proposition 4.3.2. If a node is fixed by a set of disjoint permutations, it can not be moved by
the compositions of these disjoint permutations.

Automorphism group is a quantified notion of symmetry. Under the act of an automorphism,
a graph can be mapped to itself without changing the graph adjacency or Laplacian matrices.
It can be mathematically described as a permutation σ for which {i, j} ∈ E(G) if and only if
σ(i), σ(j) ∈ E(G). The set of all automorphisms of G and its size are denoted by Aut(G) and
|Aut(G)|. Automorphism groups can be built up from a set of elementary automorphisms called
generators of automorphisms Gen(G) (See Appendix A). Once the whole set of generators are
determined, the automorphism group can be constructed from the compositions of all generators
and automorphisms of order m up to generating unique permutations. Throughout this chapter,
σ and ϕ are used to indicate an automorphism and a generator of automorphism, respectively.
The symmetry elements, including Aut(G) and Gen(G), are computed in Sage (System for
Algebra and Geometry Experimentation).

4.3.2 CN Controllability implications for placement of facts devices

The above preliminaries on graph theory and symmetry will be used later in this chapter. Now,
the necessary conditions for controllablity by means of a set of FACTS devices are presented
using the maximum matching principle which can be implemented for finding the number of
required FACTS devices in the next section. The necessary conditions for uncontrollability of
a pair of system matrices (A, B) is related to a the determining set [58] which can be attained
from the symmetry group.

Definition 4.3.1. A subset S of the vertices of a graph G is called a determining set if whenever
g, h ∈ Aut(G) so that g(s) = h(s) for all s ∈ S, then g = h. Equivalently, a subset of nodes of
a graph G is called a determining set S if every automorphism of G can be uniquely determined
by its action on the nodes of S .

Corollary 4.3.1. [62] A necessary condition for controllability of the pair (A(G), B(S)) is
that S is a determining set.

Lemma 4.3.1 adapts the necessary conditions for controllability attained in [62] to the con-
text of power networks where the FACTS controllers act as the so called driver nodes.

Lemma 4.3.1. [58] Assume that the adjacency matrix A of the graph of power network G is
diagonalizable and symmetry preserving. Then the pair of system matrices (A,S), where S and
|S| are the associated determining set and its size, respectively, is uncontrollable if G admits a
nontrivial automorphism σ which fixes the input set S, i.e., σ(i) = i for all i ∈ S.

A straightforward result of the Lemma 4.3.1 is stated in the proposition 4.3.3.

Proposition 4.3.3. The necessary condition for controllability of (A,S) is that for all σi ∈
Aut(G) there is at least one node vl where vl ∈ Mov(Aut(G)).
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The above proposition simply means that at least one moved node of each automorphism
must belong to the determining set S in order to satisfy the controllability of (A,S). Although
Lemma 4.3.1 or Proposition 4.3.3 can theoretically be used to examine the controllability of
power networks, in practice, checking the whole set of automorphisms for medium and large
networks is not computationally effective. In [59], the size of automorphism group of US power
grid is computed which is equal to 5.1851 × 10152. Clearly, this is a big computation burden
to calculate the determining set S by computing all automorphisms and sweeping over them.
In contrast, if we attain the determining set from the generators of automorphisms, which is
significantly a smaller set than automorphism group, then the determining set can be effectively
computed using the conventional processing tools.

Lemma 4.3.2. Assume that A is diagonalizable and symmetry preserving, F is a determining
set (for which if the generators of automorphisms ϕ1, ϕ2 ∈ Gen(G) so that ϕ1(f) = ϕ2(f) for
all f ∈ F then ϕ1 = ϕ2), and J is the set of all possible unique compositions of generators
of order m with at least one joint node. The pair of system matrices (A,F) is uncontrollable if
there exists at least one generator of automorphism ϕj , where ϕj 6= ε, for which ϕj(i) = i for
all i ∈ S. Moreover, the necessary conditions for controllability of the power system using the
FACTS devices corresponding to the nodes in F are

1. ∀JJ , J = 1, ..., |J |, i = 1, ..., |F|, F(i) 6= j where j is a joint node of JJ ,

2. If ∀vl ∈ ϕg ⇒ vl is a joint node, then F(vl) 6= vl,

3. ∀i ∈ F ⇒ ϕg(i) 6= i where g = 1, ..., h and h = |Gen(G)|.

Proof. Using the proof by contradiction, we assume that if there is a generator ϕj for which
ϕg(i) = i for all i ∈ S then the pair (A,F) is controllable. This means

∃σ, σ ∈ Aut(G) & σ(i) = i

since all ϕ ∈ Aut(G). This contradicts the condition of Lemma 4.3.1. For the second part of
the proof, we have to verify that the determining set or the locations of FACTS devices attained
in F must satisfy the conditions 1-3. The composition of joint generators may fix an unfixed
node by one or some of them. Condition 1 thus excludes the joint nodes from F as it might
be fixed in a composition and does not emerge in the resulted automorphisms. Hence, another
node in those generators containing joint nodes must be included in F . On the other hand,
if all moved nodes of a generator are joint nodes, then all nodes must be included in F , i.e.,
∀vl ∈ ϕg, F(vl) 6= vl, as some of these nodes might be fixed by the composition (condition
2). Condition 3 considers the case where the composition is a product of disjoint generators. In
this case, selecting one node from each generator will generate a set of nodes that necessarily
satisfies the condition of being a determining set for the corresponding set of automorphisms.
This is because the composition of disjoint generators does not fix a moved node by each of
generators. This verifies that S ⊂ F which means the determining set attained from generator
set contains all moved nodes by S.
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Lemma 4.3.2 facilitates using generators of automorphisms instead of automorphism group
in order to find the determining set. According to Lemma 4.3.2, the whole set of FACTS devices
can be attained effectively from the set of generators of automorphisms. However, Lemma 4.3.2
only provides the necessary conditions for controllability. To attain the sufficient condition for
controllability of power systems, we use the maximum matching principle.

Definition 4.3.2. A matching, M , of G is a subset of edges of E such that no node in V is
adjacent to more than one edge in M , or intuitively, no two edges in M share a common node.
A matching M is called maximum matching if for any other matching M ′, |M | ≥ |M ′|.

In [57], the CN controllability is addressed by maximum matching principle where the set
of all unmatched nodes are considered as driver nodes. In our problem setup, the set of FACTS
devices can be considered as the set of required driver nodes for full controllability of power
network. Once the maximum matching algorithm is implemented, all unmatched nodes must
be considered as the locations of FACTS devices.

Using the maximum matching principle, the set of required FACTS devices for full control-
lability of power network can be attained. The simulation results on 49-bus and 274-bus systems
in section IV confirm the effectiveness of using maximum matching principle for the placement
of FACTS devices. Lemma 4.3.2 is also assessed in the simulations where it is observed that the
number and locations of FACTS devices attained from MMP and Lemma 4.3.2 are very similar.

4.3.3 Modeling of the shunt FACTS devices in power networks

Once the number and locations of the required FACTS devices are determined, a dynamic con-
trol strategy can be implemented to improve the power flow capabilities. Note that there are
various types of FACTS devices which we do not intend to explore as the main focus of this
chapter is on the proposed approaches for placement of FACTS devices (Section 4.3) and se-
curing them (Section 4.4) from the novel topological perspectives.

The power flow equations can be written as

Pij =
ViVj
Xij

sin(δi − δj) (4.1)

Qij =
1

Xij

(V 2
i − ViVjcos(δi − δj)) (4.2)

where Vi and Vj are the voltage magnitudes at buses i and j, Xij is the reactance of the line
between buses i and j, and δi − δj is the angle difference between phasor voltages Vi and
Vj . We have used the shunt voltage-source converter (VSC) FACTS devices in two control
modes: voltage magnitude control mode and var control mode. The dynamic model of a shunt
VSC FACTS devices is shown in Figure 4.1.a and its balanced positive sequence model is
shown in Figure 4.1.b where Vi, i = 1, 2, 3 is the bus voltage, and Z1 and Z2 are the line
impedances. Also, γsh and αsh are conversion ratio signal to control the shunt converter voltage
magnitude and the angle of the shunt VSC measured with respect to β of the shunt bus voltage
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phasor V . The dynamic model of shunt VSC with PID (proportional integrative derivative)
controller in voltage magnitude mode and VAR control mode are shown in Figure 4.2.a and
4.2.b, respectively. The voltage magnitude Vm and the angle of the VSC voltage are determined

Figure 4.1: Shunt VSC converter. (a) The schematic diagram, (b) The balanced positive-
sequence model.

Figure 4.2: Schematic control diagram of a shunt VSC in (a) voltage control mode, (b) VAR
control mode.

from the control signal generated by a PID controller. In voltage magnitude control mode,
by fixing kdc to a constant, the VSC voltage magnitude changes in response to changing the
capacitor voltage. The bus voltage V1 is regulated compared to setpoint voltage Vref using outer
control loop consisting an integrator with a gain which results in a droop α. The outer loop
generates a reactive current I∗sh which acts as the setpoint for the inner control loop. Finally, the
shunt reactive current I∗sh is compared to real Ish via the inner PID loop and a low-pass filter.
The VSC voltage angle α can then be computed from the bus voltage angle β. In VAR control
mode, the shunt reactive current setpoint Ish is directly determined (without an outer loop) and
compared with real Ish to trigger the PID controller.

The inserted voltage by VSCs can be approximated as

Vm = kmVdce
j(αsh+β) (4.3)

96



where Vdc and km are the capacitor terminal voltage and the conversion ratio between the dc-
side and ac-side voltages, respectively. From Figure 4.1.b, the line current Is can be written
as

Ish =
Vm − V1

jXt

(4.4)

and the active power that can be injected to the system is

Psh = −V1Vmsin(β − αsh)
Xt

(4.5)

and the reactive power injected to the system is equal to

Qsh =
V1(Vmcos(β − αsh)− V1)

Xt

. (4.6)

When the system is oscillating, the control signal is not zero and the capacitor C will exchange
reactive power with the power system which results in increasing or decreasing the capacitor
voltage Vdc following the equation

C
dVdc
dt

= Idc (4.7)

where Idc is the capacitor current. After transition time, the control signal converges to zero
and, as a result, the energy exchange between the capacitor and power system converges to zero.
With an ideal VSC model, the active power on its ac and dc sides are equal (Pac = VdcIdc). Thus
we can write

dVdc
dt

=
1

CVdc
Pac. (4.8)

The dynamic model of power system can then be constructed by interfacing the dynamic model
of FACTS device with other network components attained from the Kirchhoff electrical equa-
tions in order to analyze the power flow.

4.4 The moderated k-security approach for obscuring the crit-
ical network data for adversaries

In this section, the cyber-security of critical elements of power grid is addressed using a graph
theoretic property, i.e., graph symmetry. In discrete algebra, the graph symmetry is quantified
using the automorphism group. It is verified that graph symmetry has a significant role in deter-
mining the controllability of the underlying network [62]. In fact, symmetry is an obstruction
to controllability. The higher the number of automorphisms, the more symmetric is the network
and, in turn, more driver nodes are required for full state controllability. These driver nodes, in
the context of power networks, are the well known FACTS devices ( [8]- [9], [16], and [18]) or
wide area controllers ( [65]- [66]).
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4.4.1 Definitions and the proposed theorems

A notion of symmetry, k-symmetry, is leveraged here to make the critical nodes/edges indistin-
guishable by adversary agents. Necessary and sufficient conditions for security are attained and
a novel algorithm is proposed for cyber-security constrained placement of FACTS devices. The
bigger the symmetry group, the more symmetric the underlying graph is. On the other hand,
symmetry is an obstruction to controllability [62] meaning a bigger number of FACTS devices
are required when the network is more symmetric. We compute the symmetry index (Aut(G)

or Gen(G)) before and after removing a node possessing a FACTS device as a measure of how
critical is this node. This index is computed in simulation section for 49-bus and 1, 176-bus
systems.

Now, we leverage on the concept of k-security to obscure the identification of critical ele-
ments of power grid.

Definition 4.4.1. [56] Let Gk be the released version of G. The set of critical nodes Vc of G is
k-secure if the adversary cannot distinguish it from Gk with a probability greater than 1/k. The
set of critical edges Ec of G is k-secure if the adversary cannot distinguish them from Gk with a
probability greater than 1/k.

Now, we introduce the concept of moderated-k-symmetry which will be used in Theorem
4.4.1 to adapt an approach for securing the most critical elements of the power grid.

Definition 4.4.2. A graph G satisfies moderated-k-symmetry if for the finite set of nodes vl there
exists k − 1 distinct automorphisms σi,1(vl), σi,2(vl), ..., σi,k(vl) that satisfy

(i) σi,m(vl) 6= σi,n(vl) if m 6= n, and

(ii) σi(vl) 6= vl for l = 1, ..., n.

Theorem 4.4.1. The critical nodes/edges of G are k-secure if G satisfies moderated-k-security
for the finite set of nodes vc = {v1, ..., vi}.

Proof. If G is moderated-k-symmetric, then for every critical node vc there are k − l distinct
mappings that preserve the network structure after permuting vc. For any accessible structural
information Gk for the adversary targeting node vc there are at least k distinct nodes that act the
same structural role as vc. Hence, the adversary cannot distinguish vc with a probability greater
than 1/k. Subsequently, for a successful attack on an edge, the adversary needs to identify
the end nodes of the targeted edge. Hence the probability of identifying an edge is equal to
1/k × 1/k = 1/k2.

Theorem 8.2 can be used to secure the cyber graph of the power network by releasing a
permuted graph to the public. However, the approach is not optimal as usually not all critical
nodes are permuted by the k number of automorphisms in Aut(G). We have improved this
approach by relating the concept of moderated-k-security to the case where only the critical
nodes are needed to be secured. Moreover, the automorphism groups typically have a gigantic
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size for medium and large networks [59] and it is not possible to compute and sweep over all
of them. Theorem 4.4.2 resolves these issues by leveraging on the symmetric characteristics of
generators of automorphisms.

Theorem 4.4.2. Assume that the adjacency matrix of G is diagonalizable and symmetry pre-
serving, b is the indicator vector associated to the set F containing |F| number of FACTS
devices, and GP is the published network to the public. Having access to GP , the adversary
cannot distinguish the critical nodes and edges of the network with the probabilities greater
than 1/(p(1 + q)− 1) and 1/(p(1 + q)− 1)2, respectively, where p and q are the multiplicities
of the critical node/s in Gen(G) and the size of disjoint generators denoted by |Gendis(G)|.

Proof. Assume A′ is the adjacency matrix associated with GP . Since GP is the permuted graph
of G under an automorphism σl, and σl ∈ Aut(G), we can write A′ = A which simply means
that the adjacency matrix of the published graph is preserved under mapping that generates G.
Given FGen

vl
, MGen

vl
, and F. ◦M as the set of generators that fixes vl, the set of generators that

moves vl, and the pointwise composition of FGen
vl

and MGen
vl

, respectively, we can write

|MAut
vl
| ≥ |MGen

vl
|+ |MF.◦M

vl
|. (4.9)

The above equation can be written as

|MAut
vl
| ≥ p+ p.q. (4.10)

Therefore the multiplicity of critical nodes in Gen(GP ) is at least p(1 + q). Then the immediate
result, according to Theorem 4.4.1, is that the network is moderated-k-secure where k = p(1 +

q)− 1.

4.4.2 Proposed algorithm for locating and securing critical FACTS de-
vices

Associating the cyber-security to p and q in Theorem 4.4.2 guarantees conservative bounds on
the probabilities of recognizing the critical elements. The reason for this is that conditions of
Theorem 4.4.2 are derived assuming that all compositions of automorphisms moving a crit-
ical node with joint generators and mediators will fix the joint nodes, which, in practice, is
a very rare possibility. In fact, since the size of automorphism group is very big compared
with generator set, the probabilities of recognizing the critical nodes and edges are far less than
1/(p(1+q)−1) and 1/(p(1+q)−1)2, respectively. This means that the probability of recogniz-
ing the critical elements is lower than the bounds guaranteed by Theorem 4.4.2. The proposed
symmetry-based approach for identifying and protecting the critical data of the cyber networks
is summarized in the Algorithm 2.
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Algorithm 2 An algorithm for finding and securing the critical FACTS devices
Input: The graph G of the power network
Output: The number and locations of FACTS devices and the cyber-secured topology of the

power network
1: Perform the maximum matching procedure on the graph of power network to attain the set

of unmatched nodes.
2: Assign a FACTS device to each unmatched node.
3: Compute the adjacency matrix A of the network
4: Compute Gen(G) from A using Sage.
5: Find the set of FACTS devices F with maximum multiplicity in Gen(G).
6: for i=1:|F| do
7: Remove the FACTS device number i.
8: Compute the symmetry index (Aut(G) or Gen(G)) after removing the FACTS device

number i.
9: end for

10: Sort all values of |Aut(G)| or |Gen(G)| attained in steps 6-9 from the highest to the lowest
value in a vector z which will be correspondent to the critical FACTS devices from highest
to the lowest critical device.

11: The lowest amount of |Aut(G)| or |Gen(G)| corresponds to the most critical node identified
in Step 1.

12: Order the critical elements in a vector er from maximum critical to the minimum critical
element.

13: Determine the generator ϕ that moves the most critical nodes.
14: Attain the cyber-secured graph under the act of ϕ attained in Step 13.
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4.4.3 Discussions

In this chapter, the placement of FACTS devices is pursued using the network topology. The
physical parameters of the power systems are then used to analysis the power flow with fixed
FACTS controllers. As the network size increases, the proposed approach is more effective
since the typical network symmetry group is bigger and the nodes with maximum multiplici-
ties in generators of automorphisms are more effective in determining the number of required
FACTS devices. Furthermore, for large symmetry sizes, the associated vast obscurity can be
realized by further reducing the probability of distinguishing the most critical nodes of the grid.
In a similar manner, the proposed approach for identifying the critical nodes can be used to

Table 4.1: Parameters of the modified 49-bus system [67] for power flow analysis: Bus number,
bus voltage magnitude |V | in volts, angle of bus θ, net active power of the bus Pn in MW, and
the net reactive power of the bus Qn in MVar.

Bus |V| θ Pn Qn Bus |V| θ Pn Qn

1 380 0 -35 -12 26 347 -12 -33 -17
2 366 -10 45 12 27 338 -11 127 45
3 372 -5 -39 45 28 358 -9 212 67
4 361 2 -73 -27 29 349 4 -37 -17
5 353 0 -87 -42 30 376 -14 -22 -15
6 383 -1 -63 -28 31 359 -1 -39 -13
7 345 -4 -22 -9 32 366 -10 -47 -19
8 347 -8 -52 -24 33 330 6 237 121
9 369 5 -45 -19 34 369 -9 -78 -33

10 346 -7 -39 -21 35 354 7 -49 -18
11 338 5 -27 -11 36 357 -11 256 79
12 339 -8 -56 -21 37 347 -12 -56 -26
13 339 -5 -37 -14 38 327 -10 -67 -17
14 349 -7 -68 -34 39 337 -12 -44 -15
15 353 -11 -65 -13 40 347 -13 -32 -14
16 345 -8 277 101 41 369 -9 255 98
17 349 6 -55 -23 42 350 -7 -43 -19
18 350 8 284 121 43 352 2 -61 -27
19 354 3 -45 -22 44 357 -7 -27 -13
20 351 -12 -37 -17 45 352 -3 -83 -36
21 334 -11 189 82 46 323 -6 302 143
22 336 -5 -64 -34 47 341 -9 -45 -21
23 354 3 -12 8 48 339 -6 -74 -31
24 337 -11 -43 -19 49 350 -5 -64 -25
25 355 -12 -32 -8

identify the critical edges. We do this by (a) removing the edges with at least one end connected
to a FACTS controller with maximum multiplicity in Gen(G), and (b) following steps 3-12 for
edges instead of FACTS devices.
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A novel advantage of the proposed methodology is that the symmetry concept is inherent
in the graph of the network; therefore, no manipulation is required as we only leverage on
an intrinsic property of the network. The impacts of symmetry on the number and locations
of FACTS devices and their roles in the security of the underlying cyber graph motivate the
consideration of symmetry characteristics of the grid in developing the existing networks or
constructing new networks. Embedding the asymmetrical structures makes the system more
controllable which, in turn, reduces the number of required FACTS devices which leads to
more security realization.

The critical elements of the grid can be identified using the proposed symmetry analysis.
It will be observed in simulations of section IV that these critical nodes are usually the same
nodes that are selected as the locations of FACTS controllers. This is quite interesting as the
locations of FACTS controllers are at the unmatched nodes attained from the maximum match-
ing principle while the critical nodes are attained from a totally different technique, i.e. nodes
with maximum multiplicities in the symmetry groups are identified as critical nodes. This re-
emphasizes the role of symmetry for explaining the emergent behavior of a complex power
network.

The proposed cyber-security approach is implemented after placement of the FACTS de-
vices. It obscures identifying the data associated to FACTS devices by leveraging on the sym-
metry characteristics of the grid. In fact, the proposed security approach only deals with the
cyber graph and has no compromising implication for the physical graph of power network.
Thus the approach does not compromise the original functionalities of the FACTS devices.
However, the placement result can, to some extent, impact on the level of cyber-security. This
is because the symmetry characteristics of the set of FACTS devices might be slightly differ-
ent for different configurations of FACTS devices in the grid. This difference is not significant
since the majority of FACTS devices are placed at the locations of driver nodes identified from
symmetry analysis.

4.5 Implementation of the proposed cyber constrained place-
ment of FACTS controllers on three power networks

The proposed topology-based approach for placement, control, and securing FACTS devices is
implemented for the small 49-bus, moderate 274-bus, and a large 1,176-bus systems of refer-
ences [67], [68], and [69], respectively. For the 274-bus and 1,176 bus systems, the emphasis is
on the effectiveness of the proposed approach for obscuring the critical data for moderate/large
networks.

4.5.1 Simulation and analyses of 49-bus system

The physical graph of the 49-bus system with 59 transmission lines is shown in Figure 4.3.
There are 9 generation buses where all of them are load buses as well. The rest of buses are

102



considered as load buses. The physical parameters of 49-bus system including the voltage
magnitude and angle, active, and reactive power of all 49 busses are presented in Table 4.1.
The line parameters for each of 59 transmission lines are presented in Tables 4.2 where |V |,
θ, R, X and B are the bus voltage magnitude in volts, angle of bus voltage in degree, line
resistance in ohms (Ω), line reactance in ohms (Ω), and capacitive susceptance in siemens (s),
respectively. The conductance is considered zero at all lines. The maximum matching principle

Table 4.2: Parameters of the modified 49-bus system [67] for power flow analysis: line number
as "l : i − j" where l is the line number and i and j are the the nodes at two ends of the line
number l, line resistance R in ohms (Ω), reactance X in ohms (Ω), and capacitive susceptance
B in siemens (s).

line R (Ω) X (Ω) B (s) line R (Ω) X (Ω) B (s)

1:1-2 0.40 0.23 0.213 31:6-33 0.23 0.15 0.034
2:2-3 0.10 0.04 0.124 32:32-33 0.35 0.31 0.042
3:2-4 0.12 0.03 0.154 33:7-34 0.54 0.24 0.635
4:9-14 0.40 0.33 0.163 34:32-34 0.51 0.34 0.122

5:10-14 0.05 0.23 0.017 35:28-35 0.5 0.38 0.210
6:11-14 0.39 0.06 0.213 36:15-36 0.23 0.34 0.045
7:6-15 0.43 0.28 0.143 37:35-36 0.34 0.04 0.030

8:12-15 0.10 0.36 0.013 38:3-37 0.04 0.09 0.027
9:14-15 0.23 0.33 0.123 39:8-37 0.45 0.41 0.037

10:13-16 0.25 0.29 0.114 40:18-37 0.03 0.08 0.028
11:15-16 0.32 0.35 0.026 41:32-37 0.12 0.25 0.033
12:7-17 0.23 0.14 0.118 42:22-38 0.34 0.33 0.015
13:8-17 0.24 0.18 0.216 43:23-38 0.04 0.13 0.035

14:18-19 0.03 0.07 0.028 44:37-38 0.45 0.04 0.035
15:7-20 0.32 0.04 0.238 45:39-40 0.03 0.08 0.043

16:19-21 0.24 0.03 0.018 46:41-14 0.12 0.01 0.123
17:16-22 0.09 0.04 0.118 47:42-33 0.34 0.03 0.145
18:22-23 0.10 0.24 0.219 48:41-42 0.43 0.03 0.136
19:23-24 0.03 0.32 0.173 49:43-41 0.45 0.04 0.120
20:23-25 0.05 0.07 0.133 50:44-42 0.43 0.02 0.040
21:23-26 0.23 0.04 0.115 51:45-21 0.02 0.05 0.179
22:5-28 0.34 0.03 0.266 52:45-22 0.04 0.13 0.220

23:20-28 0.10 0.23 0.326 53:46-45 0.06 0.08 0.040
24:27-28 0.03 0.05 0.246 54:47-46 0.04 0.24 0.254
25:27-29 0.05 0.28 0.166 55:48-46 0.34 0.04 0.074
26:3-30 0.23 0.01 0.226 56:49-23 0.33 0.03 0.135

27:18-30 0.13 0.08 0.216 57:49-39 0.43 0.11 0.255
28:20-31 0.04 0.09 0.173 58:49-45 0.45 0.13 0.130
29:5-32 0.03 0.05 0.046 59:49-46 0.05 0.03 0.220

30:44-28 0.05 0.24

is implemented on the graph of the 49-bus system and the matched edges are illustrated with
red lines in Figure 4.4. Implementing the MMP has resulted in 7 unmatched nodes at locations

103



4, 9, 10, 24, 25, 47 and 48 which, according to the maximum matching principle adapted in
Section III, can be considered as the locations of FACTS devices. Therefore, seven series VSC
FACTS controllers with 100-MVA rating at a voltage of 1 p.u. are located at the determined
locations (Figure 4.4). The power flow transmission is analysed in MATLAB using Newton
Raphson algorithm to solve for a vector of bus voltage magnitudes and angles. The parameters
of PID controller are selected after trial and error. The proportional coefficient is kp = 0.3, the
integrator coefficient is ki = 0.5, and the derivative parameter is kd = 0.05. The power flow
analysis of 49-bus system is performed in MATLAB by interfacing the 7 shunt VSC-FACTS
devices with the network. The network parameters including the line/bus voltage, angle, and
apparent power before and after adding the FACTS controllers are presented in Figure 4.5.

Figure 4.3: The schematic diagram of the modified 49-bus system [67].

The Newton Raphson algorithm has reached the solution after 28 iterations. The bus voltage
magnitudes of all busses before and after using the FACTS controllers are illustrated in Figure
4.5.a. The voltage drop from the voltage base of 1 p.u. has significantly reduced after using
the FACTS controllers. The average magnitude voltage of all 49 buses before and after using
FACTS devices are 0.9233 p.u. and 0.9947 p.u., respectively, that means over %7.7 increase
in the average of bus voltage magnitudes. The active power flow transfer of all 59 lines are
compared and demonstrated in Figures 4.5.b. The sums of active power flow before and after
using FACTS controllers are 3, 052 MW and 3, 153 MW, respectively. Equivalently, there is
101 MW power flow increase with using FACTS controllers. Also the line power losses for all
59 transmission lines before and after placing the FACTS controllers are shown in Figure 4.5.c.

104



Figure 4.4: The duplicated topology of the network shown in Figure 4.3 generated in Sage.
Red nodes are the set of nodes in determining set, red transmission lines are the matched edges
attained from MMP, nodes inside the dashed loops are the set of nodes in Gen(G), and the blue
rings with arrows represent the FACTS controllers which are positioned at the unmatched nodes
attained from MMP.

The sum of power losses has been reduced from 8.65 MW to 7.08 MW indicating an overall
improvement of over %18.

To secure the data exchange between FACTS controllers using the proposed topological
approach, first the cyber graph of the 49-bus system is adapted from its physical graph as shown
in Figure 4.4. The size of Aut(G) for this network is computed in Sage and is equal to 144

(More explanation about computing the symmetry characteristics of the graph is presented in
Appendix A). Although this is not a significantly large number and we can effectively compute
the determining set by sweeping over all automorphisms, but we proceed with Gen(G) instead to
adhere to the proposed approach of this chapter. Later, for larger networks (274-bus and 1, 176-
bus systems), it will be shown that we can not sweep over the corresponding automorphism
groups due to their gigantic sizes. The generators of automorphisms Gen(G) of 49-bus system
are computed in Sage as

Gen(G) = {ε, (1, 4), (9, 10), (10, 11), (24, 25), (47, 48)}

and illustrated inside the dashed loops in Figure 4.4 (See Appendix A for calculating Gen(G)).
The necessary conditions of controllability in Lemma 4.3.2 are tested and the determining set
over Gen(G) is determined as F = {1, 10, 11, 24, 25, 47}. Interestingly, it can be observed that
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Figure 4.5: The power flow analysis of 49-bus system before and after using FACTS controllers.
(a) The average of bus voltage magnitude has increased from 0.9233 p.u. to 0.9947 p.u. that
means %0.0774 p.u. increase. (b) The active power flow, which shows the overall 101 MW (or
%3) addition of active power transfer throughout the transmission lines. (c) The line power loss,
which indicates %18 reduction in power loss in the 59 transmission lines after using FACTS
controllers.

the set of determined locations for FACTS devices attained from MMP is a subset of locations
of generators of automorphisms. This verifies the importance of symmetry in controllability of
power networks.

To investigate the cyber-security of FACTS devices, we first construct the cyber-graph of the
network based on the available physical graph. The cyber graph is illustrated in Figure 4.4. The
cyber-security of the most critical nodes of 49-bus system can be investigated using Theorem
4.4.2. The maximum multiplicity of the critical nodes in Gen(G) is 2, i.e., p = 2, and the number
of disjoint generators is 4. Therefore, by publishing a permuted network instead of the original
network, the probability of the critical nodes and edges being recognized by an adversary is
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Figure 4.6: The MMP performed on the graph of 274-bus system. The unmatched nodes are
considered as the locations of FACTS controllers. For clarification, a portion of matched edges
is magnified on the right side of the figure. In total, 253 out of all 1338 edges are matched edges.

not greater than 1/9 and 1/81, respectively. It should be noted that under this permutation,
the actual obscurity for adversary agent is even more than these values. This is because the
maximum multiplicities of nodes in Aut(G) is 96 and the number of disjoint automorphisms is
4. Thus the actual probability of distinguishing the FACTS devices is less than 1/385. However,
for networks with bigger sizes, it is not feasible to compute the whole set of automorphisms and
we have to rely on generators of automorphisms. This is verified via the simulation results on
the next two networks, 274-bus and 1, 176-bus systems.

4.5.2 Simulation and analyses of 274-bus system

We perform simulations for the 274-bus system to better clarify the advantages of the proposed
approaches for larger networks. Since the networks’ parameters such as the impedances of
the lines are not available for these two networks, we have not investigated the impacts of the
proposed FACTS placement. We only determine the locations of FACTS controllers, the cyber-
security, and the symmetry analysis for these networks. The FACTS placement impacts can be
investigated in the same way as performed on the 49-bus system.

The 274-buss system is the equivalenced representation of US power grid [68] which has
274 nodes and 1, 338 edges as illustrated in Figure 4.6. The number of automorphisms of
this network is 28, 311, 552. Therefore, it is not computationally effective to sweep over this
huge number of automorphisms. However, the size of Gen(G) for this network is very small
compared to automorphism group and is equal to 23. The maximum matching principle is im-
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plemented on this network and matched edges are identified (A portion of these matched edges
are denoted by red lines in Figure 4.6). This has resulted in 20 unmatched nodes that are se-
lected as the locations of FACTS devices. Since it is not possible to compute the maximum
multiplicities of nodes in Aut(G) we compute the multiplicities of nodes in Gen(G). The maxi-
mum multiplicity of nodes in Gen(G) for 274-bus system is 1 and the size of disjoint generators
is 21. It follows from Theorem 8.2 that p = 1 and q = 21. Correspondingly, the probabilities of
the critical nodes being recognized when the adversary has access only to a permuted version
of 274-bus network is no greater than 1/(1.(1 + 21) − 1) ' 0.047. Similarly, the probabil-
ity of identifying the critical edges, assuming one end at the critical node, is not greater than
1/(1.(1 + 21)− 1)2 ' 0.002.

4.5.3 Simulation and analyses of 1,176-bus system

We also examine the security of the 1, 176-bus system [69] which has 1, 176 nodes and 18, 552

edges. The number of automorphisms of this network is approximately 10259. Clearly, it is
computationally prohibitive to generate the whole set of automorphisms and then compute the
maximum multiplicities of nodes within the set. However, the size of Gen(G) for this graph is
377. We performed the MMP on this network and identified 437 unmatched nodes which are
then considered as the locations of FACTS devices. The maximum multiplicity of the most re-
peated nodes in Gen(G) is 4 and the size of disjoint generators is 237. Following the conditions
of Theorem 8.2, the probability of recognizing the data associated to the FACTS devices and the
critical edges in 1, 176-bus system are 10−3 and 10−6, respectively. Due to space limitations, it
is not possible to illustrate the graph of 1, 176-bus system.

The simulation results are summarized in Tables 3-4. As can be observed in Table 4, there
is an overlap between the nodes in determining set and the set of nodes that are considered as
the locations of FACTS controllers by MMP. For the 49-bus, 274-bus, and 1, 176-bus systems,
these overlaps are %66, %38, and %42, respectively. Although all nodes in determining set are
not selected as the locations of FACTS controllers, yet it is inline with Lemma 4.3.2 since for
every node in determining set which is not selected as a FACTS controller there is an alternative
node belonging to F and within the same generator of automorphism which plays a same struc-
tural role in the network and, as such, can be alternatively selected as the location of FACTS
controllers. For example, in 49-buss system, node 1 is in determining set but is not in F . As
demonstrated in Figure 4.4, nodes 1 and 4 belong to a same generator of automorphism and,
according to Lemma 4.3.2, a necessary condition for controllability is that only one of these
nodes must be included in the set of FACTS controllers. This further highlights the importance
of symmetry in explaining some aspects of the network behavior.
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Table 4.3: The results of FACTS placement and cyber-security of critical data using moderated-
k-security indicating the number of nodes |V|, edges |E|, matched edgesM, number of required
facts controllers |F|, the average voltage of all buses in p.u. without FACTS controller |V0| and
with FACTS controllers |V∗|, the total power flow in lines without FACTS controllers |P0| and
with FACTS controllers |P∗|, the total line power losses without FACTS controllers PL0 and
with FACTS controllers P∗L, the size of automorphism group |Aut| and generators of automor-
phism |Gen|, the size of determining set |S|, maximum multiplicity of nodes in generators of
automorphisms p, the number of disjoint generators q, the probability of distinguishing the data
associated to the critical nodes PV and edges PE by adversary. The results of FACTS placement
on the voltage and power flow and power loss of 274-bus and 1, 176-bus systems are not com-
puted since these networks’ information are not available. "NC" stands for "Not computed".

Simulation task MMP FACTS placement on the physical graph Symmetry results Security of critical data

System |V| |E| M |F| |V|0 |V|∗ P0 P∗ PL0 P∗L |Aut| |Gen| |S| pA qG PV PE
49-

bus [67]
49 59 21 7 0.92 0.99 3052 3153 8.65 7.08 144 6 4 2 6 0.11 0.01

274-

bus [68]
274 1338 253 20 NC NC NC NC NC NC 28m 23 21 1 21 0.047 0.002

1,176-

bus [69]
1176 18552 1121 53 NC NC NC NC NC NC 10E259 377 33 4 237 0.001

10E−
6

4.6 Conclusion

The placement of FACTS devices in power systems with the consideration of cyber-security
of associated data exchange is addressed from a CN controllability perspective based on ad-
vanced topological techniques which, unlike the conventional methods, has no computational
impediments. The proposed solution is attained using: i) the concepts of MMP and moderated-
k-security to guarantee the cyber-security of the most critical data related to the FACTS con-
trollers., ii) the idea of moderated-k-symmetry to arrange the published cyber graph based on
generators of automorphisms that will significantly obscure the data exchange over the cyber
graph for adversaries , and iii) the similarity between the set of critical nodes attained from the
symmetry analysis to enhance the FACTS placement solution. The proposed solution procedure
is implemented on the modified small 49-bus, moderate 274-bus, and large 1,176-bus systems.
The power flow analysis of 49-bus system shows that the voltage magnitudes of all buses have
increased by reaching to near 1 p.u. and the active power flow over the transmission lines has
increased by %3 while the total power losses has decreased by %18 due to reactive compensa-
tion by FACTS controllers. In addition, the most critical data of the cyber graph is attributed
to data exchange between FACTS controllers. This is in line with the verified importance of
these controllers for the whole network performance. The cyber-security of these controllers
are then addressed by obscuring the data exchange throughout the nodes assigned as the loca-
tions of these controllers. To this end, the network symmetry is leveraged to identify the set
of permutations within the symmetry group for which the most critical nodes corresponding to
the locations of FACTS controllers are permuted. It is verified in the chapter that publishing
any of the graphs associated to the network structure mapped by one of these permutations can
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Table 4.4: The determining set attained from symmetry analysis and the locations of FACTS
controllers attained from MMP. The overlap between the set of FACTS locations attained from
MMP and the determining set underscores an important impact of symmetry on networked
systems. The number of 4 out of 6 nodes of determining set of 49-bus system, 8 out of 21
nodes of the determining set of 274-bus system, and 14 out of 33 nodes of determining set of
1, 176-bus are also selected as the locations of facts controllers by MMP.

System Determining set S attained from
symmetry analysis

The locations of FACTS controllers
F attained from MMP

49-bus [67] {1, 10, 11, 24, 25, 47} 4, 9, 10, 24, 25, 47, 48

274-bus [68] {2, 16, 17, 18, 28, 30, 32, 54, 57, 65, 73, 95, 111, 142,
166, 178, 219, 222, 259, 268, 271}

3, 7, 58, 59, 67, 97, 112, 142, 166, 168, 177, 179, 180,
189, 219, 222, 236, 259, 267, 271

1,176-bus [69]
{5, 25, 55, 76, 129, 131, 188, 241, 276, 288, 308 , 366,
376, 455, 465, 475, 516, 547, 627, 668, 670, 695, 712,
734, 746, 765, 777, 805, 824, 849, 852, 931, 948}

5, 24, 40, 54, 70, 73, 92, 107, 112, 129, 132, 147, 152,
154, 172, 189, 212, 241, 276, 286, 296, 306, 307, 331,
346, 356, 366, 376, 386 , 396, 426, 455, 465, 476, 515,
549, 627, 668, 680, 694, 711, 732, 746, 765, 771, 787,
803, 824, 835, 851, 937, 948, 1031

significantly obscure the source of critical data for adversaries.
Throughout the simulations, an overlap is observed between the set of nodes in determining

set and the set of nodes assigned as the locations of FACTS controllers by MMP. This fur-
ther reveals the importance of symmetry in power network analysis. Therefore, another novel
contribution of this chapter is that finding the set of driver nodes for a power system can be
translated to finding the set of nodes with highest repetitions in the symmetry group. Potential
forthcoming research directions may be on: i) considering the network topology while address-
ing future expansions of the existing networks or constructing a new network, and ii) expanding
the proposed approach to also address sizing of FACTS devices.

4.7 Appendix: computational clarification

In this appendix, the computation process of the proposed approaches are explained. First, we
clarify how to compute MMP in MATLAB and then the symmetry analysis is discussed in Sage.

4.7.1 Computing the matched edges and unmatched nodes of MMP

The required data for performing MMP is the adjacency matrix of the network. Once the adja-
cency matrix of the underlying graph of the network is constructed in MATLAB, we can attain
the full set of matched edges using the command

>> maximal_matching(A)

which uses a matching function in MATLAB. In all our case studies, MATLAB was able to
compute the whole set of matched edges and unmatched nodes in a few seconds. Thus find-
ing the locations of FACTS devices (or unmatched nodes) does not impose a big computation
burden.
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4.7.2 Calculating the symmetry group

The previous studies (for example [62]) rely on computing the automorphism group to iden-
tify the determining set (which can be used to find the set of driver nodes) while the proposed
approach of this chapter is based on computing the generators of automorphisms. The com-
putational advantage of the proposed approach can be distinguished simply by comparing the
size of automorphism groups with the size of generators of automorphisms. For the small grid
of 49-bus system, it is shown in section IV.A that there are only 144 automorphissms and it is
possible to compute and sweep over this range. However, for the moderate 274-bus system,
and the large 1, 176-bus system, it is shown that the sizes of the corresponding automophism
groups are 28, 311, 552 and 10259, respectively. Therefore, it is not computationally effective
to compute these sets and sweep over them. In addition, the large number of automorphisms
makes it very difficult, if not impossible, to find the critical nodes as it needs to compute all
automorphisms and then sweep over them to find the set of nodes with maximum multiplicities
in Aut(G). However, the novel approach of this chapter addresses these computational issues
by adapting generators of automorphisms instead of automorphism groups. As indicated in
sections IV.B and IV.C, the number of generators of automorphisms for 274-bus is 23, and for
1, 176-bus systems it is equal to 381. Clearly sweeping over these small sets of generators is
more computationally effective than sweeping over the very large number of automorphisms
associated with theses systems. There are effective algorithms, such as those in [64] for com-
puting the automorphism group but, in general, the algorithms for calculating automorphism
group and elementary automorphisms are well-known and rather trivial. These algorithms are
built in some commands in SageMath or similar computing tools. Once the underlying graph
is constructed in Sage, computing the automorphism group and the elementary automorphisms
can be easily done using the following commands:

> G.automorphismgroup().list()#ComputingAut(G)

> G.gens() #ComputingGen(G).

However, for moderate/large scale networks, the first command will not result in the list of auto-
morphisms. Only the cardinality of automorphism group can be computed using the following
commands:

> A = G.automorphismgroup()

> A.cardinality().
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Chapter 5

A Graph Automorphic Approach for
Placement and Sizing of Charging Stations
in EV Network Considering Traffic

5.1 Overview

This chapter proposes a novel graph-based approach with automorphic grouping for the mod-
elling, synthesis, and analysis of electric vehicle (EV) networks with charging stations (CSs)
that considers the impacts of traffic. The EV charge demands are modeled by a graph where
nodes are positioned at potential locations for CSs, and edges represent traffic flow between the
nodes. A synchronization protocol is assumed for the network where the system states corre-
spond to the waiting time at each node. These models are then utilized for the placement and
sizing of CSs in order to limit vehicle waiting times at all stations below a desirable threshold
level. The main idea is to reformulate the CS placement and sizing problems in a control frame-
work. Moreover, a strategy for the deployment of portable charging stations (PCSs) in selected
areas is introduced to further improve the quality of solutions by reducing the overshooting of
waiting times during peak traffic hours. Further, the inherent symmetry of the graph, described
by graph automorphisms, are leveraged to investigate the number and positions of CSs. De-
tailed simulations are performed for the EV network of Perth Metropolitan in Western Australia
to verify the effectiveness of the proposed approach1.

1This chapter is published in IEEE Transaction on Smart Grids
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Nomenclature

Abbreviations

PBH Popov-Belevitch-Hautus.

CEA Community energy association.

CN Complex network.

CN Complex network.

CN Complex network.

CS Charging station.

ECM Exact controllability method.

ECM Exact controllability method.

EV Electric vehicle.

FACTS Flexible AC transmission systems.

lcm The lowest common multiple.

LQR Linear quadratic regulator.

LTI Linear time invariant.

MMP Maximum matching principle.

PCS Portable charging station.

PEV Plug-in electric vehicle.

PID proportional integrative derivative.

VSC Voltage-source converter.

WAC Wide area controlled.

Constants
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ε Identity (or trivial) permutation.

ε Identity (or trivial) permutation.

c A complex number.

c A complex number.

Q,R, Y Arbitrary weights.

Parameters

αsh Angle of shunt VSC.

β The bus voltage angles.

δ A permutation.

δi Maximum algebraic multiplicity of λ(i).

δi Maximum algebraic multiplicity of λ(i).

δi The angle of voltage of node i.

γsh Conversion ratio signal.

λM Maximum algebraic multiplicity of teh eigenvalue λM .

λM Maximum algebraic multiplicity of the eigenvalue λM .

λi The ith eigenvalue.

λi The ith eigenvalue.

ν A point (node) of permutation.

σ An automorphism or a Permutation.

σ Permutation.

σ Permutation.

A Adjacency matrix.

A Adjacency matrix.

A,A Adjacency matrix.

D Degree matrix.

D The degree matrix.
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E The set of edges.

Ec The set of critical edges.

F The determining set attained from Gen(F).

G Graph.

G Graph.

G Graph.

Gk The released graph.

J The incidence vector of driver nodes.

K Optimal feedback gain vector.

L Laplacian matrix.

L Laplacian matrix.

L Laplacian matrix.

S Determining set.

S Determining set.

V Controlled invariant subspace.

V The set of nodes.

Vc The set of critical nodes.

Aut(G) Automorphism group.

Aut(G) Automorphism group.

Aut(G) Automorphism group.

dimVλi Dimension of eigenspace associated with λ(i).

dimVλi Dimension of eigenspace associated with λ(i).

Fix(σ) The set of fixed nodes by permutation.

Gen(G) Generators of automorphism.

Gen(G) Generators of automorphism.

Gen(G) Generators of automorphism.
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Gendis(G) Set of disjoint generators.

Move(σ) The set of moved nodes by permutation.

Move(σ) The set of moved nodes by permutation.

MovGenvl
the set of generators mapping vl.

µ(λi) Maximum geometric multiplicity of λ(i).

µ(λi) Maximum geometric multiplicity of λ(i).

ρO The orbital ratio of symmetry after node removal.

ρaut The ratio of symmetry after node removal.

σ A permutation.

ε Identity (or trivial) permutation.

ϕ A generator of automorphism.

ζ A permutation.

ζdis , δdis Disjoint generators.

A State matrix.

aij Element of A.

aij Weight of ijth element of A.

B Input matrix.

B Input matrix.

B Input matrix.

C Capacitor.

C Size (or capacity) of charging station [kW].

E The set of edges.

E The set of edges.

F (xi) the individual node’s dynamical equation.

FGen
vl The set of generators that fixes vl.

Idc Capacitor current.
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Ish Shunt reactive current setpoint.

I∗sh Reactive current of the outer loop.

ImC Image of C.

K The feedback gain.

k The number of distinct mappings.

km Conversion ration between the voltage of AC and DC sides.

ker L Kernel or null space of L.

lij The (i, j)th element of the Laplacian matrix.

M A matching.

m Index of a permutation.

MGen
vl The set of generators that moves vl.

ND Number of required driver nodes.

ND Number of required driver nodes.

P The solution of Riccati equation.

p Multiplicity of critical node in Gen(G).

Pac Active power on AC side.

Pij Active power flow between nodes i and j.

q The size of disjoint generators.

Qij Reactive power flow between nodes i and j.

r∗G Normalized measure of network redundancy.

rG Network redundancy.

S Determining set.

s(t) The desired state.

SO(G) Symmetry index based on orbits.

T Waiting time [min].

u Control signal (charging supply).
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u Control signal.

u Control signal.

V The set of nodes.

V The set of nodes.

V Voltage.

Vm Voltage magnitude.

Vdc Capacitor terminal voltage.

Vref Setpoint voltage.

w(t) Disturbance.

Z Line impedance.

5.2 Introduction

Electric vehicles (EVs) powered by electricity from low carbon emission grids can provide
significant benefits by reducing transportation impact on climate and grid’s reliance on oil-
based fuels. EVs provide a quiet and cleaner environment while reducing the operation and
maintenance costs [1]. Plug-in electric vehicles (PEVs) which are an integration of battery and
plug-in hybrid electric vehicles are key innovations to attain low-carbon transportation [2].

As the expectations for future EV sales increase, there is a growing number of researches
focusing on the development of charging infrastructure indicating their importance in the early
stage of EV market [3]. According to community energy association (CEA), the charging in-
frastructure is broadly divided into three categories based on the EV charging speeds. The
standard levels of PEVs charging are AC level 1, AC level 2 and DC Charging. The AC level 1

typically takes 10-20 hours to charge ( [4]- [5]). The long charging time makes Level 1 chargers
mostly suitable for home usage. The AC Level 2 typically takes 4-5 hours to charge and can
be used for both commercial and home charging. The DC charging (also called fast charging)
is the fastest option and can achieve full charge in 10 to 15 minutes ( [4]- [5]). Additionally,
portable charging stations (PCSs) have recently emerged as an alternative for charging stations
to deliver extra capacity during peak hours or in emergency occasions [6]. Unlike fixed sta-
tions, PCSs do not impose much construction and maintenance cost, and are not constrained
with power grid capacity or the size of the site based on control [7]. The trunks equipped with
battery storage feature either the lightweight lithium battery or the electric double-layer capac-
itor technologies ( [8]- [9]). Both technologies can supply all charging levels. Throughout this
chapter, fast charging is assumed at all EV charging stations (CSs).
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To increase the uptake rate of EVs, governments and automotive industries in most devel-
oped countries have been working together, and have undertaken projects to deploy a network of
electric CSs, commonly known as EV networks [10]. EV networks are anticipated to play a crit-
ical role in coming decades as the forecast for PEV market growth looks very promising [11].
This is mainly due to increasing supports from governments and automotive industries.

The bulk of EV charging demand is synchronized with daily driving patterns. The antici-
pated challenges associated with the increasing number of EVs are long waiting times at public
CSs with impacts on actual road traffic patterns and the electricity demand from utility net-
works. To resolve these challenges, researchers have been investigating various aspects of EV
charging including PEV load shifting to address the so called duck curve challenges associated
with the rapid increase in demand at sunset ( [12]- [13]).

Recently, there has been a growing attention to use graph theory in many engineering ap-
plications (see [13]- [16]). This stimulates leveraging on the wealth of the fundamental graph
related theories in modeling and synthesis of EV networks. Although EV community has re-
cently utilized some aspects of graph theory in synthesizing EV networks ( [17]- [23]), these
works are not leveraging on substantial concepts of graph theory. In fact, previous studies have
used graph topology for only visualizing the map of EV network. After constructing a graph-
like EV network, they implement optimization techniques in different frameworks to address
route planning [6]- [18], placement [19], and sizing [22] as well as simultaneous placement and
sizing [23]- [25]. In [19], the locations of fast charging stations are attained according to the
spatio-temporal requirements of the planners. Grasshopper optimization technique is imple-
mented in [25] to address the placement and sizing of CSs where the EV battery load models
are developed for load flow analysis. In [23], a real case optimal CS placement and sizing is
addressed using five integer linear programs based on weighted set covering models of the CSs
locations. Using a two stage optimization technique, the provision and dimension of DC fast
charging stations are investigated with particular attention for maintaining the voltage stability
by adding a minimum number of voltage stabilizers. A multi-objective particle swarm opti-
mization method is used in [20] for the planning of charging stations. Similar to these studies,
the majority of CS placement and sizing approacehs rely on an optimization tool. However,
these computational tools are always subject to computationally interactable solutions [8]. The
lack of an analytical approach to CS placement and sizing motivates leveraging on the potential
of graph theoretic properties to establish a systematic method which is less affected by the com-
putational burden. In this chapter, we will show that graph theory can be used for modelling
EV networks upon which the EV problems can be reformulated based on control frameworks
where there are useful theories that can be adapted for placement and sizing of CSs.

This study proposes a new graph-based approach to modeling, synthesis, and analysis of EV
networks that considers the impacts of traffic and is demonstrated for the placement and sizing
of CSs based on the following steps: i) The EV network is modeled by a graph where the nodes
are potential locations of CSs and edges represent the traffic (e.g., number of vehicles between
the nodes). A model of network synchronization [27] is assumed as the EV network protocol.
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This model is then developed into a pinning framework ( [28]- [29]) featuring actual CSs as the
driver nodes. ii) The placement problem is mapped to the problem of finding a set of driver
nodes for a CN representing the EV network. We verify that this set act as charging stations
and can reduce the waiting time below a threshold level. Further, the problem of CSs sizing
is reformulated as a problem of finding an optimal regulator gain. iii) The proposed approach
is then elaborated by introducing a deployment strategy for portable charging stations (PCSs).
This will compensate small mismatches between the generation and EV demand particularly
during peak traffic hours. iv) Finally, the impacts of graph symmetry (or automorphism groups)
on the graph of EV network are investigated. In particular, the role of symmetry in determining
the number and location of charging stations is highlighted.

The proposed graph-based EV model facilitates addressing the EV network problems using
various analytical approaches originated from control theories. The novel graph theoretic ap-
proach to EV network placement and sizing is relying on reformulation of these problems in a
control framework. The study verifies that the charging stations can be considered as the driver
nodes of a complex network. Then the set of driver nodes (or CSs) and their control inputs
(size of CSs) can be identified using established control theories. Inspired by the similarity
of the structural dynamics of two nodes in the same automorphism (or generator of automor-
phism), this study verifies that these nodes can be alternatively selected as the charging spot.
This feature is notable as the selected spots by placement approaches are subject to practical
constraints.

As a comprehensive case study, the proposed method and all results are examined on the EV
network of Perth in Western Australia. The main contributions and advantages of the proposed
graph-based method for modelling, placement and sizing of CSs within EV networks are:

• Reformulating the problems of CSs placement and sizing to a control framework which
facilitate using fundamental control and graph theories.

• Consideration of traffic flow and its impacts on EV network controllability, number, lo-
cations and sizes of CSs such that vehicle waiting times at all CSs are limited below a
desirable threshold level.

• Investigating the graph symmetry of EV network and verifying its impact on number and
locations of the CSs as well as providing alternative spots for CSs.

• A strategy for the deployment of PCSs in selected areas (subgraphs) is introduced and
tested to further improve the quality of solutions by reducing the overshooting of the
waiting times during peak traffic.

The rest of the chapter is organized as follows. Section 5.3 presents some mathematical pre-
liminaries on graph theory and graph symmetry. Section 5.4 discusses the main idea of the
chapter, introduces the proposed approach for placement and sizing of CSs and investigates the
impacts of EV graph symmetry on the solutions. Simulations results are presented and analyzed
in Section 5.5 followed by the conclusion.
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5.3 Preliminaries

A complex network can be abstracted by a graph G(V,E) where V and E characterize the set
of nodes and edges, respectively. An edge exists between nodes i and j if (i, j) ∈ E. The graph
is called undirected if the edges have no orientation. The adjacency matrix A of an undirected
graph is a square |V | × |V | matrix whose element [Aij = 1] if there is an edge between nodes
i and j, and [Aij = 0] when there is no edge. The order and the size of G are the cardinalities
of its vertex set V and its edge set E, respectively.

A permutation σ on a set of nodes V is a bijection from V to itself, i.e., σ : V → V .
Through a permutation, the node sequence or order will be changed. The order of permutation,
denoted by order(σ), is the smallest positive integer m such that σ1 ◦ σ2 ◦ ... ◦ σm = σm = ε

where ε is the identity (trivial) permutation.

Definition 5.3.1. The composition or product of two functions ζ and δ, denoted by ζ ◦ δ is the
pointwise action of ζ to the result of δ which generates a third function. The notation ζ◦δ is read
as "ζ composed with δ". Intuitively, by composition of two functions, the pointwise output of
the inner function becomes the input of the outer function. As an example, Appendix A explains
how to compute the composition of two functions.

Graph symmetry is originated from discrete mathematics and can be revealed by automor-
phism groups. Automorphism is a permutation of graph to itself that preserves the graph struc-
ture, meaning the adjacency matrix of the underlying graph remains unchanged. As a result,
nodes in the same automorphism have the same structural role in the graph. This type of sym-
metry has important implications for the controllability and robustness [30] of the underlying
network ( [20]- [16], [31], and [35]- [36]). A formal definition of automorphism is as below.

An automorphism of G is a permutation σ for which {i, j} ∈ E(G) if and only if (σ(i), σ(j)) ∈
E(G). The automorphism group of G and its size are denoted by Aut(G) and |Aut(G)|, respec-
tively. Also, all automorphisms can be identified from a set of elementary automorphisms or
generators of automorphisms Gen(G). There are well known algorithms to compute graph au-
tomorphisms. There are also computing tools such as Sage (System for Algebra and Geometry
Experimentation) and GAP (Graph Analytics Platform) for attaining Aut(G) and Gen(G).

Definition 5.3.2. The graph G is symmetric if Aut(G) contains at least one non-identity auto-
morphism, otherwise it is called asymmetric. Identity permutation is also called trivial auto-
morphism or trivial generator.

A set of nodes S of graph G is called determining set if every automorphism of G can be
uniquely determined by its action on S. An element s ∈ S is a fixed point of σ if σ(s) = swhere
σ : S → S is a permutation of a set S. The permutation σ moves the point v if σ(v) 6= v. The
fixed and moved points by the permutation σ are denoted by Fix(σ) and Move(σ), respectively.
More details about graph symmetry can be found in [37].
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5.4 EV network graph and proposed solution for placement
and sizing of charging stations

This section establishes the main ideas of the chapter upon reformulating the CS placement
and sizing into a networked control problem which facilitates implementing control and graph
theories. The CS placement is transformed to the problem of finding the set of driver nodes
that will guarantee the full controllability of the EV network graph. CS sizing is then mapped
to the problem of finding a set of optimal feedback gain in LQR (Linear Quadratic Regulator)
framework. Also, a strategy for deploying of PCSs is proposed that will further improve the
quality of the solution. Further, the symmetry of EV graph and its impact on the number and
positions of CSs as well as its role in providing alternative spots for selected charging stations
are verified.

5.4.1 EV network modeling and problem formulation

The EV network is modeled as a graph where nodes are positioned at the potential locations for
CSs and the edges represent the number of vehicles in the area between the two corresponding
nodes. A few spots along the roads are specified as the primary potential places for CSs. To
determine the number of vehicles on the main roads, some edges are assumed between nearby
nodes according to the traffic flow. The edges are weighted based on the number of vehicles
in the area. The waiting times at potential stations are considered as the system states. The
dynamic equation of EV network can thus be formulated as

Ṫi = −
n∑
j=1

(Ti − Tj) (i = 1, ..., n) (5.1)

where T is the system state and represents the waiting time. Ti is the state of ith node. The
above equation features typical synchronization protocol. Considering the control inputs as the
charging supply in charging stations, the dynamic equation of the network can be written as
below.

Ṫi = −
n∑
j=1

(Ti − Tj) +Bu(t) (i = 1, ..., n) (5.2)

whereB is the input matrix and u(t) is the control signal or charging supply injected through the
CSs. Equation (8.2), which renders a general pinning protocol, provides a framework suitable
for applying control theories.

Given the above formulation, CS placement and sizing problem can be restated as below.
Problem 1: Given the mathematical model of EV network in (8.2), find the set of driver

nodes that can fully control the dynamic of (8.2).
Problem 2: Find the optimal control u = −KT for the set of driver nodes attained from the

solution of Problem 1.
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5.4.2 Proposed CS placement formulation and solution

Based on the formulation presented in the previous section, the CS placement problem can
be transformed to the problem of finding the required driver nodes that can fully control the
complex network of (8.2). Then the attained driver nodes are correspondent to the positions of
the required CSs.

The network dynamic in (8.2) can be rewritten as below

Ṫi = −L(G)Ti +Bu(t) (i = 1, ..., n) (5.3)

where L(G) is the Laplacian matrix and is given by

L(G) = ∆(G)−A(G) (5.4)

where ∆(G) andA(G) are the degree and adjacency matrices, respectively. Also, T = (T1, ..., TN)T

represents the waiting time at each node, A ∈ RN×N stands for the coupling or adjacency ma-
trix of the system where its elements aij denote the weight of the link between i and j. B is
the N × m control matrix where m stands for the number of controllers in the control vector
u = (u1, ..., um)T . The dynamics in (7.2) is controllable if the pair (−L(G), B) is control-
lable [31].

To find the required driver nodes, the exact controllability method (ECM) is implemented
[16]. The method is based on Popov-Belevitch-Hautus (PBH) rank criterion upon which the
minimum number of driver nodes is equal to the maximum geometric multiplicity of all eigen-
values of the network matrix. Based on PBH theorem, the system (7.2) is fully controllable
(meaning that the waiting time can be reduced to the desired values in finite time) if and only if

rank
(
cIN − L(G), B

)
= N (5.5)

is guaranteed for any complex number c, where IN is the identity matrix. In [16], it is proven
that the minimum number of driver nodes ND can be calculated by the maximum geometric
multiplicity µ(λi) of the eigenvalue λi of L(G), that is

ND = maxi{µ(λi)} (5.6)

where
µ(λi) = dimVλi = N − rank(λiIN − L). (5.7)

The minimum number of driver nodes for undirected networks can be determined by the maxi-
mum algebraic multiplicity δ(λi) of λi as

ND = maxi{δ(λi)} (5.8)
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The control matrix B can be calculated from

rank[λM − L(G), B] = N (5.9)

where λM is the maximum geometric multiplicity of the eigenvalue λM . Here, the attained
non-zero entries of B imply on the necessity of injecting control input for those entries in order
to fully control the network.

To find the minimum set of driver nodes, ECM implements elementary column transforma-
tion on the matrix λMI − L(G) leading to a set of linearly independent rows. Eliminating all
linear relations via B guarantees the full controllability with the minimum number of driver
nodes. The minimum set of driver nodes attained by ECM characterizes the number and loca-
tions of CSs. These approaches are successfully implemented in Section IV for the EV network
of Perth metropolitan and the results are presented in Figs. 5.2-5.5 and Table 1.

5.4.3 Proposed CS sizing formulation and solution

Once the CS placements are accomplished, the required capacity for each station must be de-
termined. First, the EV network graph is partitioned into ND subgraphs with only one charging
station (determined in the previous section) in each subgraph. The partitioning algorithm, based
on [33], decomposes the graph into ND sub-graphs which will be refined later by making the
final decomposition with as fewer interconnections as possible (see [33] for further details on
the partitioning approach). Once the graph is partitioned, an adaption of Linear Quadratic Reg-
ulator (LQR) problem is implemented on each subgraph. The attained regulator will lead to the
required capacity of the corresponding CSs.

For a dynamic system represented by the linear differential equations of (5.10), an optimal
cost can be defined by the quadratic function of (5.11):

ẋ = Ax(t) +Bu(t), (5.10)

J =

∫ ∞
0

(xTQx+ uTRu+ 2xTY u)dt (5.11)

where
u = −Kx (5.12)

is the optimal feedback law and K is given by

K = R−1(BTP + Y T ). (5.13)

In (5.13), P is the solution of the following Riccati equation:

ATP + PA− (PB + Y )R−1(BTP + Y T ) +Q = 0 (5.14)

where Q, R, and Y are arbitrary symmetric and positive semi-definite matrices. In addition,
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(A,B) is stabilizable and (Q − Y R−1Y T , A − BR−1Y T ) has no unsolvable modes on the
imaginary axis. The relative importance of reducing and saving the control energy can be
determined by the appropriate selections of Q and R. A higher R penalizes on the cost function
demanding higher energy costs while a higher Q penalizes on the cost entailing higher settling
time for the network.

Given the EV network model of (8.2), the problem of CS sizing can be transformed to the
problem of finding the optimal control gain of (5.12). The following proposition facilitates this
transformation.

Proposition 5.4.1. The required capacity C of the charging station located by applying ECM to
CS placement is equal to

C = KT (5.15)

where K = [k1, k2, ..., kns ] and T = [T1, T2, ..., Tns ] and ns is the number of nodes in the graph.
Further, K is given by (5.13) and P is the solution of the following Riccati equation

L(G)TP + PL(G)− PBR−1BTP +Q = 0 (5.16)

where
L(G) = L(G)−BR−1Y T

Q = Q− Y R−1Y T .

Proof. In the LQR framework of the dynamic (7.2), parameter K attained from (5.13) mini-
mizes the cost function of (5.11). By rewriting (5.12) as u = C = KT and replacing matrix A
with L, P is the solution of the Riccati equation in (5.16).

The proposed EV placement and sizing transformations are illustrated in Figure 5.1. The
Algorithm 3 summarizes the procedure for CS placement and sizing. In steps 1-9, we apply
the exact controllability method to find the number of required CSs. Then to find the size of
each CS, the whole graph is partitioned into ND subgraphs where there is only one CS in each
subgraph (steps 10-12). To attain an optimized balance between the sizes of CSs and reducing
the peak of waiting times, the traffic models at 17 instances between 6 am and 10 pm have to
be attained. in our case study, we attained this information (the number of vehicles) from the
traffic map of Western Australia [17]. In practice, T is a dynamic variable. Thus, in this chapter,
the attained capacity at each hour is weighted by a factor ρi where i represents the instant i
(see steps 16-17 of Algorithm 1). For any small mismatch between the supplied capacity and
charging demand, a portable charging station can be deployed. This means that given Kit and
T ∗it as the optimal gain and waiting time of node i at hour t, a portable charging station will be
deployed at the area covered by subgraph i if

Ci < qKitT ∗it (5.17)
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where Ci is the size (or capacity) of station i in kW and 0 < q < 1 is an arbitrary weighting
factor.

Note that the arbitrary weightsR,Q, and Y can be selected accordingly to set the importance
of either optimal size or the settling times of the system. The settling times are the amount of
time it takes to reach to the desired system state. By selecting a big matrixQ the system reaches
to the desired state rapidly in the cost of increased control signal u(t). Similarly, selecting a big
matrixR leads to much smaller u(t) but the system response will be much slower. Equivalently,
selecting a big enough Q leads to non-optimal sizes for the CS while selecting a bigger matrix
R reduce the capacity in the cost of increased time response to reach to the desired waiting
time. Therefore a trade off is necessary while selecting theses weights. This illucidates how the
waiting time and the size are affected by the solution of LQR.

Algorithm 3 A graph-based solution to the CS placement and sizing problem in EV networks
Input: The traffic flow of the underlying area from 6 am to 10 pm (17 traffic flow models, one

at every hour)
Output: Locations and sizes of CSs

1: while maximum iteration is not met do
2: Calculate the matrix B from rank[λM − L(G), B] = N .
3: Assign ND = 0.
4: for i=1 to N do
5: if B(i)=1 then
6: Assign a charging station to node i.
7: ND = ND + 1.
8: end if
9: end for

10: Apply partitioning algorithm to EV network to drive ND subgraphs featuring one driver
node per partition.

11: for i=1 to ND do
12: Augment the subgraph by adding the detailed dynamics of the underlying area.
13: for t=1 to 17 do
14: Compute P from the Riccati equation L(G)TP +PL(G)−PBR−1BTP +Q = 0.
15: Compute Kit from Kit = R−1(BTP + Y T ).
16: Assign the weighting factor ρi.
17: Compute Cit = ρiKitT ∗it.
18: end for
19: Compute Ci = (Ci1+Ci2+...+Ci17)

17

20: end for
21: Assign the weighing parameter q.
22: for i=1 to ND do
23: for t=1 to 17 do
24: if Ci < qKitT ∗it then
25: Assign a portable charging station (PCS).
26: end if
27: end for
28: end for
29: end while
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Figure 5.1: Transformation of EV placement and sizing into control frameworks.

5.4.4 Impact of graph symmetry on CS placement solution

Symmetry, described by graph automorphisms, plays an important role in the controllability of
complex networks ( [31], [34], and [35]). Symmetry is an obstruction to controllability, meaning
a big automorphism group necessitates a high number of driver nodes [35]. Therefore, the
possible impacts of EV network symmetry on the number and positions of the required charging
stations can be investigated by mapping the CS placement problem to the CN controllability
problem. The placement of CSs is affected by the automorphism groups. The cardinality (size)
of automorphism group determines the symmetry strength of a graph. It is verified in [35]
that the symmetry is an obstruction to controllability, meaning a higher number of driver nodes
(or in our case, charging stations) are required to fully control the network when the size of
automorphism group is big. Lemma 5.4.1 relates CN controllability to automorphism group.

Lemma 5.4.1. Assume that A(G) is diagonalizable and symmetry preserving ( [36]), then the
pair (A(G), B(S)) is uncontrollable if G admits a nontrivial automorphism σ which fixes the
input set S, i.e., σ(i) = i for all i ∈ S.

In practice, due to difficulty of listing and sweeping all automorphisms of medium/large
networks such as the EV networks, the above lemma is not computationally effective. In [13],
an alternative approach based on generators of automorphisms is presented which impose less
computation burden.

Lemma 5.4.2. [13] Assume that A(G), the adjacency matrix of the underlying network, is
diagonalizable and symmetry preserving and B is the input matrix applied to set S of Nd driver
nodes. Then, the necessary conditions for controllability of the pair (A(G), B(S)) are

(i) σgt(i) 6= i and for all i ∈ S and t = 1, 2, ..., h, where σgt(i) represents for the set of
generators and h = |Gen(G)|,

(ii) S(i) 66= j for the set of pairwise joint generators with joint node j where i = 1, 2, ..., Nd,

(iii) If all nodes of generators gk are joint nodes then all of its joint nodes are in S.
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Figure 5.2: Map of Perth metropolitan in Western Australia with 400 virtual nodes representing
the potential candidate locations for CSs. The magnified area represents the augmented dynam-
ics of the selected subgraph featuring node 389 as its charging station (driver node). There are
39 more subgraphs that are not shown due to space limitations.

The above lemma leverages on some properties of permutation products to find the deter-
mining set of a graph. Then by mapping the Lemma 5.4.1 to CS placement problem, a set of
necessary conditions for finding the number and positions of charging stations can be attained.
This lemma is used in the simulations of Section IV to investigate the impact of symmetry on
EV network of Perth, Western Australia.

An important feature of Lemma 5.4.2 for EV networks is that it provides alternative loca-
tions for the charging stations. This fortunate feature is attained since the determining set is not
unique. Therefore, it is possible to replace one node in S with another node that has the same
structural role in the EV network graph. Two (or more) nodes in a given generator can have the
same dynamic in the graph meaning that replacing the entire corresponding to these two nodes
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in the graph adjacency (or Laplacian) matrix will not change the adjacency (or Laplacian) ma-
trix. This feature is important for EV networks due to geographical limitations on selecting
a spot for CS as the selected spot by ECM or other approaches might not be authorized for
constructing a charging station.

Figure 5.3: Generated graph of Perth EV network showing locations of the 40 CSs or driver
nodes (green rings), the 28 generators of automorphisms (black circles in yellow highlighted
areas), the 7 PCS nodes (green circles), and the 28 nodes in the determining set (red circles).
There are 400 virtual nodes (Figure 5.2). The 28 nodes in determining set are also in CSs set.
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5.5 Case study: EV network of the Perth metropolitan in
Western Australia

The proposed graph-based approaches for the modeling of EV networks and finding loca-
tions/sizes of the CSs and PCSs are implemented and tested on the EV network of Perth
Metropolitan in Western Australia (Figure 5.2) and the results are provided in Figure 5.3-5.5
and Table 1. This section provides detailed explanation and analyses of the generated simula-
tion results.

5.5.1 Graph and parameters of Perth EV network

The graph of Figure 5.2 is generated based on the traffic information of Perth metropolitan
taken from the Traffic Map of Western Australia [17] which measures the number of vehicles
on the main roads. The nodes (potential locations for CSs) are selected using the actual traffic
map between areas with known traffic where the number of vehicles in each area represents the
weight of the edge connecting two nearby areas. The Perth EV network is bordered to the north
by city of Wanneroo, to the east by City of Swan, Kalamunda, and Armadale, and is bordered
to the south by Mandurah and to the west by Indian Ocean.

For the simulations and analysis of this chapter, we have made a number of assumptions
including 1) there are 10, 000 vehicles in Perth metropolitan, WA with an average vehicle power
consumption of 0.173 kW/km [17], 2) all CSs are equipped with the standard DC fast chargers
with the service time of 10 − 15 minutes ( [17]), 3) the desired waiting time is the same at all
CSs and is limited to the threshold of 15 minutes, 4) the maximum and minimum battery state
of charge for EVs are SoCmax = 80% and SoCmin = 20%, 5) EVs arriving at the CSs have
uniform SoC distribution in the range of 20% to 80%. Considering the characteristics of the
existing commercial vehicles, the upper and lower boundaries of SoC are fixed at ideal level,
which are currently 80% for the maximum level and 20% for the minimum level [39].

5.5.2 Number, locations and sizes of CSs of Perth EV network

To find the number and locations of CSs, the set of driver nodes that can fully control the EV
network (represented by (2)) must be determined. To this end, the exact controllability method
is implemented (Equations (7.3)-(7.3.2)) in MATLAB which resulted in a set of 40 driver nodes
as illustrated in Figure 5.3 with green rings. The ECM relates the controllability of complex
networks to the maximum geometric multiplicity of eigenvalues of the matrix A, and in turn,
to the corresponding Laplacian matrix L(G). This matrix, in the context of EV network, is
the adjacency matrix representing the traffic flow between nearby nodes. According to Section
III.B, the driver nodes that can fully control a complex network are mapped into the charging
stations that can fully supply the charging demand of EV network. Due to analogy between
driver nodes and charging stations, these driver nodes can thus be selected as the locations of
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the CSs. Therefore, using the Algorithm 1, the number and locations of charging stations can
be attained from steps 2-9.

To find the size of each CS, first the 400-node graph in Figure 5.2 is partitioned into 40

sub-graphs with minimum edge cuts. The graph partitioning is accomplished according to step
10 of Algorithm 1. This is constrained by the consideration of only one CS in each subgraph.
The LQR approach is then implemented in MATLAB for each subgraph after subgraph aug-
mentation (steps 12-15). Due to space limitation, only one of the subgraphs corresponding to
the CS at node 389 is augmented in Figure 5.2. The arbitrary weights R, Q, and Y for each
subgraph are selected after a few trials and errors. Once these arbitrary weights are selected,
the Riccati equation in step 14 can be solved where B in step 14 has only one non-zero element
at the entry corresponding to the driver node (or charging station) and L corresponds to the
Laplacian matrix of traffic flow in the subgraph. The solution of the Riccati Equation (in step
16) is the matrix P which is then substituted in step 15 to attain K. Finally, according to Propo-
sition III.1, the required capacity for the corresponding CS in the subgraph can be computed
from step 19. Note that the augmented area contains more nodes (not shown in Figure 5.2) that
are used to accurately model the traffic flow of the area. The corresponding subgraph to the
CS at node 389 is magnified in Figure 5.2 to illustrate the detailed dynamics of the underlying
area. According to Algorithm 1, the LQR approach is implemented for this subgraph for 17

instances corresponding to 17 traffic models between 6 am and 10 pm. These models are each
investigated to attain the required capacity at each hour (steps 13-17 of Algorithm 1). Solving
the LQR for 17 instances has resulted in the following capacities at each hour (ordered form 6
to 10 pm, respectively).

Cit = [339, 391, 472, 498, 475, 455, 431, 411, 440, 465, 457,

432, 398, 372, 341, 299, 273]
(5.18)

Steps 18-28 of Algorithm 1 facilitate attaining an optimized charging capacity via choosing an
appropriate parameter ρ. The arbitrary weighting parameter ρ (where 0 < ρi < 1) determines
the balance between reducing the overshoot in the waiting time at peak hours and increasing
the charging capacity. In fact, if for all values of i we assume ρi = 1 then the overshoot at
peak hours will be zero at the cost of significant increase in charging capacity. According to the
magnitude difference between the charging demand at peak hours and the rest of instances, we
selected the variable values for ρi (e.g., ρi ≈ 1 at peak hours). This has resulted to the required
charging capacity of 371 kW at node 389. Similarly, the required charging capacities of other
CSs are calculated and provided in Table 1 (row 5).

5.5.3 Waiting times of Perth EV network without portable charging sta-
tions

To find the waiting times, the EV network is simulated with the 40 allocated CSs (driver nodes)
of Figure 5.3 and the calculated CS capacities of Table 1 (row 5). The EV network dynamic
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taken from (3) is modeled by selecting initial waiting times at each station while matrix B and
the capacities (corresponding to control signal u(t) in (3)) are computed in the previous section.
Equation (3) is simulated in MATLAB and the network states (waiting time Ti at each station)
over the 17 instants models between 6 am and 10 pm are calculated as illustrated in Figure 5.4.
As indicated in this figure, the waiting time diagrams undergo two overshoots near the peak
hours. This is caused by selecting different ρi for different hours. Although the waiting time
has increased at peak hours, the network capacity is optimized. For example, if ρi = 1 for all
values of i then the charging capacity at node 389 must be 495 kW which is 124 kW more than
the computed capacity (371 kW) in the previous section.

5.5.4 Introduction of PCSs in Perth EV network

As illustrated in Figure 5.4, there are some overshoots during peak traffic hours around 9 am
and 3 pm (e.g., the waiting times are longer than the designated threshold of 15 minutes). These
overshoots are mainly due to the selected weighting factor (ρi; Algorithm 1: Step 17). This
chapter proposes deployment of PCSs to reduce the overshoots. The deployment of PCSs can
be scheduled by i) updating the waiting time vector every hour, ii) checking inequality (5.17),
and iii) proceeding with Steps 21 − 28 of Algorithm 1. For the EV network of Figure 5.2,
seven PCSs are assigned and located in an hourly basis (Table 1, row 6). Adding these PCSs
modifies the network dynamics by changing the entries of matrix B associated to the nodes
corresponding to the locations of the added PCSs. Running the EV network model of (3) in
MATLAB and measuring the new waiting times at the 40 charging stations has resulted in
shorter waiting times at peak hours as illustrated in Figure 5.5. Compared with the results of
Figure 5.4, there are notable reductions in the frequency and magnitudes of the overshoots.

5.5.5 Analyses of simulation results for Perth EV network

A symmetry analysis of the EV network of Perth is performed with Sage software package.
Having the network Laplacian matrix L, the number of automorphisms of the EV network can
be attained in Sage in less than a minute by simply typing a one line command (i.e., by typ-
ing "G.automorphism_group()" where G is the simulated network by its Laplacian). This has
resulted in approximately 268 million automorphisms. Obviously, it is not computationally
effective to sweep over all automorphisms. Instead, the generators of automorphisms are cal-
culated using the command "gens(G)" which is resulted in 28 generators listed in Table 1 (row
4) and illustrated in Figure 5.3. As indicated in Figure 5.3, there is at least one CS in each
generator set. This verifies the adaption of Lemma 5.4.1 to EV networks where driver nodes
represent the charging stations. According to Lemma 8.2, a determining set can be calculated
by sweeping over the set of 28 generators and selecting one node in each generator. The de-
termining set thus contains 28 nodes (Figure 5.3; red circles) that are listed in Table 1, row 7.

The concept of determining set characterizes an important feature for the CS placement
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Table 5.1: Summary of simulation results for the Perth EV network of Figure 5.2-5.3.

Parameter Value Figure number and/or Descriptions

Virtual Nodes 400 Figure 5.2, yellow highlighted groups of nodes.
Aut(G) 268 m The 268 million automorphisms are identified with the Sage software package.

Gen(G) 28

Figure 5.2, yellow highlighted groups of nodes; Gen(G) =[(372,378), (358,359),
(350,351)(356,357), (318,319), (302,303), (289,290), (273,276), (277,278),
(246,247),(237,238), (224,225), (218,315),(196,197), (180,320), (166,345),
(157,158), (154,155), (100,101), (35,56), (148,150)(149,151), (95,96), (354,355),
(133,134)(291,293)(292,294), (61,63), (54,55), (46,47), (45,48), (24,298),
(16,240)].

CSs 40

Figure 5.3, green rings at nodes 35 (275 kW), 45 (128 kW), 47 (213 kW), 55 (349
kW), 63 (72 kW), 89 (200 kW), 96 (173 kW), 101 (362 kW), 151 (252 kW), 154
(393 kW), 158 (234 kW), 196 (336 kW), 204 (188 kW), 225 (218 kW), 226 (72
kW), 238 (254 kW), 240 (385 kW), 247 (214 kW), 263 (192 kW), 276 (317 kW),
279 (87 kW), 290 (352 kW), 294 (52 kW), 298 (205 kW), 303 (271 kW), 315 (226
kW), 319 (191 kW), 320 (128 kW), 342 (241 kW), 345 (365 kW), 355 (273 kW),
357 (379 kW), 358 (90 kW), 362 (204 kW), 363 (94 kW), 375 (218 kW), 377 (276
kW), 378 (59 kW), 383 (311 kW), and 389 (371 kW).

PCSs 7 Figure 5.3, green circles, nodes 11, 65, 272, 306, 330, 369, and 382 (PCSs have
the same capacity of 250 kW).

Determining
Set S 28

Figure 2, red circles at nodes 16, 35, 45, 46, 55, 63, 95, 100, 150, 155, 158, 166,
197, 218, 224, 237, 246, 273, 289, 291, 298, 302, 318, 320, 350, 354, 358, and
372.

Nodes in both
sets of S and
CSs

28 Figure 5.3, 28 nodes in the determining set that are also in the set of CSs.

Waiting Times
at CSs without
PCSs

-
Figure 5.4, the family of 40 curves with a daily average of 12 minutes and two
peaks of 19.3 minutes and 17 minutes. The average waiting times at peak hours, 9
am and 4 pm, are 17.7 and 17.1 minutes, respectively.

Waiting Times
at CSs with
PCSs

-
Figure 5.5, the family of 40 curves with a daily average of 12 minutes. Two peaks
of Figure 5.4 have reduced to 16.6 minutes and 16.5 minutes. Also, the average
waiting times at peak hours have reduced to 15.4 and 15.35 minutes.

problem. Since the determining set of an automorphism group is not unique, there are alter-
natives for the majority of driver nodes to act as the charging stations. For example, node 378

in the determining set (Figure 5.3) can be replaced with nodes 372 because the set of nodes
{372, 378} is a generator in Gen(G) (Table 1, row 4) and as a result they can play the same
structural role in the EV network.

The set of driver nodes together with the generators of automorphisms are illustrated in
Figure 5.3. Also the set of nodes belonging to the determining set is highlighted in Figure 5.3.
There is an overlap between the set of driver nodes and determining set meaning that all nodes
in the determining set also belong to the set of driver nodes. This implies the importance of
symmetry in the structure of EV network. In practice, all locations selected as driver nodes
may not be suitable for the installation of charging stations. Fortunately, the determining set
provides alternative options/locations for the installation of charging station.
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Figure 5.4: Waiting time at the allocated 40 CSs (Table 1; row 5) without the deployment of
PCSs. The thick black curve shows the average waiting time of the 40 CSs from 6 am to 10 pm.

Figure 5.5: Waiting time at the allocated 40 CSs (Table 5.1; row 5) with the deployment of
PCSs (Table 5.1, row 6) according to Steps 21-28 of Algorithm 1. The thick black curve shows
the average waiting time of the 40 CSs from 6 am to 10 pm.

5.6 Conclusion

A graph-based method is proposed and implemented for the placement and sizing of CSs that
considers traffic and limits the vehicle waiting times at all stations below a desirable threshold
level (e.g., 15 minutes). The research reveals the analogies between (i) the CS placement and
controllability of the underlying network and (ii) the CS sizing and optimal controller design.
In addition, a strategy for deployment of PCSs is introduced to further improve the quality of
solutions by reducing the overshooting of waiting times during peak traffic hours. Although
further study is required to analytically explain the symmetry impacts of EV networks on the
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solutions of CS placement and sizing, our results verifies that the EV graph symmetry, in the
context of graph automorphism, can significantly change the number and locations of the CSs
while suggesting alternative locations for CSs.

The new proposed framework to reformulate CS placement and sizing using control and
graph theories facilitates adapting many other concepts from control as well as graph theory.
Our future work will be on the development of robust control methods to EV networks under
dynamic pricing and uncertain traffic. Another interesting research direction would be pursuing
an analytical explanation for the overlap between the determining set (attained with symmetry
analysis of the underlying network) and the set of driver nodes (or charging stations). Finally,
the impact of the proposed charging network design on the power grid is not considered in this
chapter and will be addressed in our further research.

5.7 Appendix: composition of permutations

The method of calculating the product or composition of two permutations is described below
through an example. Example A.1: Let ζ and δ be given by

ζ = (1 2 3 4 5) and δ = (1 4 3).

To compute the composition of ζ and δ, ζ ◦ δ, first we have to check the commutation (repre-
sented by the symbol 7→) of element by δ and then its commutation by ζ . In this example

1 7→δ 4 7→ζ 5 ⇒ ζ ◦ δ(1) = 5

5 7→δ 5 7→ζ 1 ⇒ ζ ◦ δ(5) = 1

4 7→δ 3 7→ζ 4 ⇒ ζ ◦ δ(4) = 4

3 7→δ 1 7→ζ 2 ⇒ ζ ◦ δ(3) = 2

2 7→δ 2 7→ζ 3 ⇒ ζ ◦ δ(2) = 3.

Thus the composition of ζ and δ is ζ ◦ δ = (1 5)(3 2).
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Chapter 6

Robust Placement and Sizing of Charging
Stations from a Novel Graph Theoretic
Perspective

6.1 Overview

This paper proposes analytical approaches to extend the capacity of existing networks of elec-
tric vehicles (EVs) by placement of additional charging stations (CSs) as well as determining
the sizes of existing and new CSs in order to handle future expansions of EVs. The EV flow at
CSs is modeled by a graph where nodes are potential locations for CSs and edges are uncertain
parameters representing the variable EV flow at CSs. The required extra CS locations are ex-
plored by transforming the CS placement problem into a controllability framework addressed
by maximum matching principle (MMP). To find the sizes of each CS, the graph of CS network
is partitioned featuring only one CS in each subgraph. The size of CS in each subgraph is then
determined by transforming the problem into the problem of robust stability of a system with
uncertain parameters where each parameter is associated with an edge of subgraph. The zero
exclusion principle is then tested for the related Kharitonov rectangles and polygonal polynomi-
als of closed loop system with selected feedback gain as CS capacity. The proposed analytical
approach is tested on the existing Tesla CS Network of Sydney. The locations of extra required
CSs as well as the sizes of existing and new CSs are determined to maintain the waiting times
at all stations below the threshold level1.

1This chapter is published in IEEE Access

147



6.2 Introduction

As a response to the greenhouse gases emissions, the internal combustion vehicles have been
replacing rapidly by electrically powered vehicles. As such, the charging infrastructures, mainly
charging stations (CSs), have always been expanded in order to supply the ever increasing
demand of new EVs added to the network.

The optimization techniques are the focal point of methodologies related to EV problems
(for example see [1]- [13]). Some of the most frequently used optimization techniques in
literature addressing various EV related problems include Monte Carlo simulation [3]- [4],
Grasshooper optimization algorithm [5], particle swarm optimization (PSO) [6]- [7], CPLEX
[8]- [9], genetic algorithm [10], active-set algorithm [11], and K-means cluster [12]. The
Markov and Monte Carlo simulation are used in [3] and [4] to model the urban driving cy-
cle and to simulate the EV travel patterns and charging demand, respectively. Grasshopper
optimization is used in [5] to address the sizing of CSs while the optimal placement of dis-
tributed generations and shunt capacitors are also investigated. In [6], a multi-objective PSO
and geographic information system are used for the planning of CSs with a focus on the un-
derlying economic impacts. PSO is also used in [7] for dynamic economic emission dispatch
with load demand management where a large penetration during crest-and-valley is considered.
The CPLEX solver is used in [8] to construct an integer linear program in order to address the
EV salesman problem constrained to a predefined windows of waiting times. CPLEX is also
implemented in [9] to attain a mixed-integer linear program model for stochastic scheduling
of plug-in electric vehicles (PEVs) aggregator in day-ahead and reserve market. A review on
energy management and optimization of EVs based on genetic algorithm is presented in [10].
Using active-set algorithm in [11], a framework is proposed to optimally deploy various types
of CSs where a heuristic algorithm is implemented for solving the model. The EV network of
China is divided into 31 provinces by k-means cluster [12] to investigate the impact of EVs on
the greenhouse gas emissions.

One of the main focus of studies related to EV networks during the last few years has been
the Optimal placement and sizing of CSs in order to maintain the waiting time below a threshold
level ( [5]- [6], and [12]- [14]) where a sort of optimization technique is used in almost all of the
proposed approach. The optimization techniques implemented for EV problems usually suffer
from computational issues such as complexity and intractable solution [13]. On the other hand,
almost all (if not all) previous studies have addressed the CS placement problems for regions
where there are no existing CSs. However, as the EV networks are rapidly growing, there is a
need for placement and sizing of new stations while also the existing CSs must be re-sized.

A novel approach to CS placement and sizing is proposed in [14] which, unlike the majority
of current approaches based on optimization techniques, relies on graph theoretic properties of
the graph of EV networks. It transforms the CS placement to the problem of finding the set
of required driver nodes for CN controllability using the exact controllability method (ECM).
Similarly, the CS sizing problem is transformed to the problem of finding a linear quadratic
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regulator (LQR) for each partition of EV network. However, there are some limitations for this
approach. It lacks the consideration of dynamic traffic flow during the day and only relies on
17 instances of traffic flow. Moreover, the proposed CS placement approach can not be applied
for networks where there are some pre-existing CSs.

To address the above challenges, we have developed the control framework first introduced
in [14] in order to address the CS placement and sizing for a network with existing CSs and
variable flow of EVs. Firstly, the mathematical model of the underlying graph of EV network is
improved by separating the traffic flow at individual node from the trafic flow between nodes.
The proposed approach then transforms the placement and sizing problems to controllability
and feedback gain design problems where the system states are the waiting times at CSs and
control inputs are the charging capacity supplied via driver nodes acting as CSs. A model of
underlying EV network is constructed using a graph where nodes are the potential locations of
CSs and edges link two nearby nodes where the weights of edges represent the number of EVs
in the area. The ECM implemented in [14] is not applicable for CS placements in networks
with existing CSs. Thus we use another graph theoretic property, known as maximum matching
principle, by modifying it to a case where there are some pre-set unmatched nodes, and then the
locations of new CSs are determined by finding the remaining unmatched nodes on the graph
of CS network. Moreover, the proposed approach in [14] determines the locations and sizes of
CSs according to a static EV flow corresponding to few traffic instances during the day, while in
this paper, the control framework and the graph theoretic approach of [14] are adapted to a more
general and practical case that considers variable traffic flow. Throughout the paper, the term
"traffic flow" refers to the flow of EVs at the charging stations. It is represented by uncertain
parameters with known maximum and minimum values assigned to the weight of each edge.

To locate the number and locations of additional CSs, we determine the driver nodes for the
associated graph of EV network based on the maximum matching principal while considering
the weights of edges as an interval uncertain parameter. To address the sizing problem of
existing and new CSs, we first partition the graph of EV network featuring only one CS (from
the set of CSs located from the solution of CS placement) in each subgraph. Then, we use
the Kharitanov theorem and zero exclusion condition [15] to transform the CS sizing problem
to zero exclusion of the Kharitonov rectangles or polygonal polynomials of the closed loop
system attained from the sub-graphs (or the problem of robust stability of plants with uncertain
parameters [16]). Detailed simulations and analyses of the Tesla CS network of Sydney verify
that the proposed approach has significant impact on reducing the waiting times at CSs in Year
2025 assuming 500% increase in EV traffic [19]. The main contributions of this paper (in
general and compared to [14]) are:

1. Unlike the usual optimization methods, the proposed approaches are analytic, computa-
tionally effective, and rely on established concepts from graph/control theories.

2. The mathematical model of the EV network proposed in [14] is improved by separating
the impacts of traffic flows at nodes and between nodes.

149



3. We consider the CS placement and sizing for expanding EV networks with existing CSs.
As the best of authors’ knowledge, there is no analytic approach to placement of new CSs
for an expanding network considering the future traffic.

4. The ECM method used in [14] is not applicable to CS placement for expanding networks.
Here, we modify the MMP so that it can be used for placement of CSs when there are
some pre-existing CSs.

5. We consider and model the dynamic of traffic flow using interval uncertain parameters.

6. The proposed approach is able to maintain the waiting times at CSs below a threshold
level in the presence of variable traffic.

7. The proposed approach in this paper can be easily implemented to any EV network with
variable traffic. The only required data is the model of the underlying graph and the
maximum/minimum number of EVs arriving at CSs during operation.

The rest of the paper is organized as follows. Section 6.3 develops an EV network model based
on graph theory followed by new approaches for robust CS placement and sizing of existing and
new CSs. Section 6.4 presents and analyzes comprehensive simulation results for the existing
Tesla CS network of Sydney, Australia, followed by conclusions.

6.3 CS placement and sizing for expanding EV networks with
variable traffic flow at CSs

In this section, the modeling of the CS network based on graph theory is explained followed by
a new approach for the placement and sizing of existing and new CSs that considers the variable
traffic flows of the EV network.

6.3.1 Graph-theoretic modeling of EV network

Graph theory [17] is one of the bases of the mathematical analysis in this study. Here, the
terms graph or network are reserved for the abstract mathematical model of the composition of
nodes and edges of CS network where nodes are the potential locations of CSs and edges are
the traffic flow between nearby nodes. The weights of edges represent the traffic or the number
of vehicles. A graph is defined as the pair G = (V,E) where V and E are the finite set of nodes
and edges of the graph, respectively.

The worldwide locations and sizes of the existing charging stations are accessible through
various CS networks and maps such as the Tesla CS, Plug In America, Go Electric Stations,
Open Charge Map, Plug Surfing, EV Charger Maps, LEMnet, POP Point, Sun Country High-
way and PlugShare. For the molding, formulation, simulations and analyses of this paper, we
use the Tesla CS Map of Sydney, Australia [18]. Assuming 500% increase in Sydney EV traffic
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by Year 2025 [19], this model is augmented by adding some virtual candidate locations (nodes)
for additional CSs at various spots across the map to construct the graph of the whole network.
Although, the simulation is performed for this specific network, it can be easily implemented to
all EV networks with variable traffic.

Considering the waiting times at all potential and existing locations of CSs as the states
of system and assuming that there is an online tool presenting the instance waiting times to
the drivers and the majority of drivers prefer a CS with a low waiting time in nearby area, the
dynamic equation

Ti = Ti0 +

∫ t

0

WchTchqii(t)dt+
n∑
j=1

qijaijTj, i = 1, ..., n (6.1)

governs the dynamics of waiting times at all nodes. In 8.2, Ti is the state of ith node, Ti0 is the
initial state of node i, Wch is the ratio of charge to full charge, Tch is the full charging time,
qii(t) is the uncertain flow of EVs at node i, qij is the uncertain flow of EVs between nodes i
and j, aij is the outer coupling matrix in which aij = 1 if there is an edge between nodes i and j
but aij = 0 otherwise, Tj represents the adjacent nodes to node i, and n is the number of nodes.
Given

∫ t
0
qii(t)dt = Qii(t), we can write

Ṫi = WchTchQiidt+
n∑
j=1

qijaijTj, i = 1, ..., n

Q̇ii = qii.

(6.2)

Equation 6.2 governs the dynamics of waiting times Ti at all nodes since when the drivers are
consciously choose a target CS, then all states Ti, i = 1, 2, ..., n, incrementally converge to
nearly equal final states. Equation (6.2) simulates the waiting times when no CS exists and
thus the waiting times increase constantly. To maintain all waiting times reasonably below a
threshold level, a controlling term must be added to (6.2) which pins a few nodes to act as CSs
in order to inject the control signal (charging supply) to the network. Considering the sizes of
CSs as the values of control inputs of the system, the governing equation of CS network can be
written as

Ṫi = Ti +
n∑
j=1

qijaijHTj − δBui, i = 1, ..., n (6.3)

where ui is the control signal or charging supply injected through the CS at node i,B is the input
matrix, and δi = 1 if node i is selected as a CS and [δi] = 0 otherwise. Equation (8.1) facilitates
transforming the CS sizing problem to a control framework in which finding the control signal
is equivalent to finding the charging capacity required to maintain the state of system (8.1) or
waiting times below a threshold level.
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6.3.2 Graph-theoretic CS placement in EV networks with existing CSs
and variable traffic

As verified in [14], the problem of CS placement can be transformed to the problem of finding
the required driver nodes for the underlying graph of EV network where nodes are the poten-
tial places for CSs and edges represent the traffic flow (the flow of EVs at CSs) between two
nearby nodes. System states are also defined as the waiting times Ti at each node i. The set
of driver nodes are located in [14] by the exact controllability method which is based on the
maximum geometric multiplicity of all eigenvalues of the system matrix. However, this method
is not applicable here as a set of predetermined CSs are already placed. We use and modify an
alternative method, known as maximum matching principle, to find the set of required driver
nodes. Throughout the paper, the terms driver node, charging station, and CS have been used
interchangeably, but they convey the same meaning.

Definition 6.3.1. For a graph G(V,E), a matching M in G is a set of pairwise non-adjacent
edges, none of which are loops, that is, there is no shared endpoints for none of edges or,
equivalently, no two edges share a common node. A node is matched if it is an endpoint of one
of the matching set, otherwise, it is unmatched. Maximum matching Mmax of the graph G is a
matching of maximum size among all matchings in the graph.

The relation between maximum matching and controllability is first revealed in [22] where
the Controllability of complex networks is attributed to the number of required driver nodes.
Once the maximum set of matched nodes are identified, all unmatched nodes are considered as
the set of driver nodes [22] needed to completely control the entire network. Considering (8.1)
as a complex network with a set of pre-existing CSs, the objective is to place a set of extra CSs
to address future network expansion. Thus, here, the EV network is called "controllable" if we
can drive the the states (waiting times) of (8.1) below a threshold level using a set of pre-existing
and extra CSs. We first set the existing CSs as unmatched nodes and then attain the number and
locations of extra CSs for (8.1) by modifying the maximum matching principle as summarized
in proposition below.

Proposition 6.3.1. A given expanded graph G of a CS network with V nodes and existing set of
driver nodes S0

CS is controllable if the set of driver nodes is

SCS = {V | (V ∈ S0
CS) ∪ (V ∈ SESC)} (6.4)

where
SESC = {V | (V 6∈Mmax) & (V 6∈ S0

CS)}. (6.5)

Proof. The proof is a straightforward result of computing the extra set of nodes SESC using the
maximum matching principle on the graph assuming that the set of nodes in S0

CS are reserved
as unmatched.
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Using the above proposition and the control framework of placement problem, the set of
extra CSs can be found. Example below clarifies the implementation of the modified MMP for
EV network.

Example 6.3.1. Figure 6.1 illustrates the implementation of the modified MMP on a subgraph
of an EV network. It represent an existing CS at node 3 in Figure 6.1.a which is set as an
unmatched node. The modified MMP has resulted in two matched edges indicated by red lines
and one unmatched node (node 5) indicated by the red location symbol in Figure 6.1.b. Thus,
the subgraph will have two CSs, one pre-existing and one added.

In Section 8.3, the placement of required extra CSs for the expanded Tesla CS network of
Sydney, Australia is performed using this method.

6.3.3 Graph-theoretic sizing of new and existing CSs in EV networks with
variable traffic

To find the sizes of all CSs, first, we partition the CS graph into ND subgraphs where there is
only one CS (from the set of CSs attained from the solution of CS placement) in each subgraph.
The partitioning algorithm decomposes the graph into ND subgraphs which will be refined later
by aiming at the final decomposition with as fewer interconnections as possible (see [20] for
further details on the partitioning approach). Once the graph is partitioned, the corresponding
dynamic of each subgraph similar to (8.1) is calculated in which B has only one non-zero entry
corresponding to a node where a CS is placed. The state space representation of each subgraph
can then be written as:

Ṫ = LT +Bu , y = CT (6.6)

where L = D −
∑ns

j=1(Ti − Tj), i = 1, ..., ns, ns is the number of nodes within the subgraph,
D is the degree matrix, and C = 1. The state space representation of the subgraph in (6.6) can
then be written as the transfer function

G(s) = C(SI − L)−1B (6.7)

which is the Laplacian form of system (6.6).
The dynamic equation (7.2) for each subgraph is a transfer function G(s) = N(s)

D(s)
where

both N(s) and D(s) are affine-linear uncertain polynomials. This is clarified by the following
example.

Example 6.3.2. Consider the simple graph of Figure 6.2 with three nodes and one CS at node
2. The number of vehicles on the three edges are defined as 1 ≤ q1 ≤ 10, 1 ≤ q2 ≤ 15, and
1 ≤ q3 ≤ 20. Let qii = 0 and qij = qji for i = 1, 2, 3. The Laplacian matrix of this network can
be written as:
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Figure 6.1: (a) A subgraph of EV network with an existing CS at node 3 and, (b) the implemen-
tation of the modified MMP which has resulted to two matched edges indicated by red lines and
one added CS at node 5.

Figure 6.2: A graph with three uncertain edges and one CS.

L =

 2 −q1 −q3

−q1 2 −q2

−q3 −q2 2

 , C = 1, B = [0 1 0]T

The closed loop transfer function (7.2) with fixed controller k can then be written as

H(s) =
k.N(s)

D(s) + k.N(s)

where N(s) = s2 + (−4− q1 − q2)s+ 4 + 2q1 + q2
2 − q2

3 + 2q2 + q1q3 and

D(s) + k.N(s) = s3 + (−6− kq1 − 4k − kq2)s2 + s(4− q2
1

− q2
2 + 2kq1 + kq2

2 + 4k − kq2
3 + 2kq2 + kq1q3) + 2q2

1 + 4q2
2

− 8 + 2kq1 + kq2
2 + 4k − kq2

3 + 2kq2 + kq1q3

.

The uncertainties of this non-linear polynomial can be over-bounded to construct an affine-
linear uncertain polynomial. By defining new variables Q1 = kq1, Q2 = kq2, Q3 = q2

1 ,
Q4 = q2

2 , Q5 = kq2
2 , Q6 = kq2

3 and Q7 = kq1q3, the over-bounding polynomial can be written
as

D(s) + k.N(s) = s3 + (−6−Q1 − 4k −Q− 2)s2 + s(4−
Q3 −Q4 + 2Q1 +Q5 + 4k −Q6 + 2Q2 +Q7) + 2Q3 + 4Q4

− 8 + 2q1 +Q5 + 4k −Q6 + 2Q2 +Q7

which has an affine-linear uncertainty structure with uncertainty bounds k ≤ Q1 ≤ 10k, k ≤
Q2 ≤ 15k, 1 ≤ Q3 ≤ 100, 1 ≤ Q4 ≤ 225, k ≤ Q5 ≤ 225k, k ≤ Q6 ≤ 400k, and
k ≤ Q7 ≤ 150k.
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As explained, the subsequent subgraphs of the CS network have affine-linear uncertain poly-
nomials in the nominator and denominator of the related transfer functions. Each subgraph with
an associated CS can be seen as a control system with unity feedback and a fixed compensator k
that represents the charging capacity. The closed loop polynomial with fixed k can thus be seen
as an affine-linear uncertain polynomial with interval uncertainty. The proposed control frame-
work of this study facilitates implementing the controller design theories to find the appropriate
feedback gain that can guarantee reaching to the desired system states. This can be translated
as finding the sizes of CSs that can keep the waiting time (system state) below a threshold level.

A few definitions and preliminary results are reviewed first to demonstrate the transforming
of EV sizing problem to the problem of analysing the robust stability of an interval uncertain
polynomial. The Kharitanov theorem is the bedrock of the analysis in this paper. It deals with
the robust stability of interval uncertain polynomials. Two solutions will be presented for CS
sizing based on i) zero exclusion condition for Kharitonov polynomials, and 2) zero exclusion
condition for a polytop of closed loop polynomials.

Definition 6.3.2. A family of uncertain polynomials given by P = {p(., q) : q ∈ Q} is said to
have invariant degree if for any q1, q2 ∈ Q it follows that deg p(s, q1) = deg p(s, q2).

Definition 6.3.3. A set C ⊆ Rk is convex if the line joining any two points it contains the whole
line segment joining them. Mathematically, for any given c1, c2 ∈ C and λ ∈ [0, 1] we have
λC1 + (1− λ)c2 ∈ C. The convex hull of a shape denoted by conv{.} is the smallest convex set
that contains it.

Definition 6.3.4. A family of polynomials P = {p(., q) : q ∈ Q} is an interval polynomial fam-
ily if p has an independent uncertainty structure, meaning that each coefficient of p continuously
depends on q and Q is a convex box.

Definition 6.3.5. Given a family of polynomials P = {p(., q) : q ∈ Q}, the value set at z ∈ C

is the image of Q under p(z, .) and is given by p(z,Q) = {p(z, q) : q ∈ Q}.

Theorem 6.3.1. [15] For the interval polynomial family P = {p(., q) : q ∈ Q} with p(s, q)
where its coefficients continuously depend on q, there exists a second interval polynomial family
P̃ = {p̃(., q̃) : q̃ ∈ Q̃} with p̃(., q̃) in the form of p̃(., q̃) =

∑n
i=0 qis

i and, moreover, P̃ = P .

Using the above theorem, known as lumping theorem, the uncertain polynomial can be writ-
ten as p(s, q) =

∑n
i=0 qis

i and subsequently, the interval family can be described by p(s, q) =∑n
i=0[q−i , q

+
i ]si where q−i and q+

i denote the extreme points of the bound of uncertainty qi.

Definition 6.3.6. [15] The four Kharitonov polynomials associated with the interval polyno-
mial p(s, q) =

∑n
i=0[q−i , q

+
i ]si are the four fixed polynomials

K1(s) = q−0 + q−1 s+ q+
2 s

2 + q+
3 s

3 + q−4 s
4 + q−5 s

5 + q+
6 s

6 + ...

K2(s) = q+
0 + q+

1 s+ q−2 s
2 + q−3 s

3 + q+
4 s

4 + q+
5 s

5 + q−6 s
6 + ...
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K3(s) = q+
0 + q−1 s+ q−2 s

2 + q+
3 s

3 + q+
4 s

4 + q−5 s
5 + q−6 s

6 + ...

K4(s) = q−0 + q+
1 s+ q+

2 s
2 + q−3 s

3 + q−4 s
4 + q+

5 s
5 + q+

6 s
6 + ... .

Now, we present the Kharitonov Theorem on robustness of interval polynomials.

Theorem 6.3.2. [15] An interval polynomial family P with invariant degree is robustly stable
if and only if its four Kharitonov polynomials, or Kharitonov rectangles, are stable.

The above theorem can be graphically tested using the zero exclusion condition as stated
below.

Lemma 6.3.1. Given an interval family P = {p(., q) : q ∈ Q} with invariant degree and at
least one stable member p(s, q0), P is robustly stable if and only if z = 0 is excluded from
the kharitonov rectangle at all non-negative frequencies; i.e., 0 6∈ p(jω,Q) for all frequencies
ω ≥ 0.

The calculation of the value set for the whole range of frequencies is computationally inef-
ficient. However, there is a cutoff frequency ωc > 0 such that 0 6∈ p(jω,Q) for all ω ≥ ωc.
This means that the computation of the value set can be terminated at ωc. The existance of ωc is
established in [15] using the invariant degree condition. It follows that the cutoff frequency can
be calculated from

ωc = 1 +
max{q+

0 , q
+
1 , ..., q

+
n−1}

q−n
(6.8)

Theorem 6.3.2 and Lemma 6.3.1 can be used to find the solution of CS sizing problem. As
indicated in example 2, the closed loop polynomial of each subgraph of the CS network is an
interval uncertain polynomial which can be over-bounded to attain an affine-linear uncertain
polynomial. Proposition below summarize the result using the Kharitonov rectangle and zero
exclusion condition.

Proposition 6.3.2. (First Proposed Solution to CS Sizing). For a given subgraph Si attained
from partitioning of the CS network featuring only one CS with capacity k, the states T of the
associated transfer function computed from (7.2) can reach the desired waiting time in finite
time if z = 0 is excluded from the the kharitonov rectangles of the affine-linear polynamial
D(s) + k.N(s) with invariant degree for 0 ≤ ω ≤ ωc.

Proof. The proof simply follows from the results of Theorem 6.3.2 and lemma 6.3.1 with the
closed loop poynomial of the subgraph attained from D(s) + k.N(s).

The proposition above is tested for the Tesla CS network of Sydney, Australia and satisfac-
tory results are attained in Section 8.3. Now, we proceed with the second solution to CS sizing
using a more general form of uncertainty.

Definition 6.3.7. A set X ⊆ Rk is said to be pathwise connected if for any two points x0, x1 ∈
X , there is a continuous function Φ : [0, 1]→ X such that Φ(0) = x0 and Φ(1) = x1.
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Every convex set of uncertainty is thus pathwise connected. Obviously, the uncertainty in
the traffic map is also pathwise connected as it is a convex set.

Theorem 6.3.3. [15] Let the family of invariant degree polynomials P = {p(., q) : q ∈
Q} with cutoff frequency ωc and uncertainty bounding set Q, which is pathwise connected,
have continuous coefficient functions ai(q) for i = 0, 1, 2, ..., n and at least one stable member
p(s, q0). Then P is robustly stable if and only if the origin z = 0 is excluded from the value set
p(jω,Q) at all frequencies ω ≥ 0; i.e., P is robustly stable if and only if 0 6∈ p(jω,Q) for all
frequencies ω ≥ 0.

Now the value sets for a polytop of polynomials can be defined. It is argued in [15] that the
related value sets are polygons in the complex plane. A polygonal property of value sets for a
plytop of polynomials is presented below which facilitates testing the zero exclusion condition.

Lemma 6.3.2. [15] Given a polytop of polynomials P = {p(., q) : q ∈ Q} with uncertainty
bounding set Q = conv{qi}, for fixed z ∈ C, the value set p(z,Q) is a polygon with generating
set {p(z, qi)} or p(z,Q) = conv{p(z, qi)}. In addition, all edges of the polygon p(z,Q) are
obtained from the edges of Q so that if z0 is a point on an edge of p(z,Q), then z0 = p(z, q0)

for some q0 is on an edge of Q.

The second solution to EV sizing problem is summarized in the proposition below.

Lemma 6.3.3. (Second Proposed Solution to CS Sizing) For a given subgraph Si of the graph
of CS network with capacity k, the states T of the associated transfer function computed from
(7.2) can reach to the desired waiting time in finite time if z = 0 is excluded from the value set
D(jω,Q) + k.N(jω,Q) for all frequencies ω ≥ 0.

Proof. The proof is a straightforward result of theorem 6.3.3 and lemma 6.3.2 with the closed
loop polynomial of the subgraph attained from D(s) + k.N(s).

The above proposition gives a solution to the sizing of each CS in each subgraph. A clear
cut solution to the CS placement and sizing is presented in Algorithm 1.

6.4 Implementation of proposed CS placement and sizing strat-
egy in Tesla CS network of Sydney

The proposed approaches of this paper (summarized in Algorithm 1) are applied on the Tesla
CS network of Sydney [18] illustrated in Figure 6.3. The 48 existing Tesla charging stations are
demonstrated in Figure 6.3 with black location icons. All CSs are equipped with the standard
DC fast chargers with the service time of 10−15 minutes. According to Energeia Analysis, with
current uptake rate of EVs, the number of EVs in Sydney by the year 2025 will be increased
by about %500 [19]. The graph of this network is augmented in Figure 6.3 considering the
variable traffic flow in 2025. The number of connectors and sizes of existing CSs are indicated
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Algorithm 4 The proposed graph-based solutions to the robust CS placement and sizing prob-
lem in EV networks
Input: The maximum and minimum number of EVs arriving at each CS during its operation.
Output: The locations of extra required CSs and sizes of all (existing and new) CSs.

1: while maximum iteration is not met do
2: Calculate SCS from (6.4).
3: Apply partitioning algorithm to EV network to drive ND subgraphs featuring one driver

node per partition.
4: for i=1 to ND do
5: Compute the cutoff frequency ωic from (6.8).
6: Investigate the zero exclusion condition of Lemma 6.3.1 for 0 ≤ ω ≤ ωic and a fixed k

using one of the Proposition 6.3.2 or Lemma 6.3.3.
7: if the zero exclusion condition is satisfied then

the size of CS is k.
8: else

Increase k and go to step 6.
9: end if

10: end for
11: end while

in Table I. The extra required CSs (SCS) are calculated by following the modified maximum
matching (Lemma 6.3.1) principle as explained in Lemma 6.3.3. Since the result of maximum
matching is a set of unmatched nodes that must be considered as CSs, we have performed it on
a modified map where the nodes are selected in locations where it is practical to construct CS
infrastructure. This has led to a set of 12 unmatched nodes (indicated by red location symbol in
Figure 6.3) in addition to 48 existing CSs which are pre-set as unmatched. The resulted extra
CSs are illustrated in Figure 6.3. Having the set SCS , we can proceed with computing the size
of each CS after constructing the graph of CS network and partitioning it into |SCS| subgraphs.
Due to space limitation, here the simulation results for only one of the subgraphs (the area
separated with a dashed rectangle in Figure 6.3) are presented. The weights on the edges of this
subgraph represent the variable traffic flow qi between two nodes. The system has 16 nodes and
20 edges. The number of nodes and edges indicate the order of subgraph and the number of
uncertainties, respectively. The order of system is 16 and as such, it is a big transfer function
with very long coefficients ai(q) depending on Q. Here, only the state space representation of
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Figure 6.3: Tesla CS map of Sydney, Australia [18] used for simulations. The black, red, and
blue location icons correspond to the nodes with existing CSs, new CSs (determined in this
paper), and the potential CS locations, respectively.

Figure 6.4: The Kharitonov rectangles for the subgraph shown in Figure 6.3.

the subgraph is presented. The adjacency matrix A for the subgraph is

qii q1 . . . . . . . . . . . . . .
q1 qii q2 . . . . . . . . . . . . .
. q2 qii q3 . . . . . . . . . . . .
. . q3 qii q4 . q9 . . q11 q12 . . . . .
. . . q4 qii q5 . . . . . . . . . .
. . . . q5 qii q6 . . . . . . . . .
. . . q9 . q6 qii q7 . . . . . . . .
. . . . . . q7 qii q8 q10 . . . . . .
. . . . . . . q8 qii . . . . . . .
. . . q11 . . . q10 . qii . q13 . . . .
. . . q12 . . . . . . qii q14 q15 q18 . .
. . . . . . . . . q13 q14 qii q16 . . .
. . . . . . . . . . q15 q16 qii . q17 .
. . . . . . . . . . q18 . . .qii q20 q19

. . . . . . . . . . . . q17 q20 qii .

. . . . . . . . . . . . . q19 . qii
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Figure 6.5: The zero exclusion condition for the polygonal polynomials of subgraph shown in
Figure 6.3 for (a) k = 65, (b) k = 75, (c) and k = 85.

Figure 6.6: The zero exclusion condition for the polygonal polynomials of subgraph shown in
Figure 6.3 for k = 95.

where the zeros are represented with dots for clarity. The input matrix is

B = [0 0 0 1 0 0 0 0 0 0 0 0 0 ]T
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Table 6.1: Number of connectors NC , the size of each existing CS |SSC |i in kW, and the size of
each CS in kW after expansion |SSC |i of Tesla CS network of Sydney.

CS NC |S0
CS|i |SCS|i CS NC |S0

CS|i |SCS|i
Existing CSs with Present and Calculated New Sizes

1 2 22 138 2 1 22 84
3 4 44 79 4 1 22 93
5 3 22 84 2 6 22 142
7 2 6 118 8 1 5 162
9 3 22 98 10 2 27 145

11 2 22 89 12 2 22 126
13 2 22 122 14 4 44 75
15 2 7 110 16 5 44 96
17 4 44 120 18 2 3 123
19 3 22 95 20 4 26 143
21 2 22 120 22 2 22 78
23 2 6 117 24 4 29 86
25 4 44 116 26 2 22 145
27 4 22 68 28 2 22 128
29 2 4 126 30 3 22 98
31 2 22 78 32 3 22 129
33 5 44 93 34 2 22 136
35 3 22 85 36 1 22 124
37 3 5.2 110 38 1 6 96
39 4 44 158 40 4 22 85
41 4 22 103 42 1 22 73
43 2 22 134 44 2 22 79
47 2 22 106 48 4 28 112

Additional CSs with Calculated Sizes
49 - 94 50 - 129
51 - 87 52 - 85
53 - 115 54 - 95
55 - 134 56 - 113
57 - 105 58 - 93
59 - 84 60 - 138

Summary and Comparison of Results
Existing Tesla CSs Upgraded Tesla CSs

Total Number of CSs: 48 Total Number of CSs: 60
Total S Size: 1054.4 kW Total S Size: 5025 kW

and C = 1. By computing the transfer function of this subgraph and constructing D(s) +

k.N(s), the two proposed methods for calculating the size of the CS at node 4 are implemented
by graphical examining of zero exclusion condition (Figures 6.4-6.7 and Table 6.1). Note that
node 19 in the subgraph is re-numbered as node 4.

The cutoff frequency for this subgraph is calculated using (6.8) as ωc = 2.5. The zero
exclusion condition for k = 95 and 0 ≤ ω ≤ 2.5 is investigated in MATLAB and the result
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is demonstrated in Figure 6.4 for 125 equally spaced frequencies. Clearly, the origin of the
complex plane is excluded from the rectangles of Kharitonov and, as such, the associated CS
can handle the demand by increasing its capacity to 95kW.

Proceeding with Lemma 6.3.3 will lead to the similar results as Kharitanov rectangles. To
this end, we have examined the zero exclusion condition of Lemma 6.3.3 for three values of
k less than 95. The results are shown in Figures 6.5.(a)-(c). As indicated in these figures, the
origin of complex plane is included in the polygons for all three values of k. The subgraph is
re-examined with k = 95 and, as shown in Figure 6.6, zero is excluded from the polygons.
There are 20 uncertainties but the attained polygons are not 20-sided as most of extreme points
fall inside the convex hull of the polynomial for extreme points. The capacity of the rest of CSs
are computed in a same way and the results are presented in Table I. Finally, the waiting time of
node 19 is calculated in MATLAB for the variable traffic during 24 hours (as shown in Figure
6.7.(a)) and the result indicated in Figure 6.7.(b) shows that the waiting time is maintained near
or lower than the 15 minutes threshold at all times.

6.5 Conclusion

This study proposes novel graph theoretic solutions from the lens of control theories to address
the CS placement and sizing in EV networks with dynamic traffic flow. The new CS placement
approach considers the placement of required extra CSs for an expanding EV network with ex-
isting stations. It is accomplished by modifying the maximum matching principle to find the set
of extra required CSs. Subsequently, the CS sizing is addressed by resizing the existing stations
in addition to the sizing of new required CSs. The sizing is performed by transforming the
problem of CSs sizing for a network with dynamic traffic to the problem of robust stability of a
family of polynomials with affine-linear interval uncertainties where each uncertain parameter
represents an uncertain interval number of EVs in the zone between two nearby nodes. In addi-
tion to dynamic traffic flow consideration, the approach is unique as it relies on more analytical
methodologies compared with the conventional solutions to CS placement and sizing problem
that often suffer from computational issues such as conservative responses or intractable solu-
tions. On the other hand, the fast growing of electric vehicles (EVs) deployment necessitates
expanding the current charging stations (CSs) networks. Nearly all previous studies on CS
placement and sizing are focused on the planning and design of EV networks with no existing
stations. The proposed approach of this study, however, addresses the placement of new and
extra required CSs as well as re-sizing of existing CSs for expanded network.

The proposed graph theoretic approaches are implemented and verified on the existing Tesla
CS Network of Sydney, Australia assuming an increase of 500% in EV traffic by year 2025.
Detailed simulation results indicate that the average waiting times during peak hours at CSs are
kept near 15 minutes for upgraded EV network with +500% increase in EV traffic, 60 CSs, and
total charging capacity of 5.025 MW.
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Figure 6.7: (a) The traffic flow of the existing network with 48 CSs (represented by black icons
in Figure 6.3), (b) the corresponding waiting time of the existing 48 CSs, (c) The traffic flow
of the expanded network (in year 2025), and (d) The corresponding waiting times of 48 pre-
existing and 12 extra added CSs (represented by red icons in Figure 6.3)
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Chapter 7

Graph Theoretic Sitting and Robust Sizing
of EV Charging Stations from a Novel
Control Framework

7.1 Overview

This study addresses the problems of sitting and sizing of charging stations (CSs) by implement-
ing some tools from graph and control theories which facilitates attaining the solutions that, un-
like optimization approaches, are analytically supported. First, the problem of CS placement is
investigated using centrality and k-means clustering and then the results are compared with two
other control theoretic methods known as Exact Controllability Method (ECM) and Maximum
Matching Principle (MMP). The results are compared in terms of their impact on reducing the
waiting time at CSs. The set of CSs with best results, attained from MMP, is then used in a
transformed CS sizing problem to find the optimal sizes of each CS in a novel control theoretic
framework. The CS sizing problem is transformed into a robust control problem where the size
of each CS is attained from a modified DK-iteration approach. The simulation results on the EV
network of Perth metropolitan area in Australia verifies the impacts of the proposed approach
in reducing the waiting time and optimal sizing of CSs1.
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Chapter 8

Placement and Sizing of EV Charging
Stations According to Centrality of the
Underlying Network

Overview EV placement and sizing are the subject of ever increasing studies in the last decade
mostly relying on optimization approaches. This study looks at the EV network as a complex
network where the nodes are the potential locations of charging stations (CSs) and edges (links)
represent the traffic flow. It then investigates the impacts of some graph properties on the so-
lutions of the CS placement problem. In fact, the graph centrality and its variants are used to
find the locations of CSs to reduce the average waiting times at the stations. It is shown that
the centrality based analysis can lead to promising results for small and medium EV networks
leaving the large networks to be addressed by more complicated approaches. Simulations are
performed on the central (downtown) part of Perth City EV network, Western Australia scaled
down by the real traffic information1.

188

Chapter 8 is not available in tis version of the thesis



Chapter 9

Summary and Future Works

9.1 Summary of the thesis findings

This thesis has succeeded to develop new theories based on control and graph theories to address
important questions regarding the controllability and robustness of complex networks. Power
networks, smart grids, and EV network of charging stations has been used to implement the
proposed approaches. Although the main theoretical development was around the concept of
graph symmetry other graph and control theoretic properties such as graph centrality, clustering,
and controlled invariant property is also adapted to address the targeted applications of this
study. The contribution of the thesis can be summarized as

• Proposing novel necessary conditions for CN controllability based on graph symmetry
which are computationally more effective than previous method.

• Proposing a novel index of symmetry is proposed upon which a more meaningful under-
standing of symmetry impact on CN controllability can be comprehended.

• Proposing a modification strategy aiming to satisfy CN controllability with a lower num-
ber of driver nodes with a reasonable computational complexity.

• Identifying the critical components of complex networks in terms of their impact on the
number of required driver nodes.

• Proposing novel necessary conditions for network robust controllability.

• Proposing new necessary and sufficient conditions for disturbance decoupling using a
symmetry related concept called determining set and a geometric control property called
controlled invariant.

• Identifying the role of nodes with more multiplicity in the set of symmetry group on the
network robustness.
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• Identifying the impact of elimination of critical network elements on its robustness by
calculating a new improved index of symmetry which considers the orbital impacts of
automorphisms.

• Optimal placement of flexible AC transmission systems (FACTS) devices using a novel
graph theoretic perspective, which unlike the existing approaches, purely relies on topo-
logical characteristics of the underlying physical graphs of power networks.

• Establishing the idea of moderated-k-symmetry to address the cyber-security of the most
critical data related to the FACTS controllers.

• Demonstrating the similarity between the set of critical nodes attained from the symmetry
analysis and the solution of the FACTS devices placement that further highlights the
importance of symmetry for the analysis and design of complex power networks.

• Proposing a novel framework for modeling the network of CSs as a graph of the under-
lying network which facilitates implementing fundamental notions of control and graph
theories.

• Novel solutions for CS placement and sizing via transforming them into a control frame-
work which facilitates implementing various robust and optimal control theories and lead
to reducing the waiting times at CSs and optimal sizing of CSs.

• Highlighting the role of symmetry in the number and positions of CSs.

• Extending the capacity of existing networks of electric vehicles (EVs) by placement of
additional charging stations (CSs) as well as determining the sizes of existing and new
CSs in order to handle future expansions of EVs.

• Proposing a strategy for the deployment of portable charging stations (PCSs) in selected
areas to further improve the quality of solutions by reducing the overshooting of waiting
times during peak traffic hours.

• Investigating the problem of CS placement using centrality and k-means clustering and
then comparing the results with two other control theoretic methods known as Exact Con-
trollability Method (ECM) and Maximum Matching Principle (MMP). The results are
compared in terms of their impact on reducing the waiting time at CSs.

9.2 Conclusion and Future Works

This study has revealed some significant aspects of symmetry impact on emergent behaviour of
complex networks which highlights the necessity of conducting more research in this direction.
These include the following results:
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• Clarifying the impacts of graph symmetry in the controllability of complex power net-
works;

• Establishing a theoretical framework for the relation between the number of required
driver nodes for controllability and the network’s symmetry level;

• Revealing the role of graph symmetry in improving the network robustness against dis-
turbance;

• Using graph symmetry in improving the network cyber security via the concept of "secu-
rity by obscurity";

• Implementing the findings of the thesis on graph of EV charging stations and reducing
the waiting times;

• Placement and sizing of EV charging stations using the symmetry implications for the
network

In this section, potential avenues for delving into symmetry is summarized.

9.2.1 Restoration: the impact of post-fault topology

Any fault in power lines should be treated by detection, isolation, and restoration, respectively.
The first two tasks could be performed using over-current relays and reclosers. The last step,
restoration, is for re-configuring the system to a post-fault topology. Finding an optimal topol-
ogy after a fault occurrence is a decision making problem under constraints such as the power
balance and line limits. The restoration comprises two steps. First, the optimal post-fault grid
topology should be determined. This new topology is subjected to some constraints like power
balance and line limits. In the second step, a switching sequence after obtaining the post-fault
topology must be determined ( [1]). In [2], a graph-based load restoration after natural disasters
is proposed which relies on sectionalizing the switches to exploit improved electricity supply
continuity. Using master-slave control method integrated in the optimization problem multiple
DGs are coordinated in one microgrid. The proposed approach has shown better results on both
the IEEE 33-bus and the modified 615-bus test systems. Different restoration approaches have
been implemented in literature for complex power networks. For example, see [3], [4], [5],
and [1], [6].

In [1], a multi agent system is proposed for an efficient and fast switching operation of an
electric power distribution network to isolate fault, restore power to the de-energized area, and
secure critical loads. The fast topology reconfiguration of the proposed approach leads to high
reliability and resiliency of the local distribution network. The automatic restoration of a power
system is realized in [6] by embedding a multi agent system in a hardware on a Java platform.
The paper mostly considers the communication issues while determining a post-fault topology.
In [5], a multi agent system is proposed for power system management and restoration. The bus
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agents have been used to control each bus, while the coordination agents manage the behavior
of bus agents. The changeable multi agent system could be modified according to power system
status. A multi agent system consisting of several substation agents and line agents has been
considered in [4] to analyze the power grid restoration. It is shown that implementing one of
the substation agents as the management agent to control the restoration process will lead to
promising results on restoring the de-energized area using the local information only. A mixed
integer second order cone programming is implemented in [3] to reduce the complexity of the
optimization while the optimal solution is also guaranteed. The experimental setup consists of
a microgrid with several DGs. The formulation and reconfiguration of microgrid have been
synthesized by sectionalizing the switches to attain better flexibility. Two restoration strategies
for islanded-like power systems of a navy ship board has been implemented in [7]. The fault
location is identified by the power electronic blocks, and then it is isolated from the rest of
network.

Though all of these papers consider the restoration problem for a complex power grid, none
of them has examined the grid restoration for a symmetric or asymmetric system. If a fault
happens in a highly symmetric or highly asymmetric systems, the post-fault topology might not
represent the same characteristics in terms of controllability, robustness, etc. As a result, all
the features induced by symmetry or asymmetry might not be maintained. In this study, the
effect of line failure on graph symmetry will be assessed. Line failure could change the number
of graph automorphisms in the network rendering a different symmetry level which can cause
different level of controllability, and robustness. Hence, a new constraint should be added to
the optimization problem of restoration upon which a certain level of symmetry associated to
fault-free topology should be maintained for post-fault topology.

9.2.2 The impact of symmetry on power grid restoration

There are many papers considering the restoration of a power grid using a multi agent frame-
work (for example see [3], [4], [5], and [1], and [6]). However, none of existing approaches
deals with the symmetry characteristic of the power network. A fault occurrence in a symmet-
ric system gives raise to some question about the post-fault topology. As mentioned earlier,
the symmetry induces some feature to the network that might vanish after a fault occurrence
or as a result of post-fault topology. Hence, here the lack of analysis of the power network
restoration under the constraints like keeping the symmetry (or asymmetry) or maintaining a
certain level of symmetry in the network could be realized. Also, the critical lines and units, in
terms of their effectiveness strength on the structural symmetry, could be identified using graph
automorphisms upon which a more reliable protection strategy can be determined.

9.2.3 The impact of symmetry on energy cost of control

The controllability of complex networks has been investigated in the context of structural con-
trollability using the maximum matching principle and the minimum dominant set. Through

203



these two approaches, the number of driver nodes leading to realize fully control of the net-
work could be attained. The energy cost of control is highly affected by the number of required
control nodes.

In the mathematical discipline of graph theory, a matching or independent edge set in a
graph is a set of edges without common vertices. The unmatched nodes could be considered
as the driver nodes and the number of unmatched nodes could be considered as the system’s
controllability. Using maximum matching method one can calculate the minimum number
of required driver nodes to control the network, providing a benchmark to test the structural
controllability of complex networks ( [8]). It is shown that the minimum number of driver
nodes could be computed by the degree distribution of the network ( [9]). Plus, the driver nodes
tend to deviate from high-degree nodes ( [8]). Based on maximum matching, some studies have
been conducted implementing control centrality ( [10]), exact controllability ( [11]), and target
control ( [15]).

The minimum dominating set (MDS) is another tool that has been used to test the control-
lability of complex networks ( [12] and [13]). It is shown that the system is controllable if the
driver nodes are selected from the nodes in the MDS. In [9], the MDS based model is extended
to the identification of the crucial structure in the control of the network from a microcosmic
perspective. A new framework is developed which defines a graph from a low to a high level of
abstraction. It is concluded that each non-driver node is controllable if it is at least adjacent to a
meta-structure, and all the nodes in a meta-structure are obliged to be driver nodes. One expec-
tation of the symmetry analysis is to attain a modification strategy for the microgrid topology
so that the modified network will need a lower number of driver nodes compared to the number
of driver nodes obtained from maximum matching or MDS.

However, those techniques could not consider the cost effectiveness of the required control
signals. Although, they can theoretically realize a framework to steer the networked system
from any initial state to any final state in a given time, the energy consumption via the control
signals is likely too large to be affordable ( [14]). On the other hand, symmetry analysis can
provide a framework to modify the network so that the post-topology guarantees an improved
level of controllability. This motivates elaborating the existing structural controllability criteria
by integrating them with a modification step exploited from the symmetry analysis.

9.2.4 Other impacts of symmetry

It is desirable to estimate some of the dynamic states of the system instead of measuring them
directly. Kalman filter is the main tool for state estimation. One of the conditions to attain the
desired performance from Kalman filter is that the underlying system be uncontrollable from the
noisy inputs. This justifies breaking the symmetry in the system by manipulating the control
input matrix in order to have an asymmetric graph which is resistant to noise inputs (robust
system). This, in turn, gives raise to another conflict between robustness and satisfying the state
estimation purpose.

Two drawbacks in most of current papers are that they consider the network as a determin-
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istic system with similar agents while the real world systems are stochastic systems with non-
identical nodes and edges. This makes room for modifying symmetry concept based on nodes
performance, meaning a generating node with 10GW generation index can supply a bunch of
load nodes with overall demand of 10GW . In such case, there is no structural symmetry but
there is symmetry in terms of each partition performance.

For CN-based control applications, a survey on swarm behaviour might draw a guideline
on modelling the network behaviour. Swarm modelling has been categorized into two levels.
The first level corresponds to modelling based on the dynamics of individual agents and in-
teraction among them, the microscopic level. However, the higher level of swarm abstraction,
macroscopic level, is usually more helpful since it entails the key properties of the entire swarm.
Applying control approaches on macroscopic models allows for decreasing computation bur-
den in cost of imposing more conflict of interests between agents and losing some details on
swarm behaviors. Developing both levels of abstraction for swarm is an ongoing challenge for
researchers.
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