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Abstract 

Machine learning is a subset of Artificial Intelligence which is utilised in a variety of different fields 

to increase productivity, reduce overheads, and simplify the work process through training machines 

to automatically perform a task. Machine learning has been implemented in many different fields such 

as medical science, information technology, finance, and cyber security. Machine learning algorithms 

build models which identify patterns within data, which when applied to new data, can map the input 

to an output with a high degree of accuracy. To build the machine learning model, a dataset comprised 

of appropriate examples is divided into training and testing sets. The training set is used by the 

machine learning algorithm to identify patterns within the data, which are used to make predictions on 

new data. The test set is used to evaluate the performance of the machine learning model.  

These models are popular because they significantly improve the performance of technology through 

automation of feature detection which previously required human input. However, machine learning 

algorithms are susceptible to a variety of adversarial attacks, which allow an attacker to manipulate 

the machine learning model into performing an unwanted action, such as misclassifying data into the 

attackers desired class, or reducing the overall efficacy of the ML model. One current research area is 

that of malware detection. Malware detection relies on machine learning to detect previously 

unknown malware variants, without the need to manually reverse-engineer every suspicious file. 

Detection of Zero-day malware plays an important role in protecting systems generally but is 

particularly important in systems which manage critical infrastructure, as such systems often cannot 

be shut down to apply patches and thus must rely on network defence. In this research, a targeted 

adversarial poisoning attack was developed to allow Zero-day malware files, which were originally 

classified as malicious, to bypass detection by being misclassified as benign files. An adversarial 

poisoning attack occurs when an attacker can inject specifically-crafted samples into the training 

dataset which alters the training process to the desired outcome of the attacker. The targeted 

adversarial poisoning attack was performed by taking a random selection of the Zero-day file’s import 

functions and injecting them into the benign training dataset. The targeted adversarial poisoning 

attack succeeded for both Multi-Layer Perceptron (MLP) and Decision Tree models without reducing 

the overall efficacy of the target model. A defensive strategy was developed for the targeted 

adversarial poisoning attack for the MLP models by examining the activation weights of the 

penultimate layer at test time. If the activation weights were outside the norm for the target (benign) 

class, the file is quarantined for further examination. It was found to be possible to identify on average 

80% of the target Zero-day files from the combined targeted poisoning attacks by examining the 

activation weights of the neurons from the penultimate layer. 
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1 Introduction 

In 2015 the global cost of cybercrime was US$ 3 trillion which is estimated to grow to US$ 6 trillion 

by 2021 (Cybersecurity Ventures & Herjavec Group, 2019). For large-sized Australian businesses, an 

average of US$ 6.8 million was spent on cybercrime in 2018, up from US$ 5.4 million in 2017 

(Accenture, 2017). Malware was the most common form of attack reported, with the cost of malware 

attacks increasing by 11% between 2017-2018 (Accenture, 2019). Small to medium-sized enterprises 

(SMEs) are the most vulnerable group with respect to cyberattacks, as they lack the resources to put in 

place appropriate security measures needed for protection. SMEs worldwide spend on average less 

than US$ 4,000 per year on cyber security protection (Juniper, 2017). 

Out of the $6.8 million dollars spent by larger Australian companies on mitigating cybercrime, 

discovery and containment contribute the majority (60%) of the cost, with discovery comprising 36% 

and containment 24% (Accenture, 2019). Mitigation comes at differing levels of cost and complexity, 

from security intelligence systems to automation and machine learning (ML). The most commonly 

used defensive systems are security intelligence systems (67%) and advanced identity and access 

governance (63%), while ML is the third least commonly deployed security technology (38%) but 

provides the second greatest cost savings of the aforementioned measures (Accenture, 2019). 

The impact of cybercrime is not only focused on the financial aspects but also the operation of critical 

infrastructure, which nations rely upon to function. Critical infrastructure systems may rely upon more 

tailored and unique protection, due to the intricate nature of the systems. The complexity of the 

systems exacerbates the damage caused by an incident which increases the cost required for 

mitigation. 

In cyber security, ML is seen as a promising tool with significant potential, but ML has some 

drawbacks which can negate its value. If an attacker has knowledge of the ML algorithm in use or can 

in some way gain access to the dataset being utilised to train the ML model, the attacker is then able 

to attack the ML system itself.  

A benefit of ML in the application of cyber security is in the use of malware detection. Traditional 

malware detection applications rely upon signatures to identify if a software file is malicious. The 

signature is generated after the malicious properties of a software file have been identified, either by 

static or dynamic analysis and are then added to a repository of malicious signatures which anti-

malware applications use to identify malware by scanning the file and comparing the signature. The 

drawback of the signature approach is that it can only identify malicious software which it already 

knows about (known-knowns), and it is unable to detect malicious software which has not already 

been identified (known-unknowns and unknown-unknowns). In the ML malware detection approach, 

the ML model has been trained to identify patterns within software files which distinguish them as 
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either malicious or benign. When the ML model is presented with a new software file, it can make a 

classification based upon the patterns within. It is important to note that ML models are not perfect, 

and false positives (a benign file being classified as malicious) and false negatives (a malicious file 

being classified as benign) will appear on occasion. 

Malware detection is an area of cyber security which can reap the benefit of ML. The ML models 

generated for malware detection automate the process of determining if a file or network stream is of 

a malicious nature. For the training of ML-based malware detection applications, an open training 

model, where the datasets used are constantly being supplied with new files for further training, is 

essential to keep pace with the ever-increasing rate of malware creation. For Intrusion Detection 

Systems (IDSs), monitoring the flow of traffic and updating rule sets based on behaviour can help 

reduce false positives being reported as the machine learning model has learnt from the new network 

behaviour. 

As malware detection relies on training with current malware data, a more complex problem occurs if 

an attacker is able to influence the training process by exploiting the open training model. It is 

possible that specifically-crafted adversarial malware could be created to infect and reduce the 

efficacy of ML-based malware detection applications which can lead to an increase of false negatives.  

There is a need to research different ML algorithms in relation to how these algorithms can be utilised 

to detect Zero-day attacks and further, how adversarial attacks can reduce the efficacy of ML based 

malware/intrusion detection applications. For known-known malware files, detection is 

straightforward as the files have already been identified as malicious and a signature has been 

generated for future identification. Zero-day malware, which does not have a signature as the file has 

not yet been identified as malicious, requires other means of identification. One of the methods to 

identify Zero-day malware is through the use of ML trained malware detection models. The ML 

model identifies malware by recognising patterns within both malicious and benign software files, and 

classifies new files based upon the identified patterns in the new data.  

When training ML models, the conventional approach is to assume that the data being used is 

trustworthy and accurately represents the area being investigated (Pitropakis, Panaousis, Giannetsos, 

Anastasiadis, & Loukas, 2019). In a malware detection ML application, one approach is to scan the 

training data using a multitude of anti-malware applications and label the data according to the 

majority of the results. In this approach, the researchers are trusting the output of the anti-malware 

applications to produce an accurate label for the input data. It is not usually considered that the files 

may have been modified by an attacker (without changing the functionality of the file) to influence 

the training of the ML model for some other outcome e.g., certain malicious files bypass detection 

while the overall classification rate is unchanged. 
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It is proposed in this thesis that evaluating various attacks against different ML algorithms would 

provide valuable insight in determining which algorithms are best suited for use in malware detection 

and what preventative measures may be implemented to harden the selected ML algorithms against 

adversarial attacks.  

1.1 Background 

Machine learning (ML) is a sub-field of Artificial Intelligence which has found application in many 

different domains. Machine learning uses algorithms to generate models with the aim of accurately 

classifying input or predicting the correct output from new input data received. Machine learning is 

used in medicine (Gulshan et al., 2016), finance (Trafalis & Ince, 2000), and also for general purpose 

applications such as Smart Personal Assistants, autonomous vehicles and map assistance.  

Siri, Cortana, Alexa and Google Assistant are examples of Smart Personal Assistant (SPA) 

applications which utilise ML (Marr, 2018; Rewari, 2020; Siri Team, 2017). SPAs perform tasks such 

as organising dates and reminders, scheduling appointments (Google, 2018), performing Internet 

searches, activating music and video players, creating to-do lists and purchasing items online.  

Facebook uses an ML-based application, DeepFace, to automatically identify and tag users in images 

(Taigman, Yang, Ranzato, & Wolf, 2014). Facebook DeepText is a deep learning based application 

which was developed to understand the context of text messages (Abdulkader, Lakshmiratan, & 

Zhang, 2016). Facebook also uses ML to offer friend suggestions based on mutual friends, and the 

Newsfeed also utilises ML to suggest content the user may be interested in. Facebook’s ML 

applications utilise “FBLearner Flow: Facebook’s AI backbone” (Dunn, 2016).  

In the cyber security domain, ML is utilised in a multitude of varied applications. Cyber security 

measures benefit greatly from the precision and speed of automation provided by ML-based 

applications. The following is a non-exhaustive list of applications in cyber security which utilise ML: 

• Malware Detection (Oliver, Hou, Dia, Liang, & Rihn, 2013) 

• Vulnerability Signature Generation (Brumley, Newsome, Song, Wang, & Jha, 2008) 

• Intrusion Detection (Buczak & Guven, 2016) 

• IoT Security (Cañedo & Skjellum, 2016) 

• Spam Detection (Youn & McLeod, 2007) 

Machine learning is not perfect and incidents of ML applications not operating as intended, either 

through malicious or benign means, are not uncommon (Scharre, 2019). An example is the Tay 

chatterbot developed by Microsoft's Technology and Research and Bing teams which was released to 

Twitter on March 23, 2016 and then subsequently shut down 16 hours later. Tay was intended to be a 

chatterbot aimed at the 18-24 year old demographic (Lee, 2016). Unfortunately for Microsoft, Tay 



 

  Page | 5 

was fed with data which caused her to send tweets which people found offensive. See Figure 1.1 for 

an example. 

 

Figure 1.1. - Tay Tweet after being fed an assortment of data. Adapted from  (Nash, 2016) 

According to Lee (2016), intensive testing and filtering was performed on many user studies to 

provide a pleasant user experience of Tay with many different diverse groups. An oversight was made 

in the specific form of attack which Tay succumbed to, resulting in the service being shut down.  

Adversarial attacks are not a prerequisite for negative outcomes of a severe nature. In 2018, an Uber 

autonomous vehicle hit and killed a pedestrian in Arizona (Griggs & Wakabayashi, 2018). In a report 

produced by the National Transportation Safety Board (NTSB), it was found in their investigation that 

“the self-driving system software classified the pedestrian as an unknown object, as a vehicle, and 

then as a bicycle” and at 1.3 seconds before impact, the self-driving software determined that the 

brakes needed to be engaged to prevent a collision. Uber had disabled the emergency braking 

manoeuvres while under computer control to reduce the possibility of erratic behaviour (NTSB, 

2019). The Yavapai County Attorney's Office determined that there is no basis of criminal liability for 

the Uber corporation (Randazzo, 2020b), while the backup driver has been charged with negligent 

homicide (Randazzo, 2020a). 

In 2016, a man was killed when a Tesla vehicle which was operating in auto-pilot mode, was hit by a 

truck (Tesla, 2018). An investigation into the incident had shown that the operator ignored warnings 

to take back control of the vehicle (Tesla, 2018). In March of 2018, another operator of a Tesla 

vehicle died when the car crashed into a concrete lane highway divider. According to Tesla, the driver 

was operating the vehicle in auto-pilot mode and was using adaptive cruise control, and as with the 

previous incident, the driver had ignored warnings to take control of the steering wheel. 

In 2015, Google was notified that the image recognition aspect of Google Photos was categorising 

people of specific ethnic groups as Gorillas. Google addressed the issue by removing “gorilla,” 
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“chimp,” “chimpanzee,” and “monkey” as potential labels (Simonite, 2018).  Google did not address 

the reason why the classifier was unable to distinguish between the two, nor have they commented on 

whether their image recognition is now able to correctly distinguish between the categories.   

The examples above show that machine learning-based applications require rigorous testing and 

evaluation to prevent unwanted outcomes such as offensive content and loss of life. As the 

applications utilising ML are expanding, the need for research which aims to reduce or prevent such 

incidents from occurring is of the utmost importance. This is especially important for situations where 

the use of ML may affect a person’s life, or the critical infrastructure of a state or nation. The 

proposed research topic in this thesis aims to address the issue of adversaries intentionally performing 

malicious attacks against ML-based malware detectors. 

1.2 Significance 

Machine learning is used to solve many distinct problems and the volume of applications which use 

ML is increasing. However, ML algorithms are vulnerable to a multitude of adversarial attacks (Q. 

Liu et al., 2018). If appropriate defensive strategies are not implemented, ML-based applications will 

be vulnerable to exploitation 

As an example domain area, critical infrastructure, which is defined by the Australian government as 

Those physical facilities, supply chains, information technologies and communication 

networks which, if destroyed, degraded or rendered unavailable for an extended period, would 

significantly impact the social or economic wellbeing of the nation or affect Australia’s 

ability to conduct national defence and ensure national security. (Critical Infrastructure 

Centre, 2018) 

relies upon computer systems and network connectivity for maintenance and control (Merabti, 

Kennedy, & Hurst, 2011). In the past, the Industrial Control Systems (ICS) which control and monitor 

the operations within critical infrastructure systems, were air-gapped from outside networks and 

monitoring of the ICS was done onsite. Adoption of external network connectivity to ICSs to allow 

for ease-of-use utilities such as remote access and real-time monitoring have opened ICSs up to 

potential security threats (Ani, He, & Tiwari, 2017). 

Network connectivity to critical infrastructure systems provides an attack vector for an attacker to 

exploit. To prevent security breaches from occurring, sound network and systems security measures 

are needed to be implemented. Security breaches to critical infrastructure can cause significant 

financial and legal costs to remedy.   

Critical infrastructure relies on sound security measures to prevent attacks from disrupting their 

workflow, resulting in production setbacks (Ani et al., 2017). The hardware and software which 

support critical infrastructure is in general, tailor-made for a specific application. As critical 
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infrastructure is required to operate 24/7, applying patches and updating a system in ways which 

require downtime (a loss of availability) are often not feasible (Cardenas et al., 2009). To prevent 

software vulnerabilities within the systems from being exploited, network protection such as Intrusion 

Detection Systems (IDS) and malware detection systems play a key role in preventing outside 

adversaries from causing damage. IDS for critical infrastructure control systems differ from the 

general IT IDS as they focus on anomalies within the physical system, in contrast to anomalies within 

network transmission of an IT network (Cardenas et al., 2009). 

By 2021 the global cost of cybercrime is estimated to reach 6 trillion USD (Cybersecurity Ventures & 

Herjavec Group, 2019). While ML security measures are one of the least deployed enterprise-wide 

defences, they provide one of the greatest returns on investment (Accenture, 2019), this may be 

because the technology is new, and companies haven’t been persuaded to change their current 

systems. Or maybe the implementation of ML security measures is done in the background of other 

technology (like malware detection) and is not accurately covered in the report. 

Investing in ML solutions as one of the main security measures should be of high interest to business. 

Juniper Research believes that through the 2017-2022 period, US$8 trillion  will be lost due to cyber-

crime (Juniper, 2017). With machine learning currently driving the future of technology, the overall 

cyber-crime cost could be significantly reduced if ML-based security measures are utilised to their 

full potential.    

1.3 Purpose 

The purpose of this research was to identify if it is possible to perform a targeted adversarial 

poisoning attack which would allow for a an unknown-unknown malicious file, which was previously 

correctly classified, to bypass detection by being misclassified as benign. Additionally, the research 

identified a defensive strategy which was able to prevent the adversarial attack from succeeding at test 

time and works under the assumption that any training set could have been unknowingly poisoned.  

A number of defensive mechanisms to mitigate adversarial attacks have been proposed previously. 

However, they have not been effective in preventing the majority of adversarial attacks. As ML is 

utilised in a variety of different fields, it is paramount that effective defensive strategies are developed 

to provide an adequate level of defence. Even though the field this research topic pertains to is 

malware detection models, the research findings are expected to be applicable to other areas which 

utilise ML algorithms.  

The development of a defensive technique which increases the resilience of ML algorithms from 

adversarial attacks in the context of a malware detection system, should provide an increased level of 

security for all types of ML based security systems and, if utilised correctly, may reduce the total cost 

of cyber-crime. 
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1.4 Research Questions 

The aim of the research was twofold. First, to develop a targeted adversarial poisoning attack which 

allows for a certain Zero-day malware file to bypass detection, while not reducing the overall general 

efficacy of the malware detection model. Second, to develop a defensive strategy to mitigate the 

adversarial attack. The following research questions were proposed: 

RQ1: Can adversarial attacks against machine learning based malware detectors increase the 

likelihood of unknown-unknown (Zero-day) malware samples bypassing detection? 

a. What adversarial features are required to perform a successful targeted black-box 

poisoning attack? 

b. What percentage of poisoning is required to reduce the overall availability of the model’s 

performance? 

c. What percentage of poisoning is required for a targeted attack to succeed? 

RQ2: Can adversarial poisoning attacks against machine learning based malware detection be 

prevented? 

a. Can targeted adversarial poisoning attacks be detected at test time? 

1.5 Outline of Thesis 

In this section, a summary of the chapters are provided to form an outline of the thesis. 

First, a literature review was undertaken to explore the area of adversarial machine learning attacks 

and defences.  As this thesis pertains to malware detection, an overview of malware types and the 

detection methods used to defend against malware attacks was explored. Section 2 continues with an 

explanation of the processes involved in the development and evaluation of ML algorithms. One 

important factor in developing a well performing ML model is data curation. The amount of data 

obtained, the quality of the data and the feature engineering performed play an important role in the 

development of the ML. Various methods used to quantify the accuracy of a ML model are covered in 

the model accuracy section. 

Summaries of a selection of machine learning algorithms were written to highlight the different 

approaches which can be utilised for solving ML problems. As this thesis is focused on the 

application of security in ML models and not the development of ML algorithms, the summaries were 

of a high-level and did not go into depth to discuss the mathematical foundations of the selected ML 

algorithms. 

A summary of adversarial machine learning attacks and defences was produced with a focus on 

current attacks and defences for malware detection applications. The literature review found that there 
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was a lack of research which focused on targeted adversarial poisoning attacks which aimed to allow 

Zero-day malware files to bypass detection. 

Second, the research methods and design section explored potential methods which could be 

appropriate for this research. After evaluating the available options, it was found that the traditional 

scientific approach of hypothesis development and experimentation was the most suitable method for 

exploring and answering the research questions. 

The next chapter covered the work that was performed to answer the research questions. The first 

stage was to configure the work environment and the acquisition of the datasets. Two datasets were 

used during the experimentation phases, the first being the Endgame Malware BEnchmark for 

Research (EMBER) dataset. The EMBER dataset is a collection of extracted features from 1.1 Million 

portable executable (PE) files (900,000 train and 200,000 test). EMBER was developed to serve as a 

benchmark for machine learning malware research. The second dataset was obtained from VirusShare 

and contained 2555 malicious Windows PE32 files which were used as the target Zero-day malware.  

The VirusShare dataset was released in 2019, but the EMBER dataset only contained files dated up to 

2017, therefore the VirusShare files were used to simulate Zero-day malware. 

The first set of preliminary experiments were performed to identify if the import section of the 

Windows PE32 files used to train the EMBER model would be a suitable candidate for the targeted 

adversarial poisoning attack. The preliminary experiments aimed to reduce the overall general 

efficacy of the EMBER model by injecting a selection of import functions into the benign training 

data feature space. The attacks were performed at different injection percentages and used different 

sets of import functions (manual and random selections from malicious files). 

After performing the preliminary experiments, the targeted adversarial poisoning attacks were 

performed on a selection of Zero-day malware files obtained from VirusShare. Each Zero-day 

malware file was originally identified as malicious by the clean EMBER model and had a score over 

0.9. The targeted adversarial poisoning attacks were performed on two ML algorithms, gradient 

boosted decision trees and multi-layer perceptron. 

 A defensive strategy was implemented to identify suspicious files by analysing the activation weights 

from the neurons at the last hidden layer of the MLP models. The defence used the Mean Absolute 

Deviation (MAD) from the activation weights of the test dataset to identify anomalies in new data. If 

a file was classified as benign but the activation weights were two MADs outside a majority of the 

average activation weights of the benign class, then the file is quarantined for further examination. 

The next chapter discusses the results obtained from the experiments in the previous chapter, the 

preliminary experiments that explored reducing the general efficacy of the ML model, the different 

targeted adversarial Zero-day poisoning attacks which were performed on both GBDT and MLP 
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models, and finally the results obtained from the developed defensive technique to detect the Zero-day 

malware file at test time.  

The final two chapters are the discussion and conclusion. The discussion highlights the contribution to 

knowledge of this thesis and examines the work compared to other adversarial poisoning attacks and 

defences. The conclusion provides an overview of the research, a summary of the contributions to 

knowledge and plans for future work. 
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2 Literature Review 

In this chapter, three main knowledge areas are discussed, namely, Malware, Machine Learning, and 

Adversarial Machine Learning. In section 2.1 a brief overview of malware, the methods used to detect 

malware, and different techniques utilised by malware authors to bypass detection. In section 2.2, a 

discussion of the different approaches used for training ML models, followed by the methods for data 

curation and feature engineering is presented. In section 2.4, an overview of a selection of measures 

for evaluating the performance of ML models is explored. Section 2.5 provides a high-level overview 

of selected ML algorithms, which have been identified as potential candidates for answering the 

research questions. In section 2.6,  a general overview of the different domains which utilise ML 

applications are explored. Further, in section 2.7, Adversarial Machine Learning is discussed in terms 

of the different categories of attacks which have been developed to target ML-based malware 

detection applications, and the types of defences which have been developed to protect ML 

applications. Finally, in section 2.9, a summary identifies how the current literature links to the 

proposed research questions.    

2.1 Malware 

Malware is an umbrella term used to define the various software applications which have been 

developed for malicious purposes. There are a variety of different malware types, such as Trojans, 

Worms, Adware, Spyware, Ransomware, and Remote Access Tools.  

2.1.1 Malware Types, Platforms and Families 

As noted in the previous section, malware is divided into types which are defined by the overarching 

behaviour of the malware file. Malware types are further categorised into malware families which are 

determined by the common characteristics of that family of malware files, how they behave and the 

target platform of the malware file e.g., an Android phone. For instance, a Worm is a malware type 

and the W32.Downadup worm variant belongs to the Conficker family, which is a group of worms 

that target Microsoft Windows machines to create a botnet. 

According to the Malwarebytes (2020) State of Malware report, in 2019 Malwarebytes detected a 

total of 50,510,960 malware files, a 1% increase from 50,170,502 detections in 2018. Malwarebytes 

obviously does not represent the total amount of active malware infections in the world, but the report 

provides a basis for examining trends across some common malware types and families which are 

discussed in the following sections. 

2.1.1.1 Virus 

A computer virus is a malicious file which, when executed, tries to replicate itself by modifying the 

code of another computer file. Computer virus is a general term which can be applied to different 
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malware types such as the Trojan virus (described in 2.1.1.3) or the Ransomware virus (described in 

2.1.1.7)  

2.1.1.2 Worm 

A worm is a malicious file which exhibits similar behaviour to a computer virus (i.e., modifying code 

of other files) but has the distinct difference in its ability to self-propagate in contrast to a virus. A 

famous example of a computer worm is the Morris worm which was launched on November 2, 1988. 

The Morris worm estimated to have caused between US$100,000-10,000,000 in damage from the cost 

it took to remove the worm from all the infected machines. The Morris worm caused such a 

significant amount of damage due to an unintended denial-of-service attack performed as the worm 

would infect machines multiple times, using up the computer’s resources and causing the machine to 

crash. 

Malwarebytes (2020) recorded 28% fewer consumer worm infections in 2019 from 2018, coming in 

at number ten on the top ten list of both the consumer and business threat rankings. Seeing a decrease 

in the amount of worm infections does, on the surface, appear to be positive, but it should be noted 

that the threat of unknown-unknown worms cannot be quantified due to their nature. 

2.1.1.3 Trojan 

A Trojan virus is a malicious file which appears to perform some benign function but in actuality is 

performing a malicious action in the background. The Trojan virus is named after the Trojan horse 

attack used by the Greeks to gain access to the city of Troy. A common use of a Trojan virus is a 

keylogger, which is malicious software that records input from the keyboard to steal user credentials 

or to otherwise spy on a user. One of the earliest Trojan viruses was the AIDS Trojan, which was also 

the first example of Ransomware (see section 2.1.1.7). The AIDS trojan was distributed physically on 

floppy disks which claimed to contain a database of the AIDS virus. The AIDS Trojan stayed dormant 

until ninety boot cycles of the infected machine had been performed, then encrypted the filenames of 

the boot drive, rendering the machine inoperable and requests a payment to be sent to a Panama PO 

box in exchange for removing the encryption (ESET, 2020). 

2.1.1.4 HackTool 

A HackTool is a program which assists an attacker in their hacking endeavours, such as cracking 

software licences or snooping passwords from network traffic. HackTools are in some instances 

designed to aid in modifying software code to perform functions outside of its intended design. An 

example of a HackTool is AutoKMS, which is a tool designed to enable the use of Microsoft products 

such as the Windows operating system and the Office suite without appropriately licensing the 

software. 
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2.1.1.5 Spyware, Adware and Hijackers 

Spyware is malicious software which aims to invade the privacy of the target user by gathering 

personal information. Spyware attacks are commonly used to gather information for creating targeted 

advertisements used in Adware.  

Adware is malicious software which produces revenue for attackers by infecting machines with 

unwanted advertisements. Adware often collects user information to generate target advertisements. 

Adware is typically spread through freeware and shareware applications and by drive-by downloads 

from infected websites. A drive-by download occurs when, in the act of visiting a website, a script is 

run in the user’s browser, which downloads some type of malware.  

A Hijacker is malicious software which modifies the web browser settings of an infected computer 

without the owner’s permission. Hijackers usually redirect users to fraudulent websites or inject 

advertisements into the browser. Hijackers can contain both Adware and Spyware which are used to 

generate revenue for cybercriminals. Hijackers can be installed on a user’s computer from 

downloading malicious software, visiting infected websites and through downloading and executing 

malicious email attachments.  

2.1.1.6 Rootkit 

Rootkits are a suite of software tools which are designed to provide privileged access to a computer. 

The term Rootkit is derived from the name of the root account on the Unix operating systems. 

Rootkits modify an infected machine to hide their existence, which makes detection of rootkits quite 

difficult. One example is the FU rootkit, which is a kernel-mode rootkit that hides its presence by 

hiding processes and direct kernel object manipulation. Another example is the ZeroAccess rootkit, 

which is spread via drive-by downloads and exploit packs. ZeroAccess is a kernel-mode rootkit which 

turns the infected machine into a bot to carry out sending spam and performing click fraud for the 

attacker (Wyke, 2012). Click fraud is the process of generating fraudulent financial gain by utilising 

bot computers to simulate clicking on pay-per-click website advertisements. 

2.1.1.7 Ransomware 

Ransomware describes malicious software which encrypts files on an infected machine and hold the 

encrypted contents for ransom. Ransomware will generally ask for a payment in a crypto currency, for 

example, to be sent to a Bitcoin wallet address. In return, the victim will receive a decryption key to 

remove the ransomware and restore access to the previously encrypted files. Ransomware attacks 

often target businesses or companies which represent critical infrastructure such as banks and 

hospitals as the attacker is able to extort larger sums of money compared to an individual’s personal 

computer and are more likely to pay the ransom (IBM, 2016). In 2017, the WannaCry ransomware 

attack infected an estimated 200,000 computer systems in 150 countries (Reuters, 2017). According to 
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Malwarebytes (2020), ransomware infections were ranked number eight in business threats of 2019, 

down 6% from 2018 and did not make the top ten for consumer threats. 

2.1.1.8 Cryptominer 

Cryptominers are malicious software which uses the resources of the infected machine to mine for 

crypto currencies such as Bitcoin or Ethereum. Bitcoin uses a distributed ledger to verify the 

authenticity of transactions on the Bitcoin blockchain. The Bitcoin blockchain is a ledger which 

contains information about every transaction made on the Bitcoin network. When a Bitcoin 

transaction is made, every copy of the ledger is updated with the new transaction, which is verified by 

a process called cryptomining. 

Cryptomining is the process of solving mathematical problems to verify the authenticity of 

cryptocurrency transactions. Cryptominers are rewarded with cryptocurrency in exchange for using 

their processing power to mine cryptocurrencies. Cybercriminals infect users’ machines to syphon 

their processing power to use for mining crypto currencies, which reduces the performance of the 

infected machine, possibly rendering it unusable. In 2018, cybercriminals infected YouTube ads with 

the cryptocurrency mining service Coinhive, which when installed on a website, uses the processing 

power of the website’s visitors to mine cryptocurrency (Kan, 2018). 

2.1.2 Malware Detection 

Different detection methods have been developed to protect computers from being infected by 

malware. The conventional malware detection methods are signature- and behaviour-based detection. 

Signature- and behaviour-based detection are utilised in the commercial real-time protection 

applications offered by anti-malware vendors (Carlin, Cowan, O’Kane, & Sezer, 2017). Newer 

methods for the detection of malware utilise machine learning to generate predictive classification 

models for determining if a file or network stream is malicious (Ucci, Aniello, & Baldoni, 2017). A 

survey of the different ML approaches used for malware detection was undertaken by Ucci et al. 

(2017). Their survey covered a variety of research papers which utilise ML algorithms in training 

malware detection applications. The key findings of the survey were:  

• Malicious feature criteria are not adequately explained in the majority of papers; and 

• There is a need for a benchmark to compare the efficacy of the different approaches. 

2.1.2.1 Signature-Based Detection 

Signature-based malware detection is a technique used to identify known malware samples by 

comparing a file’s digital signature to those stored in a database of known malicious signatures 

(O’Kane, Sezer, & McLaughlin, 2011). Signature detection is utilised by the real-time protection 

software offered by commercial anti-malware vendors. Repositories of known malicious signatures 

are maintained by anti-malware companies. When a new malicious file is identified, the file’s 
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signature is added to the signature database (O’Kane et al., 2011). Signature detection is effective for 

identifying known malware files and preventing them from infecting a machine. However, the 

obfuscation measures employed by malware authors (described in section 2.1.3) generate new 

signatures which can bypass detection if they have not already been identified (O’Kane et al., 2011).  

2.1.2.2 Behaviour-Based Detection 

Behaviour-based malware detection is a technique which identifies malware based on the nature of 

the file’s actions. If the behaviour of a file is analysed and some form of suspicious behaviour is 

identified, such as unauthorised changing of permissions or deactivating security settings, the file is 

then quarantined. This dynamic analysis of files can be performed by real-time protection software, or 

can also be used in sandbox environments to analyse and determine the nature of a file (O’Kane et al., 

2011). 

Cuckoo Sandbox is an open source dynamic malware analysis tool which supports Microsoft 

Windows, Linux and OSX operating systems for malware analysis ("Cuckoo Sandbox,"). Cuckoo 

operates by deploying a snapshot of the desired operating system, feeding malware into the virtual 

machine, monitoring the behaviour of the suspected malicious file, and providing a report to the end 

user detailing the file’s behaviour. 

2.1.2.3 Commercial ML Solutions 

A TrendMicro patent illustrated the use of ML for detection of Zero-day malware files (Oliver et al., 

2013). Common substrings from malicious files are extracted and used to populate the labels of a 

decision tree. When a client machine identifies a file as suspicious, the file is sent to an enterprise 

server. The enterprise server analyses the file through a decision tree model. The decision tree 

approach was selected for performance, as fewer CPU cycles are used compared to sandbox 

behaviour-based analysis. Quick determination of suspected substrings and extracting and examining 

substrings from suspected files preserves user privacy, as the server does not examine the entire 

contents of the file. 

Symantec (2018) have developed an Advanced Machine Learning (AML) engine which analyses and 

determines the nature of a computer file, identifying the file as either malicious or benign. Symantec’s 

AML engine obtains data from a global system of client machines using Symantec’s anti-malware 

software. Sophos (2017) utilises Deep Learning in their endpoint security platform Intercept X 

(Sophos, 2017). Machine learning is also utilised by anti-malware vendors CrowdStrike and Cylance, 

to train their malware detection software (CrowdStrike, 2017; Cylance). 

2.1.2.4 Browser Protection 

Another form of malware protection is employed within Internet browsers to prevent users from 

accessing malicious websites. Browser-based protection prevents users from visiting malicious 

websites through the use of blacklists. Browser-based protection is available from Google’s Safe 
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Browsing API, McAfee’s Site Advisor, Symantec’s Safe Web, and other cyber security vendors. 

Google have also developed a protection solution to prevent malicious downloads from occurring 

where blacklists may fail. Browser based protection is another layer of security which can be utilised 

in conjunction with other anti-malware software to increase the protection of a computer system. 

Content Agnostic Malware Protection (CAMP) is a Google Chrome browser-based malware detection 

solution which identifies malicious files without examining the content of the file (Rajab Abu, 

Ballard, Lutz, Mavrommatis, & Provos, 2013). CAMP uses a client/server architecture. When a file is 

downloaded, the browser performs a local check using Google’s Safe Browsing API to determine if 

the downloaded file is already known as either malicious or benign. If a local result is unable to be 

determined, the browser extracts content-agnostic features from the file and sends them to one of 

Google’s reputation servers to perform a server-side reputation profile check. If the file is identified as 

malicious, a warning is shown in the browser, which provides the user with an option to continue the 

download or to discard the file. In comparison to virtual machine-based dynamic analysis, CAMP 

achieved a relative accuracy rate of 99%, without the need to execute the file within a sandboxed 

container. CAMP was able to identify an additional 5 million malicious download files per month that 

were not detected by other anti-malware solutions. 

Browser-based protection is not directly related to the theme of ML malware detection in this 

research, but it was covered to provide some background information about the different types of 

malware prevention techniques which are utilised to protect computer systems. 

2.1.3 Malware Obfuscation 

Malware is ever evolving, and malware authors typically employ obfuscation techniques to prevent 

their malware files from being detected, particularly by signature-based detection methods. 

Obfuscation techniques can be categorised in three groups: packing, polymorphism and 

metamorphism (O’Kane et al., 2011). 

Packers are tools used to compress or otherwise obfuscate malware to avoid detection from signature-

based anti-malware applications (F. Guo, Ferrie, & Chiueh, 2008). According to (McAfee, 2017), 

80% of malware files analysed are obfuscated through packing. Packers were originally developed to 

reduce size of files to save space, not hide malicious code. Packers operate by either partially or 

completely compressing/encrypting a file. Malware authors can use packers to pack their files 

multiple times, increasing the amount of encrypted malware and reducing the probability of the 

malware being detected by signature detection  (F. Guo et al., 2008). 

Polymorphic malware employs encryption techniques to modify the static binary code of a malware 

file to avoid detection. When a polymorphic malware file is executed, the opcode, which is written to 

memory and executed, is re-encrypted creating a malware file with a new digital signature, this 
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process is performed to evade signature-based detection (Alam, Horspool, & Traore, 2014). 

Metamorphic malware does not use encryption as polymorphic malware does, instead, metamorphic 

malware generates a new sequence of opcodes each time the file is executed (Alam et al., 2014). The 

generation of new sequences of opcodes is also known as dynamic code obfuscation. Polymorphic 

and metamorphic malware both create copies of themselves to evade detection, the difference 

between polymorphic and metamorphic malware is that polymorphic malware uses encryption to 

create malware copies which appears different from the original, while metamorphic malware rewrites 

the opcode in each copy to appear different.   

Packing, metamorphic, and polymorphic obfuscation techniques can be applied to any type of 

malware file which alter the infected system in a variety of ways. An example of different malware 

and their behaviour is given in the next sub-section.  

2.2 Machine Learning Algorithms 

The purpose of Machine Learning (ML), as described by Samuel (1959), is to eliminate the need to 

explicitly write a program to perform a function, which instead could be learned through experience 

“Programming computers to learn from experience should eventually eliminate the need for much of 

this detailed programming effort.”(Samuel, 1959). ML algorithms are used to develop models, which 

aim to accurately predict an output from a given input based on the context of the problem and the 

way the model was trained. ML-based applications utilise different learning methods when training 

the ML model. These approaches are Supervised, Unsupervised, and Reinforcement-based learning. 

Following a discussion of these approaches, other aspects pertinent to the successful implementation 

of ML algorithms will be discussed, including training approaches and data curation. 

Figure 2.1 - ML Process Adapted from Géron (2019) 

Refer to Figure 1.4 Machine 
Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.).

Sebastopol, California: O'Reilly Media, Inc.
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch01.html 

https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch01.html
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2.2.1 Learning Approaches 

Different learning approaches are utilised in ML depending on the type of feedback mechanism 

implemented in the learning process. The three types of learning approaches discussed in the 

following subsections are supervised, unsupervised, and reinforcement learning. Selecting the 

appropriate learning approach is determined by the type of ML problem to be solved and the level of 

information known about the dataset. 

2.2.1.1 Supervised Learning 

In a supervised learning approach, the link between the input and the output is already known. The 

training data is correctly labelled beforehand and the ML algorithm is run to develop a model which 

accurately determines the pattern between the input and the output (Bishop, 2006). When new input 

data is fed into the ML model, it is expected that the model will classify the new input correctly, to an 

adequate level of accuracy. Supervised learning algorithms can be split into two groups based on the 

type of problem they aim to solve, which are classification and regression problems (Rebala, Ravi, & 

Churiwala, 2019). In classification, the model will classify the output into a category, such as “male” 

or “female”. In regression, the model will make a prediction and produce an output of a real value, 

such as numerical representations of “height” or “weight”. 

A classic ML example which uses a supervised learning approach is the classification of Iris flowers 

from the labelled Iris dataset. The Iris dataset consists of three species (Iris Setosa, Iris Versicolor, and 

Iris Virginica), with fifty samples of each. Each sample is labelled according to species and contains 

the measurements of their sepal length, sepal width, petal length, and petal width, which are referred 

to as features. A ML model is trained which identifies patterns within the data from the features to 

distinguish the three iris species. When new unlabelled Iris data is introduced, the ML model makes a 

prediction and classifies the Iris data into one of the three classes. 

2.2.1.2 Unsupervised Learning 

In unsupervised learning, the link between the input and output is not known, instead, the ML 

algorithm determines the underlying characteristics/structure and creates the link itself (Bishop, 

2006). Unsupervised learning algorithms can be split into two groups, clustering, and association. In 

clustering, the aim is to discover clusters of similar data within the dataset (Rebala et al., 2019), for 

instance, clusters of certain groups of people may have a certain nose shape or eye colour. In 

association, the aim is to discover rules which cover large portions of the data (Géron, 2019), for 

instance, groups with a certain nose shape also tend to have a certain face shape. 

Using the Iris example from the previous section, in an unsupervised approach to classifying the 

images the 150 data samples would not contain a label indicating their species. Instead, a clustering 

algorithm, such as K-means, which is described in 2.5.6, would be used to identify underlying 
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structures within the features of the Iris data, and group together common features into their own 

class. 

2.2.1.3 Reinforcement Learning 

In reinforcement-based learning, an unsupervised approach is used where the ML algorithm discovers 

different approaches to solve a problem through trial and error, while the learner also prioritises 

approaches which have been tried before and have shown to be successful (Sutton & Barto, 1998). 

Reinforcement learning is the approach used in the training of AlphaGo Zero, the ML-based 

application for decision making in the strategy game GO (Silver et al., 2016). 

2.2.2 Training Approaches 

To determine which model is the most suitable for the proposed problem, a series of tests are carried 

out to identify which ML algorithm and what underlying structure of the ML architecture would be 

most appropriate. The tests are performed by randomly splitting the dataset into three parts: a training 

set, a validation set, and a test set (Friedman, Hastie, & Tibshirani, 2017). The training set provides 

the data which the ML algorithm uses to identify the patterns within and to fit the model. The 

validation set is used to find which parameters minimise the model’s error, identifying the most 

suitable model for testing. The test set is used by the best performing model found during the 

validation phase to evaluate the general performance of the model, as the data in the test set has not 

been seen by the model or used in any way to tune the parameters. The validation and testing sets are 

often confused with one another, with researchers referring to the validation phase as the test phase 

and vice versa.  

2.2.2.1 Batch Learning 

In a batch learning environment, the model is trained using all the available data that it is not able to 

incrementally learn (Hackeling, 2017). Batch learning is also known as offline learning as the training 

process is performed offline. Once the model has been trained, it is ready for use and no more 

learning is required. If new data become available and an updated model is required, then the training 

process needs to be performed again on the entire dataset (Géron, 2019). 

2.2.2.2 Online Learning  

In online learning, the learning process is performed by training mini-batches (mini-batch gradient 

descent), or each single instance (stochastic gradient descent) of data as they arrive (Hackeling, 2017). 

The online learning method allows for incremental updates to be performed as new data are obtained. 

Online learning is the preferred method for training models which need to be considerate of fast 

changing trends, such as trying to model trends in the stock market (Géron, 2019).  

An important tuneable parameter of online learning is the learning rate. The learning rate determines 

at what frequency should the incremental training phases be performed (Géron, 2019). A fast learning 
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rate is ideal for applications which model fast changing trends, and do not require the learned 

information from the earlier instances of training, such as changes in the stock market. A slower 

learning rate is more applicable to applications which need to be updated over time, but do not have a 

such a volatile change in trends (Géron, 2019). Online learning environments, especially live 

networks, need to pay close attention to the new data being gathered for incremental changing. If bad 

data is introduced, either innocuously or by an attacker, the quality of the model’s performance will 

start to degrade over time (Géron, 2019). 

2.2.3 Data Curation 

Data curation is an important step in the development of training a ML model. The data curation stage 

includes collecting data from various sources, organising the data into appropriate labels, and filtering 

out poor quality data to ensure that the data collected is the best possible representation of the target 

area. The following subsections discuss the different ways in which data can be acquired, the methods 

for determining data quality and the types of problems which can occur from using a poor quality 

dataset to train a ML model. 

2.2.3.1 Data Acquisition 

A crucial stage in the development of a machine learning model is acquiring the data to create the 

training, test, and validation data sets (Rebala et al., 2019). Available datasets exist for a variety of 

applications, such as image recognition, malware detection, and natural language processing. It is not 

always preferable to use a pre-made dataset, and if the application of the machine learning model is in 

a niche or novel area, it would be unlikely that a pre-made dataset exists. Datasets can be curated 

through either offline or online methods, with the choice of method being dependent upon the area 

and application of the model (Rebala et al., 2019). Online repositories for research datasets exist to 

make data acquisition easier. The Google Dataset Search provides a platform for searching the web to 

locate datasets via simple keyword search terms. Other open data portals include dataportals.org, 

opendatamonitor.eu, quandl.com and online repositories UC Irvine Machine Learning Repository, 

Kaggle Datasets, and Amazon’s AWS datasets also provide open access to ML datasets. 

2.2.3.2 Data Quality 

The quality of the data obtained plays a significant role in the overall effectiveness of the learned 

model. If the acquired data suffers from sampling bias and does not accurately represent the target 

field, the output quality of the model will not accurately reflect the general population. Banko and 

Brill (2002) found that the choice of an ML algorithm was not as important as having a large dataset 

when working on the problem of natural language disambiguation. The results from each ML 

algorithm were close to identical when trained on a significantly large dataset (10^9 words). Other 

factors contributing to poor-quality data include excessive noise (outliers), incomplete data objects 

which have missing features, redundant features, and using a dataset which is too small. Pre-

processing the data can minimise the damage which is caused from using a poor-quality dataset. 
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Another issue which can arise from having a poor-quality dataset is overfitting. Overfitting is caused 

by the output of the model not being generalisable but having a high level of accuracy on the training 

data. Overfitting is caused due to a lack of diversity within the training dataset that does not represent 

the real world. As an example, Raff et al. (2018), noted that their ML malware detection application 

appeared to be working with a high level of accuracy in correctly classifying malicious and benign 

Windows PE32 files, but in actuality, overfitting was occurring which resulted in each file that had 

been digitally signed by Microsoft to be classified as benign, as all of the files in the benign dataset 

were extracted from a clean Microsoft Windows installation. Underfitting is the opposite of 

overfitting which occurs when there is insufficient data, or the ML algorithm was too simple to 

identify and correctly model the problem, producing an output model which is overall inaccurate. An 

example of underfitting, true fit, and overfitting is shown in Figure 2.2.   

2.3 Data Labelling 

In supervised ML architectures, labelled datasets are required for training the ML model 

(Géron, 2019). In the case of unsupervised ML, the datasets are left unlabelled and the ML 

algorithm identifies classes within the data, usually by clustering (Géron, 2019). Labelling can be 

performed manually, which depending on the size of the dataset can be a tedious process, 

which is why crowdsourcing is often utilised, as in the ImageNet dataset in which the labels 

were manually generated using labour from Amazon Mechanical Turks (Deng et al., 2009). One 

method for creating a labelled dataset to be used in a supervised learning approach is to use a 

selection of already existing labels from a minority of the data, and use an automated process to 

generate labels for the remainder of the dataset, which reduces the amount of time required to 

label the entire dataset (Rebala et al., 2019). As in the unsupervised approach, the ML algorithm 

identifies the classes within the dataset and automatically labels the unlabelled data to the identified 

class (Rebala et al., 2019). 

2.3.1 Feature Engineering 

After the dataset has been acquired and if using a supervised approach correctly labelled, the 

features from the data samples which will be used to train the model need to be identified. A 

feature is a 

Figure 2.2 - Model Fitting Examples Adapted from - Scikit (2014) 
Refer to Scikit (2014)

https://scikitlearn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html  

https://scikitlearn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
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variable which contains information describing an aspect of a data object. Feature engineering is the 

process of identifying salient information within the data samples to provide the model with the 

greatest chance of computing high learning accuracy. Feature engineering techniques are often 

specific to the domain of interest, for instance, the features generated for speech recognition are 

different from malware detection: 

 

• Feature Transformation: Generating new features from existing features, usually used to 

generate a numerical representation of a categorical feature e.g., mapping certain eye colours 

to a numerical value. 

• Feature Generation: The identification and generation of new features from a data object by 

identifying patterns within. 

 

• Feature Selection and Analysis: Selecting a smaller set of features from a large set to reduce 

computational cost, remove irrelevant features which do not contribute to the model’s 

learning and to remove redundant features which were extracted from the data object. Some 

methods for feature reduction include Factor Analysis, Principal Component Analysis, and 

Independent Component Analysis. 

2.4 Model Accuracy (Performance Measures) 

Different measures exist as means for evaluating the accuracy of a ML model. In this section, an 

overview is given for several different measures used in classification problems. To evaluate the 

performance of a classification model, four output results are required, which are True Positive (TP), 

True Negative (TN), False Positive (FP) and False Negative (FN). In the case of a malware detection 

model where a score of 1 (positive) indicates a malicious file and a score of 0 (negative) indicates a 

benign file, a TP occurs when an input (malicious binary file) was correctly classified as positive 

(malicious). A False Positive occurs when the input (benign binary file) is misclassified as malicious. 

A True Negative occurs when an input (benign binary file) is correctly classified as benign, and a 

False Negative occurs when the input (malicious binary file) is misclassified as benign. The output 

from an ML model’s test run is often represented in a confusion matrix, as shown in Table 1, where a 

type I error is a False Positive (the null hypothesis is rejected when it is true) and a type II error is a 

False Negative (the null hypothesis is being accepted when it is false). 

Table 1 - Confusion Matrix Description Adapted from (Johnstone & Peacock, 2020) 

 Data 

H0 True H0 False 

Reality 
H0 True TP Type I Error 

H0 False Type II Error TN 
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2.4.1 Confusion matrix 

A confusion matrix is a visual representation of the TP, TN, FP, and FN output predictions from 

testing a model. A confusion matrix provides a simple way to quickly identify a desired output from 

the model, such as the quantity of TPs or TNs. The confusion matrix is represented by the actual 

output classes and the amount of predicted output classes from testing. An example of a confusion 

matrix with an accuracy score is illustrated in Figure 2.3. Following the malware detection example 

from section 2.4, where a score of 1 (positive) indicates a malicious file and a score of 0 (negative) 

indicates a benign file. Out of the total 14 malicious files, 11 were correctly classified as malicious 

(TP), while 3 files were misclassified as benign (FN). Out of the 14 total benign files, 13 were 

correctly classified as benign (TN), while one file was incorrectly classified as malicious (FP). An 

overall accuracy of 0.857% was achieved by the model.   

 

Figure 2.3 - Confusion Matrix with Accuracy 

2.4.2 Accuracy, Specificity, Precision and Recall 

Accuracy is the measure of predicted TPs over actual TPs. Accuracy by itself is not the best measure 

to use when gauging the precision of an ML model. For example, if testing to detect cancer in 1000 

patients, the model’s output predicted that no patient had cancer, but in fact 50 patients did, the model 

would have an accuracy of 95%. From the previous example, it illustrates how the accuracy metric 

does not by itself provide a clear indication of performance as accuracy is not the only measure which 

needs to be taken into consideration when evaluating the performance of a ML model. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Specificity measures the proportion of predicted negatives which were true negatives. It evaluates the 

total amount of TN over the total TN and FP. Specificity is measured between 0.0 for no specificity 

and 1.0 for total specificity, with a higher value representing a greater percentage of predicted TN. 
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Using the values from Figure 2.3 as an example, the model produced 13 TNs and 1 FP, which equates 

to a specificity score of 0.928. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Precision is the number of TPs over the total TPs and FPs. It evaluates the total amount of TP over the 

total TP and FP. Recall, same as specificity, is measured between 0.0 and 1.0. Using the same values 

from Figure 2.3, the model produced 11 TPs and 1 FP, which equates to a precision score of 0.916. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall is a method used in conjunction with precision to calculate the True Positive Rate (TPR) of a 

model. Recall is also known as sensitivity. The TPR represents the percentage of actual positive 

classifications. The TPR and False Positive Rate (FPR) will change depending on the threshold 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Precision, recall, and accuracy have been used to determine the quality of models by many 

researchers. As an example, Feroze, Baig, and Johnstone (2015) used precision, recall, and accuracy 

to compare the quality of two-tiered and single-tiered spam detection models. Accuracy was also used 

as the performance measure when comparing multilayer extreme learning machine and deep neural 

network models for intrusion detection applications (Yang, Wang, & Johnstone, 2020). The quality of 

the model is represented by the value produced from the chosen performance measure, which were 

described in the previous sub-sections. When comparing different models, the model with a higher 

value indicates greater performance than a lower value model.  

2.4.3 Precision-Recall or PR Curve 

A PR curve is a graph which plots the precision values on the y-axis and the recall values on the x-

axis for different probability thresholds. The precision is related to the number of false positives and 

the recall is related to the number of false negatives, with a high precision and recall value 

representing a low number of false positives and false negatives. As illustrated in Figure 2.4, the 

precision and recall values are shown at different thresholds on the orange line, compared to a no skill 

model (50-50 chance of a TP) on the dotted blue line. 
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Figure 2.4 - PR Curve Example 

A good ML model will aim to have both high precision and recall values, but it will usually sacrifice 

one or the other to some degree. The quality of the PR curve is represented by the Area Under the 

Curve (AUC) as shown in the multi-class example in Figure 2.5, with a higher value representing 

better model performance.  
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In Figure 2.5 the dark blue class is the best performer (as it has the greatest area under the curve), 

while the light blue class is the worst performer (as it has the least area under the curve). At perfect 

recall, each class has a similar precision value, with the light blue class having the greatest value. At 

zero recall, three of the classes have perfect precision, while the light blue class has zero precision. By 

examining the PR curves, a judgement can be made about what trade-off between precision and recall 

should be made to generate a model with the greatest TPR.   

2.4.4 ROC (Receiver Operating Characteristics) Curve 

The ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR). The FPR is 

the ratio of incorrect positive classifications i.e., negative objects being incorrectly classified as 

positive. The ROC curve is used to summarise the performance of a binary classification model. 

Figure 2.5 - Multi-class Precision-Recall Curve Example Adapted from Scikit 
Refer to 

https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html

https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
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As it is illustrated in Figure 2.6, the dotted diagonal line represents a no skill model which produces a 

50/50 chance of a true positive. The orange line representing a logistic model illustrates 

the performance of the model at different at different TPR/FPR values. 

2.4.5 F1 score 

The F1 score is the harmonic mean calculated from the precision and recall which is used to 

compare the performance of two or more classifier models. The harmonic mean treats low values 

with more importance, compared to the normal mean which treats all values equally. For a model 

to produce a high F1 score it needs to have a high level of both precision and recall. 

𝐹1 =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

= 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

TP

TP +
FN + FP

2

The F1 score is a popular performance measure used in ML malware detection. The F1 score was 

used by Abhishek and Goswami (2017) in their Android malware detection research, by W.-C. Wu 

and Hung (2014) in their Android malware detection, and by F. Xiao, Lin, Sun, and Ma (2019) in 

their ML malware detection framework for IoT environments.  

Figure 2.6 - ROC Curve Example 
Refer to 

ROC Curve Plot for a No Skill Classifier and a Logistic Regression Model
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/

https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
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2.4.6 Matthews Correlation Coefficient 

Matthew Correlation Coefficient (MCC) is a measure for determining the quality of binary 

classification models in ML. The MCC formula uses the TP, TN, FP, and FN values to calculate the 

efficiency of the model. An MCC can be calculated from a confusion matrix by using the following 

formula: 

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

The MCC produces a value between -1 and +1. A value of +1 represents a perfect prediction, -1 

represents a model which produces each output incorrectly, and a value of 0 indicates that the model 

is no better than a random prediction of the classification. 

According to Chicco and Jurman (2020), MCC is a more accurate measure for binary classification 

ML models compared to the F1 score, even though the F1 score is currently a more popular choice. In 

the domain of IoT botnets, Peacock (2019) found that MCC was a better metric overall, compared to 

the previous metrics, when used for comparing models which were trained for detecting anomalous 

network traffic generated by IoT botnets. 

2.5 Algorithm Overview 

Several ML algorithms which have been utilised in the cyber security domain are described in the 

following subsections. As this research pertains to the effectiveness of ML applications in a specific 

sub-domain (malware detection) and not the development of ML algorithms, the following sub-

sections provide an overview of the principles of each candidate ML algorithm. 

2.5.1 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are ML systems loosely based on how biological neural networks 

(e.g., brains) learn via pattern recognition (Haykin, 2008). There are different types of ANN such as 

the Feedforward Neural Network (FNN), Convolutional Neural Network (CNN), Recurrent Neural 

Network (RNN), and Probabilistic Neural Network (PNN). ANNs can be used in either supervised, 

unsupervised, or reinforcement scenarios. The underlying structure in each of the different variants of 

ANNs is identical.  

ANNs use a collection of nodes called artificial neurons which are information-processing units. The 

neurons transmit weighted signals between each other through connecting links called synapses. The 

weights of the signals are summed along with a bias value and are passed through an activation 

function. The activation function determines the activation state of the neuron, if the neuron is 

activated, it will transmit the data to neuron(s) in the next layer. In an ANN, a collection or set of 

neurons are organised together to comprise a layer. In general, a neural network will be comprised of 

an input layer, one or multiple hidden layers, and an output layer (Haykin, 2008).  
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ANNs are a popular ML algorithm. They have been used for various visual recognition tasks (Y. Guo 

et al., 2016), speech recognition (W. Liu et al., 2017), Google uses NNs in their language translation 

software (Y. Wu et al., 2016), and the development of autonomous vehicles (Tian, Pei, Jana, & Ray, 

2018). 

Figure 2.7 - Diagram of a Feedforward ANN Adapted from ("Artificial neural network with layer coloring," 2013) 

Retrieved from
https://en.wikipedia.org/wiki/File:Colored_neural_network.svg 

CC BY 3.0

2.5.2 Support Vector Machines 

Support Vector Machines (SVMs) belong to the ANN category; they can be used in supervised 

and un-supervised learning approaches for both classification and regression problems. For 

classification problems, SVMs use a non-probabilistic linear model to classify data into binary 

classes. Multiple binary classification models can be used to solve multi-class classification 

problems (Bishop, 2006). SVMs can also be used to solve nonlinear regression problems using the 

kernel method (Rogers & Girolami, 2016).  

For solving a classification problem, an SVM, after receiving a set of labelled training data, 

will generate an optimal hyperplane which classifies new input data into the correct binary class. 

The optimal hyperplane is found by determining the greatest margin achievable to split the data 

into the appropriate classes. The margin is calculated from the sum of the distance between the 

closest data point from each side of the hyperplane. The data points used to generate the hyperplane 

are known as the support vectors, as illustrated in Figure 2.8.  

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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2.5.3 Decision Trees 

Decision trees are a supervised learning method which are used in ML as a predictive model for 

both classification and regression problems (Alpaydin, 2004). Decision trees are populated with 

nodes, which contain questions. The questions relate to a feature of the input data, the answer to 

which is connected to another node. Questions can be either binary or contain multiple variables. 

For multiple variables, a weight is calculated to determine which answer is most accurate. Input 

data fed into decision trees start at the root node, and progress through a path of nodes to 

determine how the data should be labelled. The node path is obtained by answering the questions.  

Multiple decision trees can be used together to achieve a more accurate result compared to the use of 

one decision tree. Random Forest (RF) and Boosted Trees (BT) are two methods that use an ensemble 

of decision trees to obtain a more accurate result, compared to single trees (Banfield, Hall, Bowyer, & 

Kegelmeyer, 2007). In the RF approach, multiple decision trees are run in parallel to each other and 

the final result is determined from the average result of each decision tree in the ensemble. In the BT 

approach, a sequential stream of decision trees is trained using the results from the previous trees 

to populate the nodes. The final result obtained through BT is the weighted average from each 

decision tree in the ensemble.   

Figure 2.8 - Optimal hyperplane of a linear SVM. Support vectors are coloured blue. Adapted from Haykin (2008)
Refer to Figure 6.1 Illustration of the idea of an optimal hyperplane for linearly separable patterns  
Haykin, S. (2008). Neural Networks and Learning Machines (Third ed.). Upper Saddle River, New

Jersey: Pearson. 
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2.5.4 Regression Models 

Regression is a technique developed for use in statistics to identify the relationship between 

independent (predictor) and dependant (output) variables. Regression techniques can be used in a 

supervised learning approach to solve continuous problems (Linear Regression) or discrete problems 

(Logistic Regression) (Bishop, 2006). There are different types of linear regression techniques, such 

as Simple Linear Regression when using a single independent variable, or multivariate regression 

when using multiple independent variables.  

Logistic Regression is a supervised classification approach which is used to solve binary classification 

problems. Multiple logistic regression models can be used together to classify variable data from a 

multiclass classification problem. To solve a multiclass problem, either a one-versus-the-rest (OvR) or 

a one-versus-one (OvO) approach is used (Bishop, 2006). In an OvR approach, one classifier is 

trained for each possible outcome in the multiclass problem. The classification is determined by 

testing the input against each classifier and choosing the one which has the greatest classification 

score. In an OvO approach, a classifier is trained for pairs of possible outcome classes. The OvO 

approach reduces the number of classifiers that need to be trained and therefore the computational 

power used.       

2.5.5 Naïve Bayes 

Naïve Bayes is a supervised probabilistic-classification ML algorithm. In a Naïve Bayes approach, the 

probability of each feature is considered independent of each other feature. That is, when determining 

which class a variable belongs to, the probability of a feature being true does not increase or decrease 

the probability of another feature. Different probability algorithms can be used in Naïve Bayes, with 

the Bayes Theorem being most common.  

Naïve Bayes theorem calculates the probability of each factor independently, then selects the factor 

with the highest probability of occurring. Naïve Bayes assumes each factor is independent from each 

other. 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

Naïve Bayes is a popular algorithm for use in spam detection. It is used in SpamBayes, 

SpamAssassin, and Bogfilter (Nelson et al., 2008). In a Naïve Bayes spam filter, features of an email 

(e.g., headers and keywords) are assigned a probability value from the likelihood that the keyword 

word appears in a spam email. The probability is determined through training of an ML model in a 

supervised manner where spam and ham emails are pre-labelled, ham being email that is not spam, 

i.e., legitimate email. Each feature’s probability score is determined independently from the other 

features. The probability of an email being spam is determined by analysing each feature and 

determining if the probability is greater than the spam threshold set by the application.    
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2.5.6 K-means Clustering 

K-means clustering is an unsupervised clustering algorithm which aims to determine groupings of 

data from an unlabelled dataset (Chio & Freeman, 2018). The numbering of the groups is represented 

by the variable K, and each group K is centred on the mean of a cluster of data points. The K-means 

algorithm automatically determines the groupings through an iterative function (Chio & Freeman, 

2018). First, a random selection of centroids are chosen for data points to aggregate around. Second, 

the mean of the data points surrounding the centroid from each K group is determined, this mean point 

is then selected as the new Kth group’s centroid point. The previous process is repeated until the 

centroid position of each Kth group no longer changes, which produces the final output of the found 

clusters from the input data (Chio & Freeman, 2018). 

K-means clustering is popular in the business domain for grouping together clusters of purchases 

made by consumers, which benefits businesses in determining which items to sell together or what 

type of deals are more likely to be popular. In the cyber security domain, K-means clustering has been 

used in general malware detection (Martin, Menéndez, & Camacho, 2016), Android malware 

detection (D. J. Wu, Mao, Wei, Lee, & Wu, 2012), botnet detection (Dietrich et al., 2011), and 

network intrusion detection (Jianliang, Haikun, & Ling, 2009). 

2.6 Machine Learning Applications 

Machine learning has been utilised in a variety of domains to automate processes and perform 

complex data analysis, which would take a significantly longer time if being performed manually 

(Obulesu, Mahendra, & ThrilokReddy, 2018). The following sub-sections provide a brief overview of 

the types of domains which have utilised ML with some practical examples of ML in use. 

2.6.1 Critical Infrastructure 

Machine learning can be utilised to provide security for a nation’s critical infrastructure. The securing 

of critical infrastructure is paramount for the wellbeing and day-to-day operation of any nation. In 

2015, a malware attack targeted the SCADA systems of three utility companies in the Ukraine, which 

left thousands of Ukrainian homes without power for several hours (Allianz, 2020). The utilisation of 

ML to secure critical infrastructure and to maintain operation of the system can be utilise at both the 

network and human level of operation (Zeadally, Adi, Baig, & Khan, 2020). The human element is 

susceptible to phishing attacks which can allow for malware to be executed on critical infrastructure 

systems. ML trained phishing detection applications can be utilised to prevent the phishing attacks 

from succeeding. ML can be utilised at the network level to identify anomalies within the operation of 

the critical infrastructure system, such as high load operation at odd times or low operation at peak 

times. 
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2.6.2 Computer Vision 

Computer vision is a field of research in computer science which aims to provide computers with a 

method of understanding digital images and videos in the same way that a human can. Computer 

vision is used in a variety of applications in varying fields such as military, medical, and industrial 

manufacturing. The following is a general list of applications which utilise computer vision in some 

way: 

• Facial Recognition 

• Species Identification 

• Product Quality Examination 

• Autonomous Vehicles 

• Medical Image Processing 

• Missile Guidance 

The method of computer vision is dependent on the type of application it is being utilised in but some 

functions, such as image acquisition, data pre-processing, feature extraction, high-level processing 

and decision making are generally used by the majority of computer vision applications (Janai, 

Güney, Behl, & Geiger, 2020). In the case of an autonomous vehicle, computer vision may be utilised 

in the following way. The image acquisition is obtained by a set of cameras attached to the vehicle 

which are recording digital images/video. The acquired digital images are pre-processed to fit into 

certain dimensions or to remove excess noise from the image. The feature in the image is identified by 

using a trained ML model to classify the objects. A decision is made based on the objects identified in 

the image e.g., the vehicle stops as it has identified a stop sign at the next intersection. 

2.6.3 Natural Language Processing 

Natural language processing (NLP), also known as computational linguistics, is a sub-field of 

computer science, statistics and linguistics. Natural language processing is used to describe how the 

problem of understanding the structure of human language in a computer-oriented view is solved 

(Belinkov & Glass, 2019). NLP is used in many applications such as predictive text, automated 

translation, speech recognition and sentiment analysis (Young, Hazarika, Poria, & Cambria, 2018). 

Predictive text is used to predict the next word which could be used to complete a sentence being 

typed based on the context of the previously typed words (Young et al., 2018). 

2.6.4 Cyber Security 

In the cyber security domain, ML is utilised in a multitude of various applications. Cyber security 

measures benefit greatly from the precision and speed of automation provided by machine learning-

based applications. The following is a general list of applications in cyber security which utilise 

machine learning: 
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• Malware Detection 

• Network Intrusion Prevention 

• Network Intrusion Detection 

• Biometric Authentication 

• Spam Detection 

2.6.5 Finance 

In the financial field, machine learning is utilised in the following areas: 

• Stock Prediction 

• Fraud Detection 

• Personal Finance Management (Budgeting) 

• Targeted Personalised Advertising 

• Financial Risk Analysis 

• Credit Analysis 

Machine learning is used in finance to analyse large amounts of financial data and produce risk 

analyses on portfolios, and potential earnings (Shen, Jiang, & Zhang, 2012). Machine learning is also 

utilised for anomaly detection, which automates the process of detecting fraud (Perols, 2011). 

Machine learning algorithms can build models on a user’s traditional purchasing patterns; alerting the 

user when an anomalous pattern is detected (Raj & Portia, 2011). Fraud detection is utilised by 

banking institutions to identify anomalous transactions within a customer’s purchase history which 

may indicate that some type of fraudulent process had occurred. Fraud detection utilises anomaly 

detection from ML to identify transactions which lie outside of the predicted purchasing pattern a 

customer would generally follow. 

2.6.6 Marketing 

Marketing utilises ML to identify patterns within people’s behaviour which can be used to generate 

advertisements, both general and targeted, and to optimise product placement to increase sales. 

Personal advertisements created from online behaviour are tailored to a particular user to provide 

them with an option to purchase an item/service which the advertisement company believes the user is 

interested in based upon their browsing habits.   

2.6.7 Healthcare 

In the medical field, machine learning is utilised in the following areas: 

• Medical Diagnosis 

• Precision Medicine 

• Medical Data Collection 
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• Autonomous Surgery 

• Drug Development/Discovery 

• Disease Identification 

IBM Watson Genomics, a partnership between IBM and Quest Diagnostics, aim to improve precision 

medicine (PM) by utilising machine learning algorithms. PM is a tailored approach for providing 

healthcare to individuals, mainly disease treatment and prevention, which is achieved by utilising the 

information known about the individual’s genetic makeup, lifestyle, and environment. Machine 

learning is also used for the general population, for instance, ML is used to analyse large datasets of 

different publicly available data to predict the likelihood that an epidemic outbreak may occur. 

2.6.8 Personal Assistants 

Siri, Cortana, Alexa, Echo and Google Assistant are Smart Personal Assistant (SPA) applications 

which utilise machine learning. SPAs perform tasks such as organising dates and reminders, 

scheduling appointments (Google, 2018), performing Internet searches, activate music and video 

players, creating to-do lists and even purchase items online. Netflix and other streaming services 

utilise ML to identify which type of show a user may be interested in viewing based on their browsing 

history and the history of other users with similar viewing habits. 

2.7 Adversarial Machine Learning 

Machine learning algorithms are susceptible to a range of adversarial attacks. Adversarial attacks aim 

to, in some manner, reduce the efficacy of an ML based application. This is not a new idea, over a 

decade ago, Barreno, Nelson, Sears, Joseph, and Tygar (2006) proposed a taxonomy of adversarial 

ML which classifies adversarial attacks through a spectrum of three axes: influence, specificity, and 

security violation. The taxonomy was expanded by Huang, Joseph, Nelson, Rubinstein, and Tygar 

(2011), to include a framework for quantitatively evaluating security threats, which are shown in 

Table 2. 

The influence axis is divided into two categories: Causative and Exploratory (Huang et al., 2011). A 

causative attack is when the attacker has a degree of influence over the training data, which is 

leveraged to alter the training process to benefit the attacker (Huang et al., 2011). This type of attack 

is also called a poisoning attack. An exploratory attack is when the attacker is not able to influence the 

training process, and instead through an exploratory examination of the model (e.g., offline analysis) 

aims to gather information on how the model operates, e.g., feature detection (Huang et al., 2011). 

The specificity axis is divided into two categories, Targeted and Indiscriminate (Huang et al., 2011). 

In a targeted attack model, the end goal of the attacker is focused on a known set of target points 

(Huang et al., 2011). In an indiscriminate attack, the end goal is a general attack which reduces the 

performance of the model overall (Huang et al., 2011).     
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The security violation axis is divided into three categories, Integrity, Availability and Privacy (Huang 

et al., 2011). An integrity-based attack aims to sabotage the integrity of the model, increasing the rate 

of false-negative results (Huang et al., 2011). An availability attack expands upon the integrity attack, 

where the attacker increases the rate of false negatives and false positives to such a degree, that the 

model is rendered completely unusable (Huang et al., 2011). In a privacy-based attack, the attacker 

wishes to gain information about a system’s users (Huang et al., 2011). 

Table 2 - Adversarial Attack Spectrum. Adapted from Huang et al. (2011) 

Influence Specificity Security Violation 

Integrity Availability Privacy 

Causative Targeted Allow a specific 

intrusion 

Render specific 

aspect of 

application 

unusable 

Reveal 

targeted 

information 

Indiscriminate Allow an 

intrusion 

Render application 

unusable 

Reveal 

information 

Exploratory Targeted Discover an 

intrusion vector 

from a list of 

possible paths 

Locate a set of 

misclassification 

points 

 

Indiscriminate Discover an 

intrusion vector 

 

 

The different levels of understanding an attacker can have about a target system, influence the type of 

attacks which can be performed. The different attacks which can be performed are categorised under 

three attack scenarios, white-box, grey-box, and black-box (Battista Biggio & Roli, 2018). 

In a white-box attack scenario, the attacker has complete knowledge of the target system, this includes 

the training model, the feature set and the training data (Battista Biggio & Roli, 2018). White-box 

attacks represent worst-case scenarios and are unlikely to be performed in the real world. In a grey-

box attack scenario, the attacker has limited knowledge of the target system model (Battista Biggio & 

Roli, 2018) For example, an attacker may know that a target system uses a decision tree algorithm for 
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training but has either limited or no knowledge of the labels being used. An attacker can utilise his/her 

limited knowledge to build a substitution model which more accurately represents the target system, 

compared to a black-box attack. In a black-box attack scenario, the attacker has zero knowledge of the 

target system model before developing an attack (Battista Biggio & Roli, 2018).  

Frameworks for the development of attacks based upon the taxonomy of Huang et al. (2011) and the 

level of knowledge an attacker has have been explored by H. Xiao et al. (2015) and Suciu, Marginean, 

Kaya, Daume, and Dumitras (2018). Suciu et al. (2018) introduced the FAIL framework which 

identifies four classes of knowledge an attacker may have, which are Feature knowledge, Algorithm 

knowledge, Instance knowledge and Leverage. Feature knowledge refers to the features known to the 

attacker. Algorithm refers to the algorithm utilised by the attacker to craft adversarial examples. 

Instance refers to the labelled training data known to the attacker. Leverage refers to the subset of 

features which can be modified by the attacker. 

 A survey of different adversarial ML attacks and defences was undertaken by Liu et al. (2018), which 

categorised the papers according to the taxonomy developed by Huang et al. (2011). The attacks were 

categorised as poisoning, evasion, impersonation, and inversion attacks.  

A poisoning attack is a causative attack performed at the training stage, which aims to reduce the 

classification accuracy of a target system by infecting the training dataset with malicious data. The 

end result of a poisoning attack may be to allow for certain data to bypass identification at test time, 

or to perform a denial of service attack, rendering the application inoperable (Huang et al., 2011).  

Poisoning attacks are only feasible if an attacker is able to infect the training dataset with adversarial 

examples. As malware detection applications which utilise ML need to be constantly retrained with 

new data to keep up with the newly emerging malware variants (Gibert, Mateu, & Planes, 2020), this 

provides an attack vector for poisoning attacks. Malware authors can detect features of anti-malware 

software by modifying certain parameters of malware files, feeding the files to the anti-malware 

software and analysing the results to determine which aspects of the modified malware file were 

detected (Hu & Tan, 2017). 

Evasion attacks aim to avoid detection by bypassing the feature detection of an ML system using 

maliciously crafted data samples, known as adversarial examples. Evasion attacks have been 

developed to bypass image recognition (Papernot et al., 2017), biometric authentication (B. Biggio, 

Fumera, Russu, Didaci, & Roli, 2015) and malware detection (L. Chen, Ye, & Bourlai, 2017). 

Impersonation attacks aim to craft adversarial examples which can be used to fool an ML classifier. 

Impersonation attacks allow an attacker to bypass security mechanisms such as facial recognition 

systems (Sharif, Bhagavatula, Bauer, & Reiter, 2016). Inversion attacks are an exploratory privacy 
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attack, which aim to uncover private data, be it from the training data (e.g. medical data) or 

information about the training algorithm used (Fredrikson, Jha, & Ristenpart, 2015). 

The key findings discussed by Q. Liu et al. (2018) are: 

• New threats are constantly emerging and evolving 

• Defensive adversarial security measures are at the initial stage of development 

• Data privacy is key for protecting ML algorithms 

• Secure deep learning is of key interest for future research 

• Balance is required to achieve effective secure ML with little overhead  

The following sub-sections cover different adversarial attacks which have been developed where the 

target system was an ML-based malware detection application or a spam detector. Other adversarial 

attacks which target ML systems that are not the focus of the research are not discussed. 

2.7.1 Adversarial Attacks 

The following sub-sections cover a variety of adversarial ML attacks for both poisoning and evasion, 

with a focus on attacks which target ML trained malware detection applications. The attacks discussed 

in this section cover a variety of ML algorithms and illustrate the different methods possible for 

generating adversarial examples. Following the attack section, an overview of different defensive 

strategies which have been developed to combat the variety of adversarial ML attacks is presented.  

2.7.1.1 Adversarial Poisoning Attack (Spam) 

The earliest research on poisoning attacks was produced by Wittel and Wu (2004). Their research 

covered performing a poisoning attack to reduce the efficacy of statistical spam filters. Since then, an 

assortment of different adversarial attacks have been developed for different ML-based applications 

covering a variety of ML algorithms. 

Nelson et al. (2008) developed two adversarial poisoning attacks against the ML-based spam detector, 

SpamBayes. The two attacks developed were a dictionary attack and a focused attack. The goal of the 

dictionary attack was to perform an indiscriminate Denial-of-Service attack, rendering the spam 

detector unable to function at all. The goal of the focused attack was to perform a targeted integrity 

attack, in which a certain spam email could bypass detection while the general detection capabilities 

are left unaffected. 

Both attacks were performed under the assumption that an attacker is able to introduce his/her 

adversarial spam emails into the training dataset, which is used to retrain the classifier to be able to 

detect new spam variants every week (Nelson et al., 2008). The attack was restricted in that email 

headers of the attack emails were not to be modified and each attack email was to be trained as spam 

(Nelson et al., 2008). The indiscriminate dictionary attack achieved a 36% misclassification rate, with 
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1% of the training data being adversarial examples. The targeted attack altered the classification of 

60% of the targeted emails (Nelson et al., 2008). 

2.7.1.2 Adversarial Poisoning Attack (Malware) 

The first poisoning attack for malware detectors was performed by Newsome, Karp, and Song (2006). 

In their research, they proposed two types of poisoning attacks, the red herring attack and the 

inseparability attack. The red herring attack involves adding fake features to malware files, which will 

be removed by an attacker when performing an attack. The malware files containing fake features are 

fed to the ML algorithm and are intended to cause the learner to build a classification model which 

will identify files with fake features as malicious. When the attacker removes the fake features, the 

new malware file should bypass the malware detection as the file does not now contain enough 

features (or markers) to identify it as malware. The inseparability attack is a Denial-of-Service attack, 

where the attacker incorporates features from the benign training data into the malicious data set, 

which renders the classifier incapable of deducing at an acceptable accuracy, which files are malicious 

or benign. 

StingRay is a framework developed to generate adversarial examples for targeted poisoning attacks, 

which was developed by Suciu et al. (2018). The aim of a StingRay attack is to induce either a false 

positive or false negative classification of a targeted example, while retaining the general 

classification of the ML model so as to not arouse suspicion that an attack has taken place. The attack 

scenario assumes that periodic retraining of data is undertaken to update the ML classifier (e.g., spam 

and malware detection), which is how the attacker introduces adversarial examples into the target 

system. 

The StingRay attack was evaluated from attacking four different classifiers: image classification, 

Android malware detection, Twitter-based exploit prediction and data breach prediction. The ML 

classifiers were trained using Convolutional Neural Networks (CNNs), linear Support Vector 

Machines (SVMs) and Random Forest (RF). The Android malware detection application was trained 

using a linear SVM and the Drebin Android dataset, which is comprised of 123,453 Android 

applications, of which 5,560 are malicious. The Android attack performed was developed to induce a 

false negative classifying a targeted malicious Android application as benign. For the attack, a 

targeted malicious application which was correctly classified was selected and the identified 

malicious activity was recorded (e.g., API calls, suspicious URL requests and unauthorised 

permissions), the malicious features were introduced into benign applications which were fed to the 

learning algorithm. The performance of the Stingray attack was calculated from the success rate and 

Performance Drop Ratio (PDR) of each attack. The PDR is calculated by evaluating either the average 

accuracy or F1 score on a separate testing set.  The StingRay attack on the malware classifier had a 

50% success rate and a performance drop ratio of 0.99. The results from the StingRay attacks and 
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applied defensive strategies on the different ML applications is shown in Table 3, the 

defensive strategies are discussed in 2.7.2. 

Table 3 - StingRay Attack Results (Average Instances, Success Rate, and Performance Drop Rate) Adapted From (Suciu et 

al., 2018)  Refer to Table 6 Effectiveness of StingRay and of existing defenses againast it on all publications

https://arxiv.org/abs/1803.06975

2.7.1.3 DNN Evasion Attack 

Grosse, Papernot, Manoharan, Backes, and McDaniel (2016) developed an adversarial evasion attack 

against malware detection applications trained on feed-forward neural networks to detect static 

features. The attack was based on the method used by Papernot et al. (2017), which generated 

adversarial examples to bypass ANN trained image classification. The malware detection models 

generated were trained using a variety of parameters including, number of neurons (10, 50, 100, 200, 

and 300), number of layers (1- 4) and malware/clean application ratio (0.1, 0.2, 0.3, 0.4 and 0.5) 

combinations using the DREBIN Android malware data set. The baseline used to compare to other 

NN malware detectors were comprised of 2 layers of 200 neurons each. The baseline model achieved 

a 97% accuracy, with 7% false negatives and 3.3% false positives. The adversarial attack performed 

had varying degrees of misclassification depending on the size of the network and the malware ratio 

used. The highest misclassification rate achieved was 81.89% on a model comprised of one 200 

neuron layer trained with a malware ratio of 0.4, and the lowest misclassification rate was 60.02% on 

a model comprised of two 50 neuron layers and a malware ratio of 0.4.  

2.7.1.4 Malware Generative Adversarial Network (MalGAN) Attack 

MalGAN is a Generative Adversarial Network (GAN) attack developed by Hu and Tan (2017), which 

generates adversarial examples for the purpose of bypassing ML-based malware detection models. A 

GAN is comprised of a generative model and a discriminative model, which work together to generate 

the optimal adversarial examples, an example is shown in Figure 2.9. The generative model creates 

the adversarial examples and the discriminative model determines which adversarial examples would 

be successful in an attack (Goodfellow et al., 2014).  

https://arxiv.org/abs/1803.06975
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The discrimination model in MalGAN is a substitution detector developed to imitate the target ML 

malware detection application. The target ML malware detection application is a black-box system. 

The attackers do not have access to the training dataset used or have any knowledge of the target 

system’s structure. The only information obtained by the attackers is if a file is identified as benign or 

malicious. The results from the target black-box are used to label the dataset on which the substitution 

detector is trained. The MalGAN generative model generates the new adversarial examples which are 

fed into the substitution model to determine what features changes are required to bypass detection. 

The ML algorithms tested by Hu and Tan (2017) were random forest (RF), logistic regression (LR), 

decision trees (DT), support vector machines (SVM), multi-layer perceptron (MLP), and a voting-

based ensemble of each of these classifiers (VOTE). Hu and Tan (2017) claim that MalGAN can 

reduce the detection rate to near zero for each model and will require retraining with knowledge of the 

adversarial MalGAN examples. 

The results from the MalGAN attacks on the different ML algorithms are shown in Error! Reference 

s ource not found. and Table 5. Error! Reference source not found. contains the results from 

the transferability version of the MalGAN attack, which was performed using adversarial examples 

which were generated using training data from a different dataset. Table 5 contains the results 

from the MalGAN attack which generated the adversarial examples from the same training dataset for 

each ML model. 

Figure 2.9 - The architecture of MalGAN adapted from Hu and Tan (2017) 
Please refer to 

Hu, W., & Tan, Y. (2017). Generating Adversarial Malware Examples for Black-Box Attacks Based 
on GAN. ArXiv e-prints. Retrieved from https://arxiv.org/abs/1702.05983 
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Table 4 - MalGAN Adversarial Attack Results (Different Training Set) Adapted From -Hu and Tan (2017) 

Table 5 - MalGAN Adversarial Attack Results 9Same Training Set) Adapted From -Hu and Tan (2017) 

2.7.1.5 Microsoft PE Evasion Attack 

Anderson, Kharkar, Filar, and Roth (2017) produced a black-box based attack to bypass 

static malware detection of malicious Windows PE files. The attack was developed under 

three assumptions: 

• No knowledge of the ML classifier architecture (features, structure, 

parameters)

• Can only receive a binary result from the classifier (malicious or benign)

• No use of an oracle to determine if generated PE retains original functionality

The assumptions were chosen to perform an attack in which the authors believed to be the most 

difficult scenario an attacker may face. 

A Deep Reinforcement learning approach was chosen as the basis of the attack. The attack performed 

is based on a game scenario, where in each turn, a random modification is made, and a result is 

collected from the classifier. If the classifier identifies the file as malicious, another round is played, 

For Table 4 & 5 Refer to
Hu, W., & Tan, Y. (2017). Generating Adversarial Malware Examples for Black-Box Attacks Based on

GAN. ArXiv e-prints. Retrieved from https://arxiv.org/abs/1702.05983

https://arxiv.org/abs/1702.05983
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up to a maximum 20, otherwise a successful attack is recorded if the file was identified as benign 

before the round limit. 

The modifications made to the malicious Windows PE file do not alter the original code execution or 

break the PE file format (e.g., alter a name section, append bytes to end of sections and pack or 

unpack the PE). The black-box attack achieved a successful evasion rate of 16%. 

2.7.1.6 Adversarial API Call Evasion Attack       

A black-box attack was developed by Rosenberg, Shabtai, Rokach, and Elovici (2018) to evade 

detection from ML-based malware classifiers which have been trained to detect malware via 

analysing API call sequences. The authors proposed a framework, GADGET (Generative API 

aDversarial Generic Example by Transferability), which generates adversarial malware by adding new 

API calls to malware files. No removal or modification of original API calls is made to ensure 

original functionality of the malware is not altered. 

The attack uses a white-box substitution model to craft effective adversarial examples which are 

transferred to attack black-box models, as it has been shown that adversarial examples succeed when 

transferred to attack ML models which have been trained on different datasets (Suciu et al., 2018; 

Szegedy et al., 2014). The substitution model is developed as the attacker does not have any 

knowledge of the ML algorithm or dataset used to train the target black-box malware detector. The 

only information it is assumed the attacker knows, is the API calls used in the target malware which 

will be modified into adversarial examples. 

The Rosenberg, Shabtai, Rokach, et al. (2018) GADGET attack was performed against a variety of 

malware detection models trained using different ML algorithms. The attack was shown to be 

successful, with a 100% success rate against RNN and a majority of the attacks achieving over 90% 

success. The least successful attack was against Logistic Regression at 69.73%.  

Rosenberg, Shabtai, Elovici, and Rokach (2018) developed another black-box attack framework, 

BADGER (Benign API aDversarial Generic Example by Random perturbation), which does not 

require the training of a substitute model, as the previous attack required, or any knowledge of the 

target ML malware detection model. The only assumption is that the attacker has knowledge of a 

subset of the API call sequence in the target malware and the attacker either knows the confidence 

score of the malware classifier or only the output label of the malware classifier. When the attacker 

knows the confidence score, the success rate of the attacks was around 98% and when the attacker 

only had the output label, the success rate of the attacks was 64%. 

2.7.1.7 Subpopulation Data Poisoning Attacks 

A form of poisoning attack which targets a sub-population inside of a large multi-class machine 

learning model was developed by Jagielski, Severi, Harger, and Oprea (2020). The attack operates in a 

black-box scenario, with the attacker not having knowledge of the exact model architecture or 
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parameters. The attack only targets one of the model’s classes, the general efficacy of the other classes 

is unaffected by the attack. The attack was tested against the UCI Adult dataset, CIFAR-10 for image 

classification, UTKFace for face recognition, and IMDB reviews for sentiment analysis. The attacker 

does not have access to the original training data but does have a substitute training set which is 

generated from samples from the original set. The poisoning attack uses a label flipping approach with 

the target subpopulation being chosen from using "FeatureMatch" and "ClusterMatch" selection 

techniques. The FeatureMatch selection technique uses "fine-grained manual annotation" to identify 

subpopulations within the dataset (e.g., race or age in images of people). The ClusterMatch selection 

technique automates the manual annotation with clustering. By identifying clusters of subpopulations 

within the dataset, the attacker can select which subpopulation they wish to attack. 

2.7.1.8 Watermark Attack (Malware) 

Severi, Meyer, Coull, and Oprea (2020) developed a targeted poisoning attack by injecting a 

watermark into the benign training data, which influences the classification of the model to produce 

false negatives of malicious files if at test time they contain the same watermark. 

The watermark attacks were performed on both GBDT and ANN models which used the EMBER 

dataset, which is a dataset of 800,000 Windows PE32 files. The watermark process does not impede 

on the original functionality of the adversarial binary file. The attack only required 8 features, out of 

2351, to be modified for a successful attack. After injecting 1% poisoned (adversarial) samples into 

the training data, Severi et al. achieved a success rate of over 97%.  

The watermark attacks were performed by identifying how the features contributed to the files 

classification by calculating their SHapley Additive exPlanations (SHAP) values. SHAP values are 

generated through a game theory approach where the feature vector values are replaced with other 

values in the feature vector set to identify their contribution i.e., if value A is replaced with value B 

and the classification shifts towards C or D, then value A had a positive contribution towards 

whichever classification. This process is computed for every feature vector. As EMBER uses feature 

hashing to compute the majority of its feature vectors (2,316 of 2,351), the watermark attack was 

performed on feature vectors which were not generated from the feature hashing process. The features 

modified for the watermark attack were evaluated on a set of malware files and benign software to 

ensure that the functionality of the files was not compromised. It is not possible to check that the 

modification would not break the files used to generate the EMBER dataset, as EMBER only contains 

the extracted features, not the complete binary. 

Both white-box and black-box watermark attacks were performed. In the white-box scenario, the 

attacker had access to the original training data and model, which allowed for the attacker to generate 

accurate SHAP values. In the black-box scenario, the attacker only new of the feature space the model 

was trained on but did not have access to the model’s architecture. A transfer attack was performed, 
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where the attacker trained their own model, using the same feature space, and calculated the SHAP 

values of malware and benign software from that model. The calculated values were then used to 

identify which features should be manipulated in the benign training data of the target model.  

Value selection is performed in two ways, MinPopulation and CountSHAP. In MinPopulation, values 

are selected from those which appear least frequently in the dataset. CountSHAP are the opposite to 

MinPopulation and are comprised of SHAP values which have a high density within the benign 

software. 

Three mitigation measures (Spectral Signatures, HDBSCAN, and Isolation Forest) were evaluated 

over the different models and attacks. The mitigation measures work under three assumptions, that the 

defender has:  

• access to the poisoned training data 

• has access to a clean labelled dataset 

• believes that the attacker will attack the most relevant features of the model  

All three mitigation measures are run on the training data to prevent an adversarial model from going 

live. 

The defensive strategies were evaluated using a reduced feature space obtained from the 32 most 

important features from a clean portion (120,000 samples) of the training set. The values of the 

reduced subspace were all normalised to [-1,1]. The Spectral Signature defence worked by calculating 

the singular value decomposition of the benign samples in the new reduced feature space, then by 

calculating the outlier score and finally filtering out the top 15%. The Hierarchical Density-Based 

clustering (HDBSCAN) defence is influenced by the activation clustering defence by B. Chen et al. 

(2018) mentioned previously. The HDBSCAN defence works on the assumption that the watermarked 

samples generate a tight cluster of high density within the reduced feature space. The Isolation Forest 

is an unsupervised anomaly detection algorithm for identifying the watermarked samples as outliers 

with the reduced feature space. The results from the attack and defences are shown in Table 6.
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Table 6 - Watermark Attack and Defence Results Adapted From (Severi et al., 2020) 

Refer to: Table 3 in Severi, G., Meyer, J., Coull, S., & Oprea, A. (2020). Exploring Backdoor Poisoning Attacks Against
Malware Classifiers. ArXiv e-prints. Retrieved from https://arxiv.org/abs/2003.01031

https://arxiv.org/abs/2003.01031
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2.7.2 Adversarial Defence Strategies 

Having described the various adversarial attack strategies which were found to be successful in 

influencing ML models, it is now appropriate to examine the defensive strategies which have been 

developed to combat the growing threat of adversarial ML attacks. The defensive strategies discussed 

cover a variety of ML algorithms and applications and do not solely concentrate on ML malware 

detection applications. 

The defensive strategies developed to protect ML algorithms from adversarial attacks can be split into 

two categories determined by the underlying principle of the defensive strategy, which are the 

identification and removal of adversarial examples at the training stage (e.g., data sanitisation), and 

the development of robust algorithms which are resilient to adversarial attacks (e.g., adversarial 

training) (Battista Biggio & Roli, 2018). 

2.7.2.1 Data Sanitisation 

Data sanitisation is a training stage protection method which aims to detect and remove adversarial 

examples from a dataset to avoid poisoning the training algorithm. Data sanitisation is used in 

applications which rely on an open training model, where the learning algorithm needs to be 

periodically retrained to detect new emerging threats, such as spam detection and malware detection. 

Reject on Negative Impact (RONI) is a data sanitisation defence developed by Nelson et al. (2008).  

RONI was developed to defend ML-based spam detectors from poisoning attacks at the training stage. 

The RONI defence evaluates the impact of new training data and discards the data if the impact is 

considered significantly negative by reducing the classification rate by 0.05 or greater. 

The RONI defence was trained on five sets of training and validation data. The training sets were 

comprised of twenty independently selected emails from the Enron data set which was originally used 

to train SpamBayes for the spam attack in Section 0. The validation set was comprised of 50 emails 

and the query data was comprised of 120 random non-attack spam messages and 15 repetitions of 

seven variants of the dictionary attack. The training sets were trained with and without each of the 

query data samples. If the average impact across each validation set was severely negative then the 

query data was discarded, otherwise it was used in the training set for the next round. 

The threshold of significant negative impact was determined from analysing the results of the 

adversarial dictionary attack, and the non-attack spam. The dictionary attack had an average negative 

impact of 6.8 ham messages being misclassified as spam, while the non-attack spam caused at most a 

4.8 misclassification rate. Results from the experiment had RONI to be 100% effective against 

dictionary attacks, identifying and discarding each attack email and retaining each non-attack email 

for training (Nelson et al., 2008), however, RONI did not as well for focused attacks where the 

intention is to have a future targeted spam email bypass detection. 
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2.7.2.2 Robust Algorithm Approach 

A variety of different defensive strategies have been proposed with the aim of developing robust 

algorithms which are resilient to the effects of adversarial attacks. Some of the methods proposed for 

developing robust algorithms include Adversarial Training (Goodfellow, Shlens, & Szegedy, 2015), 

the Ensemble Method (Tramèr et al., 2018), and Defensive Distillation (Papernot, McDaniel, Wu, Jha, 

& Swami, 2016). 

Adversarial training is a defensive strategy proposed by Goodfellow et al. (2015) to increase the 

resilience of ML models from adversarial attacks. The general principle behind adversarial training is 

that including adversarial examples in the dataset will learn to detect adversarial examples, increasing 

the resilience of the generated ML model. 

Ensemble adversarial training was proposed by Tramèr et al. (2018) to increase the resilience of an 

ML algorithm in comparison to the original adversarial training which was found to be vulnerable to 

transfer attacks. In Ensemble adversarial training, adversarial examples which have been trained to 

attack an ensemble of different models are introduced into the training dataset to increase resilience 

from adversarial attacks. As the transferability property has shown that adversarial examples trained 

on one model can be successfully transferred to attack another model even if the dataset used for 

training was different (Szegedy et al., 2014), the extended adversarial training defence was proposed 

to increase resilience by training with a greater diversity of adversarial examples. 

Defensive distillation is a defensive method developed by Papernot et al. (2016) to increase the 

resilience of Deep Neural Network (DNN) trained classifiers from adversarial attacks. Defensive 

distillation is based off the distillation method for neural networks produced by Hinton, Vinyals, and 

Dean (2014). Distillation is a method which was developed to reduce the amount of computational 

power required to perform predictive classification. Distillation works by training a DNN using 

additional information which is obtained from evaluating the DNN, to determine the classification 

probability of the training data to each class. The additional information is known as soft labels, 

which are used to label the data when training the distilled DNN. The soft labels reduce the amount of 

training points required and reduce the amount of bias in the network which can lead to overfitting. 

Defensive distillation uses the same approach as the original distillation, with the difference that the 

original network and the distilled network are identical in their architecture. The aim of defensive 

distillation is not to reduce the amount of training points but to utilise the soft labels to prevent 

adversarial examples from effectively poisoning the network. 

An attack against defensive distillation was developed by Carlini and Wagner (2016), in which it was 

shown that defensive distillation was not as secure as originally thought. An extension of defensive 

distillation was developed by Papernot and McDaniel (2017) to increase the resilience in response to 

exposed vulnerabilities. The extension differs from the original in that additional information is used 
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in combination with the original classification probabilities. The additional information is a predictive 

uncertainty value which is computed from the original DNN. 

2.7.2.3 On the (Statistical) Detection of Adversarial Examples 

Grosse, Manoharan, Papernot, Backes, and McDaniel (2017) used statistical tests to identify 

adversarial examples from genuine data. The basis of the defence is that adversarial examples are not 

drawn from the same distribution as genuine data and can be identified through statistical tests. After 

identifying the adversarial examples, the ML model is modified with another class which is used to 

classify adversarial examples. The test used in the defence is a kernel-based two-sample statistical 

hypothesis test called the Maximum Mean Discrepancy (MMD) test, which was developed by 

Gretton, Borgwardt, Rasch, Schölkopf, and Smola (2012). The MMD test is as follows: 

We test whether distributions p and q are different on the basis of samples drawn from each of 

them, by finding a well behaved (e.g., smooth) function which is large on the points drawn 

from p, and small (as negative as possible) on the points from q. We use as our test statistic 

the difference between the mean function values on the two samples; when this is large, the 

samples are likely from different distributions. (Gretton et al., 2012) 

Although MMD was successful in detecting adversarial examples from genuine examples, Carlini and 

Wagner (2017) found that they were able to generate adversarial examples using the C and W attack 

algorithm which were not detected by the MMD defence. 

2.7.2.4 Activation Clustering Defence 

B. Chen et al. (2018) developed a defence for backdoor poisoning attacks on neural network models 

by analysing the neurons from the last hidden layer for anomalous clusters. The intuition behind the 

defence was that for the backdoor poisoning attack (where a trigger image was superimposed onto 

target images mislabelled with a target label, e.g., a stop sign with a trigger was labelled as a speed 

sign) is that the network learns both the features of the original source image and the target adversarial 

class (from the trigger). The authors proceeded by testing adversarial images and examining the 

neurons from the last hidden layer, which provided the required information to clearly separate the 

adversarial images from the clean. The results from performing the activation clustering defence on a 

poisoned MNIST dataset is shown in  

.  
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Table 7 - Activation and Raw Image Data Clustering Results Adapted From (B. Chen et al., 2018) 

2.7.2.5 Spectral Signatures 

Tran, Li, and Madry (2018) identify a property of backdoor attacks which they name “Spectral 

Signatures”, they argue that backdoor attacks “tend to leave behind a detectable trace in the spectrum 

of the covariance of a feature representation learned by the neural network”. By identifying the 

spectral signatures residing in the network the authors were able to identify the poisoned inputs and 

remove them from the network. The process for identifying spectral signatures and removing the 

corresponding adversarial examples is described as follows: 

We take a black-box neural network with some designated learned representation. This can 

typically be the representation from an autoencoder or a layer in a deep network that is 

believed to represent high level features. Then, we take the representation vectors for all 

inputs of each label. The intuition here is that if the set of inputs with a given label consists of 

both clean examples as well as corrupted examples from a different label set, the backdoor 

from the latter set will provide a strong signal in this representation for classification. As long 

as the signal is large in magnitude, we can detect it via singular value decomposition and 

remove the images that provide the signal. (Tran et al., 2018) 

For the majority of the experiments, the authors were able to remove 100% of the adversarial 

examples by applying the spectral signature defence. 

2.7.2.6 Neuron Pruning and Unlearning 

Two defensive strategies were developed by Wang et al. (2019) to patch poisoned neural networks 

after identifying backdoor triggers within the dataset. The poisoning attacks were identified by 

examining the neuron activation weights from the last hidden layer of the model, as that layer contains 

all the encoded data from the previous layers. In the last hidden layer, the authors found that the 

Refer to 
Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., . . . Srivastava, B. (2018).

Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering. ArXiv eprints.
Retrieved from https://arxiv.org/pdf/1811.03728.pdfm 

https://arxiv.org/pdf/1811.03728.pdfm
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activation weights of adversarial examples were 3-7 times higher than clean input images. 

After identifying the model as being poisoned, an identification and filtering method is applied to the 

model to prevent any incoming adversarial examples from bypassing misclassification. While the 

filtering method is in place, the authors presented two defensive patches to fix the model.  

The first strategy is neuron pruning, it involves removing the backdoored neurons from the model to 

prevent the trigger from being activated, without significant negative impact to the 

general classification of the model. An example from one set of poisoned attacks had shown that only 

the top 1% of neurons were required to be active (i.e., all other neurons were masked to zero) 

for the adversarial example to be classified as its target label. Even though only 1% of neurons were 

required for the attack to work, in that example, 30% of the neurons needed to be pruned to reduce 

the success of attacks to near zero, this is due to neurons being trained with backup information for 

the model.  

The second strategy is an unlearning approach, where the model is trained to unlearn the trigger. The 

unlearning is performed by reverse engineering the trojan trigger and examining how it affects 

the change in activation weight values of the network which can then be patched. The results 

from the patching experiments are shown in Table 8. 

Table 8 - Model Patching Performance Comparison Adapted From (Wang et al., 2019) 
Refer to 

Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., & Zhao, B. Y. (2019, 19-23 May 2019).
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. IEEE Symposium on Security and Privacy 

(SP).https://ieeexplore.ieee.org/abstract/document/8835365 

https://ieeexplore.ieee.org/abstract/document/8835365
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2.7.2.7 Revisiting Adversarial Training 

Adversarial training is a robust algorithm approach to defend against adversarial examples by training 

the model to not only be accurate for the original task, but to be able to identify adversarial examples. 

The adversarial training process is performed by training the model on the original training data and 

with additional adversarial examples. According to Wong, Rice, and Kolter (2020) adversarial training 

was assumed to be quite computationally expensive when including the creation of the adversarial 

examples, but this is not the case in the experiments performed by Wong et al. (2020), as they were 

able to train a robust algorithm by using weaker adversarial examples which are computationally 

cheaper to generate using fast gradient sign method. 

2.7.2.8 Detection of Adversarial Training Examples in Poisoning Attacks through Anomaly 

Detection 

Paudice, Muñoz-González, Gyorgy, and Lupu (2018) developed a defensive strategy against 

adversarial poisoning attacks by pre-filtering the training data to remove adversarial examples by 

means of outlier detection. According to the authors, adversarial examples differ significantly from 

genuine training data points, which allows for their identification and removal. The defence is 

proposed as an alternative to testing each training sample to identify adversarial examples, as that 

approach, which can succeed in identifying poisoning attacks, is computationally expensive. The 

developed defence is for linear classifiers and is model agnostic. The defence was tested against two 

attacks, the optimal attack developed by the authors, and a label flipping attack. The label flipping 

attack was shown to be more resilient than the optimal attack to the authors defensive technique as the 

datapoints of the label flipping attacks are closer to the original data compared to the optimal attacks. 

The experiments were performed on the SpamBase and MNIST datasets. The optimal attack strategy 

increased the classification error of the SpamBase model from 0.112 ± 0.010 to 0.195 ± 0.019 and the 

MNIST from 0.037 ± 0.005 to 0.391 ± 0.160. For the SpamBase model, the best performing defence 

achieved a 0.111 ± 0.009 classification error, and the worst performing defence achieved a 0.137 ± 

0.015 classification error. For the MNIST model, the best performing defence achieved a 0.070 ± 

0.013 classification error, and the worst performing defence achieved a 0.079 ± 0.022 classification 

error. 

2.7.2.9 Label Sanitisation against Label Flipping Poisoning Attacks 

Paudice, Muñoz-González, and Lupu (2018) developed a defensive strategy to defend against 

adversarial label flipping poisoning attacks, as the defence from the previously discussed paper did 

not perform as well against label flipping attacks compared to optimal attacks. The defence strategy 

utilises k-Nearest-Neighbours (k-NN) to identify adversarial data inputs which negatively affect the 

accuracy of the model. The defence was tested on linear classifier models which were trained on three 

datasets (UCI BreastCancer, MNIST and SpamBase). The defence was developed using a worst-case 

scenario where the attacker has complete white-box knowledge of the defender’s system (e.g., model 
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architecture, training set, loss function). The authors understand that this is an unlikely scenario but 

wanted to test their defence under a worse-case scenario. The defence mitigates the label flipping 

attack by re-labelling identified outliers (suspicious data points) to malicious. The outliers are 

identified using k-NN to locate data points which are far from genuine points of the same label. The 

proposed defence was able to minimise the classification error from the label flipping attack. The 

results from the label flipping attacks and the sanitisation defence are shown in Figure 2.10, where 

the red line illustrates the performance of the model without a defence applied, and the blue line 

illustrates the performance after the defensive strategy was applied.  

2.8 EMBER Dataset 

The EMBER dataset is a collection of extracted features from 1.1 Million portable executable 

(PE) files (900,000 train and 200,000 test). The 900,000 training files are split equally into three 

categories, malicious, benign, and unknown. The unknown category is not used when training the 

ML model, so the actual size of the EMBER dataset when training is 800,000. EMBER was 

developed to serve as a benchmark for machine learning malware research. 

Figure 2.10 - Label Sanitisation Defence Results Adapted From (Paudice, Muñoz-González, & Lupu, 2018) 
Refer to

Paudice, A., Muñoz-González, L., & Lupu, E. (2018). Label Sanitization against Label Flipping
Poisoning Attacks. ArXiv e-prints. Retrieved from https://arxiv.org/abs/1803.00992 

https://arxiv.org/abs/1803.00992
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In the EMBER dataset, the feature generation was performed from a selection of the PE32 file 

information shown in Table 9, which generates a 2351 bit dimension vector from each PE32 file using 

the feature hashing module from sklearn.  

Table 9 - EMBER Feature Engineering 

Feature Class Vector Dimension Size Information 

ByteHistogram 256 Entire byte histogram 

ByteEntropyHistogram 256 Histogram of joint probability 

of each byte value and local 

entropy 

SectionInfo 255 Feature hash of section names, 

sizes, and entropy 

ImportsInfo 1280 Feature hash of import libraries 

and their functions 

ExportsInfo 128 Feature hash of exported 

functions 

GeneralFileInfo 10 General file information (size, 

vsize, has_debug, exports, 

imports, has_relocations, 

has_resources, has_signature, 

has_tls, symbols) 

HeaderFileInfo 62 Information about the OS, 

architecture, and other header 

information 

StringExtractor 104 Extracted string information 

 

As discussed in 2.3.1 Feature Engineering, the engineering of salient features is a crucial step in the 

development of an ML model. The features chosen for use by the researchers at Endgame are based 

upon the work of several researchers which have identified what features in a Windows PE32 file 

contribute the most when training a malware detection ML model. A summary of three feature 

engineering research papers, which the Endgame researchers followed in developing their feature 

engineering process are given below: 

Paper 1 – Deep Neural Network Based Malware Detection Using Two-Dimensional Binary 

Program Features 

Saxe and Berlin (2015) developed an approach for detecting malware files by using static features 

extracted from binary files to train a deep neural network. The feature engineering performed on the 
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binary files is comprised of extracting information from four sections of the binary file and creating a 

1024-dimensional feature vector. The 1024-dimensional feature vector is comprised of four 256-

dimensional feature vectors. The first set of feature vectors extracted from the binary file are the 

byte/entropy histogram of the file, which was performed to generate a model of the file’s features in a 

file format agnostic approach. The second set of feature vectors extracted from the binary file are 

from the import address table. The import features 256 dimension vector is comprised of a hash of 

each tuple of import name and associated import function e.g. kernel32.dll:SetFilePointer. The 

imports section was included to identify the association of the external function calls the binary file 

relies upon to operate. The third set of feature vectors is a 256-bit hash of strings extracted from the 

binary file and the last set of feature vectors are computed from the numerical values extracted from 

the binary file’s packaging, which were extracted using pefile. 

Paper 2 – Data Mining Methods for Detection of New Malicious Executables 

Schultz, Eskin, Zadok, and Stolfo (2001) developed a data-mining framework for identifying 

malicious files by identifying pattens which differentiate between malicious and benign files. The 

authors extracted static properties of the binary files to be used in generating a detection model to 

classify new unseen malicious files as malicious. The features extracted were from the system 

resource information, strings and byte sequences of the binary file. Three different learning algorithms 

were used to train the classification models. The first set of features extracted from the binary files to 

train the classification models were from the DLLs used, their function calls and the number of 

function calls within each DLL. The second set of features extracted were the strings contained within 

the binary file, and the last set of features extracted were the byte sequences of the binary file 

generated using hexdump. 

Paper 3 – A Framework for Efficient Mining of Structural Information to Detect Zero-Day 

Malicious Portable Executables 

Shafiq, Tabish, Mirza, and Farooq (2009) developed a real-time PE-Miner framework which 

automatically extracts salient information from PE files to detect Zero-day malware files. The PE-

Miner operates in three steps, the first is to identify which features are to be extracted from the PE 

file, the second is to perform pre-processing on the extracted features to remove redundant and 

irrelevant features, the third step is the selection of a data mining algorithm to perform the 

classification. The features the authors selected for extraction are shown in Table 10.
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Table 10 - Realtime PE-Miner Extracted PE Features Adapted from (Shafiq et al., 2009) 

The pre-processing was performed by using either Redundant Feature Removal (RFR), Principal 

Component Analysis (PCA) or Haar Wavelet Transform (HWT) and the classification was performed 

using a  selection of five data mining algorithms: instance based learner (IBk), decision tree (J48), 

Naïve Bayes, inductive rule learner (RIPPER) and  support vector machines. Shafiq et al. (2009) 

found that the decision tree model performed the best for the majority of experiments. 

2.9 Summary 

Machine learning is a subset of Artificial Intelligence which is utilised in a variety of different fields 

to increase productivity through training machines to automatically perform a task. Machine learning 

has been implemented in many different fields such as medical science, information technology, 

finance, and cyber security. Machine learning algorithms build models for the purpose of mapping an 

input to an output with a high degree of accuracy. These models significantly improve the 

performance of technology through automation of feature detection which previously required human 

input.  

However, ML algorithms have shown to be susceptible to a variety of different adversarial attacks 

which target the integrity, availability, and privacy of ML models. The adversarial attacks are a threat 

to computer systems which rely on malware protection from applications which have been trained to 

detect malware through ML approaches. Critical Infrastructure (CI) systems are often not able to 

support the extended lengths of downtime required when updating and patching vulnerabilities and 

Refer to Shafiq, M. Z., Tabish, S. M., Mirza, F., & Farooq, M. (2009, September). Pe-miner: Mining structural information to detect 
malicious executables in realtime. In International workshop on recent advances in intrusion detection (pp. 121-141). Springer, Berlin, 
Heidelberg. https://link.springer.com/content/pdf/10.1007%2F978-3-642-04342-0.pdf

https://link.springer.com/content/pdf/10.1007%2F978-3-642-04342-0.pdf
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instead rely on protection software to prevent vulnerabilities from being exploited. Machine learning 

is a new approach utilised in malware detection, which could be utilised for the detection of unknown-

unknown (Zero-day) malware.  

As ML-based malware detection applications require periodic retraining of new data to stay up-to-

date in detecting new malware variants, this retraining provides an attack vector for adversaries to 

perform poisoning attacks, reducing the efficacy of the ML model. This research aims to explore the 

different avenues of adversarial attacks and to develop defensive strategies for protecting ML-based 

malware detection applications. A traditional scientific approach has been identified as the most 

appropriate method and the research has been designed with the risks, limitations and ethical 

considerations being examined. 

Malware detection is an important area in cyber security. Computer systems around the world rely on 

malware detection applications to prevent malware attacks from succeeding. Malware detection is not 

a straightforward task, as new variants of malware are generated at an ever-increasing rate. ML has 

been utilised to generate predictive classification models to identify new malware which conventional 

malware detection methods may not detect. Machine learning however has been found to be 

vulnerable to different types of adversarial attacks, in which an attacker is able to negatively affect the 

integrity and availability of the ML model. 

Different types of defences have been proposed to mitigate adversarial attacks, but no generally 

effective fix has been developed. For ML-based malware detection applications, an effective defence 

against adversarial attacks is key in ensuring the integrity of the application, as the open-training 

model used provides an attack vector for adversarial poisoning attacks. A summary of the problems 

identified are shown in  

.  
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Table 11 - Summary of Identified Problems 

Identified Problem Addressed in Research Related Research Question 

Machine learning algorithms 

are vulnerable to adversarial 

attacks 

Yes RQ1 

A general mitigation strategy 

has not been developed to 

counter all adversarial attacks 

Yes RQ2 

Researchers do not share their 

malware databases, which 

makes replicating the results 

difficult  

No  

   

 The problems identified in the literature review and summarised in Table 11 only provide a broad 

overview of the issues relating to adversarial machine learning attack and defence research. An 

important problem which has not been covered in other research is the fact that for the majority of the 

developed adversarial machine learning defences to operate, they require a trusted clean dataset which 

can be used as a benchmark to identify and remove adversarial examples. The problem which arises 

from this method is that it is not possible to know for certain if the trusted clean dataset is in fact 

clean, or if adversarial examples have been introduced into the dataset without the researcher being 

aware. Trust in a clean dataset becomes more difficult when the data is required to be sourced online 

or from a third party, compared to a dataset which was curated inhouse. The problem with using an 

inhouse dataset, is that without the large variation in data which occurs when data is gathered from 

multiple channels, overfitting is more likely to occur in the trained ML model. The trust issue was 

addressed in this thesis when developing the defensive measure to prevent targeted adversarial 

poisoning attacks from succeeding.    
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3 Research Methods and Design 

This chapter begins with a discussion of philosophical systems and research approaches. This is 

followed by a discussion of research methods and a justification of the selected method for this 

research. Next, the research design, describing the process used to develop the research questions and 

their corresponding hypotheses was done in accordance with the traditional scientific approach, which 

was identified as the most appropriate research approach for this thesis. Next, an outline of the 

research phases was produced, starting with the acquisition and analysis of malware databases, the 

development of ML models, the development and execution of the preliminary and main experiments, 

and finishing with the development of a defensive strategy to mitigate the targeted adversarial 

poisoning attack. The chapter concludes by covering the materials required to complete the research 

phases, an overview of the risks and limitations and ethical considerations related to the research topic 

are discussed. 

3.1 Philosophical Systems 

The philosophical systems which encompass scientific research are ontology, epistemology, 

methodology, and methods (Zukauskas, Vveinhardt, & Andriukaitienė, 2018). These four areas 

provide the basis for how new information is obtained through a research process. Different 

researchers have developed different systems which encompass the four areas and provide a variety of 

approaches for performing scientific research. In  

, an overview is given of a few of the different systems. The areas described in  

 were explored and a number of methodologies were considered, but all were ruled out except for the 

traditional quantitative scientific approach of hypothesis development and experimentation. 
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Table 12 - Research Methods Adapted from Williamson and Johanson (2017) 

 

3.1.1 Scientific Research Paradigms 

A paradigm refers to “a system of ideas, or world view, used by a community of researchers to 

generate knowledge. It is a set of assumptions, research strategies and criteria for rigour that are 

shared, even taken for granted by that community” (Fossey, Harvey, McDermott, and Davidson, 

2002, p. 718). 

There are currently three main philosophical paradigms currently accepted by the scientific 

community as being the most appropriate in exploring the nature of reality, these systems are 

positivism, constructivism, and interpretivism. Using any of these philosophical approaches enables 

researchers to assess their research in either objective or subjective ways. Each of these scientific 

paradigms were explored, but as constructivism and interpretivism were not appropriate choices for 

the research performed in this thesis, they will not be discussed in the following sections. 

Research 

paradigm 

(world view) 

Ontology Epistemology Research 

methodology 

Modes of inquiry 

Interpretive Society is 

constructed and 

social reality is 

constantly 

interpreted 

Knowledge is 

subjective and is 

generated 

through 

“exploration of 

the beliefs, 

feelings and 

interpretations of 

research 

participants” 

(Williamson & 

Johanson, 2013) 

Qualitative Interviews 

Case studies 

Field Experiment 

Positivist A theory, if not 

proven false, is 

corroborated but 

not proven true 

Knowledge is 

objective and 

generated 

through 

observation.  

Quantitative Experimental 

Quasi-

Experimental 

Surveys 
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3.1.1.1 Positivism 

The positivist paradigm is focused on the objective analysis of data. It does not take into consideration 

the feelings of the researcher when examining the research to identify the truth (Guba, 1981). 

Positivism is strongly associated with quantitative research methods, analysing numerical data 

obtained through traditional scientific experiments (Zukauskas et al., 2018). The positivist research 

process is illustrated in Figure 3.1, it starts with the development of hypotheses which can be 

empirically tested and ends with the writing of results. The positivist researcher aims to gather 

knowledge through empirical testing which support their hypotheses and discover a set of general 

laws (Neuman, 2014).   

 

Figure 3.1 - Positivist Research Process Adapted from (Williamson & Johanson, 2017) 

3.1.1.2 Existing Taxonomies of Research Approaches  

Galliers (1990) identified several different research approaches in the domain of information systems, 

as shown in Table 13. The approaches identified are categorised across a spectrum ranging between 

qualitative and quantitative. Each approach identified has been analysed to determine which type of 

research would be most suitable for the research described in this thesis. The acceptable approaches 

were narrowed down to the traditional empirical approaches (quantitative), as performing experiments 

and analysing the results is a core aspect of the proposed research. The approaches chosen for 

consideration are laboratory experiment, field experiment, theorem proof and simulation. 



Page | 62 

Table 13 - Information Systems Research Approaches. Adapted from (Galliers, 1990) 

A laboratory experiment is the most suitable approach for research which requires high precision in 

controlling the variables and environment to produce an experiment which can be easily reproduced 

to replicate the findings. Due to the nature of the research questions involving malware and the need 

for a high level of control, a laboratory experiment is a suitable research approach for the 

development, testing and analysis required to obtain the answers from the proposed research 

questions.  

A field experiment is not as suitable as a laboratory experiment due to the malware dataset required 

for experimentation. If a field experiment was chosen, a honeypot environment would be required for 

the collection of new malware samples, in addition to the pre-assembled malware database. The 

timeframe of collecting wild malware would be unknown, which would not be suitable, in addition to 

the fact that it would not be known if the captured files are malicious in every instance and controlling 

the families which the captured malware belong to would also be difficult. Due to the aforementioned 

issues, a laboratory experiment is more suitable, with field experiments being left to future research.    

Theorem proof as defined by Vogel and Wetherbe (1984) are “application areas from fields such as 

Computer Science that otherwise would not be identified”. The aim of the research is not to develop 

an ML algorithm but instead, perform an evaluation of the different family of algorithms and develop 

an adversarial attack/defence. As the evaluation better fits the laboratory experiment approach, 

theorem proof was not selected for use.  

Simulation is a suitable approach for research problems where undertaking a field experiment is not 

appropriate, but a simulation of a live environment can be developed from observing a live scenario 

and generating the required variables, to replicate the environment as accurately as possible. A 

simulation approach does not provide any added benefits over a laboratory experiment for the 

proposed research. The generation of adversarial malware examples is needed to be done in a 

Refer to 
Galliers, R. D. (1990). Choosing appropriate information systems research approaches: a revised taxonomy. In In 

Proceedings of the IFIP TC8 WG8. 2.
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laboratory setting, as a high level of precision is needed to control how the adversarial attacks perform 

and to provide control for replicating the experiments. 

Edgar and Manz (2017) suggest a decision tree approach for determining the most appropriate 

research method. The authors go into detail for each of the different research approaches which are 

applicable for the many different sub-fields of cyber security. The main overarching research fields 

identified are observational research, mathematical research, experimental research and applied 

research. An illustration of the decision tree is shown in Figure 3.2. 

Observational research methods cover open-ended and broad research topics. The methods are most 

suitable for research topics which aim to understand a cyber system, without some preconceived 

hypothesis of expected behaviour. Mathematical research methods cover the theoretical approaches 

previously defined by Vogel and Wetherbe (1984) and the simulation approach presented by 

(Galliers, 1990). Experimental research methods cover Hypothetico-deductive research and Quasi-

experimental research. Hypothetico-deductive research is the term used by Edgar and Manz (2017) to 

refer to the traditional scientific approaches such as the field and laboratory experiment approaches 

proposed by Galliers. Quasi-experimental research approaches are similar to the traditional 

experimental approach but differ in that control of the variables is difficult to obtain, which leads to 

less reliable results.  Applied research methods cover applied experiment approach and applied 

observational study. Applied research methods are suitable for research which aims to evaluate the 

efficacy of a system for solving a problem. 



Page | 64 

3.1.1.3 Cyber Security Research 

Edgar and Manz (2017) proposed a decision tree structure to identify which research method is 

most suitable for a proposed research problem. There are four overarching categories of research 

from which a cyber security researcher can select. The four categories of research are 

Theoretical, Observational, Experimental, and Applied Research, as described by Edgar and Manz 

(2017) below. 

Figure 3.2 -Edgar and Manz Research Decision Tree Pt.1 Adapted from (Edgar & Manz, 2017) 

Refer to 
Edgar, T. W., & Manz, D. O. (2017). Research Methods for Cyber Security: Syngress Publishing.

ESET. (2020). Trojan Horse. Ch.3, P.80. Retrieved from https://www.eset.com/uk/types-of-cyber-threats/trojanhorse/ .

https://www.eset.com/uk/types-of-cyber-threats/trojanhorse/
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Theoretical research is the examination of the behaviour of a cyber system. It involves theorising or 

defining the operation of a cyber system and its environment. The two methodologies of theoretical 

cyber research are Formal Theory and Simulation. Formal theory is the development of mathematical 

proofs and internal validity. Cryptographic research is a research field which is strongly associated 

with formal theory research. Simulation theory is used in areas which contain complex problems that 

are difficult to develop a formal model for. Simulation theory is used to test smaller sets of data to 

identify if the area is worth pursuing at a more complex level.  

Observational research is appropriate when the research question involves the understanding of a real-

world cyber system. The methods used in observational research are Exploratory and Descriptive 

Studies.  Exploratory and descriptive studies both involve the collection, analysis, and interpretation 

of data. The two methods differ in their scope, with exploratory studies being more general and 

examining entire systems, and descriptive studies being more in depth on a particular aspect of a 

system.  

Edgar and Manz (2017) include ML in their taxonomy of research methods. This is perhaps unusual, 

but in their view, ML as a research method is for automating phases of the research cycle. Machine 

learning as a research method does not focus on the use of ML when undertaking research, such as 

developing an algorithm or defence for an adversarial attack. The use of machine learning as a 

research method was defended by Edgar and Manz (2017) as an approach due to the significant 

progress in machine learning research and its application in the cyber security domain. 

Experimental research is the traditional experimental process which is most commonly associated 

with scientific research. The methods used in experimental research are Hypothetico-Deductive and 

Quasi-Experiment. Hypothetico-deductive is the term the authors use for the traditional scientific 

experiment approach, where a hypothesis is developed, and experiments are performed to gather 

information to either support the hypothesis/null-hypothesis. The quasi-deductive approach is similar 

to the hypothetical-deductive approach but differs in the control of the experiment. If a researcher is 

unable to perform their experiments in a real-world scenario but can create a simulation with control 

over the variables, then a quasi-experiment is the appropriate method of choice. 

Applied research is the process of identifying how well the information gathered from other 

experiments is used to solve a given problem. The methods used in applied research are applied 

experimentation and applied observational study. Applied experimentation identifies how well a 

proposed solution is by evaluating a set of controlled experiments. The results from the experiments 

are used as a benchmark for comparison from the original operation of the cyber system and to any 

new solutions which may be developed. Applied observation study is the evaluation of cyber systems 

in different situations testing a variety of conditions for the operation of the system. It is a useful 

method for identifying the bounds within which a cyber system is able to operate.    
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From following the decision tree developed by Edgar and Manz (2017), the hypothetico-deductive 

research method was determined to be the most appropriate choice. This outcome is consistent with 

the result using the taxonomy of Galliers (1990), that a traditional scientific experiment approach is 

the most suitable for conducting the proposed research. 

3.2 Research Design 

The research design is divided into four sections, research questions, hypotheses, research phases, and 

materials. Each section covers an area required for the development of the experiments when 

undertaking a traditional scientific research approach, as it was identified in the previous section as 

the most appropriate research approach for the topic of this thesis. The research questions and 

hypotheses sections are straight forward, they contain the proposed research questions and their 

related hypotheses which were tested to determine if it was possible to induce targeted false negatives 

in ML malware detection applications and if it is possible to detect the false negatives. The research 

phases section outlines the path the research process followed, starting from acquiring the relevant 

databases and concluding with the documenting of analysed results. The materials section outlines 

what was required to setup and undertake the experiment phases. 

3.2.1 Hypotheses 

From the proposed research questions stated in section 1.4, the following hypotheses were developed 

and tested throughout the experimentation phase of the research. 

H1. A manual selection of features can be used for a successful adversarial poisoning attack. 

H2. A random selection of features can be used for a successful adversarial poisoning attack. 

H3. No more than 5% of the benign training data feature space is required to be poisoned to reduce the 

general efficacy of the model. 

H4. No more than 10% of the benign training data files are required to be poisoned to reduce the 

general efficacy of the model.  

H5. No more than 10% of the benign training data files are required to be poisoned for a targeted 

adversarial attack to succeed. 

H6. The targeted adversarial attack can be prevented at test time. 

The research questions and their corresponding hypotheses are illustrated in Table 14. 

. 
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Table 14 - Research Question Relationships 

Research Question Hypotheses Output 

RQ1 H1, H2, H3, H4, H5 Identify if a targeted 

adversarial attack can be 

successfully performed  

RQ2 H6 Develop defensive strategy for 

targeted adversarial poisoning 

attack 

3.2.2 Research Phases 

3.2.2.1 Acquire Datasets 

The initial phase of research was obtaining the required Microsoft Windows PE file datasets for 

development of a machine learning based malware detector and to be used as the samples for creation 

of adversarial malware. The datasets were acquired from the anti-malware vendor VirusShare and 

from anti-malware researchers at Endgame. As VirusShare contained a significant amount of malware 

samples and the EMBER dataset contained 1.1 million data samples, no further datasets were sought 

for use.   

3.2.2.2 Perform Feature Analysis 

The second phase was to perform feature analysis on the datasets. The EMBER dataset provided a 

script for performing feature engineering on new data in the same format as EMBER, this allowed for 

the binary malware files obtained from VirusShare to be converted into the JSON format which 

EMBER used.  

3.2.2.3 Test Malware Detection Model 

The third phase was to evaluate the performance of the ML malware detection model provided in the 

EMBER dataset on the selection of malware files obtained from VirusShare. It was required to 

identify which malware files from VirusShare could be possible candidates for the targeted 

adversarial poisoning attacks. The EMBER model is a GBDT which uses the default LightGBM 

parameters. EMBER uses the AUC ROC curve method for comparing the performance of binary 

classifiers. The default EMBER model achieves an AUC ROC score of 0.9991123, which is used as a 

baseline for comparison in the adversarial poisoning attack experiments. The same parameters are 

used to train the GBDT models in the general efficacy and targeted adversarial poisoning attacks. The 

code for training the GBDT EMBER model is in Appendix A – Machine Learning Model Code. 
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3.2.2.4 Test General efficacy Attack 

The fourth phase was to perform an adversarial poisoning attack with the aim of reducing the general 

efficacy of the EMBER model. The aim was to identify if it is possible for the features from the 

selected malware files, which will act as Zero-day malware files, are acceptable for use in the targeted 

adversarial poisoning attack. Different sets of features and different injection percentages were tested 

to provide the targeted adversarial attack with a set of features to choose from. The features were 

selected from the imports section of the malware files and the poisoning attacks were performed in 

steps of 5 percent. The imports section was selected as inserting import functions into the EMBER 

JSON files was a straightforward task and the imports section has been identified by other researchers 

as a positive contributing feature space for malware detection (section 2.8) 

3.2.2.5 Test Targeted Adversarial Attack 

The fifth phase was the development of a targeted adversarial poisoning attack which allows for the 

targeted Zero-day malware file to bypass detection, while the general efficacy of the model is not 

significantly affected. The attack was different from the current adversarial poisoning attacks 

performed against malware detection models e.g., label flipping. Testing with different sets of features 

and at different poisoning percentages was performed to identify the optimal parameters for 

performing a successful targeted poisoning attack. The model performance was compared using the 

AUC ROC and the threshold value to determine if the targeted adversarial poisoning attacks were 

capable of allowing for a targeted Zero-day malware file to bypass detection, while the general 

efficacy of the model was within an acceptable variation from the baseline metric of the default clean 

EMBER model. 

3.2.2.6 Test Different Machine Learning Model 

The sixth phase was to replicate the previous attacks on an MLP model trained using a subset of the 

data from the EMBER dataset. A smaller dataset was used in the MLP model as the workstation was 

not powerful enough to train an MLP model using the entire EMBER dataset. The results from which 

were used to identify which model was the focus of the defensive strategy. The AUC ROC and 

threshold scores are used to compare the efficacy of the trained MLP models as they were used in the 

previous GBDT training/testing phases. A direct comparison of performance between the GBDT and 

MLP models are discussed in section 5. The MLP model was configured as a feed forward dense 

model with the following parameters: 

• RELU Activation at hidden layers 

• Sigmoid Activation at output layer 

• Five hidden layers of [2048, 1024, 512, 256, 10] neurons 

• Input_dropout=0.05 

• Hidden_dropout=0.1 
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• Batch_size=128 

• Epochs=100 

In a feed forward dense ML model, each neuron is connected to all the neurons in the following layer 

and the only direction of the connections is forward. The code for the MLP model is in Appendix A – 

Machine Learning Model Code.  

3.2.2.7 Develop/Test Defensive strategy 

The seventh phase was to develop a new defensive strategy to defend against the targeted adversarial 

attack. The defensive strategy was developed to focus on identifying suspicious files at test time, in 

contrast to the current defences which identify poisoning at the training stage. The defensive strategy 

was developed under the assumption that it is not possible to obtain a trusted clean dataset to develop 

a baseline for the identification and removal of adversarial features from the training dataset.  

3.2.2.8 Document Results 

The eighth phase was the final documentation after analysing the results from the adversarial attack 

and defence phases. An analysis of the other defences and a comparison with the proposed defensive 

strategy was also provided 

 

Figure 3.3 - Research Design
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3.2.3 Materials 

• Workstation (Detailed in Section 4.1) 

• Malware Database(s) (Detailed in Section 4.2) 

• Machine Learning Toolkit(s) 

A workstation was required to develop the laboratory environment which was comprised of virtual 

machines in a segregated network, as the experimentation was on files of a malicious nature. Multiple 

malware databases were obtained to generate the malware detection model and the adversarial 

examples.  

3.3 Risks and Limitations 

The research was limited in selecting a traditional experiment approach over a field experiment in that 

the Zero-day malware selected for testing was simulated by using a malware obtained after a cut-off 

date from the training dataset, instead of being obtained through a honeypot or waiting for a new 

Zero-day malware to be identified. The limitation is not severe, as all of the malware sourced is real, 

and the experiments represent a real-world scenario of ML malware detection development. Other 

risks which have been identified are shown in Table 15, with their corresponding mitigation strategy 

and likelihood of occurrence. 
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Table 15 - Risks and Mitigation Strategies 

Risk Mitigation Likelihood/Severity 

Accidently exposing malware to a 

network.  

Experimentation will be 

performed on a private 

network. If for some 

reason a private network is 

not suitable for an 

experiment, appropriate 

measures will be taken to 

ensure it is not exposed to 

a live network. 

Low 

No access to proprietary malware 

detection models 

Develop substitution 

environments where 

needed using published 

detection models 

High 

ML algorithm does not perform as 

intended 

Choose another algorithm 

for the potential candidate 

selection 

Moderate 

Access to Zero-day malware Generate new malware 

from old samples 

Low 

Loss of material  Perform backups Moderate 

Malware database stolen Encrypt data Moderate 

3.4 Ethics 

The research topic was on the efficacy of different machine learning algorithms in the application of 

malware detection and the resilience of the algorithms to adversarial machine learning attacks. The 

research did not involve any living creature. The experimental data are not of a private or sensitive 

nature. The results of the research have not in any way contributed to oppression or humiliation of any 

group or individual. 

The ethics declaration was approved on 22/11/2018 under declaration number 22307. 
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3.5 Summary 

In this chapter a description of the different scientific paradigms was presented along with the 

approaches that researchers utilise in the development of their research design. From examining the 

different scientific paradigms and the research approaches available, it was determined that the 

traditional scientific approach of hypotheses development and testing was the most appropriate 

approach for exploring the research questions proposed in this thesis. A selection of research phases 

were developed to frame the experimentation in a logical sequence of events, starting with the 

acquisition of malware datasets and finishing with the analysis of the experiments’ results. A 

description of the materials required to undertake the experiments was given, along with an overview 

of the risks and limitations identified which could impact the research. Finally, the ethical 

considerations of the research topic were stated. 

In the following chapter, the environment required to perform the experiments is discussed, along 

with an analysis of the datasets acquired for experimentation. The chapter follows with the 

preliminary and main experiment sections. In the preliminary experiment section, a selection of 

candidate adversarial features are evaluated in a variety of adversarial poisoning attacks to determine 

which set of adversarial features are to be used in the targeted poisoning attack in the main 

experiments. In the main experiment section, a set of targeted adversarial poisoning attacks are 

performed at varying degrees of injection against both GBDT and ANN trained ML models. Finally, a 

defensive strategy for mitigating the targeted adversarial poisoning attack was proposed, which 

identified false negatives at test time.    
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4 Experimentation – Adversarial Poisoning Attacks and 

Defences 

In this chapter, research phases one through to seven are documented. The first two phases cover the 

acquisition of malware datasets from EMBER and VirusShare and the feature analyse process which 

was performed. In the third phase the malware files obtained from VirusShare were scanned using the 

GBDT model generated from the EMBER dataset to identify malware candidates for the experiment 

phases.  The fourth phase documents the testing of the preliminary experiments which identified that 

it is possible to reduce the overall efficacy of trained EMBER ML models through indiscriminate 

poisoning attacks. The fifth phase documents the process for the development and testing of a targeted 

adversarial poisoning attack, which, following the process explored in phase five, poisons the 

EMBER dataset but does not reduce the overall efficacy while inducing a targeted false negative. The 

sixth phase introduces the use of another ML algorithm (ANN) to test the targeted adversarial 

poisoning attack and compares the results from the default EMBER GBDT model and the new ANN 

model. The seventh phase documents the defensive strategy which was developed to identify false 

negatives at test time. 

4.1 Environment 

All experiments were performed on a desktop PC with the following specifications: 

• OS - Ubuntu 18.04 

• CPU - AMD Ryzen 7 3700X 8-Core Processor 

• RAM - 32GB DDR4 C16 3200Mhz 

• GPU – AMD RX5700 

• SSD – 512GB Samsung EVO 860 

At the time of experimentation, the RX5700 did not have ROCm support for Keras. ROCm is an 

open-source development platform for AMD GPUs to accelerate compute-intensive tasks such as ML.  

The implications for this research were, that without this support, ML training tasks would take some 

time. 

4.2 Datasets 

To obtain the malicious files, a request was sent to both VirusShare and VirusTotal to gain researcher 

access to the data repositories. Access to VirusShare was granted but access to VirusTotal was not 

obtained. There may have been a problem with the VirusTotal application process, as no confirmation 

email was received. As access to VirusShare was granted, gaining further access to VirusTotal was 

postponed until a later date if required. The VirusShare files which were chosen as the Zero-day 

malware in this research were analysed by VirusTotal through their open API, this was done to 
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identify if any of the chosen VirusShare files had been submitted and identified as malicious before 

the cut-off date of the EMBER dataset (2017). None of the VirusShare files had been identified as 

malicious during or before 2017, and as such, were acceptable for use as Zero-day malware. 

4.2.1 EMBER 

The dataset chosen for testing adversarial poisoning attacks and defences was the Endgame Malware 

BEnchmark for Research (EMBER) dataset. The EMBER dataset is a collection of extracted features 

from 1.1 Million portable executable (PE) files (900,000 train and 200,000 test). The 900,000 training 

files are split equally into three categories, malicious, benign, and unknown. The unknown category is 

not used when training the ML model, so the actual size of the EMBER dataset when training is 

800,000. EMBER was developed to serve as a benchmark for machine learning malware research. At 

the time of writing, there are three available EMBER datasets, EMBER2017, EMBER2017_v2, and 

EMBER2018. Both EMBER2017 and EMBER2017_v2 contain PE files scanned no later than 2017, 

and EMBER2018 contains PE files scanned no later than 2018. The features from the PE files were 

extracted using LIEF (Library to Instrument Executable Formats) and saved into JSON format. LIEF 

is a cross-platform library designed to parse, modify, and abstract various binary executable formats, 

including Windows PE files. 

4.2.1.1 EMBER Model Performance 

The third phase was to train the ML models which was done in two stages, training the clean models 

and training the poisoned models. The clean models are required to be used as a baseline for 

evaluating the efficacy of the poisoning attacks and defences. A clean trained GBDT model is 

provided along with the EMBER datasets and a summary of each model’s performance is shown in 

Table 16 and Table 17 for 1% and 0.1% FPR. The performance of each model is calculated by the set 

FPRs (1% and 0.1%), the threshold value separates the benign and malicious files for the different 

FPRs. As an example, the EMBER2017 model at 1% FPR classes a file as malicious if it’s predicted 

score is above 0.529.    

Table 16 - EMBER Performance 1% FPR 

Model ROC AUC Threshold FNR Detection Rate 

EMBER2017 99.911% 0.529 1.838% 98.162% 

EMBER2017_v2 99.908% 0.541 1.781% 98.219% 

EMBER2018 98.495% 0.850 17.071% 82.929% 
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Table 17 - EMBER Performance 0.1% FPR 

Model ROC AUC Threshold FNR Detection Rate 

EMBER2017 99.911% 0.871 7.009% 92.991% 

EMBER2017_v2 99.908% 0.884 7.671% 92.329% 

EMBER2018 98.495% 0.951 35.794% 64.206% 

 

4.2.2 VirusShare 

VirusShare, the online virus repository, was used to obtain the malicious files required for testing the 

proposed adversarial poisoning attack. From VirusShare, the pack 00352 was selected for use because 

it was released at a later date than the EMBER2017 dataset, which was, at the time of exploratory 

examination, the only EMBER dataset available. After obtaining the malicious file package from 

VirusShare, each file was analysed by VirusTotal to identify if any of the files had in fact been 

submitted during 2017 or before. The VirusShare_00352 package contained 65,536 malicious files, 

which were scanned using the clean EMBER2017 model. Out of the 65,536 files, 2555 were PE32 

files, which was determined by examining the contents of each file for the digital signature “4d 5a”. 

From the 2555 PE32 files, 2040 were correctly classified as malicious using the EMBER2017 model. 

The VirusShare package contains malicious files in general, it was not a package that only contained 

files of a certain nature e.g., Trojan or Ransomware. 

The EMBER2017_v2 and EMBER2018 models were also used to scan the 2555 PE32 files. As the 

two models were generated using training data from 2018, unlike EMBER2017 which consisted of 

only files up to 2017, it was expected that the models would have a better classification rate as they 

were trained on newer data. An increase in the successful classification of malicious files would 

indicate that continuous retraining using newer files is required for the successful classification of 

Zero-day malware. This continuous retraining of models is what provides an attack vector for a 

malicious actor to perform an adversarial poisoning attack. 

Out of the 2555 PE32 files, EMBER2017_v2 classified 2014 as malicious while EMBER2018 

classified 1753. The Endgame researchers did state that EMBER2018 was constructed in such a way 

that it would be harder for the machine learning algorithms to classify accurately. The 

EMBER2017_v2 model, which was trained using files released up to 2018, incorrectly classified 26 

more files (around 1%) than the EMBER2017 model, which was trained on files only from 2017 and 

earlier. 

4.3 Feature Analysis 

From the eight feature classes, the ImportsInfo class was chosen as the target for the adversarial 

poisoning attack. The import section of PE files contains a significant number of variables to choose 
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from for poisoning. Injecting a selection of import features into the training data can be easily 

performed by appending the feature to the correct section of the JSON file. The ImportsInfo class 

comprise the majority of the 2351 feature vectors (54%). Saxe and Berlin (2015) found that the import 

section by itself was the worst performing area for detecting malicious files but despite this, the 

ImportsInfo class will be evaluated for its adversarial poisoning performance. 

The feature analysis of the EMBER2017 and VirusShare_00352 datasets began with counting the 

import libraries and their import functions. From the EMBER2017 dataset, the 900,000 samples from 

the training set were analysed to identify the most common unique libraries and the most common 

import functions from each of the labelled classes (benign, malicious and unknown). From the 

analysis, five unique libraries from the top ten were selected for the poisoning attacks. Five libraries 

were chosen as selecting more libraries would reduce the amount of target Zero-day files which 

contained all libraries, and the number of benign files which could be poisoned would also be 

reduced. From each of the unique libraries, different selections of import functions were chosen for 

the poisoning attacks. In the first test, five and ten import features which were found to be more 

common among the malicious data were chosen for injection. In the second test, five and ten features 

were randomly selected from the top one hundred import features from the malicious data.  The 

chosen unique libraries and their total count are shown in Table 18. 
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Table 18 - Import Library and Function Amount 

Library Class Import Library 

Count 

Import Function Count 

Kernel32.dll Benign 153,370 9,756,993 

Malicious 242,290 9,118,519 

Unknown 219,259 12,524,850 

Shell32.dll Benign 41,410 241,822 

Malicious 92,838 271,802 

Unknown 93,187 339,111 

User32.dll Benign 84,533 4,598,947 

Malicious 154,733 3,476,420 

Unknown 150,828 6,521,411 

Advapi32.dll Benign 84,554 1,118,428 

Malicious 100,853 859,340 

Unknown 124,522 1,284,236 

Msvcrt.dll Benign 33,356 1,068,236 

Malicious 61,809 1,629,194 

Unknown 43,510 1,218,773 

All Libraries Benign 1,394,044 39,953,980 

Malicious 1,226,244 21,911,172 

Unknown 1,573,555 36,579,239 

Total 4,193,843 98,444,391 
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4.4 Preliminary Experiments 

As stated in Section 3.2.2, before performing the targeted adversarial poisoning attacks the fourth 

project phase was to conduct preliminary experiments to examine the efficacy of injecting import 

features into the benign feature space as an indiscriminate poisoning attack. The aim of the 

preliminary experiments was to identify the parameters for the targeted poisoning attacks i.e., should 

the import features chosen for poisoning be randomly or manually selected, what percentage of 

injection should be performed, should the injection percentage be based on the total feature space or a 

percentage of the training data amount? 

The preliminary experiments were split into two categories, manual import function selection and 

random import function selection. Each category contained two sets of preliminary experiments, 

which tested adversarial poisoning attacks at different percentages of injection. Two methods were 

used to calculate the poisoning percentages. The first method calculated the poisoning percentage 

from the total number of import functions from all import libraries in the benign training files, which 

is referred to as the total benign feature space. The first set of preliminary experiments were designed 

to test H3, in that no more than 5% of the total benign feature space was to be poisoned. After 

examining the logs and identifying that for each poisoning experiment, 100% of the benign training 

files which contained the target import library were injected with the adversarial features, the method 

for calculating the poisoning percentage for the second set of preliminary experiments was altered.  

In the second set of preliminary experiments, the poisoning percentage was calculated from the 

number of benign files which contained the target import library. This method is referred to as the 

target benign files. The second set of preliminary experiments tested poisoning in steps of 5% of the 

target benign files, starting at 5% and ending at 100%, with the 100% attack being the same as the 

attack in the first set of preliminary experiments. The second set of preliminary experiments were 

developed to identify at what percentage of poisoning of the target benign files does the quality of the 

model start to degrade. 

The import functions selected came from a pool of the total import functions extracted from the 

malicious files in VirusShare_00352 which were identified as malicious by the EMBER2017 model. 

The total amount of import functions is shown in Table 19 and the top 20 import libraries are shown 

in Table 20. All the ML models generated in the preliminary attacks used the code to generate a 

GBDT model which was supplied with the EMBER dataset. The EMBER GBDT code was used as it 

provided a clear comparison to the clean EMBER model. 
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Table 19 - VirusShare_00352 Import Library and Function Count 

Import Library Import Count Function Count 

kernel32.dll 2125 182133 

shell32.dll 1115 4398 

user32.dll 1560 111484 

advapi32.dll 1412 13767 

msvcrt.dll 128 2007 

 

Table 20 - Top 20 Import Libraries 

Position Import 

Library 

Total Count Position Import 

Library 

Total 

Count 

1 kernel32.dll 2125 11 shlwapi.dll 514 

2 user32.dll 1560 12 winspool.drv 357 

3 advapi32.dll 1412 13 ws2_32.dll 283 

4 gdi32.dll 1186 14 wininet.dll 267 

5 shell32.dll 1115 15 shfolder.dll 221 

6 oleaut32.dll 1085 16 mscoree.dll 195 

7 ole32.dll 870 17 winmm.dll 192 

8 comctl32.dll 831 18 psapi.dll 187 

9 comdlg32.dll 703 19 crypt32.dll 143 

10 version.dll 578 20 msvcrt.dll 128 

 

Even though Table 20 shows that the import library “gdi32.dll” was in the top five most common 

import libraries, some curation was done in the library section and it was not selected for use as it is a 

graphical interface library, as the import functions from that library are unlikely to contain any special 

meaning towards malicious files. The import library “msvcrt.dll” was chosen for use in the 

preliminary experiments even though it was number twenty in the twenty most common import 

libraries. “msvcrt.dll” was chosen to be used as a comparison against the other import libraries which 

were in the top five of the most commonly used import library list. 
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4.4.1 Preliminary Experiments Stage One 

The first stage of the preliminary experiments tested the five chosen import libraries “kernel32.dll”, 

“shell32.dll”, “user32.dll”, “advapi32.dll”, and “msvcrt.dll” at 5% injection of the total benign feature 

space. For each of the five import libraries, four experiments were performed which differed in how 

the import functions were select (manual or random) and the amount of import functions selected 

(five and 10). To reduce the amount of repeated information, the final results are summarised in two 

tables and the percentage of injection is only given for the “kernel32.dll” experiments. 

4.4.1.1 Experiment 1.1 – Total Benign Feature Space Attack – Manual Selection 

The first set of preliminary experiments in the first stage were developed to test the following two 

hypotheses: 

H1. A manual selection of features can be used for a successful adversarial poisoning attack. 

H3. No more than 5% of the benign training data feature space is required to be poisoned to 

reduce the general efficacy of the model. 

The 5% of the benign training data feature space was calculated from the total amount of import 

functions in the benign training data (39,953,980), which was shown in Table 18. 

For each import library selected, a selection of five and ten import libraries were chosen as the 

adversarial features which would be injected into the benign training data files. The import libraries 

were selected from the VirusShare dataset which supplied the Zero-day malware files and are detailed 

in Appendix A – . When examining the logs from the adversarial poisoning attack, it was found that 

the 5% injection threshold was never met, and that 100% of the benign training files which contained 

the target import library were injected with the adversarial features.  

In experiment 1.1a, the five “kernel32.dll” import functions chosen for injection into each benign 

instance containing “kernel32.dll” were “WaitForSingleObject”, “SetFilePointer”, “WriteFile”, 

“ReadFile” and “GetModuleHandleA”. The total injection percentages among each of the training 

files is shown in Table 21, the total number of adversarial injections is 426,601, which is 4.372% of 

the target benign “kernel32.dll” feature space (9,756,993) and 1.068% of all the total benign feature 

space (39,953,980). 
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Table 21 - Kernel32.dll Five Functions Preliminary Poisoning Attack (Manual Selection) 

Training file Unique 

Library 

Count 

Library 

Function 

Count 

Function 

Injection 

Count 

Injection 

Percentage 

train_features_0.JSONl 19,100 1,248,297 46,761 3.745% 

train_features_1.JSONl 26,354 1,740,959 75,924 4.361% 

train_features_2.JSONl 29,605 1,852,481 87,451 4.720% 

train_features_3.JSONl 26,892 1,562,435 74,754 4.784% 

train_features_4.JSONl 28,480 2,104,726 71,005 3.373% 

train_features_5.JSONl 22,939 1,248,095 70,706 5.665% 

Total 153,370 9,756,993 426,601 4.372% 

 

Experiment 1.1b was performed using “kernel32.dll” as the injection target for the poisoning attack 

and a manual selection of ten import functions. The ten “kernel32.dll” import functions chosen were 

“WaitForSingleObject”, “SetFilePointer”, “WriteFile”, “ReadFile”, “GetModuleHandleA”, 

“ExitProcess”, “GetProcAddress”, “GetLastError”, “LoadLibraryA” and “MultiByteToWideChar”. 

The total injection rate among each of the training files is shown in Table 22, with 723,518 functions 

being injected in total. The injection percentage across the benign import feature space (39,953,980 

functions) and the benign and malicious import feature space (61,865,152 functions) was 1.810% and 

1.170%. 
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Table 22 - Experiment 1.1b Injection Percentages 

Training file Unique 

Library Count 

Library 

Function 

Count 

Function 

Injection Count 

Injection 

Percentage 

train_features_0.JSONl 19,100 1,248,297 78,752 6.308% 

train_features_1.JSONl 26,354 1,740,959 124,009 7.123% 

train_features_2.JSONl 29,605 1,852,481 146,662 7.917% 

train_features_3.JSONl 26,892 1,562,435 129,749 8.304% 

train_features_4.JSONl 28,480 2,104,726 122,903 5.839% 

train_features_5.JSONl 22,939 1,248,095 121,443 9.730% 

Total 153,370 9,756,993 723,518 7.415% 

 

From the results shown in 
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Table 23, the only import library which did not significantly increase the FNR of the ML model was 

the “msvcrt.dll” import library. The “msvcrt.dll” library was selected for a comparison as it contained 

the least number of instances in the VirusShare dataset, but as shown in Table 18, the msvcrt.dll 

library was in a similar amount of benign and malicious files as “shell32.dll” while containing almost 

five times the amount of import functions in both the benign and malicious training data. It is not clear 

why the “msvcrt.dll” poisoning attacks did not induce as many false negatives as the other attacks, but 

what is shown is that the results is support the tested hypotheses H1, and H3. 
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Table 23 - Manual Import Selection - 5% Total Benign Feature Space 

Attack Name FPR 

1% 

FNR 

1% 

Threshold 

1% 

ROC % Detection 

Rate 1% 

manual_kernel32_5 0.986 13.379 0.980 99.291 86.621 

manual_kernel32_10 0.992 17.118 0.989 99.188 82.882 

manual_user32_5 0.571 58.177 0.999 97.714 41.823 

manual_user32_10 0.000 100.000 1.000 97.491 0.000 

manual_shell32_5 0.965 34.630 0.992 98.959 65.370 

manual_shell32_10 0.810 53.969 0.997 98.307 46.031 

manual_advapi32_5 0.419 56.358 0.998 98.145 43.642 

manual_advapi32_10 0.993 51.452 0.998 97.575 48.548 

manual_msvcrt_5 0.997 4.114 0.802 99.757 95.886 

manual_msvcrt_10 0.996 4.623 0.806 99.746 95.377 

 

4.4.1.2 Experiment 1.2 - Total Benign Feature Space Attack – Random Selection 

The second set of preliminary experiments in the first stage were developed to test the following two 

hypotheses: 

H2. A random selection of features can be used for a successful adversarial poisoning attack. 

H3. No more than 5% of the benign training data feature space is required to be poisoned to 

reduce the general efficacy of the model. 

Experiment 1.2a was performed using “kernel32.dll” as the injection target for the poisoning attack. 

The five kernel32.dll import functions randomly chosen for injection were “VirtualFree”, 

“SetFilePointer”, “InterlockedDecrement”, “lstrlenA” and “IsDebuggerPresent”. The total injection 

rate among each of the training files is shown in Table 24 with 517,791 functions being injected in 

total. The injection percentage across the benign import feature space (39,953,980 functions) and the 

benign and malicious import feature space (61,865,152 functions) was 1.296% and 0.837%. In Table 

24, the percentage of injected adversarial features is shown compared to the import library count and 

import library function count for “kernel32.dll” in the benign training files. 
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Table 24 - Experiment 2.1a Injection Percentages 

Training file Unique 

Library Count 

Library 

Function 

Count 

Function 

Injection Count 

Injection 

Percentage 

train_features_0.JSONl 19,100 1,248,297 61,311 4.911% 

train_features_1.JSONl 26,354 1,740,959 92,312 5.302% 

train_features_2.JSONl 29,605 1,852,481 104,149 5.622% 

train_features_3.JSONl 26,892 1,562,435 89,945 5.756% 

train_features_4.JSONl 28,480 2,104,726 85,185 4.047% 

train_features_5.JSONl 22,939 1,248,095 84,889 6.801% 

Total 153,370 9,756,993 517,791 5.306% 

 

Experiment 2.1b was performed using “kernel32.dll” as the injection target for the poisoning attack. 

The ten “kernel32.dll” import functions randomly chosen for injection into each benign instance 

containing “kernel32.dll” were “VirtualFree”, “SetFilePointer”, “InterlockedDecrement”, “lstrlenA”, 

“IsDebuggerPresent”, “LocalFree”, “TerminateProcess”, “WideCharToMultiByte”, 

“GetCommandLineA” and “GetFileAttributesA”. The total injection rate among each of the training 

files is shown in Table 25, with 952,233 functions being injected in total. The injection percentage 

across the benign import feature space (39,953,980 functions) and the benign and malicious import 

feature space (61,865,152 functions) was 2.383% and 1.539%.  
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Table 25 - Experiment 2.1b Injection Percentages 

Training file Unique 

Library Count 

Library 

Function 

Count 

Function 

Injection Count 

Injection 

Percentage 

train_features_0.JSONl 19,100 1,248,297 112,493 9.011% 

train_features_1.JSONl 26,354 1,740,959 164,798 9.465% 

train_features_2.JSONl 29,605 1,852,481 187,832 10.139% 

train_features_3.JSONl 26,892 1,562,435 169,003 4.416% 

train_features_4.JSONl 28,480 2,104,726 162,061 7.699% 

train_features_5.JSONl 22,939 1,248,095 156,046 12.502% 

Total 153,370 9,756,993 952,233 9.759% 

 

From the results shown in Table 26, the only import library which did not significantly increase the 

FNR of the ML model was the “msvcrt.dll” import library, this is the same result from the set of tests 

in experiment 1.1. The “msvcrt.dll” library was selected for a comparison as it contained the least 

number of instances in the VirusShare dataset, but as shown in Table 18, the msvcrt.dll library was in 

a similar amount of benign and malicious files as “shell32.dll” was while containing almost five times 

the amount of import functions in both the benign and malicious training data. It is not clear why the 

“msvcrt.dll” poisoning attacks did not induce as many false negatives as the other attacks, but what is 

shown that the results support the tested hypotheses H1, and H3. 
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Table 26 - Random Import Selection - 5% Total Benign Feature Space 

Attack Name FPR 

1% 

FNR 

1% 

Threshold 

1% 

ROC % Detection 

Rate 1% 

random_kernel32_5 0.000 100.000 1.000 98.143 0.000 

random_kernel32_10 0.000 100.000 1.000 97.867 0.000 

random_user32_5 0.569 48.914 0.998 98.419 51.086 

random_user32_10 0.264 60.938 0.999 98.034 39.062 

random_shell32_5 0.944 21.954 0.991 99.153 78.046 

random_shell32_10 0.944 21.954 0.991 99.153 78.046 

random_advapi32_5 0.539 63.209 0.999 96.910 36.791 

random_advapi32_10 0.353 65.769 0.999 97.225 34.231 

random_msvcrt_5 0.998 2.876 0.689 99.843 97.124 

random_msvcrt_10 0.998 4.346 0.786 99.763 95.654 

4.4.2 Preliminary Experiments Stage Two 

In the second stage of the preliminary experiments, the percentage of injection was changed from 

using the total benign feature space to the amount of the target benign files. As with the first stage of 

preliminary experiments, the same set of import functions from each test (manual and random) were 

used. The percentage of injection for each experiment started at 5% of the target benign files and 

continued in steps of 5% until 100%, with the final experiment being the same as the 5% benign 

feature space experiments. 

4.4.2.1 Experiment 2.1a – Five Import Functions Manual  

The second set of preliminary experiments were developed to test the following two hypotheses: 

H1. A manual selection of features can be used for a successful adversarial poisoning attack. 

H4. No more than 10% of the benign training data files are required to be poisoned to reduce 

the general efficacy of the model.  

As the results from the previous preliminary experiments showed that trying to inject adversarial 

features into no more than 5% of the total benign feature space was the same as injecting adversarial 

features into 100% of the benign training data, the following set of experiments were performed, 

starting with 5% of the target benign files being injected with adversarial features and continuing in 

steps of 5% until 100%. The preliminary experiments were performed this way to see if there is an 

identifiable injection percentage which significantly impacts the target model. 

The results from every test are detailed in Appendix A – , as there are too many tables to present in 

this section, the results from the “kernel32.dll” poisoning attack will be used as an example. The 

“kernel32.dll” import library was the most common library among all classes within the EMBER 

dataset. The five “kernel32.dll” import functions chosen for injection into each benign instance 

containing “kernel32.dll” were “WaitForSingleObject”, “SetFilePointer”, “WriteFile”, “ReadFile” 

and “GetModuleHandleA”.  
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Table 27 - Experiment 2.1a Results 

Attack Name 
FPR_1% FNR 1% 

Threshold 

1% ROC % 

Detection Rate 

1% 

manual_kernel32_5_5 0.997 1.793 0.531 99.905 98.207 

manual_kernel32_5_10 0.992 1.795 0.53 0 99.903 98.205 

manual_kernel32_5_15 0.999 1.758 0.531 99.908 98.242 

manual_kernel32_5_20 0.999 1.781 0.533 99.908 98.219 

manual_kernel32_5_25 1.000 1.784 0.540 99.905 98.216 

manual_kernel32_5_30 0.996 1.758 0.545 99.906 98.242 

manual_kernel32_5_35 1.000 1.793 0.552 99.908 98.207 

manual_kernel32_5_40 0.995 1.831 0.551 99.905 98.169 

manual_kernel32_5_45 0.997 1.884 0.555 99.902 98.116 

manual_kernel32_5_50 0.999 1.851 0.571 99.900 98.149 

manual_kernel32_5_55 0.995 2.012 0.579 99.890 97.988 

manual_kernel32_5_60 1.000 1.943 0.597 99.891 98.057 

manual_kernel32_5_65 0.997 2.061 0.608 99.892 97.939 

manual_kernel32_5_70 0.995 2.005 0.625 99.886 97.995 

manual_kernel32_5_75 1.000 2.139 0.643 99.883 97.861 

manual_kernel32_5_80 1.000 2.221 0.675 99.880 97.779 

manual_kernel32_5_85 0.999 2.461 0.721 99.866 97.539 

manual_kernel32_5_90 0.999 2.826 0.761 99.847 97.174 

manual_kernel32_5_95 0.994 4.389 0.854 99.768 95.611 

manual_kernel32_5_100 0.986 13.379 0.980 99.291 86.621 

 

The results from the experiments in 2.1a, shown in Table 27, indicate that the efficacy of the model 

did degrade to a point which would render the model unusable, but only for the top injection rate of 

100%. If using the threshold of 1% FPR, at 85% injection of the benign training files, the threshold 

increases from the clean model at 0.529 to 0.721. The 85% injection model still has a detection rate 

greater than 97.539%, but from a cursory glance it is obvious that something has gone awry during the 

training process. The results from the experiments support both H1 and H3, as a manual selection of 

adversarial features was able to degrade the performance of the model with less than 5% of the total 

benign training data feature space being poisoned. The results from the experiments did not support 

H4, as the amount of benign training files which were poisoned for the successful attack exceeded 

10% of the total benign training files. 

4.4.2.2 Experiment 2.1b – Ten Import Functions Manual – kernel32.dll 

Experiment 2.1b follows same process described for the previous “kernel32.dll” poisoning attack, 

with an addition of five import functions chosen for poisoning. The ten “kernel32.dll” import 

functions chosen for injection were “WaitForSingleObject”, “SetFilePointer”, “WriteFile”, 

“ReadFile”, “GetModuleHandleA”, “ExitProcess”, “GetProcAddress”, “GetLastError”, 
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“LoadLibraryA” and “MultiByteToWideChar”. The results from the experiments are shown in Table 

28. 

Table 28 - Experiment 2.1b Results 

Attack Name 

FPR 

1% FNR 1% 

Threshold 

1% ROC % 

Detection Rate 

1% 

manual_kernel32_10_5 0.997 1.809 0.529 99.908 98.191 

manual_kernel32_10_10 0.999 1.679 0.522 99.909 98.321 

manual_kernel32_10_15 0.997 1.704 0.531 99.906 98.296 

manual_kernel32_10_20 0.997 1.772 0.540 99.900 98.228 

manual_kernel32_10_25 0.971 1.716 0.541 99.911 98.284 

manual_kernel32_10_30 0.998 1.675 0.544 99.909 98.325 

manual_kernel32_10_35 0.998 1.787 0.543 99.904 98.213 

manual_kernel32_10_40 0.992 1.819 0.557 99.904 98.181 

manual_kernel32_10_45 0.999 1.814 0.566 99.897 98.186 

manual_kernel32_10_50 1.000 1.931 0.579 99.896 98.069 

manual_kernel32_10_55 1.000 2.098 0.593 99.894 97.902 

manual_kernel32_10_60 0.999 2.001 0.602 99.897 97.999 

manual_kernel32_10_65 1.000 2.095 0.622 99.892 97.905 

manual_kernel32_10_70 1.000 2.099 0.641 99.890 97.901 

manual_kernel32_10_75 0.998 2.088 0.657 99.878 97.912 

manual_kernel32_10_80 0.982 2.532 0.702 99.865 97.468 

manual_kernel32_10_85 0.997 2.689 0.737 99.845 97.311 

manual_kernel32_10_90 0.997 3.370 0.804 99.815 96.630 

manual_kernel32_10_95 1.000 4.786 0.881 99.754 95.214 

manual_kernel32_10_100 0.992 17.118 0.989 99.188 82.882 

 

The results from the experiments in 2.1b show that the availability of the model did degrade to a point 

which would render the model unusable, but only for the top injection rate of 100%. If using the 

threshold of 1% FPR, at 85% injection of the benign training files, the threshold increases from the 

clean model at 0.529 to 0.737. The 85% injection model had an acceptable detection rate of just under 

97.311%, but from a cursory glance it is obvious that something has gone awry during the training 

process. The results from the experiments support both H1 and H3, as a manual selection of 

adversarial features was able to degrade the performance of the model with less than 5% of the total 

benign training data feature space being poisoned. The results from the experiments did not support 

H4, as the amount of benign training files which were poisoned for the successful attack exceeded 

10% of the total benign training files, as shown in Table 29. 
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Table 29 - Benign Training Files Injection Percentage - Manual Selection Attack 

Import Library Attack Success Total Benign 

Training files 

Injected 

Percent of Total 

Benign Training 

files 

kernel32.dll Yes 153,370 51.123% 

shell32.dll Yes 41,410 13.803% 

user32.dll Yes 84,533 28.178% 

advapi32.dll Yes 84,554 28.185% 

msvcrt.dll No 33,356 11.119% 

 

4.4.2.3 Experiment 2.2a – Five Import Functions Random – kernel32.dll 

The second set of preliminary experiments were developed to test the following two hypotheses: 

H2. A random selection of features can be used for a successful adversarial poisoning attack. 

H4. No more than 10% of the benign training data files are required to be poisoned to reduce 

the general efficacy of the model.  

The second set of experiments using the step of 5% injection of the benign training file amount used 

the same set of adversarial import functions as the basis of the injection attack. The aim of the 

experiments was to see what level of degradation to the general efficacy of the model was achieved at 

the different percentages of adversarial injection. The results from each attack are shown in Table 30. 
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Table 30 - Experiment 2.1a Results 

Attack Name 
FPR 1% 

FNR 

1% 

Threshold 

1% ROC % 

Detection Rate 

1% 

random_kernel32_5_5 1.000 1.820 0.528 99.907 98.180 

random_kernel32_5_10 0.995 1.737 0.528 99.904 98.263 

random_kernel32_5_15 0.994 1.815 0.538 99.905 98.185 

random_kernel32_5_20 0.998 1.802 0.547 99.904 98.198 

random_kernel32_5_25 0.999 1.869 0.556 99.905 98.131 

random_kernel32_5_30 0.999 1.858 0.564 99.901 98.142 

random_kernel32_5_35 0.997 1.952 0.586 99.899 98.048 

random_kernel32_5_40 0.996 2.004 0.597 99.901 97.996 

random_kernel32_5_45 0.999 1.969 0.602 99.894 98.031 

random_kernel32_5_50 0.999 1.992 0.630 99.895 98.008 

random_kernel32_5_55 0.999 2.041 0.648 99.892 97.959 

random_kernel32_5_60 1.000 2.156 0.660 99.892 97.844 

random_kernel32_5_65 0.996 2.248 0.689 99.880 97.752 

random_kernel32_5_70 1.000 2.425 0.725 99.881 97.575 

random_kernel32_5_75 0.996 2.386 0.751 99.880 97.614 

random_kernel32_5_80 0.996 2.747 0.795 99.864 97.253 

random_kernel32_5_85 0.997 2.877 0.836 99.859 97.123 

random_kernel32_5_90 0.992 3.219 0.877 99.838 96.781 

random_kernel32_5_95 0.989 5.344 0.941 99.753 94.656 

random_kernel32_5_100 0.000 100.000 1.000 98.143 0.000 

 

The results from the second set of experiments in 2.2a show that the availability of the model did 

degrade to a point which would render the model unusable, but only for the top injection rate of 

100%. If using the threshold of 1% FPR, at 85% injection of the benign training files, the threshold 

increases from the clean model at 0.529 to 0.836. The 85% injection model still has a detection rate 

greater than 97.123%, but from a cursory glance it is obvious that something has gone awry during the 

training process. 

The results from experiment support H3 as the total amount of the benign training files feature space 

injected with the adversarial features did not surpass 5%. The results did not support H4, as the 

general efficacy of the model with ten percent of the benign training data being injected did not 

reduce the overall availability. The results do not mean that it is impossible to reduce the overall 

availability with ten percent of the benign training files being injected, but that the features chosen did 

not contain enough salient information or were too small an amount to reduce the overall availability 

of the model. 
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4.4.2.4 Experiment 2.2b – Ten Import Functions Random – kernel32.dll 

Experiment 2.1b follows same process described for the previous “kernel32.dll” poisoning attack, 

with an addition of five import functions chosen for poisoning. The ten “kernel32.dll” import 

functions chosen for injection were “kernel32.dll” were “VirtualFree”, “SetFilePointer”, 

“InterlockedDecrement”, “lstrlenA”, “IsDebuggerPresent”, “LocalFree”, “TerminateProcess”, 

“WideCharToMultiByte”, “GetCommandLineA” and “GetFileAttributesA”. The results from the 

experiments are shown in Table 31. 

Table 31 - Experiment 2.1b Results 

Attack Name 

FPR 

1% FNR 1% 

Threshold 

1% ROC Detection Rate 1% 

random_kernel32_10_5 0.997 1.764 0.540 99.908 98.236 

random_kernel32_10_10 1.000 1.737 0.534 99.906 98.263 

random_kernel32_10_15 1.000 1.804 0.548 99.907 98.196 

random_kernel32_10_20 1.000 1.827 0.551 99.904 98.173 

random_kernel32_10_25 0.997 1.753 0.554 99.907 98.247 

random_kernel32_10_30 0.995 1.847 0.564 99.901 98.153 

random_kernel32_10_35 1.000 1.929 0.581 99.893 98.071 

random_kernel32_10_40 0.998 2.010 0.599 99.895 97.990 

random_kernel32_10_45 0.999 1.951 0.609 99.901 98.049 

random_kernel32_10_50 0.999 2.077 0.635 99.883 97.923 

random_kernel32_10_55 0.996 2.008 0.644 99.891 97.992 

random_kernel32_10_60 0.994 1.971 0.657 99.895 98.029 

random_kernel32_10_65 0.995 2.246 0.688 99.886 97.754 

random_kernel32_10_70 1.000 2.372 0.733 99.874 97.628 

random_kernel32_10_75 0.996 2.658 0.773 99.871 97.342 

random_kernel32_10_80 0.997 2.858 0.806 99.863 97.142 

random_kernel32_10_85 0.996 3.149 0.843 99.850 96.851 

random_kernel32_10_90 0.989 3.513 0.892 99.821 96.487 

random_kernel32_10_95 0.990 4.681 0.945 99.766 95.319 

random_kernel32_10_100 0.000 100.000 1.000 97.867 0.000 

 

The results from the first experiment in 1.1a (5% benign feature space) show that the availability of 

the model degraded in quality to a point which would render the model unusable. The results support 

hypothesis (H1, H2) in that using a (manual, random) selection of features is adequate for performing a 

successful indiscriminate poisoning attack targeting the availability of a ML model. 

The results from the second set of experiments in 1.1a show that the availability of the model did 

degrade to a point which would render the model unusable, but only for the top injection rate of 

100%. If using the threshold of 1% FPR, at 85% injection of the benign training files, the threshold 

increases from the clean model at 0.529 to 0.843. The 85% injection model still has a detection rate 
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greater than 96.851%, but from a cursory glance it is obvious that something has gone awry during the 

training process. 

The results from experiment support H3 as the total amount of the benign training files feature space 

injected with the adversarial features did not surpass 5%. The results did not support H4, as the 

general efficacy of the model did not degrade with ten percent of the benign training data being 

injected with adversarial features. 

Table 32 - Benign Training Files Injection Percentage - Random Selection Attack 

Import Library Attack Success Total Benign 

Training files 

Injected 

Percent of Total 

Benign Training 

files 

kernel32.dll Yes 153,370 51.123% 

shell32.dll Yes 41,410 13.803% 

user32.dll Yes 84,533 28.178% 

advapi32.dll Yes 84,554 28.185% 

msvcrt.dll No 33,356 11.119% 

 

The percentages of benign training files being injected with adversarial features for the final attack 

(100% of the target benign files being injected) for each target import library are shown in Table 32. 

In every example the amount of benign training files injected for a successful attack exceeded 10% of 

the benign training files (300,000). 

4.4.3 Preliminary Experiments Discussion 

The following sections contains a summary of the results and how they relate to their corresponding 

research question / hypothesis. The format of the following two sections is the same, with the only 

difference being the approach for selecting the adversarial features (manual and random selection). 

4.4.3.1 Manual Import Function Selection 

For the first set of experiments, using a maximum of 5% of the total benign feature space was chosen 

as the threshold for the adversarial poisoning attack. No instances of the adversarial poisoning attack 

achieved an injection rate of 5%, and for each poisoning attack every benign training file which 

contained the targeted import library was injected with the adversarial functions. The results from the 

preliminary experiments using a manual selection of five and ten import functions is shown in Table 

33. 
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Table 33 - General efficacy Attack - Feature Space Manual 

Attack Name 

FPR 

1% 

FNR 

1% Threshold 1% 

ROC 

% Detection Rate 1% 

advapi32_10_manual 0.993 51.452 0.998 97.575 48.548 

kernel32_10_manual 0.992 17.118 0.989 99.188 82.882 

user32_10_manual 0.000 100.000 1.000 97.491 0.000 

msvcrt_10_manual 0.995 3.155 0.720 99.828 96.845 

shell32_10_manual 0.810 53.969 0.997 98.307 46.031 

advapi32_5_manual 0.419 56.358 0.998 98.145 43.642 

kernel32_5_manual 0.986 13.379 0.980 99.291 86.621 

user32_5_manual 0.571 58.177 0.999 97.714 41.823 

msvcrt_5_manual 0.993 2.725 0.686 99.838 97.275 

shell32_5_manual 0.965 34.630 0.992 98.959 65.370 

 

The second set of experiments tested the general efficacy of the model after injecting adversarial 

features into percentages of the target benign feature space. The poisoning attacks were increasing in 

steps of 5%, starting at 5% and finishing at 100% of the benign files containing the targeted import 

library being injected with the adversarial functions.  

The performance pattern of the second set of experiments held the same for each import library. The 

threshold and FNR slowly increased up until 100% of the benign training files containing the import 

library were injected. Once 100% injection was achieved, the FNR of the model jumped significantly 

from the rest of the experiments. The only import library which did not have a significant increase in 

FNR at 100% injection was “msvcrt.dll”. The highest FNR achieved in a manual selection 

“msvcrt.dll” attack was 4.623% at 100% of the benign training files containing the library being 

injected with the adversarial features. 

The hypotheses being tested in manual import selection stages of the preliminary experiments were 

H1, H3, and H4 which are stated below. The results from testing the hypotheses are shown in Table 34. 

H1. A manual selection of features can be used for a successful adversarial poisoning attack. 

H3. No more than 5% of the benign feature space is required to be poisoned to reduce the 

general efficacy of the model. 

H4. No more than 10% of the training data is required to be poisoned to reduce the general 

efficacy of the model. 
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Table 34 - H1, H3, and H4 Results 

Hypothesis Related Experiments Supported 

H1 All Yes 

H3 All Yes 

H4 All No 

The only hypothesis which was not supported by the results from any of the experiments was H4. 

None of the experiments were able to reduce the general efficacy of the model at an injection rate of 

10% benign training files containing the targeted import library.   

It was shown that it is possible to reduce the overall availability of the model from a manual selection 

of adversarial features which supports H1, the overall amount of training files which needed to be 

injected when using the chosen sample set of adversarial features was significantly large. The high 

percentage of poisoning was likely due to the small number of features chosen for injection, as the 

imports section of Windows PE32 files in EMBER comprises the majority of the feature vectors used 

for training the model.  

Additional experiments to identify what number of features are required to reduce the general efficacy 

of the model at a smaller injection percentage were not performed as one of the aims of the targeted 

Zero-day attack is to perform the attack in a black-box scenario. Identifying which features contribute 

the most to a model’s classification would require having access to the target training dataset or a 

surrogate model trained using the same model architecture. As the targeted Zero-day attack uses 

Windows PE32 files as the basis of the attack, it is safe to assume that the imports section of the file 

will provide some level of contribution to the model’s classification, as the feature engineering 

summarised in section 2.8 identified the imports section as a positive contributor for training ML 

malware detection models  

H3 was supported from the experiments as 5% of the benign feature space of the training data being 

injected with adversarial features was never achieved using the target manual selection of adversarial 

features. In the benign feature space experiments, it was found that every instance of benign training 

files which contained the target import library were injected with the adversarial features, the same as 

the 100% injection attack performed in the other set of preliminary experiments. The target import 

library “msvcrt.dll” was the only experiment to not reduce the overall availability of the model after 

injecting the adversarial features into every benign training file.  

4.4.3.2 Random Import Function Selection 

For the first set of experiments, a maximum of 5% of the total benign feature space was chosen as the 

threshold for the adversarial poisoning attack, while the adversarial features were randomly selected 

from the import library. No instances of the adversarial poisoning attacks achieved an injection rate of 
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5%, and for each poisoning attack every benign training file which contained the targeted import 

library was injected with the adversarial features. The results from the preliminary experiments using 

a random selection of five and ten import functions is shown in Table 35. 

Table 35 - General efficacy Attack - Feature Space Random 

Attack Name FPR 1% 

FNR 

1% 

Threshold 

1% ROC % 

Detection Rate 

1% 

advapi32_10_random 0.353 65.769 0.999 97.225 34.231 

kernel32_10_random 0.000 100.000 1.000 97.867 0.000 

user32_10_random 0.264 60.938 0.999 98.034 39.062 

msvcrt_10_random 0.998 4.346 0.786 99.763 95.654 

shell32_10_random 0.247 76.591 0.999 97.244 23.409 

advapi32_5_random 0.539 63.209 0.999 96.910 36.791 

kernel32_5_random 0.000 100.000 1.000 98.143 0.000 

user32_5_random 0.569 48.914 0.998 98.419 51.086 

msvcrt_5_random 0.998 2.876 0.689 99.843 97.124 

shell32_5_random 0.608 63.109 0.998 97.892 36.891 

 

The second set of experiments tested the general efficacy of the model after injecting adversarial 

features into percentages of the total benign training files containing the targeted import library. The 

poisoning attacks were increasing in steps of 5%, starting at 5% and finishing at 100% of the benign 

files containing the targeted import library being injected with the adversarial functions.  

The performance pattern of the second set of experiments held the same for each import library. The 

threshold and FNR slowly increased up until 100% of the benign training files containing the import 

library were injected. Once 100% injection was achieved, the FNR of the model jumped significantly 

from the rest of the experiments. The only import library which did not have a significant increase in 

FNR at 100% injection was “msvcrt.dll”. The highest FNR achieved in a manual selection 

“msvcrt.dll” attack was 4.346% at 100% of the benign training files containing the library being 

injected with the adversarial features. 

The hypotheses being tested in random import function selection stages of the preliminary 

experiments were H2, H3, and H4 which are stated below. The results from the testing the hypotheses 

are shown in Table 36. 

H2. A random selection of features can be used for a successful adversarial poisoning attack. 

H3. No more than 5% of the benign feature space is required to be poisoned to reduce the 

general efficacy of the model. 

H4. No more than 10% of the training data is required to be poisoned to reduce the general 

efficacy of the model. 
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Table 36 - H2, H3 and, H4 Experiment Relationship and Results 

Hypothesis Related Experiments Supported 

H2 All Yes 

H3 All Yes 

H4 All No 

   

The only hypothesis which was not supported by the results from any of the experiments was H4. As it 

was with the preliminary experiments using a manual selection of features, none of the experiments 

were able to reduce the general efficacy of the model at an injection rate of 10% benign training files 

containing the targeted import library. 

It was shown that it is possible to reduce the overall availability of the model from a random selection 

of adversarial features which supports H2, the overall amount of training files which needed to be 

injected when using the chosen sample set of adversarial features was significantly large. The results 

from the random selection of adversarial features were similar to the experiment results from the 

manual selection of adversarial features.  

H3 was supported from the experiments as 5% of the benign feature space of the training data being 

injected with adversarial features was never achieved using the target random selection of adversarial 

features. In the benign feature space experiments, it was found that every instance of benign training 

files which contained the target import library were injected with the adversarial features, the same as 

the 100% injection attack performed in the other set of preliminary experiments. 

4.5 Main Experiments 

As stated in Section 3.2.2, the fifth phase was the development of a targeted adversarial poisoning 

attack which allows for the targeted Zero-day malware file to bypass detection, while the general 

efficacy of the model is not significantly affected. The targeted adversarial poisoning attacks followed 

the process from the preliminary experiments, in that the imports section of benign files were injected 

with adversarial features and the selection of import libraries chosen for the targeted adversarial 

poisoning attacks is from the five libraries tested in the preliminary experiments. 

The targeted adversarial poisoning attacks were performed on both the GBDT model architecture 

supplied with the EMBER dataset and on MLP model’s which were trained using a subset of the data 

from the EMBER dataset. Two methods of injection were performed in the targeted adversarial 

poisoning attacks. The first method, which was called the individual poisoning attack, took a selection 

of randomly chosen import functions from the four chosen import libraries of the target Zero-day file 

(‘shell32.dll’, ‘user32.dll’, ‘kernerl32.dll’ and ‘advapi32.dl’), and injected them into the benign 

training files. The injection of adversarial features was performed as a separate process for each target 
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import library. This means that the poisoning process was performed four times, once for each of the 

chosen target import libraries, and that the selection of benign training files injected with the 

adversarial features was different for each poisoning process. Of course, it was possible for a benign 

training file to be injected with adversarial features from multiple import libraries if it happened to 

contain two or more of the target import libraries and was chosen for injection more than once.  

 The individual poisoning attack was developed to identify how well the targeted poisoning attack 

would perform if the adversarial features chosen for injection were spread out throughout the benign 

training data files, instead of being clustered together.  

The second method, called the combined poisoning attack, was developed to test the inverse of the 

individual poisoning attack. In the combined poisoning attack, only benign training files which 

contained all four target import libraries were injected with the adversarial features. The adversarial 

features used in the individual poisoning attack were the same in the combined poisoning attack. 

4.5.1 Individual and Combined Attack Tests 

As stated in 3.2.2, the fifth phase was to test the targeted Zero-day adversarial attack. The premise 

behind the targeted Zero-day adversarial poisoning attack was influenced from how poisoning attacks 

had been performed on image recognition models. In the targeted image recognition poisoning attack 

performed by Gu, Liu, Dolan-Gavitt, and Garg (2019), a trigger mark was appended to images which 

were mislabelled by the attacker as their desired label. For example, a stop sign with a trigger mark 

would be incorrectly labelled as a speed limit sign, as shown in Figure 4.1. The ML model was trained 

with the mislabelled images in the training dataset which resulted in the model classifying the images 

as the target adversarial label instead of the correct label. 

 

Figure 4.1 - Example of a BadNet Trigger Image Adapted from (Gu et al., 2019) 
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The classification model used in the targeted Zero-day poisoning attack is binary and not multiclass 

i.e., the model classifies Windows PE32 files as either benign or malicious, and not into a malware 

family or some other multiclass category. Other ML malware classification poisoning attacks have 

been performed by researchers by mislabelling malicious files as benign files during training, which 

causes the targeted malicious file to be misclassified as benign. This type of attack would likely be 

identified during pre-processing of the data through either dynamic or static analysis of the training 

samples. 

The targeted Zero-day adversarial poisoning attack injects adversarial features into a subset of the 

benign training samples. The adversarial features are from the Zero-day malware file, with the aim of 

the attack being to misclassify the Zero-day file as benign if enough of the adversarial features are 

spread into the benign feature space to shift the classification from malicious to benign. The selected 

adversarial features are import functions from unique import libraries. Import functions were selected 

for injection as they would not break the structure of the file and by themselves would not appear to 

be malicious. 

The poisoning attack was performed by randomly selecting import features from four unique libraries 

‘shell32.dll’, ‘user32.dll’, ‘kernerl32.dll’ and ‘advapi32.dl’ of a selection of Windows PE32 malware 

files obtained from VirusShare. The “msvcrt.dll” import library which was examined in the 

preliminary experiments was not chosen for the targeted adversarial poisoning attacks, as it was 

shown to have poor performance as a target poisoning library. The set of adversarial features were 

randomly selected using Python’s in-built random module instead of manual, as the exploratory 

results from the preliminary experiments had shown that there was no significant difference between 

the two approaches, and the random approach is more suitable for a black-box attack scenario. The 

submission date of each malware is from 2019, to simulate a Zero-day malware file. Each malware 

file was originally classified as malicious by the clean EMBER model, with an EMBER score of over 

0.9, with the threshold of the original clean EMBER model being 0.529. 

Up to ten features from each library was randomly selected using the secure random python function 

for the poisoning attack. Not every library contained ten features, with the total and average number 

of functions from the four libraries shown in Table 37. 

. 



 

  Page | 100 

Table 37 - Import Functions - Targeted Attack 

Library Name Total Import Functions Average Import Functions 

Advapi32.dll 3352 6 

Kernel32.dll 5162 9 

User32.dll 4970 9 

Shell32.dll 1669 3 

 

4.5.1.1 Decision Tree Model Attacks 

As stated in 3.2.2, the sixth phase was the testing of the targeted Zero-day adversarial attack on 

different ML algorithms. The two chosen ML algorithms were Gradient Boosted Decision Tree 

(GBDT), which was used in the original EMBER framework, and a Multi-Layer Perceptron (MLP) 

model.  

Two types of adversarial poisoning attacks were performed on the GBDT EMBER model, they 

differed by how the benign files were selected for injection. In the first experiment, the import 

functions from each target import library were injected into a random selection of benign training files 

that contained the target import library. The injection of adversarial files was done separately, so the 

benign files which were injected with adversarial features from “advapi32.dll” may or may not also 

contain adversarial features from the other import libraries, this experiment was called the individual 

poisoning attack. The aim of the individual attack was not to generate a clear pattern for the 

adversarial example to belong to, but instead test if enough adversarial features injected sporadically 

throughout the test data, would be sufficient in inducing a targeted false negative at a significant rate.   

The second experiment, which was called the combined poisoning attack, only injected the adversarial 

features into benign training files which contained all four target import libraries. The combined 

attack experiment reduced the amount of available target benign training files for poisoning but was 

designed to create a pattern within the benign class which when triggered by the Zero-day malware 

test file, would shift the files classification from benign to malicious. 
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4.5.1.2 Individual Poisoning Attack Approach (GBDT) 

Before running the experiments on each of the 543 target Zero-day files obtained from VirusShare, a 

selection of 50 files was used to test both the individual and combined attacks at different percentages 

of the benign training file set. The experiments were performed in steps of 5%, starting at 5% and 

finishing at 25%. Unlike the exploratory preliminary experiments, where the percentage of injection 

went to 100% to test the different levels of poisoning, the targeted attacks are under more realistic 

constraints of a practical attack, and as such do not go to an excessive level of poisoning. 

For the first set of experiments undertaking the individual poisoning attack approach, the first 

experiment at 5% injection rate resulted in no successful attacks, with 0.724 being the lowest score 

achieved, which was over the threshold (0.536) by nearly 20 points. The 25% injection experiment 

had 19 out of 50 successful attacks (38%), but the median threshold of the attacks was 0.664, which is 

13.5 points higher than the original clean threshold of 0.529. Using a threshold boundary of 10% 

when retraining the model would show that something wrong, or something suspicious has occurred 

during training. The first ten results from the 5% poisoning attack are shown in Table 38 and the first 

ten results from the 25% injection attack are shown in Table 39. 
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Table 38 - 5% Poison Attack - First Ten Results 

Virus_SHA256 Score Threshold Below 

Threshold 

FPR FNR 

2bdc0256a49b00d768296fa96ab8cb69 

5c55c0d888d9ca0f55e00db259d8e533 

0.774 0.550 No 0.997 1.891 

25267e28e177491b26c1926d5a3592e 

60623fb870d6d984ff76db01ebfd6b08e 

0.949 0.532 No 1.000 1.711 

0a0ae6dbd8b19d0f4b3c9fd0d8e7d933 

f3af14f0e28716d171f35b3e2e83c268 

0.956 0.539 No 0.999 1.825 

474dc611d96cab3d86cac6b07a0c0c4c 

39a365a578e07c9a150b8a20c91f5ec4 

0.964 0.530 No 0.997 1.793 

4c7cdc1d141088c3eb9af66592c7da7f 

e3457a2e1862880d3d000805ffc32d6b 

0.911 0.534 No 0.999 1.740 

f61da4b8755d64742aa0517f7606dbd5 

293efc7df498eb21d0493b52b85fa586 

0.964 0.526 No 1.000 1.857 

589cbfbca739ce9f99594b75356d5d3f 

3920c37c3e2bda8681f6cbccc992c38e 

0.827 0.551 No 1.000 1.855 

9415462530a30caf7340aca71173a64c 

a5eaedafbb0d298835851f9cf42622cb 

0.834 0.532 No 0.997 1.710 

6bf29d8d7afc35f5ecf3ac1531158288 

09487812392ef6bd82706c9c4422ef74 

0.882 0.528 No 0.999 1.648 

00c3f291834ed9f5bfeb52e9bd0ce78a 

d1fdc7bd106ab5e3024cf7e62700b034 

0.864 0.541 No 0.997 1.871 
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Table 39 - 25% Poison Attack - First Ten Results 

Virus_SHA256 Score Threshold Below 

Threshold 

FPR FNR 

2bdc0256a49b00d768296fa96ab8cb69 

5c55c0d888d9ca0f55e00db259d8e533 

0.417 0.659 Yes 0.996 2.375 

25267e28e177491b26c1926d5a3592e 

60623fb870d6d984ff76db01ebfd6b08e 

0.659 0.670 Yes 1.000 2.336 

0a0ae6dbd8b19d0f4b3c9fd0d8e7d933 

f3af14f0e28716d171f35b3e2e83c268 

0.713 0.659 No 0.995 2.196 

474dc611d96cab3d86cac6b07a0c0c4c 

39a365a578e07c9a150b8a20c91f5ec4 

0.818 0.672 No 0.999 2.489 

4c7cdc1d141088c3eb9af66592c7da7f 

e3457a2e1862880d3d000805ffc32d6b 

0.907 0.681 No 0.999 2.457 

f61da4b8755d64742aa0517f7606dbd5 

293efc7df498eb21d0493b52b85fa586 

0.834 0.666 No 1.000 2.312 

589cbfbca739ce9f99594b75356d5d3f 

3920c37c3e2bda8681f6cbccc992c38e 

0.352 0.660 Yes 0.997 2.332 

9415462530a30caf7340aca71173a64c 

a5eaedafbb0d298835851f9cf42622cb 

0.358 0.644 Yes 1.000 2.227 

6bf29d8d7afc35f5ecf3ac1531158288 

09487812392ef6bd82706c9c4422ef74 

0.212 0.676 Yes 0.998 2.389 

00c3f291834ed9f5bfeb52e9bd0ce78a 

d1fdc7bd106ab5e3024cf7e62700b034 

0.293 0.659 Yes 0.999 2.345 
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The targeted Zero-day poisoning experiments are related to research question one and hypotheses five 

and six, which are restated below. 

RQ1: Can adversarial attacks against machine learning based malware detectors increase the 

likelihood of unknown-unknown malware samples bypassing detection? 

H5. No more than 10% of the benign training data files are required to be poisoned for a 

targeted adversarial attack to succeed. 

As shown in Table 40 neither the 5% attack or the 10% attack had any significant number of 

successful targeted Zero-day poisoning attacks, the 5% test had no successful attacks and the 10% 

attack only had two. The individual attack approach was not expected to have any significant number 

of successful attacks from how the attack was performed but it was assumed that there would be more 

successful attacks than was shown. Neither of the hypotheses were supported by the results obtained 

from the first individual attack experiments. 

Table 40 - Individual Library Poison Attack Results 

Test  Total Successful 

Attacks 

Average 

Score 

Median 

Score 

Average 

Threshold 

Median 

Threshold 

5% 0/50 0.901 0.918 0.539 0.538 

10% 2/50 0.813 0.851 0.560 0.561 

15% 9/50 0.748 0.832 0.586 0.589 

20% 14/50 0.696 0.765 0.619 0.624 

25% 19/50 0.645 0.713 0.657 0.664 

 

4.5.1.3 Combined Poisoning Attack Approach (GBDT) 

In the combined attack approach, the entire set of 543 Zero-day malware files were used in two sets of 

experiments. In the first set of experiments, the same benign training files were injected with the 

adversarial features for each targeted Zero-day poisoning attack. In the second set of experiments, a 

random seed was used for each Zero-day poisoning attack. The two sets of experiments were 

performed to see if there was a difference in the outcome of the attacks which could be related to the 

importance of the files injected with the adversarial features. In the combined attack approach, unlike 

the individual attack approach, only one percentage of the total benign training files was used for 

injection, which was 7.5% of the benign training files and 2.5% of the total training files.  
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There was a total of 40,551 benign files which contained each of the unique import libraries, as shown 

in Table 41. 

Table 41 - Benign Train Data Containing All Target Import Libraries 

Train Data Benign Count Four Library 

Count 

Train_0 50,000 6174 

Train_1 50,000 5144 

Train_2 50,000 6046 

Train_3 50,000 8306 

Train_4 50,000 10299 

Train_5 50,000 4582 

 

The first experiment used the same seed for each adversarial injection and achieved a 60% success 

rate in misclassifying malicious files as benign, while keeping the threshold from exceeding 10% of 

the original clean model. The second experiment achieved a success rate of 58% while also keeping 

the threshold within 10% of the original clean model. There was a difference of 60 malware files 

which succeeded in bypassing classification in one test but not the other, with 38 malware files 

bypassing detection in the first experiment and 28 bypassing detection in the second. The overall 

results for both experiments are shown in Table 42. The results of the first ten tests in the first 

experiment are shown in Table 43 and the results of the first ten tests in the second experiment are 

shown in Table 44. 

Table 42 - Combined Attack Results GBDT 

Test  Total Successful 

Attacks 

Average 

Score 

Median 

Score 

Average 

Threshold 

Median 

Threshold 

First 

Experiment 

328/543 0.519 0.538 0.607 0.608 

Second 

Experiment 

312/543 0.531 0.551 0.606 0.606 
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Table 43 - Combined Attack GBDT - First Ten Results - Same Seed 

Virus_SHA256 Score Threshold Below 

Threshold 

FPR FNR 

2bdc0256a49b00d768296fa96ab8cb69 

5c55c0d888d9ca0f55e00db259d8e533 

0.568 0.619 Yes 0.998 2.158 

25267e28e177491b26c1926d5a3592e 

60623fb870d6d984ff76db01ebfd6b08e 

0.677 0.592 No 1.000 2.044 

0a0ae6dbd8b19d0f4b3c9fd0d8e7d933 

f3af14f0e28716d171f35b3e2e83c268 

0.452 0.614 Yes 1.000 2.135 

474dc611d96cab3d86cac6b07a0c0c4c 

39a365a578e07c9a150b8a20c91f5ec4 

0.599 0.611 Yes 0.999 2.089 

4c7cdc1d141088c3eb9af66592c7da7f 

e3457a2e1862880d3d000805ffc32d6b 

0.618 0.605 No 0.999 2.259 

f61da4b8755d64742aa0517f7606dbd5 

293efc7df498eb21d0493b52b85fa586 

0.599 0.606 Yes 0.992 2.074 

589cbfbca739ce9f99594b75356d5d3f 

3920c37c3e2bda8681f6cbccc992c38e 

0.287 0.609 Yes 0.996 2.005 

9415462530a30caf7340aca71173a64c 

a5eaedafbb0d298835851f9cf42622cb 

0.149 0.608 Yes 0.993 1.972 

6bf29d8d7afc35f5ecf3ac1531158288 

09487812392ef6bd82706c9c4422ef74 

0.265 0.612 Yes 0.996 2.038 

00c3f291834ed9f5bfeb52e9bd0ce78a 

d1fdc7bd106ab5e3024cf7e62700b034 

0.211 0.615 Yes 0.998 2.155 
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Table 44 - Combined Attack GBDT - First Ten Results - Random Seed 

Virus_SHA256 Score Threshold Below 

Threshold 

FPR FNR 

2bdc0256a49b00d768296fa96ab8cb69 

5c55c0d888d9ca0f55e00db259d8e533 

0.345 

 

0.620 

 

Yes 

 

0.997 

 

2.511 

 

25267e28e177491b26c1926d5a3592e 

60623fb870d6d984ff76db01ebfd6b08e 

0.600 

 

0.603 

 

Yes 0.999 

 

2.251 

 

0a0ae6dbd8b19d0f4b3c9fd0d8e7d933 

f3af14f0e28716d171f35b3e2e83c268 

0.650 

 

0.607 

 

No 1.000 

 

2.071 

 

474dc611d96cab3d86cac6b07a0c0c4c 

39a365a578e07c9a150b8a20c91f5ec4 

0.596 

 

0.599 

 

Yes 0.999 

 

2.020 

 

4c7cdc1d141088c3eb9af66592c7da7f 

e3457a2e1862880d3d000805ffc32d6b 

0.712 

 

0.608 

 

No 0.997 

 

2.038 

 

f61da4b8755d64742aa0517f7606dbd5 

293efc7df498eb21d0493b52b85fa586 

0.704 

 

0.615 

 

No 0.999 

 

2.159 

 

589cbfbca739ce9f99594b75356d5d3f 

3920c37c3e2bda8681f6cbccc992c38e 

0.266 

 

0.608 

 

Yes 1.000 

 

2.099 

 

9415462530a30caf7340aca71173a64c 

a5eaedafbb0d298835851f9cf42622cb 

0.237 

 

0.612 

 

Yes 0.993 

 

2.113 

 

6bf29d8d7afc35f5ecf3ac1531158288 

09487812392ef6bd82706c9c4422ef74 

0.475 

 

0.614 

 

Yes 0.999 

 

2.040 

 

00c3f291834ed9f5bfeb52e9bd0ce78a 

d1fdc7bd106ab5e3024cf7e62700b034 

0.251 

 

0.615 

 

Yes 0.999 

 

2.198 
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The targeted Zero-day poisoning experiments are related to research question one and hypotheses five 

and six, which are restated below. 

RQ1: Can adversarial attacks against machine learning based malware detectors increase the 

likelihood of unknown-unknown malware samples bypassing detection? 

H5. No more than 10% of the benign training data files are required to be poisoned for a 

targeted adversarial attack to succeed. 

The experiment results obtained from the combined attack approach were used using 7.5% of the 

benign training files which is related to H5. From the results it was shown that performing the targeted 

Zero-day adversarial attack with less than 10% of the benign train data did produce successful results 

and over 60% of the Zero-day files which were previously classified correctly by the original clean 

EMBER2017 model were misclassified as malicious in their targeted poisoned ML model. The results 

from the experiments support the hypothesis H5 that no more than 10% of the benign training data 

files are required to be poisoned for a targeted adversarial attack to succeed. 

4.5.1.4 Multi-Layer Perceptron Attack 

As was stated in section 3.2.2, more than one ML algorithm was to be tested in the targeted Zero-day 

adversarial poisoning attacks. The first attack used the GBDT algorithm which was the default 

algorithm used in the EMBER framework. The additional ML algorithm chosen for use was an 

Artificial Neural Network (ANN). The type of ANN chosen is the basic multi-layer perceptron 

(MLP), which contains an input layer, one or more hidden layers, and a final output layer. The MLP 

was trained using the parameters shown below. The MLP network parameters were also adapted from 

a model which was also built by Endgame Inc, the same company responsible for EMBER. Using an 

MLP from Endgame instead of creating a new network architecture was done to assure uniformity 

between the experiments. The only changes made in the MLP parameters were to the hidden layers, 

an additional layer of ten neurons was included to provide a smaller layer for examination in the 

defence stage. The MLP model had the following parameters: 

• Dense Model 

• RELU Activation at hidden layers 

• Sigmoid Activation at output layer 

• Five hidden layers of [2048, 1024, 512, 256, 10] neurons 

• Input_dropout=0.05 

• Hidden_dropout=0.1 

• Batch_size=128 

• Epochs=100 
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The training data was comprised of 50,000 samples (25,000 benign and 25,000 malicious) which were 

extracted from the EMBER2017 dataset. The benign files were extracted to contain enough files to 

generate the adversarial examples containing the four chosen import libraries. These adversarial 

example files were extracted on a first-come basis and were not selected from a list of successful 

poisoning attacks from the GBDT experiments. 

The dataset size of 50,000 was chosen to reduce the time it took to complete each experiment. The 

original dataset size was too big for the computer running the experiments to complete, and the GPU 

in the computer (AMD RX5700) was unable to support Keras. Performing the test on a selection of 

the original dataset also allowed for future tests to be performed using a different selection of training 

data. Out of the 543 Zero-day files, which were all detect as malicious by the GBDT model, two files 

were not detected by the MLP model, so they were not included in the experiment results. 

The results from the clean model which are used as a baseline for the poisoning attacks are the 

following:  

• ROC = 0.997 

• Threshold = 0.725 

• TPR = .963 

• Accuracy @ Threshold = 0.976 

The structure of the MLP poisoning experiments are as follows: 

For the first set of experiments, a repeat of the individual poisoning attack at 25% of the benign 

training data was performed to provide some comparison data for the individual attack in the GBDT 

experiments. The 25% injection rate was chosen as it was the most successful percentage from the 

GBDT experiments. Even though 25% poisoning exceeds the 10% cut-off chosen inH4, the 

experiments were still performed as they may produce valuable information. 

The second, third and fourth set of experiments were to test the combined poisoning attack at 7.5%, 

7.5% randomised and 15% of the benign training data. These values were chosen as the training 

dataset was curated with 15% of the files containing the four target import libraries. As the previous 

code used percentages of benign files which contained the target library, it was simple to change the 

code to select 50% and 100% of the training files which contained the target four import libraries. The 

third experiment was a repeat of the second experiment (7.5% poisoning), but in this instance the 

training data was randomly shuffled after poisoning using the shuffle function in python. The random 

shuffling was performed to remove clusters of the target benign files which existed in the curation of 

the training dataset. The second and third experiments were performed to compare the efficacy of the 

chosen adversarial features. If the second set of experiments, without the randomisation, had a 

significant increase in the number of successful attacks, then it is more than likely that the position of 



 

  Page | 110 

the target training files influences the success of the poisoning attack more than the selection of 

features. If the third set of experiments has a similar number of successful attacks, then it is likely the 

selection of features played a more important role than if the target poisoned data clustered together. 

When performing the second, third and fourth experiments, a line of code from the individual 

poisoning experiments was accidently left in place which altered how the poisoning attack was 

performed. For training datasets train_1.jsonl, train_2.jsonl, train_3.jsonl, train_4.jsonl, and 

train_5.jsonl, the combined poisoning attack process was performed successfully. For the train_0.jsonl 

dataset, the combined poisoning process was followed when poisoning 'advapi32.dll', 'shell32.dll', and 

'kernel32.dll', but for 'user32.dll' the code to generate the list of target files in the individual attack was 

accidently left in place. As a result, the combined attack process succeeded for 'advapi32.dll', 

'shell32.dll', and 'kernel32.dll', but for 'user32.dll' a new list was generated which included every 

benign file in train_0.jsonl that contained ‘user32.dll’ (1,327 files), and then a percentage of that total 

(which is greater than the total of benign training files that contained the target four import libraries) 

was poisoned instead, which lead to approximately 8.6% of the benign training files benign poisoned 

for each attack. As experiment two, three and four contained both the combined and individual 

approach, they will be referred to as the hybrid attack. 

An additional experiment was undertaken which performed the combined poisoning attack as it was 

originally intended. In this experiment 10% of the benign training data was selected to be poisoned, 

which reflects (hypothesis number). This experiment was also performed by randomly shuffling the 

training data, unlike the third set of experiments, which poisoned the same benign training files as the 

second set of experiments, then randomly shuffled afterwards to compare the results. The final set of 

experiments randomly shuffled the training data before poisoning the benign training data. 

4.5.1.5 Individual Poisoning Attack (MLP) 

The first set of experiments was performed as an individual injection attack following the same 

process in section 4.5.1.1, but only at an injection rate of 25%. As the dataset was generated with at 

least 15% of the benign files containing a combination of the four chosen import libraries (shell32.dll, 

user32.dll, advapi32.dll and kernel32.dll), the poisoned benign files should cluster more significantly 

compared to the GBDT individual poisoning attack.  

The first ten results are shown in Table 45. In comparison to the results from the GBDT attack shown 

in Table 40, the threshold from the MLP attacks is much higher, which is understandable as the clean 

GBDT model had a threshold of 0.529 and the clean MLP model had a threshold value of 0.725. In 

the first test, the poisoned training data generated were not randomised before training the ML model. 

The attack had 211/541 Zero-day files misclassified as benign, a success rate of 39.00% while not 

negatively influencing the general efficacy of the model. 
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Table 45 - MLP Combined Attack Approach - First Ten Results - Same Seed 

Virus_SHA256 Score Threshold Below 

Threshold 

FPR FNR 

2bdc0256a49b00d768296fa96ab8cb69

5c55c0d888d9ca0f55e00db259d8e533 

0.271 0.861 Yes 1.000  4.36  

25267e28e177491b26c1926d5a3592e6

0623fb870d6d984ff76db01ebfd6b08e 

0.995 0.883 No 1.000 4.480 

0a0ae6dbd8b19d0f4b3c9fd0d8e7d933f

3af14f0e28716d171f35b3e2e83c268 

0.996 0.79 0 No 1.000 3.200 

474dc611d96cab3d86cac6b07a0c0c4c

39a365a578e07c9a150b8a20c91f5ec4 

0.994 0.861 No 1.000 3.880 

4c7cdc1d141088c3eb9af66592c7da7fe

3457a2e1862880d3d000805ffc32d6b 

0.993 0.873 No 1.000 3.880 

f61da4b8755d64742aa0517f7606dbd5

293efc7df498eb21d0493b52b85fa586 

0.995 0.850 No 1.000 4.200 

589cbfbca739ce9f99594b75356d5d3f3

920c37c3e2bda8681f6cbccc992c38e 

0.127 0.865 Yes 1.000 4.760 

9415462530a30caf7340aca71173a64c

a5eaedafbb0d298835851f9cf42622cb 

0.173 0.827 Yes 1.000 3.320 

6bf29d8d7afc35f5ecf3ac15311582880

9487812392ef6bd82706c9c4422ef74 

0.639 0.901 Yes 0.960 3.840 

00c3f291834ed9f5bfeb52e9bd0ce78ad

1fdc7bd106ab5e3024cf7e62700b034 

0.217 0.862 Yes 1.000 4.360 

 

4.5.1.6 Hybrid Poisoning Attacks (MLP) 

There was a total of three sets of hybrid experiments performed. Each set of experiments tested 541 

Zero-day poisoning attacks by using a combination of the combined and individual poisoning process. 

The hybrid attacks were initially designed to follow the combined poisoning approach, but a typo left 

in the code randomised the poisoning of the adversarial ‘user32.dll’ features in the train_0.jsonl 

dataset. In the first set of hybrid attack experiments, approximately 8.6% of the benign training data 

was injected with adversarial features for each experiment. The Training data at this stage had not 
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been randomised, so the target benign files for the combined attack clustered towards the beginning 

for each training dataset (train_0.jsonl – train_5.jsonl). The first set of hybrid attack experiments 

achieved a success rate of 37.33%, with 202 out of 541 successful Zero-day poisoning attacks. 

In the second set of hybrid attack experiments, the same format from the previous set of experiments 

was followed, with the difference being that the training data had been randomly shuffled to reduce 

the number of clusters which existed due to the first come format used to generate the original training 

dataset. Each attack injected the same adversarial features into the same benign training file as the 

previous attack, once the entire training dataset was poisoned, it was randomly shuffled, and the 

model was trained. The attacks were performed that way to provide insight into the efficacy of the 

poisoning attack method. If the attacks achieved a similar success rate as the previous attack, it would 

likely mean that the percentage of files and chosen features were responsible for the attacks success. If 

on the other hand the previous attack contained more successful attacks while using the same 

adversarial features and which were injected into the same benign training files, then the position of 

the poisoned files influenced the success of the attacks, more so than the adversarial features. The 

second set of hybrid poisoning attack experiments achieved a success rate of 33.27%, with 184 out of 

541 successful Zero-day poisoning attacks.  

The third set of hybrid attack experiments, approximately 17.2% of the benign training data was 

injected with adversarial features. The aim of the second set of hybrid experiments was originally to 

see what would happen if 100% of the benign training files which contained the four target import 

libraries (15% of the benign training data) was injected with the adversarial features. As the typo 

existed in the set of experiments, there was an increase of benign training files which contained 

‘user32.dll’ that were injected with adversarial features. The third set of hybrid attack experiments 

achieved a success rate of 80.59%, with 436 out of 541 successful Zero-day poisoning attacks. Unlike 

the previous sets of experiments, the success of the second set of experiments was due to the 

significant increase in the threshold, which is shown in Table 46.  

4.5.1.7 Combined Poisoning Attack (MLP) 

The combined poisoning attack injected adversarial features into 10% of the benign training data. 

Each benign training file which was poisoned contained the four import libraries ‘kernel32.dll’, 

‘user32.dll’, ‘shell32.dll’, and ‘advapi32.dll’. A selection of import functions from the four import 

libraries were randomly selected from each target Zero-day file and injected into the target benign 

files. The training data was randomly shuffled before being poisoned to prevent the target benign files 

from clustering together. The combined attack experiments achieved a success rate of 24.95%, with 

135 out of 541 successful attacks. The combined attack experiments had fewer successful attacks 

compared to both hybrid attacks which injected adversarial features into a smaller number of benign 
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training files. It is likely that the increased number of training files poisoned with adversarial features 

from ‘user32.dll’ influenced the success of the hybrid poisoning attacks.    

Table 46 - Targeted Adversarial Poisoning Attack Results - MLP 

Test Name Total 

Successful 

Attacks 

Average 

Score 

Median 

Score 

Average 

Threshold 

Median 

Threshold 

Average 

FNR 

Individual 

Attack 

(23%) 

211/541 0.683 0.986 0.856 0.858 4.040 

Hybrid 

Attack 

(8.6%) 

202/541 0.751 0.998 0.834 0.835 3.994 

Hybrid 

Attack 

Randomised 

(8.6%) 

184/541 0.823 0.997 0.811 0.813 3.358 

Hybrid 

Attack 

(17%) 

436/541 0.866 0.963 0.984 0.988 18.569 

Combined 

Attack 

(10%) 

135/541 0.914 0.993 0.837 0.836 4.049 

 

When comparing the results from the randomised hybrid and combined set of experiments, it is clear 

that the hybrid attack experiments reduced the score of the Zero-day files significantly more so than 

the combined attack experiments. The difference in results from the successful Zero-day attacks is 

shown in Table 47, where the hybrid attacks on average are 0.317 points below the threshold 

compared to the combined attacks 0.090 points below. These results indicate that the extra number of 

adversarial features in the ‘user32.dll’ import library significantly influence the impact of the 

poisoning attack. 
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Table 47 - Randomised Hybrid and Combined Results Comparison 

Experiment Average Score 

Difference from 

Threshold 

Min Difference 

from Threshold 

Max Difference 

from Threshold 

Average 

Successful 

Adversarial 

Score 

Combined  0.090 0.00007 0.834 0.746 

Hybrid 0.317 0.00279 0.835 0.449 

 

The targeted Zero-day poisoning experiments are related to research question one and hypotheses five 

and six, which are restated below. 

RQ1: Can adversarial attacks against machine learning based malware detectors increase the 

likelihood of unknown-unknown malware samples bypassing detection? 

H5. No more than 10% of the benign training data files are required to be poisoned for a 

targeted adversarial attack to succeed. 

The results from the targeted Zero-day poisoning experiments show that it is possible to increase the 

likelihood of Zero-day malware samples bypassing detection from ML trained malware detection 

models. In both the GBDT and MLP trained models, successful attempts to bypass classification 

through poisoning of the benign training set was achieved. The experiments did require up to ten 

percent of the benign training data samples to be infected with adversarial features, which supports 

H5. The process of poisoning the model was performed in a black-box scenario, which reduced the 

ability to identify which features would contribute the most to the model’s classification and to target 

those features specifically. If feature importance was to be performed before the poisoning attack, it is 

likely that the percentage of poisoned data required for a successful attack would be reduced. In the 

feature analysis paper by Saxe and Berlin (2015) it was found that the imports section when used by 

itself to identify patterns and correctly classify malicious files, performed the worst compared to the 

four other areas that were tested. In the experiments the imports section was chosen as it compromised 

the majority of the input feature vectors and in a practical sense, adding an import function to a binary 

PE32 file is a simple way to perform an adversarial poisoning attack. In future work other areas of the 

binary PE32 file would be tested to identify which area is best suited for manipulation to generate a 

successful targeted adversarial poisoning attack.    

4.6 Defensive Strategies 

As stated in Section 3.2.2, the seventh phase was the development and testing of defensive strategies 

to mitigate the Zero-day malware poisoning attack. Three different defences were explored to identify 

if it was possible to prevent the Zero-day malware poisoning attack at test time. A variety of defences 
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have been developed which identify poisoning attacks at the training stage, which was covered in 

2.7.2, but defences at the testing stage has been ignored. This is likely due to the fact that it is 

preferable for a supposedly clean ML model to go live, than a potentially poisoned model. As it is not 

possible to be absolutely certain that a trained ML model is clean, even after applying a defensive 

strategy and removing identified poisoned data, the defences introduced in the following sections 

explore the possibility of identifying targeted poisoning attacks as they occur at test time, while 

keeping the model live. 

4.6.1 Heatmaps 

As stated in section 3.2.2, the seventh phase was the development of an adversarial defensive strategy 

to defend against the targeted Zero-day adversarial attack. The first approach for defending against the 

MLP poisoning attack was to analyse the activation weights in a heat map at the different layers, in 

the same way image recognition models are analysed to show on which section of an image the model 

is concentrating. The idea behind the heat map was to see if it is possible to distinguish a targeted 

Zero-day file from an actual benign file by how the weights are activated. An assumption was made 

that the Zero-day file, which had not been modified in any way, should contain a significant amount 

of activation weights which would lead the classifier correctly towards the malicious class, but are 

overwhelmed by a smaller, but stronger group of activation weights which belong to the injected 

adversarial features. 

The tool keract is used to generate heatmaps of MLP activation weights for image recognition models 

which was selected to produce the heatmap of the Zero-day activation weights. As shown in Figure 

4.2 1D representations of activation weights in a heatmap do not provide adequate information 

compared to a 2D image. 
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Figure 4.2 – Single Dimension Heatmap Representation of Activation Weights 

4.6.2 Feature Importance 

Another defensive approach was to identify the importance of features in determining the 

classification of data at test time. The approach was to use some form of permutation importance to 

identify which features contribute the most to the decision making. Permutation importance works by 

replacing or removing a feature or set of features in the test file and retesting the file for each set of 

changes. If the loss increases without the feature(s) being present, it is assumed that they positively 

contribute to the classification.  

The defensive approach of feature importance was examined to see if it is possible to identify features 

within an adversarial example that belong to the trigger set and contribute to the misclassification of 

the file. That is to say, if removing certain features from a file changes the classification from benign 

to malicious, would that indicate that a targeted poisoning attack has been successfully performed? 

This is under the assumption that when running feature permutation on a clean model, removing 

features would only show the contribution to their classification, and that the class would not change 

from removing features. The class would only change in the targeted poisoning attack samples due to 

the trigger features being removed. As this defence would require removing each feature or set of 

features from a file and analysing the file for each permutation, it is not a defence which could be 
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reasonable performed at test time, and is best left identifying adversarial data within the training 

dataset. 

4.6.3 Activation Clustering 

4.6.3.1 At training 

B. Chen et al. (2018) developed a defence for adversarial poisoning attacks which works by 

examining clusters of the activation weights from the last hidden layer. The defensive strategy 

assumes that the adversarial example’s weights will cluster towards both the target adversarial class 

and the original source class, which is being attacked, compared to clean examples which will cluster 

towards their true target class. The defence was built for image recognition models, where a trigger 

mask is overlaid on target images to shift the classification towards the attackers desired class e.g., a 

stop sign being misclassified as a speed limit sign. In the case of the Zero-day poisoning attack, the 

adversarial features injected into the benign test data are features which can be found in both 

malicious and benign files. The cluster of the training data activation weights would likely show a 

strong benign cluster. 

The poisoning defence has been integrated into the IBM Adversarial Robustness Toolbox. The 

defence was attempted on the MLP poisoned EMBER dataset but did not work due to a bounds limit 

on the dataset. The poisoning defence has a set limit of 5,000 and the MLP EMBER dataset contains 

50,000 samples.  

It is assumed that the activation clustering defence would not succeed in detecting the adversarial 

examples in the benign training dataset, as the adversarial examples are not mislabelled data e.g. a 

stop sign labelled as a speed limit sign, but genuine benign files injected with additional import 

functions. The injected import functions represent a small portion of the benign file's feature space, 

and do not alter the functionality of the benign file into a malicious file. A modified version of the 

activation clustering defence was performed by Severi et al. (2020) and it was found that the defence 

was unable to detect the watermark attack when using their combined approach (detailed in 2.7.1.8), 

as the adversarial features were too well camouflaged and became indistinguishable from genuine 

features. 

An extension of the defence to be applied at test has been proposed to defend against targeted 

adversarial poisoning attacks for Zero-day malware files. Using the same premise as the activation 

clustering defence, the activation weight values from the neurons in the last hidden layer are to be 

examined at test time for anomalous behaviour. If the activation weight values of files classified as 

benign differ significantly from the average activation weight values of the benign class, and lean 

more towards the malicious class for a majority of the neurons, then the files are flagged as suspicious 

and to be quarantined for further examination. 
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4.6.3.2 At test time 

A proposed idea is to first examine the average and normal distribution of each individual weight 

from the last hidden layer to find the norm to which a benign file should belong, and then to compare 

each of the individual weights for outliers and if they are significant enough to warrant further 

examination of the file (e.g., quarantine for further dynamic analysis). The assumption of why outliers 

in the activation weights would exist is due to how the targeted poisoning attack was performed. In 

the attack only the benign training data was injected with the adversarial features obtained from the 

Zero-day file, the Zero-day file has not been modified in any way, and originally was correctly 

classified as malicious. Since the Zero-day file has not been modified, the majority of the features 

present within the file should contribute towards a correct classification of malicious, with the trigger 

features overwhelming the correct classification due to their significant presence in the benign 

training data.          

 

Figure 4.3 - Zero-day Activation Weights 

Figure 4.3 illustrates the activation weights of the Zero-day files from the last hidden layer from the 

clean model overlayed on the average activation weight values from the training data. As the figure 

shows, the weights cluster towards the average malicious activation weight values. 

Figure 4.4 and Figure 4.5 illustrate the activation weights of two Zero-day files which were accurately 

classified as malicious after 8.6% of the benign training files were injected with adversarial features 

from the Zero-day files. 
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Figure 4.4 - Activation Weights of Zero-day Correct Classification - Example 1 

 

 

Figure 4.5 - Activation Weights of Zero-day Correct Classification - Example 2 

Figure 4.6 and Figure 4.7 illustrate the activation weights of two Zero-day files which were 

misclassified as malicious after 8.6% of the benign training files were injected with adversarial 
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features from the Zero-day files. The Zero-day weights appear to centre between the benign and 

malicious activation weight averages. 

 

 

Figure 4.6 - Activation Weights of Zero-day Successful Mis-Classification - Example 1 

 

Figure 4.7 - Activation Weights of Zero-day Successful Mis-Classification - Example 2 

After visually examining the activation weights from the successful Zero-day attacks, the weights 

were analysed to determine if they were within one standard deviation from the mean of the benign 
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activation weights. From the 184 successful attacks from experiment set three (hybrid poisoning 

attack randomised), 180 (97.82%) of the Zero-day files had eight or more activations weights outside 

of one standard deviation from their corresponding benign neuron activation weight value. Using the 

first successful attack as an example, the benign activation weights from the training dataset were 

examined and a total of 1,553 from 25,000 (6.21%), which is near the percentage of adversarial 

examples in the benign training data, were outside the specified range. To determine if the activation 

weights were outside the range in the benign training data was due to the poisoning attack, the 

activation weights of the benign training files from the clean model were examined, and 1,817 files 

(7.26%) had eight or more activation weights outside of the range, which is larger than the poison 

example. 

After using the benign activation weights of the 25,000 files used to train the model, additional 

experiments were performed using the 100,000 benign test data files from the original EMBER2017 

dataset. When calculating the averages and standard deviation of the activation weights from the 

100,000 benign test files for each poisoned model, it was found that the averages of the activation 

weights were similar across each experiment, but the standard deviation was significantly different. 

From using a larger dataset, a greater amount of variance was introduced which included a significant 

number of outliers which prevented the previously successful defensive technique from working. 

To remove the issue of the outliers in the dataset rendering the defensive technique unusable, another 

method was examined to identify if it was possible to detect suspicious benign classifications from 

examining the activation weights at the last hidden layer during test time. The method which was 

chosen for use is known as Mean Absolute Deviation (MAD). The MAD was chosen as it is another 

technique for identifying anomalies in data without the deviation being influenced by the present 

outliers in the dataset to such a significant degree. The MAD is the average of the distance between 

each value and the mean, the formula for calculating the MAD is shown below:  

∑|𝒙 − 𝒙̅|

𝒏
 

An example of the calculated MAD and standard deviations for the 100,000 activation weights of 

benign test files from a sample of successful targeted Zero-day poisoning attacks is shown in Table 

48.
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Table 48 - MAD Neuron Defence Examples 

Virus 2bdc0256a49b00d768296fa96ab8cb695c55c0d888d9ca0f55e00db259d8e533 

Average -2.54389 -2.69337 -2.25676 2.211975 -2.19205 -2.7541 2.063792 2.002713 2.146433 2.556544 

Stdev 2.364112 3.772115 2.929054 2.082663 1.03714 4.643837 6.225784 1.360692 1.749687 3.87158 

MAD 0.799923 0.805531 0.80593 0.802687 0.787503 0.805705 0.812789 0.808571 0.808331 0.814831 

Virus 589cbfbca739ce9f99594b75356d5d3f3920c37c3e2bda8681f6cbccc992c38e 

Average -2.37618 -2.60961 -2.03221 2.224023 -2.02518 -2.67347 2.008859 1.888502 2.038259 2.526909 

Stdev 3.005188 3.813322 2.956617 2.318878 1.067834 4.091844 6.345914 1.208832 1.727433 3.234396 

MAD 0.761926 0.776917 0.788561 0.781026 0.767752 0.786423 0.79369 0.789182 0.788709 0.797184 

Virus 9415462530a30caf7340aca71173a64ca5eaedafbb0d298835851f9cf42622cb 

Average -2.50684 -2.70737 -2.25143 2.207822 -2.21875 -2.75663 2.09072 1.994289 2.150688 2.562616 

Stdev 2.199961 4.158785 2.197226 1.837669 1.046023 4.373703 6.720578 1.173849 2.204602 3.847392 

MAD 0.78988 0.80404 0.802507 0.801294 0.787647 0.805115 0.812704 0.80945 0.810126 0.816471 

Virus 00c3f291834ed9f5bfeb52e9bd0ce78ad1fdc7bd106ab5e3024cf7e62700b034 

Average -2.42045 -2.64427 -2.07855 2.260539 -2.06865 -2.72758 2.003464 1.92851 2.085095 2.582588 

Stdev 2.62585 4.061219 2.479173 2.221951 1.056772 4.717379 6.073107 1.706256 1.684715 3.196454 

MAD 0.763034 0.779633 0.793342 0.785683 0.772798 0.793936 0.80351 0.79448 0.795314 0.805225 

Virus 96ff3db9c22d16065a8f8e842d896508ae8bd7622e94330215912befbd7adf66 

Average -2.5851 -2.71763 -2.2806 2.250088 -2.22894 -2.77706 2.041697 1.992896 2.12833 2.564581 

Stdev 1.791967 4.034525 2.387503 1.17517 1.129382 4.813237 6.994591 1.137338 2.683498 4.163978 

MAD 0.792863 0.801257 0.796823 0.799749 0.784861 0.801088 0.817177 0.816006 0.81796 0.823385 

 

For each of the four sets of experiments performed on the MLP model, two defensive strategies were 

tested using the MAD. The defensive strategies followed the same formula as the original defence i.e., 

examining the activation weights from the last hidden layer of the target Zero-day file, but the MAD 

defence also tested to see if the activation weights of the neurons were outside of two MADs, instead 

of the single standard deviation which was originally used. The two MADs were also used as the 

general rule for identifying outliers is if they are two standard deviations away from the mean. 

From examining the activation weights of the Zero-day files from Experiment 1 - Individual Attack 

(25%), which had 211 successful attacks out of 541 attempts, it was found that 105 of the successful 

Zero-day poisoning attacks could be identified by examining six neurons outside of both one and two 

MADs from the benign activation weights average. The results are shown in Table 49.
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Table 49 - Individual Attack (25%) Defence Results 

Successful 

Defence 

Success 

Percent 

Neurons Mean 

Absolute 

Deviations 

Benign Test 

Average FP 

Benign Test 

FPR 

120/211 56.872% 6 One 16306 16.306% 

105/211 49.763% 6 Two 5436 5.436% 

112/211 53.080% 8 One 10969 10.969% 

104/211 49.289% 8 Two 3512 3.512% 

108/211 51.185% 10 One 5773 5.773% 

100/211 47.393% 10 Two 1555 1.555% 

 

From examining the activation weights of the Zero-day files from Experiment 2 - Hybrid Attack 

(8.6%), which had 202 successful attacks out of 541 attempts, it was found that 172 of the successful 

attacks had six neurons outside two MADs and 10 successful attacks had eight neurons outside two 

MADs from the benign activation weights average. The results are shown in Table 50  

Table 50 – Hybrid Attack (8.6%) Defence Results 

Successful 

Defence 

Success 

Percent 

Neurons Mean 

Absolute 

Deviations 

Benign File 

Average 

Suspicious 

Benign FPR 

200/202 99.090% 6 One 16225 16.225% 

172/202 85.149% 6 Two 5191 5.191% 

199/202 98.515% 8 One 10394 10.394% 

10/202 4.950% 8 Two 3375 3.375% 

7/202 3.465% 10 One 5446 5.446% 

2/202 0.990% 10 Two 1516 1.516% 

 

From examining the activation weights of the Zero-day files from Experiment 3 - Hybrid Attack 

Randomised (8.6%), which had 184 successful attacks out of 541 attempts, it was found that 155 

successful attacks had six neurons outside two MADs and 145 successful attacks had eight neurons 

outside two MADs from the benign activation weights average. The results are shown in Table 51. 
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Table 51 - Hybrid Attack Randomised (8.6%) Defence Results 

Successful 

Defence 

Success 

Percent 

Neurons Mean 

Absolute 

Deviations 

Benign File 

Average 

Suspicious 

Benign FPR 

175/184 95.109% 6 One 15973 15.973% 

155/184 84.240% 6 Two 5267 5.267% 

170/184 92.391% 8 One 10568 10.568% 

145/184 78.804% 8 Two 3394 3.394% 

142/184 77.174% 10 One 5445 5.445% 

113/184 61.413% 10 Two 1517 1.517% 

 

From examining the activation weights of the Zero-day files from Experiment 4 - Combined Attack 

Randomised (15%), which had 436 successful attacks out of 541 attempts, it was found that 376 

successful attacks had six neurons outside two MADs and 258 successful attacks had eight neurons 

outside two MADs from the benign activation weights average. The results are shown in Table 52.   

Table 52 - Hybrid Attack Randomised (15%) Defence Results 

Successful 

Defence 

Success 

Percent 

Neurons Mean 

Absolute 

Deviations 

Benign File 

Average 

Suspicious 

Benign FPR 

422/436 96.789% 6 One 15618 15.618% 

376/436 86.239% 6 Two 6539 6.539% 

408/436 93.578% 8 One 10919 10.919% 

258/436 59.174% 8 Two 4613 4.613% 

211/436 48.394% 10 One 6478 6.748% 

33/436 7.569% 10 Two 2776 2.776% 

 

From examining the activation weights of the Zero-day files from Experiment 5 - Combined Attack 

Randomised (10%), which had 135 successful attacks out of 531 attempts, it was found that 127 

successful attacks had six neurons outside two MADs and 104 successful attacks had eight neurons 

outside two MADs from the benign activation weights average. The results are shown in Table 53. 
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Table 53 - Combined Attack Randomised (10%) Defence Results 

Successful 

Defence 

Success 

Percent 

Neurons Mean 

Absolute 

Deviations 

Benign File 

Average 

Suspicious 

Benign FPR 

131/135 97.037% 6 One 15618 15.618% 

127/135 94.074% 6 Two 5383 5.383% 

131/135 97.037% 8 One 10601 10.601% 

104/135 77.037% 8 Two 3360 3.360% 

126/135 93.333% 10 One 5474 5.474% 

1/135 0.741% 10 Two 1181 1.181% 

 

For each of the tested defences, the clean test dataset from EMBER was used to calculate the average 

activation weights of each neuron from the last hidden layer. It was not expected that the average 

activation weights would be influenced in any way if the test dataset happened to also be poisoned 

with the adversarial features. To verify that the MAD defence can be performed using either a clean 

or poisoned dataset, 10% of the clean test dataset was injected with the adversarial features and the 

defence was repeated. Out of the 100,000 benign files in the clean test dataset, only 1,818 files 

contained all four target import libraries. As there was not enough test files to inject with adversarial 

features following the process from the combined poisoning attack, the injection process was 

modified to inject the import library and import functions into a random selection of 10,000 benign 

test files. The results from the defence experiments are shown in Table 54 with the results being very 

similar to the MAD defence on the clean dataset. The results from the experiment indicate that a 

known clean dataset is not required for the MAD defence, which is beneficial as it is not possible to 

know for certain if a dataset has been poisoned or not.   

Table 54 - MAD Defence Experiment - Poisoned Test Data 

Successful 

Defence 

Success 

Percent 

Neurons Mean 

Absolute 

Deviations 

Benign File 

Average 

Suspicious 

Benign FPR 

133/135 98.519% 6 One 15981 15.981% 

127/135 94.074% 6 Two 4789 4.789% 

133/135 98.519% 8 One 10864 10.864% 

102/135 75.556% 8 Two 2896 2.896% 

126/135 93.333% 10 One 5614 5.614% 

1/135 0.741% 10 Two 967 0.967% 
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The examination of the Zero-day activation weights was compared to the average benign and 

malicious test files from the poisoned model. The defence does not require a clean model for use in 

any type of comparison, which is beneficial for mitigating the poisoning attacks as it is not possible to 

know for certain if any model was trained on clean data. 

The tested defensive strategies are related to RQ2 and hypothesis nine which are restated below: 

RQ2: Can adversarial attacks against machine learning based malware detection be mitigated? 

a. Can targeted adversarial attacks be detected at test time? 

H9. The targeted adversarial attack can be prevented at test time. 

It was possible to identify misclassified Zero-day files by examining the activation weights from the 

last hidden layer of the poisoned model. Each poisoned model from every test in the set of MLP 

experiments was analysed to see if it was possible to identify a misclassified Zero-day malicious file 

by examining outliers in 6, 8 and 10 neurons. The outliers were first examined by using one standard 

deviation from the mean of the benign activation weights from the training set. After examining the 

activation weights from the poisoned training dataset (50,000 samples), the test dataset set of 200,000 

samples was evaluated to compare the results of the defence from both a poisoned and clean dataset.  

When performing the additional examination of the 200,000 file test dataset, it was found that the 

variance of the activation weights in the 200,000 file data set was greater than the variance in the 

smaller data set which prevented the original defence method from working. To identify outliers 

within the test dataset, the mean absolute deviation (MAD) was used instead of the standard deviation. 

The MAD was calculated from the absolute values of the neuron’s activation weights as half of the 

neurons were negative values. 

The MAD examinations tested to see if the activation weights of the Zero-day neurons were outside 

of one and two MADs for 6, 8, and 10 neurons. In every set of experiments, it was possible to identify 

misclassified Zero-day malicious files with varying degrees of accuracy. In Experiment 5 Combined 

Attack Randomised (10%) Defence, the two MAD outliers for ten neurons had the worst performance 

with only one successful identification of a Zero-day malicious file. 

The 100,000 benign test data files were also examined in each defence experiment to identify how 

many legitimate benign files would be categorised as suspicious. Unsurprisingly, the two MAD 10 

neuron examination had the least number of false positives in the benign test data, the stricter the 

parameters for identifying suspicious files the less accurate the defence becomes. From all of the 

experiments performed, Experiment 5 Combined Attack Randomised (10%) would be the most 

practical to perform in a live environment, which had the best defence results (high detection success 

with low FPR) from 6 and 8 neurons outside of two MADs from the benign activation weight 
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average. The results from the defence experiments support H9, in that it is possible to detect a targeted 

adversarial poisoning attack at test time, an approach which has not been explored in past research. 

An in-depth analysis of the results from the experiments undertaken in this thesis is discussed in the 

following chapter.  

4.7 Summary      

In this chapter, a set of preliminary experiments were undertaken to identify the malware files which 

could represent Zero-day malware in the targeted adversarial poisoning attack experiments, and what 

level of efficacy was identified from selecting the imports section of Windows PE32 files as the target 

feature space of the adversarial poisoning attacks. In the main experiment section, targeted adversarial 

poisoning attacks were tested on both GBDT and ANN trained ML models. The aim of the targeted 

adversarial poisoning attacks was to allow for a Zero-day malware file, which was correctly identified 

as malicious using the clean ML models, to bypass detection which the general efficacy of the ML 

model was maintained. The poisoning attacks were followed by exploring different strategies for 

defending against the targeted Zero-day poisoning attacks.  

The first two strategies, heatmaps and feature importance, failed in preventing the targeted adversarial 

attacks from succeeding, but they did provide insight for how the third, successful defence, was to be 

developed. In the final defence strategy, the activation weights of each Zero-day file from each 

successful attack were examined, and if found to be outside a normal range, the Zero-day file was 

flagged as suspicious. The normal range was defined as being within two mean absolute deviations of 

the average benign activation weights, which were calculated from the last hidden layer of the benign 

files from the 200,000 file test dataset. The average benign activation weights from the last hidden 

layer were selected as the last hidden layer contains the encoded data from the previous layers, and as 

the target attack is aiming to misclassify the Zero-day file into the benign class, if it falls outside the 

normal range, it is to be considered as suspicious. 

From the defence experiments, it was found that a targeted Zero-day poisoning attack can be defended 

against at test time by examining the activation weights from the last hidden layer. The MAD defence 

had the least success in defending against the individual attack experiments with the greatest success 

rate of 56.872% but resulting in a 16.306% FPR when tested on the clean benign files from the test 

dataset. The best method for detecting suspicious files was if six or more neurons had activation 

weights outside two MADs from the benign average, which for experiments two, three, four and five 

achieved success rates of 84.313%, 84.946%, 86.073% and 97.810% with FPRs of 5.191%, 5.267%, 

6.539% and 4.629%. 
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5 Results 

This chapter discusses the results obtained from the experiments in chapter 4, the preliminary 

experiments that explored reducing the general efficacy of the ML model, the different targeted 

adversarial Zero-day poisoning attacks which were performed on both GBDT and MLP models, and 

finally the results obtained from the developed defensive technique to detect the Zero-day malware 

file at test time.  

5.1 Preliminary Results 

The preliminary experiments in 1.1 were performed to identify if the imported features of the training 

dataset were a suitable target for performing the Zero-day poisoning attack and if so, what parameters 

were to be selected for performing the attack. In the preliminary experiments, it was found that using 

the total feature space of the benign import features as a baseline for injecting the adversarial features 

was not a suitable approach for performing the adversarial poisoning attack. When selecting for 5% of 

the benign feature space of the import features, it was found that that amount of injection was never 

achieved with the selected features. In each experiment the total amount of benign files which 

contained the targeted adversarial feature were injected with the adversarial features. It would not be 

possible in a targeted black-box attack scenario to inject every benign training file with adversarial 

features, so this approach was not selected for use in the targeted Zero-day adversarial attack 

experiments. 

The second stage of the preliminary experiments (section 4.4.2), used varying percentages of the 

benign training files which contained the targeted import library. The attacks were performed in steps 

of 5%, starting at 5% and finishing at 100%. The results from the majority of the experiments did not 

significantly change the FNR of the model until the last experiment which injected poison features 

into every instance of a benign training file that contained the target import library. The threshold did 

increase throughout the majority of the experiments, indicating that the presence of adversarial 

features influenced the training of the model, but not at a significant level until the final stages of the 

experiments, as shown in Table 55.  
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Table 55 - Kernel32.dll - Last Three Attack Results from each Preliminary Experiment 

Attack Name FPR 1% FNR 1% Threshold 1% ROC % 

Detection Rate 

1% 

manual_kernel32_5_90 0.999 2.826 0.761 99.847 97.174 

manual_kernel32_5_95 0.994 4.389 0.854 99.768 95.611 

manual_kernel32_5_100 0.986 13.379 0.980 99.291 86.621 

manual_kernel32_10_90 0.997 3.370 0.804 99.815 96.630 

manual_kernel32_10_95 1.000 4.786 0.881 99.754 95.214 

manual_kernel32_10_100 0.992 17.118 0.989 99.188 82.882 

random_kernel32_5_90 0.992 3.219 0.877 99.838 96.781 

random_kernel32_5_95 0.989 5.344 0.941 99.753 94.656 

random_kernel32_5_100 0.000 100.000 1.000 98.143 0.000 

random_kernel32_10_90 0.989 3.513 0.892 99.821 96.487 

random_kernel32_10_95 0.990 4.681 0.945 99.766 95.319 

random_kernel32_10_100 0.000 100.000 1.000 97.867 0.000 

 

The hypotheses tested in the preliminary experiments were H1, H2, H3, and H4 which are stated below 

and shown in Table 56. 

H1. A manual selection of features can be used for a successful adversarial poisoning attack. 

H2. A random selection of features can be used for a successful adversarial poisoning attack. 

H3. No more than 5% of the benign feature space is required to be poisoned to reduce the 

general efficacy of the model. 

H4. No more than 10% of the training data is required to be poisoned to reduce the general 

efficacy of the model. 

Table 56 - H1 - H4 Experiment relationship and Results 

Hypothesis Related Experiments Supported 

H1 First Preliminary Set Yes 

H2 Second Preliminary Set Yes 

H3 All Yes 

H4 All No 

 

The only hypothesis which was not supported by the results from any of the preliminary experiments 

was H4. None of the experiments were able to reduce the general efficacy of the model at an injection 

rate of 10% benign training files containing the targeted import library.   

It was shown that it is possible to reduce the overall availability of the model from both a manual and 

random selection of adversarial features which supports H1 and H2, the overall amount of training files 
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which needed to be injected when using the chosen sample set of adversarial features was 

significantly large (100% of the target benign files). The high percentage of poisoning was likely due 

to the small number of features chosen for injection, as the imports section of Windows PE32 files in 

EMBER comprises the majority of the feature vectors used for training the model.  

H3 was supported from the experiments as 5% of the benign feature space of the training data being 

injected with adversarial features was never achieved using the target manual selection of adversarial 

features. In the benign feature space experiments, it was found that every instance of benign training 

files which contained the target import library were injected with the adversarial features, the same as 

the 100% injection attack performed in the other set of preliminary experiments. The target import 

library “msvcrt.dll” was the only experiment to not reduce the overall availability of the model after 

injecting the adversarial features into every benign training file. The import library “msvcrt.dll” was 

not very common in the EMBER dataset, therefore, the results from the general efficacy attack 

experiments were as expected. 

5.2 Targeted Attack Results (GBDT) 

The GBDT model which is supplied in the EMBER framework was the first model tested in the 

targeted adversarial poisoning experiments. The first set of experiments performed used a subset of 50 

Zero-day files out of the chosen 541 Zero-day files obtained from VirusShare. These experiments 

tested different percentages of injection of the total benign training files. The selected percentages 

were 5%, 10%, 15%, 20% and 25%. Unlike the preceding preliminary experiments which continued 

to a maximum of 100% injection, it was not intended that the targeted adversarial poisoning attacks 

should affect the overall availability of the model or increase the threshold for detecting malicious 

files too far from the original clean model. The aim of the experiments was to see how well the 

poisoning attacks would perform, without going too far beyond a reasonable level of poisoning. The 

results from the experiments are shown in Table 57.  

Table 57 - Targeted Adversarial Poisoning Attack (Individual Approach) - GBDT Results 

Test  Total Successful Attacks Average 

Score 

Median 

Score 

Average 

Threshold 

Median 

Threshold 

5% 0 0.901 0.918 0.539 0.538 

10% 2 0.813 0.851 0.560 0.561 

15% 9 0.748 0.832 0.586 0.589 

20% 14 0.696 0.765 0.619 0.624 

25% 19 0.645 0.713 0.657 0.664 
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The second experiment, which was called the combined attack, only injected the adversarial features 

into benign training files which contained all four target import libraries. The combined attack 

experiment reduced the amount of available target benign training files for poisoning but was 

designed to create a pattern within the benign class, which when triggered by the Zero-day malware 

test file, would shift the file’s classification from benign to malicious. The results from the combined 

attack experiments are shown in Table 58. The difference between the two experiments is that in the 

first experiment, adversarial features were injected on a first come basis, which would lead to larger 

clusters of poisoned data in the benign training set, while the second attack randomised the selection 

of target benign files to poison. In the second experiment, the same random seed was used in each 

attack to provide a uniform way of comparing the efficacy of each attack. 

Table 58 - Targeted Adversarial Poisoning Attack (Combined Approach) - GBDT Results 

Test  Total 

Successful 

Attacks 

Average 

Score 

Median 

Score 

Average 

Threshold 

Median 

Threshold 

First 

Experiment 

328/543 0.519 0.538 0.607 0.608 

Second 

Experiment 

312/543 0.531 0.551 0.606 0.606 

 

The targeted Zero-day poisoning experiments are related to research question one and hypotheses five 

and six, which are restated below. 

RQ1: Can adversarial attacks against machine learning based malware detectors increase the 

likelihood of unknown-unknown malware samples bypassing detection? 

H5. No more than 10% of the benign training data files are required to be poisoned for a 

targeted adversarial attack to succeed. 

As it was shown in Table 57, neither the 5% attack or the 10% attack had any significant number of 

successful targeted Zero-day poisoning attacks, the 5% test had zero successful attacks and the 10% 

attack only had two. The individual attack approach was not expected to have any significant number 

of successful attacks from how the attack was performed but it was assumed that there would be more 

successful attacks than was shown. Neither of the hypotheses were supported by the results obtained 

from the first individual attack experiments. 
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As it was shown in Table 58, the hybrid attack experiments, which used an 8.6% injection of the total 

benign training files, achieved a success rate of 60.40% (326/541 successful attacks) for the first set of 

experiments, while the second set of experiments had a success rate of 57.45% (310/541 successful 

attacks). The results from both sets of experiments support H5, in that successful targeted adversarial 

poisoning attacks can be achieved with poisoning less than 10% of the total benign training files. 

5.3 Targeted Attack Results (MLP) 

The second ML algorithm used to test the targeted Zero-day adversarial poisoning attack was a basic 

Multi-Layer Perceptron (MLP). The architecture of the MLP was adapted from an example used by 

Endgame, the creators of EMBER, to keep a level of consistency between the tests instead of creating 

and calibrating a new MLP model. The hidden layers of the MLP were modified from the original 

Endgame example, with the main addition being an extra layer of ten neurons. The ten-neuron layer 

was the last hidden layer of the model and was included as the idea of examining the last hidden layer 

to identify the targeted Zero-day poisoning attack had already been considered as a possible approach 

for developing a defence. 

The training data was comprised of 50,000 samples (25,000 benign and 25,000 malicious) which were 

extracted from the EMBER2017 dataset. The dataset was split evenly between malicious and benign 

files to follow the format of the original EMBER2017 dataset, which contained 300,000 malicious 

and 300,000 benign files. The benign files were extracted to contain enough files to generate the 

adversarial examples containing the four chosen import libraries. These adversarial example files 

were extracted on a first come basis and were deliberately not selected from a list of successful 

poisoning attacks from the GBDT experiments described in section 4.5.1.1, so as to not directly 

influence the following experiments. 

Five sets of experiments were carried out to examine how the poisoning attack influenced the 

classification of the MLP model. In the first experiment, the adversarial features were injected 

separately into benign files in the same way as the individual attack mentioned in the GBDT 

experiments. The injection was performed at a rate of 25% of the total benign files in the training data 

set. For each of the experiments in the individual attack, the poisoned training data generated were not 

randomised before training the ML model. The attack had 213/541 Zero-day files misclassified as 

benign, a success rate of 39.22% while not negatively influencing the general efficacy of the model. 

In the second set of experiments, a hybrid injection attack was performed at 8.6% of the total benign 

files. The dataset was generated to contain 15% of the benign files available for injection (they 

contained all four chosen import libraries). The second experiment also did not randomise the 

poisoned training data, which may influence the way the attack performs as the original generation of 

the training set created some clusters of benign files which were available for injection. The attack 
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had 202/541 Zero-day files misclassified as benign, a success rate of 37.338%, which is less than the 

individual attack and contrary to the results from the individual and combined GBDT attacks. 

The third and fourth sets of experiments both randomised the poisoned training data before generating 

the model. The randomisation of training data was only performed to reduce the clusters of benign 

data which exist from the original dataset, the seed was held constant across these experiments for 

reproducibility. The third test was performed at 8.6% and the fourth test at 16.5% of the benign file 

space. The third test had 184/541 (34.011%) Zero-day files misclassified as benign while the fourth 

test had 436/541 (80.591%).  

The general efficacy of the model (as measured by the accuracy and threshold) in the third set of 

experiments was the same as the previous two sets of experiments. In contrast, in the fourth set of 

experiments the false negative rate and the threshold drastically increased. The increase in successful 

attacks in the fourth set of experiments was due to the degradation of the general efficacy, as shown in 

Table 59, the average adversarial score was 0.863 while the average threshold was 0.984, which 

shows that the poisoning attack did not reduce the overall score of the Zero-day files in a significant 

way, instead the overall threshold was increased, which allowed for the Zero-day files to be 

misclassified as benign. 

The combined attack experiments achieved a success rate of 24.954%, with 135 out of 541 successful 

attacks. The combined attack experiments had fewer successful attacks compared to both hybrid 

attacks which injected adversarial features into a smaller amount of benign training files. It is likely 

that the increased number of training files poisoned with adversarial features from ‘user32.dll’ 

influenced the success of the hybrid poisoning attacks.   
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Table 59 - MLP Targeted Adversarial Attack Results 

Test Name Total 

Successful 

Attacks 

Average 

Score 

Median 

Score 

Average 

Threshold 

Median 

Threshold 

Average 

FNR 

Individual 

Attack 

(23%) 

211/541 0.683 0.986 0.856 0.858 4.040 

Hybrid 

Attack 

(8.6%) 

202/541 0.751 0.998 0.834 0.835 3.994 

Hybrid 

Attack 

Randomised 

(8.6%) 

184/541 0.823 0.997 0.811 0.813 3.358 

Hybrid 

Attack 

(17%) 

436/541 0.866 0.963 0.984 0.988 18.569 

Combined 

Attack 

(10%) 

135/541 0.914 0.993 0.837 0.836 4.049 

 

The results from the targeted Zero-day poisoning experiments show that it is possible to increase the 

likelihood of unknown-unknown malware samples bypassing detection from ML trained malware 

detection models. In both the GBDT and MLP trained models’ successful attempts to bypass 

classification through poisoning of the benign training set was achieved. The experiments did require 

up to ten percent of the benign training data samples to be infected with adversarial features but the 

process of poisoning the model was performed in a black-box scenario, which reduced the ability to 

identify which features would contribute the most to the model’s classification and to target those 

features specifically. From the feature analysis paper by Saxe and Berlin (2015), it was found that the 

imports section when used by itself to identify patterns and correctly classify malicious files, 

performed the worst compared to the four other areas that were tested. In the experiments the imports 

section was chosen as it compromised the majority of the input feature vectors and in a practical 

sense, adding an import function to a binary PE32 file is a simple way to perform an adversarial 
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poisoning attack. In future work other areas of the binary PE32 file would be tested to identify which 

area is best suited for manipulation to generate a successful targeted adversarial poisoning attack. 

5.4 Defence Results 

The defensive method developed in this thesis examines the activation weights of files at test time 

from the last hidden layer of the MLP ML model to identify anomalous behaviour in the weights. In a 

successfully trained model, it would be expected that the activation weights would be clustered 

around the average of a correct class for each of the neurons in the last hidden layer. Only the last 

hidden layer needs to be examined as all the previous data is encoded in this layer. As normal files 

which are either benign or malicious sit close to the average activation weight when examining a 

clean model, it would be obvious that something has gone awry when a tested file sits between the 

activation weights of both classes for the majority of the neurons, as shown in the example below: 

 

Figure 5.1 - ZeroDay False Negative Example 1 

 

In Figure 5.1 - ZeroDay False Negative Example 1, the red and blue dots represent the average 

activation weights of the malicious and benign test files from EMBER’s 200,000 file test dataset, 

respectively. The green dots are the activation weights of the target Zero-day file which was used as 

the basis for extracting import functions and injecting them throughout the benign training dataset. In 

a clean (non-poisoned) model, the green dots would be closer to the red dots (because Zero-day is a 

sub-class of Malicious), but due to the adversarial poisoning, the activation weights have shifted away 

from their original malicious class and moved closer towards the benign class. The activation weights 
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have not shifted enough to the benign class to make the Zero-day file appear as the legitimate benign 

files do, but the shift in the activation weights has been significant enough for the malicious Zero-day 

file to be misclassified as benign. To defend against targeted Zero-day poisoning attacks, a test was 

proposed to evaluate the activation weights at test time. The heuristic used in this test was if it was 

found that a file which was classified as benign, had eight or more activation weights that were further 

than one standard deviation away from the average activation weight of the neuron, then the file 

would be considered to be suspicious and should be quarantined for further examination which could 

be performed by dynamic analysis or any other methods for malware detection. Three sets of 

experiments analysing six, eight, and ten neurons of the activation weights at test time were 

performed, and the eight neuron experiment was found to have the most successful results.  

From the 184 successful attacks from Experiment 3 shown in Table 59, 182 (97.85%) of the Zero-day 

files had eight or more activations weights outside of one standard deviation from their corresponding 

benign neuron activation weight value. Using the first successful attack as an example, the benign 

activation weights from the training dataset were examined and a total of 1,553 from 25,000 (6.21%), 

which is near the percentage of adversarial examples in the benign training data, were outside the 

range, and would be regarded as suspicious. To determine if the activation weights were outside the 

range in the benign training data was due to the poisoning attack, the activation weights of the benign 

training files from the clean model were examined, and 1,817 files (7.26%) had eight or more 

activation weights outside of the range, which is larger than the poison example. Which indicates that 

it is not the poisoning which is responsible for genuine benign files to appear as suspicious in 

accordance with the defence, but that legitimate variance in benign files exists which will generate 

false positives for the defensive strategy.    

After using the benign activation weights of the 25,000 files used to train the model, additional 

examinations were performed using the 100,000 benign data files from the original EMBER2017 

dataset. When calculating the averages and standard deviation of the activation weights from the 

100,000 benign test files for each poisoned model, it was found that the average of the activation 

weights were similar across each experiment but the standard deviation was significantly different. 

From using a larger dataset, a greater amount of variance was introduced which included a significant 

number of outliers which prevented the previously successful defensive technique from functioning 

correctly. 

To remove the issue of the outliers in the dataset rendering the defensive technique unusable, another 

method was examined to identify if it was possible to detect suspicious benign classifications from 

examining the activation weights at the last hidden layer during test time. The method which was 

chosen for use is known as Mean Absolute Deviation (MAD), which is another technique for 
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identifying anomalies in data without the present outliers in the dataset influencing the standard 

deviations to such a significant degree. 

For each of the five sets of experiments performed on the MLP model, two defensive strategies were 

tested using the MAD. The defensive strategies followed the same formula as the original defence i.e., 

examining the activation weights from the last hidden layer of the target Zero-day file, but the MAD 

defence also tested to see if the activation weights of the neurons were outside of two MADs, instead 

of the single standard deviation which was originally used. The two MADs were also used as the 

general rule for identifying outliers is if they are two standard deviations away from the mean. For the 

fifth set of experiments, an additional set of defensive sets was performed using activation weights 

obtained from a poisoned version of the test dataset. In the poisoned set, ten percent of the benign 

files were injected with the adversarial features. The defence using the poisoned weights was 

performed to verify that the MAD defence does not require a clean dataset to generate the average 

benign activation weights. The results from each MAD defence are shown in Table 60, Table 61, and 

Table 62. 

Table 60 – MAD Defence Results Six Neurons 

Experiment 
Successful 

Defence 

Success 

Percent 
Neurons 

Mean 

Absolute 

Deviations 

Suspicious 

Benign FPR 

One 
120/211 56.87% 6 One 16.306% 

105/211 49.76% 6 Two 5.436% 

Two 
200/202 99.09% 6 One 16.225% 

172/202 85.15% 6 Two 5.191% 

Three 
175/184 95.11% 6 One 15.973% 

155/184 84.24% 6 Two 5.267% 

Four 
422/436 96.79% 6 One 15.618% 

376/436 86.24% 6 Two 6.539% 

Five 
131/135 97.04% 6 One 15.618% 

127/135 94.07% 6 Two 5.383% 

Five (Poisoned 

Test Data) 

133/135 98.52% 6 One 15.981% 

127/135 94.07% 6 Two 4.789% 
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Table 61 - MAD Defence Results Eight Neurons 

Experiment 
Successful 

Defence 

Success 

Percent 
Neurons 

Mean 

Absolute 

Deviations 

Suspicious 

Benign FPR 

One 
112/211 53.08% 8 One 10.969% 

104/211 49.29% 8 Two 3.512% 

Two 
199/202 98.52% 8 One 10.394% 

10/202 4.95% 8 Two 3.375% 

Three 
170/184 92.39% 8 One 10.568% 

145/184 78.80% 8 Two 3.394% 

Four 
408/436 93.58% 8 One 10.919% 

258/436 59.17% 8 Two 4.613% 

Five 
131/135 97.04% 8 One 10.601% 

104/135 77.04% 8 Two 3.360% 

Five (Poisoned 

Test Data) 

133/135 98.52% 8 One 10.864% 

102/135 75.56% 8 Two 2.896% 

 

Table 62 - MAD Defence Results Ten Neurons 

Experiment 
Successful 

Defence 

Success 

Percent 
Neurons 

Mean 

Absolute 

Deviations 

Suspicious 

Benign FPR 

One 
108/211 51.19% 10 One 5.773% 

100/211 47.39% 10 Two 1.555% 

Two 
7/202 3.47% 10 One 5.446% 

2/202 0.99% 10 Two 1.516% 

Three 
142/184 77.17% 10 One 5.445% 

113/184 61.41% 10 Two 1.517% 

Four 
211/436 48.39% 10 One 6.478% 

33/436 7.57% 10 Two 2.776% 

Five 
126/135 93.33% 10 One 5.474% 

1/135 0.74% 10 Two 1.181% 

Five (Poisoned 

Test Data) 

126/135 93.33% 10 One 5.614% 

1/135 0.74% 10 Two 0.967% 
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The tested defensive strategies are related to RQ2 and hypothesis nine which are restated below: 

RQ2: Can adversarial attacks against machine learning based malware detection be mitigated? 

a. Can targeted adversarial attacks be detected at test time? 

H6. The targeted adversarial attack can be prevented at test time. 

It was possible to identify misclassified Zero-day files by examining the activation weights from the 

last hidden layer of the poisoned model. Each poisoned model from every experiment in the set of 

MLP experiments was tested to see if it was possible to identify a misclassified Zero-day malicious 

file by examining outliers in 6, 8 and 10 neurons. The outliers were first examined by using one 

standard deviation from the mean of the benign activation weights from the training set. An additional 

examination was performed using the 200,000 file test dataset from EMBER2017, as the training 

dataset contained poisoned samples whereas the test dataset was clean. When performing an 

additional examination on the 200,000 file test dataset, it was found that the variance of the activation 

weights in the 200,000 file data set was greater than the variance in the smaller data set variation of 

the activation weights from the larger dataset increased the standard deviation spread which prevented 

the original defence method from functioning correctly. As an alternative measure to identify outliers 

within the test dataset, the mean absolute deviation (described in section 4.6.3.2) was used instead of 

the standard deviation. The mean absolute deviation was calculated from the absolute values of the 

neuron’s activation weights as half of the neurons were negative values. 

The MAD examinations tested to see if the activation weights of the Zero-day neurons were outside 

of one and two MADs for 6, 8, and 10 neurons. In every set of experiments, it was possible to identify 

misclassified Zero-day malicious files with varying degrees of accuracy. In Experiment 5 Combined 

Attack (10%) Defence, the two MAD outliers for ten neurons had the worst performance with only 

one successful identification of a Zero-day malicious file. 

The 100,000 benign test data files were also examined in each defence experiment to identify how 

many legitimate benign files would be categorised as suspicious. Unsurprisingly, the two MAD 10 

neuron examination had the least number of false positives in the benign test data, as the stricter the 

parameters for identifying suspicious files, the less accurate the defence becomes. From all of the 

experiments performed, Experiment 5 Combined Attack Randomised (10%) would be the most 

practical to perform in a live environment, from examining Experiments 5 defence results, the tests 

for 6 and 8 neurons outside of two MADs from the benign activation weight average provided the best 

defence success (94.07% and 77.04%) along with low percentages of false positives (5.383% and 

3.360%). The results from the defence experiments support H9, in that it is possible to detect a 

targeted adversarial poisoning attack at test time, an approach which had not been explored in past 

research.  
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5.5 Defence Contribution 

The MAD defence proposed and tested in this thesis differs from the current adversarial poisoning 

defences in that it does not aim to use some form of outlier detection to detect the poisoned samples 

within the training dataset and remove them, but instead aims to detect suspicious files at test time by 

their activation weight values and quarantine the file for further analysis. Unlike most existing 

training defences which require a clean dataset to compare against the poisoned dataset to identify 

anomalous clusters, the MAD defence can be performed successfully using either clean or poisoned 

data to generate the activation weight values. Being able to defend against poisoning attacks without 

having a confirmed clean dataset to use for comparison is beneficial as it is not possible to know for 

certain if a dataset is clean or poisoned. The novelty of defending against adversarial attacks at test 

time provides an extra layer of security to defend against poisoning attacks. The adversarial defences 

which remove poisoned data from the training set should be utilised to protect against poisoning 

attacks in conjunction with the test time MAD defence to provide the optimal level of defence. 

5.6 Summary 

In this chapter, an overview of the different poisoning experiments was provided along with an 

analysis of the results and how they relate to the research questions and hypotheses. From the 

preliminary poisoning experiments, it was found that the results support that both a manual and 

random selection of adversarial features can be used in a successful poisoning attack (H1 and H2) and 

that no more than 5% of the benign feature space is required to be poisoned for a successful attack to 

occur (H3). The results from the preliminary experiment did not support H4, as more than 10% of the 

benign training files were required to be poisoned for the attacks to succeed. 

From the main set of experiments, it was found that it was possible for a targeted adversarial 

poisoning attack to succeed without poisoning more than 10% of the benign training data (H5). The 

main experiments were performed using different poisoning methods to identify the importance of 

adversarial features and data positioning in relation to attack success. It was found that if the poisoned 

training files clustered closer together, more attacks would succeed. 

In addition to the poisoning experiments, an analysis of the results from the MAD defence strategy 

was provided and it was found that the overall most successful defence was six or more neurons 

outside of two MADs from the target benign average, which for experiments two, three, four and five 

achieved success rates of 84.313%, 84.946%, 86.073% and 97.810% with FPRs of 5.191%, 5.267%, 

6.539% and 4.629%.        
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6 Discussion 

In this chapter, a discussion of the attacks, defences and their relation to the proposed research 

questions is provided. The chapter starts with a review of the preliminary experiments, which 

provided the basis for the targeted adversarial attacks, as the preliminary experiments identified what 

type of features to be used in the poisoning attacks and that they could be randomly selected without 

the need to perform any feature importance analysis. The chapter continues with a discussion of the 

targeted poisoning attack, and how the attack differed from the watermark attack which also used the 

EMBER dataset. The next section covers the types of defences which have been developed to prevent 

adversarial poisoning attacks and how the proposed MAD defence in this thesis differs from the other 

defences and provides a new way to defend against targeted adversarial poisoning attacks. The final 

section outlines each research question and hypothesis and examines the results from their related 

experiments which either support or reject the hypothesis.     

6.1 Adversarial Attack Discussion 

A selection of different types of attacks were performed during the experimentation stage of the 

thesis. The first attacks were executed to identify if using the import library section as the basis of the 

poisoning attack would be successful. The second set of attacks were performed to see if it was 

possible for a targeted Zero-day malware file, which was originally classified correctly, to be 

misclassified as a benign file after injecting features from the import section of the targeted Zero-day 

into the benign training files import section. For the targeted adversarial poisoning attacks, CNN and 

RNN models were also evaluated to provide a comparison between CNN, RNN, and MLP models. 

All the trained CNN models produced a no-skill model which did not exceed 50% accuracy. None of 

the RNN models completed training stage, due to the hardware limitations of the workstation. As 

restrictions in were in place to prevent the spread of covid-19, it was not possible to gain access to 

more powerful equipment which could train the RNN model, and as such, only MLP models were 

used throughout the rest of the experimentation stage. 

The general efficacy attack performed in the preliminary experiments is similar to the various 

adversarial poisoning attacks which have performed on a variety of ML models, such as the SPAM 

poisoning attack performed by Nelson et al. (2008). The purpose of the preliminary experiments was 

to first validate existing research and second, to identify possible parameters for performing the 

targeted Zero-day poisoning attack. The primary aim of the preliminary experiments was to identify if 

injecting adversarial features into the import section of the benign training data files would influence 

the classification of the trained model, and the secondary aim of the preliminary experiments was to 

identify if there was any significant difference from using either a manual or random selection of 

features. The manual selections of features were chosen by analysing the feature count from the 

benign training file import library functions, and from the malicious Zero-day files obtained from 
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VirusShare. The random selections of features were randomly taken from the total pool of import 

library functions in both the benign EMBER set and malicious VirusShare set. 

In the general efficacy attack experiments, each chosen import library (‘kernel32.dll’, ‘advapi32.dll’, 

‘user32.dll’, ‘shell32.dll’, and ‘msvcrt.dll’) was used separately when performing the adversarial 

poisoning attacks. The adversarial poisoning attacks were performed at different percentages of the 

total benign train data files. The first set of experiments were performed using the feature space of the 

import library functions as the basis of the poisoning attack, with the first and only set of experiments 

using 5% of the total feature space as the maximum injection percentage. The feature space injection 

attacks were only performed at 5% as that percentage was not achieved with every instance of benign 

training files which contained the target import library being injected with the adversarial features. 

The other set of preliminary experiments used the percentage of benign training files which contained 

the target import function as the basis of the attacks. The first experiment started at 5% and continued 

in steps of five until 100% of the available benign training files were injected with the adversarial 

features, the last attack at 100% being the same as the feature space attack. 

The results from the experiments indicated that using the import section of the binary PE32 files as 

the target for the adversarial poisoning attacks would be suitable for influencing the classification of 

the model when performed the targeted Zero-day adversarial poisoning attack. The import section of 

binary PE32 files was found to be the least important when identifying patterns to distinguish between 

malicious and benign files in the paper by Saxe and Berlin (2015). The results from the paper were 

used by the developers of EMBER when performing the feature engineering stage of their framework. 

It is interesting to see that the field with the least contribution to the classification of malicious and 

benign files can be manipulated to allow for a targeted Zero-day file to bypass detection by being 

misclassified as benign, when it would otherwise be classified correctly from the same but clean 

dataset. In future work it would interesting to see how well the targeted adversarial poisoning attack 

would work when manipulating other sections of the binary PE32 file. 

A similar attack to the targeted Zero-day poisoning attack was performed by Severi et al. (2020) 

which also used EMBER as the dataset for their attack which they called a watermark attack. The 

watermark attack was performed by manipulating a portion of the non-hashed input vectors of the 

benign files in the EMBER dataset to create a pattern that would classify any tested with the same 

watermark as benign. 

The watermark attack used SHAP values (see section 2.7.1.8) to identify the contribution of each 

vector in the 2351-dimensional input vector and then selected the vectors with the greatest 

contribution as the target values for the attack. The watermark attack only selected features which 

were not hashed in the feature engineering phase of generating the EMBER model. Features in 

EMBER which are hashed are a harder target for creating a watermark as the majority of the hashed 
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features are generated from a series of features, which would mean that the majority of features which 

contribute to the hash would need to be manipulated to create the watermark. Only using features 

which are not hashed reduces the difficulty in creating the watermark. It would be interesting to see 

how well the watermark attack would work if the features which were manipulated were computed 

into several hashes. 

The targeted Zero-day adversarial poisoning attacks performed in this thesis did not rely on feature 

analysis from a surrogate model to identify which features contributed the most to the classification as 

the watermark attack did. Instead, the targeted Zero-day adversarial poisoning attacks manipulated the 

imports section of the benign training files, which unlike the watermark attack, was a section which 

was computed into a hash digest of 1280-bits. The imports section was chosen as it was used to 

compute the majority of the input feature vectors used in EMBER, and it provided a straightforward 

avenue for manipulating the benign training files and performing the adversarial poisoning attacks. 

6.2 Adversarial Defence Discussion 

As stated in 3.2.2, the eighth project phase was the evaluation and discussion of the adversarial 

defensive strategy. The defensive strategies outlined in the papers by B. Chen et al. (2018) and Wang 

et al. (2019) follow a similar approach in that they both examine the activation weights from the last 

hidden layer of the neural network model. This is not surprising, as the last hidden layer contains all 

the encoded data from the previous layers during training. The previous defences were developed on 

multiclass image classification models, with the activation clustering defence also being used by 

Severi et al. (2020) for their backdoor watermark attack on EMBER. The MAD defence proposed in 

this thesis differs from the activation clustering defence in that it identifies poisoning attacks at test 

time, in contrast to identifying adversarial samples at the training stage and removing them. 

6.2.1 Neuron Pruning 

The neuron pruning defence proposed by Wang et al. (2019) identifies adversarial examples by 

examining the neurons at the last hidden layer for outliers in the top 1%. In the experiments 

performed by the authors, the multiclass classification models would have a small percentage of 

neurons which were 3-7 times as active for adversarial examples compared to clean examples. The 

poisoning attacks performed seem to overfit for the trigger in the adversarial examples, allowing for 

the target example to be misclassified in accordance with the attacker’s plan. After identifying that a 

model has been compromised, the authors suggested pruning of neurons to remove the encoded 

pattern which allows for the poisoning attack to succeed. This type of defence would not be 

appropriate for the attacks performed in this thesis, as the targeted adversarial poisoning attacks 

performed do not create a pattern of neurons with activation weights 3-7 times the average for the 

target class, but instead shift the weights of the neurons to sit somewhere in the middle of both 

classes, but still closer to the target benign class when the attacks succeed. 



 

  Page | 144 

6.2.2 Activation Clustering  

In the activation clustering defence, B. Chen et al. (2018) were able to identify anomalous clusters 

(the backdoor) due to the backdoored image retaining the majority of the features from the source 

image. To fix the poisoned model, the authors relabel the identified adversarial examples as their 

original source class and retrain the model. The poisoned models from the targeted adversarial 

poisoning attacks in this thesis cannot be fixed by relabelling of the adversarial samples within the 

benign training data as the files are not mislabelled, they instead contain import functions found 

within both benign and malicious files which shift the classification of target Zero-day files. 

Retraining the model after identifying the adversarial examples would not be a permanent fix if the 

model is being updated periodically with new data obtained through the same vulnerable avenue 

(online gathering). For malware detection applications trained using machine learning, it would be 

beneficial to utilise a quarantine defence which isolates suspicious (adversarial) files for further 

examination. The quarantine approach would allow for the malware detection application to operate 

under the assumption that the model may have been poisoned by an attacker but can still function as 

intended. 

The targeted adversarial poisoning attacks performed in the early stages of this research Wood and 

Johnstone (2020) has some similarities to the watermark poisoning attack subsequently reported by 

Severi et al. (2020). In both this thesis and the watermark paper, EMBER was chosen as the target 

dataset for testing the experiments and both a Gradient Boosted Decision Tree and Artificial Neural 

Network model were tested. In the watermark paper, the authors performed both white-box and black-

box approaches, in this thesis, only a black-box approach performed. In the watermark paper, SHAP 

values were calculated to identify which features from EMBER’s 2351 vector inputs contributed the 

most to either the benign or malicious classification. The identification of import feature vectors 

played a crucial part in identifying which features would be manipulated to create the target 

watermark. The watermark paper did not modify any features which would be later hashed by 

EMBER’s feature hashing function, this reduced the total amount of available features from 2351 to 

2316. In the black-box approach of this thesis, no precursor work was performed to identify the 

contribution of feature vectors to the model’s classification. It was assumed to be unlikely that an 

attacker would have the underlying knowledge of the model’s architecture but could make a safe 

assumption that the imports section of the file would be included in the feature space of the training 

data, due to either the model being trained using some form of feature analysis or being trained using 

the complete byte sequence of the file. 

It would be interesting to test the watermark attack on a modified version of EMBER which converts 

the un-hashed values into a hash digest and see if there is any significant difference, first in the quality 

of the EMBER model and second in the efficacy of the watermark attack. If feature hashing prevents 

the use of SHAP values to determine which feature vectors contribute the most towards the model’s 
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classification, would performing feature hashing on every feature prevent attackers from building 

substitute models to determine which features should be poisoned? 

An experiment which has been left for future work, is to test the watermark attack against the test time 

activation weight defence produced in this thesis. It is possible that the defence would not be 

successful in identifying the watermark attack if the watermark is successful in shifting the activation 

weights closer to the benign average than the experiments in this thesis. As the experiments in this 

thesis did not use any precursor information for identifying which features of EMBER contributed the 

most to the model’s classification, the attack succeeded instead by injecting enough adversarial 

features to shift the classification towards the benign classification, but not enough to appear as a 

legitimate benign file. The watermark attack however did use SHAP values, so it may be possible that 

the attack does in fact shift the activation weights of the target malicious file to be effectively 

camouflaged within the benign activation weights.  

6.3 Adversarial Attack and Defence Comparison 

From the discussion in the previous sections, an explicit comparison of the work undertaken in this 

thesis and the other adversarial attacks and defences discussed above can not be provided due to the 

clear differences in the experiment approaches. The adversarial attack which was most similar to the 

targeted adversarial poisoning attack conducted in this thesis was the watermark attack performed by 

Severi et al. (2020), as it also used the EMBER dataset and injected adversarial features into the 

benign feature space of the training data. The clear difference between the watermark attack and the 

targeted poisoning attack in this thesis was the pre-processing stage to identify salient information in 

the EMBER feature space performed in the watermark attack. The pre-processing stage in the 

watermark attack identified which features contributed the most to the model’s classification, which 

provided the researchers with a direct avenue for attack. In comparison, no pre-processing was 

performed when undertaking the targeted adversarial poisoning attack in this thesis, and as such, a 

clear comparison of the results cannot be performed. 

In the defensive approaches discussed in the previous sections, the adversarial examples in the 

training datasets were identified by evaluating the activation weights of the neurons at the last hidden 

layer of the poisoned model in comparison to a trusted clean model and removing the training files 

which were significantly outside of the normal distribution from the clean dataset. This type of 

defence works under two assumptions, first, a trusted clean dataset is available to generate a baseline 

for acceptable neuron activation weight values, and second, that the neuron activation weight values 

are easily distinguishable from the trusted clean dataset’s normal distribution. The defence in this 

thesis operates under the opposite of the aforementioned assumptions, in that a trusted clean dataset is 

not required and that the neuron activation weights of poisoned data are not always easily 

distinguishable from clean data in the training dataset. 
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6.4 Research Question Discussion 

In this thesis, two research questions were proposed, and a series of experiments were undertaken to 

gather the required information to answer the questions. In this section, the results gathered from the 

experiment stage are examined along with their corresponding research questions and hypotheses. The 

two research questions examining the attack and defence of machine learning models are restated 

below: 

RQ1: Can adversarial attacks against machine learning based malware detectors increase the 

likelihood of unknown-unknown malware samples bypassing detection? 

a. What features are required to perform a successful poisoning attack? 

b. What percentage of poisoning is required to reduce the overall availability? 

c. What percentage of poisoning is required for a targeted attack to succeed? 

RQ2: Can adversarial attacks against machine learning based malware detection be mitigated? 

a. Can targeted adversarial attacks be detected at test time? 

From the two research questions, nine hypotheses were generated and tested throughout the 

experimentation stage. Each of the hypotheses is listed below, with an explanation from the 

information gathered during the experiments to either support or reject the hypothesis.  

H1. A manual selection of features can be used for a successful adversarial poisoning attack. 

H2. A random selection of features can be used for a successful adversarial poisoning attack. 

The first set of experiments performed provided the building blocks for the later targeted backdoor 

attack. The experiments set out to perform a general efficacy attack against the machine learning 

model with different approaches to the feature selection used in the poisoning attack. The experiments 

in this thesis operated under the assumption that an attacker would not be able to identify the 

importance of features and would instead have to operate under the assumption that after poisoning 

enough of the training data, the model would shift classification towards the attacker’s desired 

outcome. Therefore, this work is unlike the targeted backdoor watermark attack performed by Severi 

et al. (2020), in which precursor examination of the model was performed using both a white-box 

approach, and a black-box approach using a surrogate model to identify which features had the most 

significant influence on the models classification.  

A manual selection of import library features was identified by analysing the training data and a 

selection of virus data to identify which features were more common among the virus set than the 

training set. This approach, if chosen for the targeted adversarial attack, would fall under the white-

box category as the attacker would have complete access to the training data. The manual selection 
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approach was not intended to be used in the targeted adversarial attack but was used in the 

preliminary experiments to compare against the results obtained from the random selection attack. 

After performing both the manual selection and random selection set of poisoning experiments, the 

results indicated that, EMBER is vulnerable to adversarial poisoning attacks targeting the general 

efficacy of the model. Further, there is no clear difference from using a manual selection of features or 

a random selection as the basis of the attack. From the results of both sets of experiments, it appeared 

that a random selection of adversarial features could be used in the future targeted attack. 

H3. No more than 5% of the benign training data feature space is required to be poisoned to reduce 

the general efficacy of the model. 

H4. No more than 10% of the benign training data files are required to be poisoned to reduce the 

general efficacy of the model. 

In the general efficacy attacks, different percentages of poisoned training data were tested to gauge 

what level of injection would be required to succeed in performing a targeted adversarial attack. Only 

H4 was not supported from the experiments, as for the majority of the experiments, the general 

efficacy of the model was only significantly affected when the adversarial poisoning had reached 

100% of the benign training files which could be targeted in the attack.  

H5. No more than 10% of the benign training data files are required to be poisoned for a targeted 

adversarial attack to succeed. 

The targeted adversarial poisoning attacks which succeeded used 8.6% of the benign training data and 

2.5% of the total training data. Both the GBDT and MLP models were vulnerable to the targeted 

adversarial poisoning attack, with the MLP models being more resilient. Less data was used to train 

the MLP models which may have been the reason behind the increased resilience. It is possible that 

training files which had a significant influence over the classification of the model and would have 

been targeted in the adversarial poisoning attack may not have been included in the MLP dataset. The 

MLP attacks may be replicated in the future using a more powerful machine which can support the 

entire EMBER2017 dataset.     

H6. The targeted adversarial attack can be prevented at test time. 

From a visual inspection of the activation weights of test files against the average activation weights 

from the test data in the benign and malicious classes, it was clear that the Zero-day test files which 

succeeded in being misclassified as benign had an obvious pairwise separation from both the benign 

and malicious class. From analysing the activation weights at the pairwise level, it became apparent 

that for the majority of Zero-day files in Experiment 3 (180 out of 184), eight out of the ten neurons of 

the last hidden layer sat outside of one standard deviation from the benign class towards the malicious 
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class. While in the clean benign test data, an average of 6% contained the same activation weight 

pattern. After analysing the activation weights using a standard deviation derived from a larger 

(100,000) dataset, it became apparent that another method for calculating the deviation was required, 

as the larger dataset increased the standard deviation spread which prevented the original defence 

from functioning correctly. The Mean Absolute Deviation (MAD) was chosen, and an additional test 

was performed to identify if the activation weights existed outside of two MADs. The MAD defence 

was successful in identifying the majority of Zero-day files as suspicious for each of the adversarial 

poisoning attacks. The results are shown in Table 60, Table 61, and Table 62. 

From the activation weight analysis, the evidence supports the hypothesis that it is possible to identify 

the targeted Zero-day file trying to bypass detection at test time. In a practical sense, a quarantine 

approach for files which meet the criteria of having suspicious activation weights should be 

implemented to mitigate the targeted adversarial poisoning attack. 

6.5 Summary  

In this chapter, a discussion of the adversarial attacks and defences was provided, along with an 

examination of the research questions and hypotheses and the results from their related experiments 

which either supported or rejected the hypothesis being tested. The adversarial attack section explored 

the results from the preliminary experiments, which provided the basis for how the targeted 

adversarial poisoning attacks where to be performed. The preliminary experiments identified that 

randomly selecting adversarial features performed just as well as manually selecting adversarial 

features, which benefited the targeted poisoning attack development for a black-box scenario. The 

targeted adversarial poisoning attack was examined with a focus on performing a compare and 

contrast the watermark poisoning attack which also used the EMBER dataset. The main difference 

between the two attacks is that the watermark attack performed feature analysis using SHAP values to 

identify which features should be modified for the attack to succeed, whereas the attack performed in 

this thesis did not perform any feature analysis, and instead randomly selected features from the 

imports section of the target Zero-day file to be used in the poisoning attack. 

The adversarial defence section covered the defences developed to prevent targeted adversarial 

poisoning attacks by other researchers and the proposed MAD defence which was tested in this thesis. 

The previous defences which have been implemented to prevent targeted poisoning attacks from 

succeeding work by identifying outliers within the training data and removing them from the training 

set. Whereas the MAD defence identifies suspicious files at test time and quarantines the file for 

further analysis. The MAD defence works where it is assumed that the adversarial features used to 

poison the dataset blend in within the other clusters of benign features and cannot be easily removed 

through the use of anomaly analysis. 
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7 Conclusion 

The final chapter concludes the work performed throughout this thesis. An overview of the research 

process and aims is provided, along with a summary of the contributions made throughout the 

research and, finally a discussion of future work which was considered but found to be out of scope 

for this thesis is stated. 

7.1 Research Overview 

This research had two aims. The first was to develop a targeted adversarial poisoning attack which 

would allow for Zero-day malware files to bypass detection. The second aim was to develop a defence 

which can mitigate the targeted adversarial poisoning attack. The research area was introduced in 

Chapter 1, which identified the uses of ML in the cyber security field and the associated known 

security issues in using ML. The domain of ML was examined for its contribution in defending 

against cyber security threats and general use applications. The significance of the field was 

quantified through an examination of the cyber security threat reports available. From identifying the 

significance of ML in the cyber security domain, two research questions were put forward to focus on 

one of the key areas of ML, cyber security. 

A literature review was performed which covered three main areas, malware, machine learning, and 

adversarial machine learning. The malware section covered a variety of malware families and 

methods used for malware detection. At the beginning it was not known if the adversarial attack was 

going to concentrate on a ML model which could detect a particular malware family or a general 

malware detection application. A general malware detection application was chosen, and different 

malware files were used when experimenting on the adversarial poisoning attack. The machine 

learning section covered a variety of algorithms which are often used and the domains they are used 

in. The adversarial machine learning section covered the attacks and defences which have been 

developed, with a focus on the field of malware detection. 

The research was completed in eight phases. The first two phases covered the acquisition and 

examination of datasets for the adversarial poisoning attacks and defences. The datasets acquired for 

use were the EMBER dataset, which belongs to a research framework for performing machine 

learning malware detection research, and from VirusShare, which contained the malware files used as 

the targets for the adversarial poisoning attacks. The feature engineering process of EMBER was 

evaluated to identify which area should be used as the target for the adversarial poisoning attacks. The 

imports feature section was chosen as it provided a large target feature space. No evaluation of the 

EMBER feature vectors was performed to identify which features contributed the most to the target 

model’s classification. The poisoning attacks which were performed were done so under a strict 
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black-box scenario. Knowing the import section of the binary file would more than likely play a role 

in training the ML model was enough. 

The third phase was the training of machine learning models. The EMBER framework provided a 

Gradient Boosted Decision Tree (GBDT) model and the required code to train additional GBDT 

models. The other type of model which was used for testing was a Multi-Layer Perceptron (MLP). 

The code for the MLP was adapted from another project that the EMBER creators had developed. The 

fourth, fifth, and sixth phases were all related to the testing of adversarial poisoning attacks. The 

fourth phase experimented with testing a general efficacy attack by injecting varying levels of 

adversarial features into the benign training data of the EMBER dataset. The general efficacy attacks 

were performed to identify if using the imports section as the basis of the targeted adversarial could be 

successful and if it were needed to manually select the features for poisoning. If the adversarial 

poisoning attacks in the general efficacy experiments failed to influence the trained model, then 

another set of features would have needed to be tested. The general efficacy experiments were 

successful in identifying the import section as an adequate attack vector. 

The fifth and sixth phases involved the testing of the targeted adversarial poisoning attacks using both 

the GBDT and MLP models. Different percentages and methods of injection of adversarial features 

were performed in both the GBDT and MLP poisoning experiments. There were successful targeted 

adversarial poisoning attacks from both the GBDT and MLP experiments. MLP models were found to 

be more resilient than the GBDT models for targeted adversarial poisoning attacks. The eighth and 

ninth phases were about the defensive strategies to prevent the targeted adversarial poisoning attacks 

from succeeding. The MLP model was chosen as the target for the defence, as it is a more popular ML 

algorithm. The defensive technique developed is not model agnostic, it evaluates the activation 

weights of the neurons from the last hidden layer at test time for anomalies.  

Current defences are performed on the training data to identify adversarial examples and remove them 

from the dataset. The identification of the adversarial examples requires a clean dataset to use for 

comparison, but it is not always possible to know if the dataset being used is in fact clean from 

adversarial poisoning, especially if the data is obtained online. The developed defence works under 

the assumption that the training dataset is poisoned since it is not possible to know for certain if it is 

not. The defence for the targeted adversarial poisoning attack examines the activation weights of the 

test file from the last hidden layer to see if there is an anomaly in a majority of the neurons. The 

anomaly being that the target file was classified as benign, but a majority of the activation weights 

were outside two MADs from the average benign activation weight. 

Several hypotheses were developed and tested throughout this thesis to answer the proposed research 

questions. Their relationship with the proposed research questions and their results are shown in Table 

63. 
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Table 63 - Research Question Relationships 

Research 

Question 

Related Hypotheses Result 

RQ1 H1: A manual selection of features can be used for a 

successful adversarial poisoning attack 

Accepted  

H2: A random selection of features can be used for a 

successful adversarial poisoning attack 

Accepted 

H3. No more than 5% of the benign training data feature 

space is required to be poisoned to reduce the general 

efficacy of the model. 

Rejected 

H4. No more than 10% of the benign training data files 

are required to be poisoned to reduce the general 

efficacy of the model.  

Rejected 

H5. No more than 10% of the benign training data files 

are required to be poisoned for a targeted adversarial 

attack to succeed. 

Accepted 

RQ2 
H6. The targeted adversarial attack can be prevented at 

test time. 
Accepted 

 

7.2 Summary of Contributions 

The aim of the research was twofold. First, to develop a targeted poisoning attack which allows for a 

certain Zero-day malware file to bypass detection, while not reducing the overall general efficacy of 

the malware detection model. Second, develop a defensive strategy to mitigate the adversarial attack. 

To achieve the end goal, a set of prerequisites were required to be completed first, which lead to the 

development of an adversarial attack and defence strategy. 

The targeted adversarial poisoning attack was performed in a black-box scenario using a random 

selection of import library functions injected into different percentages of the benign training data. 

The import features were selected as the poisoning features after performing successful preliminary 

experiments which identified them as being a suitable feature set for reducing the efficacy of the 

target model. The targeted adversarial poisoning attack was performed in a black-box scenario, the 
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only information the attacker had of the ML architecture was that the model was trained to detect 

malicious PE32 files and that the import section of the PE32 files were used in the training of the 

model. No exploratory work was performed to identify what level of contribution the features of the 

PE32 file contributed to the models classification, unlike what was performed by Severi et al. (2020), 

where SHAP values were calculated to identify which features contributed the most to the model’s 

classification.  

The targeted adversarial attack was successful in allowing for previously detected Zero-day malware 

files to bypass detection by being misclassified as benign in both GBDT and MLP models. The results 

from the targeted adversarial poisoning attack have shown that it is possible to perform a targeted 

adversarial poisoning attack when the target feature area is comprised of a feature hash. In the 

watermark attack, Severi et al. (2020) avoided the vector dimensions of the EMBER training files 

which were a computed feature hash, which removed 2,316 of 2,351 of the input vectors. The authors 

only used values which were not computed into a feature hash as they needed to identify the 

contribution of the features before creating their watermark trigger. As feature hashing generates an 

irreversible hash digest, the authors would not have been able to identify which features contributed to 

the model’s classification if they were to use any of the computed feature hash areas. The results from 

the experiments in this thesis show that it is possible to perform successful targeted adversarial attacks 

in a black-box scenario without computing any feature importance and the experiments show that 

targeted adversarial attacks can succeed if the input vectors are of a computed feature hash. 

The first defensive strategy was to try and identify anomalous data at test time through the use of 

heatmaps. The intuition behind the defence was that as the target malicious Zero-day file was not 

modified in anyway, the majority of the file’s features should lean towards malicious with the 

adversarial trigger features overwhelming the classification and misclassifying the file as benign. The 

idea was that the heatmap could be used to identify the features which contribute to the 

misclassification, and if there was an obvious anomaly within the feature importance (majority lean 

towards malicious but a small amount overwhelmingly pulls toward benign), the file would be 

quarantined for further examination. Unfortunately, the heatmap approach did not work visually for 

examining a one-dimensional plot.  

The defence was modified from examining feature importance to evaluating the activation weights of 

the neurons from the penultimate layer of the model. The activation weights from the penultimate 

layer were examined as they contain all of the encoded data from the previous layers. The intuition 

behind the approach was that the activation weights of the target Zero-day file would differ 

significantly from the target benign activation weights from the test files, as the Zero-day file had not 

been modified and should lean more towards the activation weight values of the malicious class. It 

was found to be possible to identify on average ~80% of the target Zero-day files from the combined 
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targeted poisoning attacks by examining the activation weights of the neurons from the penultimate 

layer. The formula for detecting suspicious files was if six or more neurons were outside two MADs 

from the average activation weights of the test dataset, that file is suspicious and should be 

quarantined for further examination. A benefit of the MAD defence over other defences which 

remove poisoned data from the training set by identifying outliers is that the MAD defence does not 

require a clean dataset to generate the average activation weight values to perform the defence. The 

defence was shown to be successful when the average activation weights were generated on both 

clean and poisoned datasets. 

7.3 Future Work 

The proposed defensive technique which evaluated the activation weights from the last hidden layer is 

not able to identify targeted poisoning attacks when the attack succeeds with such a high proficiency 

to mask itself completely within the chosen target class. Future work for this research would 

concentrate on preventing the targeted adversarial attacks, which are successfully camouflaged within 

the target class and cannot be detected at test time by examining the activation weights. 

Some additional experiments which were not performed as they were out of scope for this research 

include testing the training time defensive strategies utilised in the watermark attack paper on the 

targeted adversarial attacks performed in this research. It would be interesting to see if they can be 

detected at the training stage without removing a significant amount of genuine benign training data. 

Another experiment would be to see if the watermark attack can be detected at test time using the two 

MAD defence proposed in this thesis. Another defence for the watermark attack may be performed 

pre-emptively by hashing all the data vectors used for training. If the attacker is not able to distinguish 

which features contribute to the model’s detection as the hash cannot be reversed, would it still be 

possible for the watermark attack to succeed? 

The poisoning defence which has been integrated into the IBM Adversarial Robustness Toolbox did 

not function correctly when trying to identify poisoned samples in the MLP EMBER dataset. The 

poisoning defence has a set limit of 5,000 and the MLP EMBER dataset contains 50,000 samples. In 

the future, additional experiments which compare the efficacy of the poisoning defence in the IBM 

Toolbox and the MAD defence will be compared once a workaround for the 5,000 data limit has been 

developed. 

Other areas of interest include investigating adversarial attacks and defences for ML software utilised 

in critical infrastructure and the defence industry. Defence and critical infrastructure are pivotal in for 

the well-being and safety of a nation. ML is being utilised in these areas in a variety of ways, from 

utilising ML security systems (e.g., malware detection, intrusion detection systems) to protect critical 

infrastructure or in the development of weapons, drones, and other military applications. 
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9 Appendix A – Machine Learning Model Code 

EMBER GBDT Code 

def optimize_model(data_dir): 

    """ 

    Run a grid search to find the best LightGBM parameters 

    """ 

    # Read data 

    X_train, y_train = read_vectorized_features(data_dir, subset="train") 

 

    # Filter unlabeled data 

    train_rows = (y_train != -1) 

 

    # read training dataset 

    X_train = X_train[train_rows] 

    y_train = y_train[train_rows] 

 

    # score by roc auc 

    # we're interested in low FPR rates, so we'll consider only the AUC for FPRs in [0,5e-3] 

    score = make_scorer(roc_auc_score, max_fpr=5e-3) 

 

    # define search grid 

    param_grid = { 

        'boosting_type': ['gbdt'], 

        'objective': ['binary'], 

        'num_iterations': [500, 1000], 

        'learning_rate': [0.005, 0.05], 

        'num_leaves': [512, 1024, 2048], 

        'feature_fraction': [0.5, 0.8, 1.0], 

        'bagging_fraction': [0.5, 0.8, 1.0] 

    } 

    model = lgb.LGBMClassifier(boosting_type="gbdt", n_jobs=-1, silent=True) 

 

    # each row in X_train appears in chronological order of "appeared" 

    # so this works for progrssive time series splitting 

    progressive_cv = TimeSeriesSplit(n_splits=3).split(X_train) 

 

    grid = GridSearchCV(estimator=model, cv=progressive_cv, param_grid=param_grid, 

scoring=score, n_jobs=1, verbose=3) 

    grid.fit(X_train, y_train) 

 

    return grid.best_params_ 

 

 

def train_model(data_dir, params={}): 

    """ 

    Train the LightGBM model from the EMBER dataset from the vectorized features 

    """ 

    # update params 

    params.update({"application": "binary"}) 

 

    # Read data 

    X_train, y_train = read_vectorized_features(data_dir, "train") 
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    # Filter unlabeled data 

    train_rows = (y_train != -1) 

 

    # Train 

    lgbm_dataset = lgb.Dataset(X_train[train_rows], y_train[train_rows]) 

    lgbm_model = lgb.train(params, lgbm_dataset) 

    #lgbm_model = lgb.fit(params, lgbm_dataset) 

 

    return lgbm_model 

 

EMBER MLP Code 

def train_model(X_train, X_test, y_train, y_test, virus_sha256): 

    model = simple_multilayer.create_model( 

        input_shape=(X_train.shape[1], ),  

        input_dropout=0.05,  

        hidden_dropout=0.1, 

        hidden_layers=[2048, 1024, 512, 256, 10]  

    ) 

    model.fit(X_train, y_train, 

              batch_size=128, 

              epochs=100, 

              verbose=1, 

              callbacks=[ 

                  EarlyStopping( patience=20 ), 

                  ModelCheckpoint( '/media/me/My Passport/Models/'+virus_sha256+'_multilayer.h5', 

save_best_only=True), 

                  ReduceLROnPlateau( patience=5, verbose=1)], 

              validation_data=(X_test, y_test)) 

 

     

    model = load_model('/media/me/My Passport/Models/'+virus_sha256+'_multilayer.h5') 

 

    y_pred = model.predict(X_test) 

    roc = roc_auc_score(y_test, y_pred) 

    a,b,c,d,e,f = common.summarize_performance(y_pred, y_test, "Multilayer perceptron")  

 

 

    return b,e,f,model,roc 

10 Appendix B – Experiment Result Tables 

Manually Selected Functions 

“user32.dll” Import Functions 

Five Functions – user32.dll 

‘SetRect’, ‘GetSubMenu’, ‘GetDCEx’, ‘GetMessageTime’, ‘SetWindowRgn’ 
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Training file Unique Library 

Count 

Library 

Function Count 

Function Injection 

Count 

Injection Percentage 

train_features_0.JSONl 12,824 654,156 54,533 8.336% 

train_features_1.JSONl 11,664 590,103 49,572 8.4% 

train_features_2.JSONl 13,655 694,225 57,636 8.302% 

train_features_3.JSONl 16,678 835,414 70,558 8.445% 

train_features_4.JSONl 17,940 1,313,214 64,583 4.917% 

train_features_5.JSONl 11,772 511,952 51,396 10.039% 

Total 84,533 4,599,064 348,278 7.572% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

manual_user32_5_5 0.991 1.764 0.537 99.90235814 98.236 

manual_user32_5_10 0.999 1.952 0.55 99.90298298 98.048 

manual_user32_5_15 0.997 1.883 0.543 99.90653725 98.117 

manual_user32_5_20 0.995 1.914 0.557 99.90367065 98.086 

manual_user32_5_25 0.997 1.946 0.558 99.89786455 98.054 

manual_user32_5_30 1 1.961 0.578 99.90072732 98.039 

manual_user32_5_35 1 2.155 0.6 99.89211274 97.845 

manual_user32_5_40 0.999 1.981 0.596 99.89589024 98.019 

manual_user32_5_45 1 2.152 0.622 99.8941914 97.848 

manual_user32_5_50 0.997 2.111 0.628 99.8889534 97.889 

manual_user32_5_55 0.999 2.182 0.64 99.88439924 97.818 

manual_user32_5_60 1 2.319 0.663 99.88538346 97.681 

manual_user32_5_65 0.998 2.347 0.692 99.88158333 97.653 

manual_user32_5_70 1 2.395 0.705 99.88058659 97.605 

manual_user32_5_75 0.991 2.559 0.749 99.86732209 97.441 

manual_user32_5_80 0.998 2.698 0.769 99.86417246 97.302 

manual_user32_5_85 0.998 3.28 0.833 99.83772575 96.72 

manual_user32_5_90 0.995 3.612 0.874 99.81581328 96.388 

manual_user32_5_95 0.991 5.376 0.931 99.75475833 94.624 

manual_user32_5_100 0.571 58.177 0.999 97.7141671 41.823 

Ten Functions – user32.dll 

'SetRect', 'GetSubMenu', 'GetDCEx', 'GetMessageTime', 'SetWindowRgn', 'SetScrollPos', 

'IntersectRect', 'CallNextHookEx', 'GetDlgItem', 'ReleaseDC' 
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Training file Unique Library 

Count 

Library 

Function Count 

Function Injection 

Count 

Injection Percentage 

train_features_0.JSONl 12,824 654,156 101,528 15.52% 

train_features_1.JSONl 11,664 590,103 92,857 15.735% 

train_features_2.JSONl 13,655 694,225 108,299 15.599% 

train_features_3.JSONl 16,678 835,414 131,789 15.775% 

train_features_4.JSONl 17,940 1,313,214 117,992 8.984% 

train_features_5.JSONl 11,772 511,952 97,274 19% 

Total 84,533 4,599,064 649,739 14.127% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

manual_user32_10_5 0.999 1.695 0.531 99.91032533 98.305 

manual_user32_10_10 0.988 1.813 0.542 99.90556271 98.187 

manual_user32_10_15 1 1.803 0.544 99.90885283 98.197 

manual_user32_10_20 0.999 1.856 0.555 99.90716998 98.144 

manual_user32_10_25 0.998 1.909 0.572 99.89671515 98.091 

manual_user32_10_30 0.999 1.944 0.579 99.89477113 98.056 

manual_user32_10_35 0.997 1.958 0.582 99.90150219 98.042 

manual_user32_10_40 1 1.946 0.599 99.89737914 98.054 

manual_user32_10_45 0.999 2.076 0.624 99.88338406 97.924 

manual_user32_10_50 0.997 2.072 0.634 99.88944858 97.928 

manual_user32_10_55 0.996 2.014 0.65 99.89016454 97.986 

manual_user32_10_60 0.996 2.123 0.672 99.88576935 97.877 

manual_user32_10_65 1 2.349 0.703 99.8737667 97.651 

manual_user32_10_70 0.992 2.21 0.704 99.87626327 97.79 

manual_user32_10_75 0.993 2.452 0.75 99.86222377 97.548 

manual_user32_10_80 0.998 2.684 0.783 99.85117525 97.316 

manual_user32_10_85 0.997 2.93 0.832 99.84456597 97.07 

manual_user32_10_90 0.992 3.439 0.877 99.81800112 96.561 

manual_user32_10_95 0.992 5.349 0.935 99.7390699 94.651 

manual_user32_10_100 0 100 1 97.49084004 0 
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“shell32.dll” Import Functions 

Five Functions – shell32.dll 

‘ShellExecuteA’, ‘SHGetFolderPathA’, ‘ShellExecuteExA’, ‘SHFileOperationA’, 

‘ShellMessageBoxW’ 

Training file Unique Library 

Count 

Library 

Function Count 

Function Injection 

Count 

Injection Percentage 

train_features_0.JSONl 7,187 33,299 31,351 94.149% 

train_features_1.JSONl 6,304 28,970 27,989 96.613% 

train_features_2.JSONl 7,447 34,450 32,645 94.760% 

train_features_3.JSONl 9,537 40,372 41,885 103.747% 

train_features_4.JSONl 11,584 78,278 52,666 67.280% 

train_features_5.JSONl 5,691 26,453 25,257 95.478% 

Total 47,750 241,822 211,793 87.582% 

 

Attack Name FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

manual_shell32_5_5 1 1.791 0.526 99.90990048 98.209 

manual_shell32_5_10 0.998 1.795 0.539 99.90831316 98.205 

manual_shell32_5_15 1 1.789 0.537 99.91043297 98.211 

manual_shell32_5_20 1 1.864 0.544 99.9071337 98.136 

manual_shell32_5_25 0.997 1.917 0.56 99.90339206 98.083 

manual_shell32_5_30 0.994 1.959 0.56 99.89858747 98.041 

manual_shell32_5_35 0.998 2.001 0.571 99.90563369 97.999 

manual_shell32_5_40 0.997 1.873 0.576 99.90451775 98.127 

manual_shell32_5_45 1 2.031 0.596 99.90170271 97.969 

manual_shell32_5_50 1 2.059 0.6 99.89913858 97.941 

manual_shell32_5_55 0.996 2.138 0.622 99.89766369 97.862 

manual_shell32_5_60 0.999 2.106 0.628 99.89214973 97.894 

manual_shell32_5_65 0.998 2.391 0.657 99.88851385 97.609 

manual_shell32_5_70 0.996 2.288 0.665 99.88793105 97.712 

manual_shell32_5_75 0.999 2.431 0.683 99.88038944 97.569 

manual_shell32_5_80 0.994 2.974 0.728 99.85943153 97.026 

manual_shell32_5_85 0.997 2.919 0.766 99.85234237 97.081 

manual_shell32_5_90 0.993 3.661 0.818 99.82451533 96.339 

manual_shell32_5_95 0.991 5.045 0.895 99.75306615 94.955 

manual_shell32_5_100 0.965 34.63 0.992 98.95937595 65.37 
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Ten Functions – shell32.dll 

'ShellExecuteA', 'SHGetFolderPathA', 'ShellExecuteExA', 'SHFileOperationA', 

'ShellMessageBoxW', 'FindExecutableA', 'ShellAboutA', 'SHGetDataFromIDListA', 

'SHGetDiskFreeSpaceA', 'SHCreateShellItem' 

Training file Unique Library 

Count 

Library 

Function Count 

Function Injection 

Count 

Injection Percentage 

train_features_0.JSONl 7,187 33,299 66,988 201.171% 

train_features_1.JSONl 6,304 28,970 59,308 204.722% 

train_features_2.JSONl 7,447 34,450 69,552 201.892% 

train_features_3.JSONl 9,537 40,372 89,093 220.680% 

train_features_4.JSONl 11,584 78,278 110,061 140.602% 

train_features_5.JSONl 5,691 26,453 53,497 202.234% 

Total 47,750 241,822 448,499 185.466% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

manual_shell32_10_5 1 1.914 0.528 99.90698587 98.086 

manual_shell32_10_10 0.998 1.938 0.543 99.90482298 98.062 

manual_shell32_10_15 1 1.867 0.545 99.90235401 98.133 

manual_shell32_10_20 0.999 1.982 0.553 99.90067669 98.018 

manual_shell32_10_25 0.999 1.91 0.566 99.9027826 98.09 

manual_shell32_10_30 0.999 1.924 0.576 99.89568811 98.076 

manual_shell32_10_35 0.994 2.174 0.594 99.89542627 97.826 

manual_shell32_10_40 0.999 2.016 0.586 99.89464113 97.984 

manual_shell32_10_45 0.998 2.064 0.605 99.89176835 97.936 

manual_shell32_10_50 0.995 2.18 0.612 99.89388337 97.82 

manual_shell32_10_55 1 2.238 0.627 99.88926653 97.762 

manual_shell32_10_60 1 2.351 0.647 99.88536494 97.649 

manual_shell32_10_65 1 2.325 0.666 99.88691268 97.675 

manual_shell32_10_70 0.999 2.46 0.683 99.88018014 97.54 

manual_shell32_10_75 0.997 2.512 0.712 99.87590608 97.488 

manual_shell32_10_80 0.999 2.759 0.741 99.86618962 97.241 

manual_shell32_10_85 0.99 3.164 0.78 99.8480135 96.836 

manual_shell32_10_90 0.997 3.619 0.833 99.82736403 96.381 

manual_shell32_10_95 0.991 6.251 0.917 99.73005722 93.749 

manual_shell32_10_100 0.81 53.969 0.997 98.30671245 46.031 
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“advapi32.dll” Import Functions 

Five Functions – advapi32.dll 

‘GetUserNameA’, CloseServiceHandle’, CryptHashData’, ‘RegDeleteKeyA’, ‘RegFlushKey’ 

Training file Unique Library 

Count 

Library 

Function Count 

Function Injection 

Count 

Injection Percentage 

train_features_0.JSONl 12,576 159,639 57,040 35.73% 

train_features_1.JSONl 15,956 237,016 74,859 31.583% 

train_features_2.JSONl 16,272 227,814 75,675 33.217% 

train_features_3.JSONl 14,039 159,156 62,642 39.358% 

train_features_4.JSONl 15,801 217,846 72,561 33.308% 

train_features_5.JSONl 9,910 116,957 45,195 38.642% 

Total 84,554 1,118,428 387,972 34.689% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

manual_advapi32_5_5 0.997 1.842 0.538 99.90636527 98.158 

manual_advapi32_5_10 1 1.819 0.537 99.9080867 98.181 

manual_advapi32_5_15 1 1.87 0.56 99.90581686 98.13 

manual_advapi32_5_20 0.999 1.867 0.552 99.91025671 98.133 

manual_advapi32_5_25 1 1.969 0.574 99.89481628 98.031 

manual_advapi32_5_30 0.994 1.9 0.571 99.90211657 98.1 

manual_advapi32_5_35 0.999 1.871 0.578 99.90620146 98.129 

manual_advapi32_5_40 0.995 1.791 0.583 99.90244471 98.209 

manual_advapi32_5_45 0.999 2.008 0.601 99.90469535 97.992 

manual_advapi32_5_50 0.995 1.959 0.612 99.90514259 98.041 

manual_advapi32_5_55 0.997 2.047 0.638 99.89600354 97.953 

manual_advapi32_5_60 0.996 2.203 0.659 99.89161551 97.797 

manual_advapi32_5_65 0.996 2.137 0.661 99.89306434 97.863 

manual_advapi32_5_70 0.997 2.3 0.689 99.88887363 97.7 

manual_advapi32_5_75 0.999 2.463 0.727 99.88226514 97.537 

manual_advapi32_5_80 1 2.648 0.762 99.87081377 97.352 

manual_advapi32_5_85 0.994 2.898 0.792 99.86369187 97.102 

manual_advapi32_5_90 0.998 3.404 0.853 99.83717186 96.596 

manual_advapi32_5_95 0.989 5.364 0.918 99.77490468 94.636 

manual_advapi32_5_100 0.419 56.358 0.998 98.14491437 43.642 
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Ten Functions – advapi32.dll 

'GetUserNameA', 'CloseServiceHandle', 'CryptHashData', 'RegDeleteKeyA', 'RegFlushKey', 

'StartServiceA', 'ControlService', 'AddAce', 'RegConnectRegistryW', 'CreateProcessAsUserW' 

Training file Unique Library 

Count 

Library 

Function Count 

Function Injection 

Count 

Injection Percentage 

train_features_0.JSONl 12,576 159,639 118,403 74.169% 

train_features_1.JSONl 15,956 237,016 153,272 64.667% 

train_features_2.JSONl 16,272 227,814 155,620 68.310% 

train_features_3.JSONl 14,039 159,156 131,162 82.410% 

train_features_4.JSONl 15,801 217,846 150,030 68.869% 

train_features_5.JSONl 9,910 116,957 93,456 79.906% 

Total 84,554 1,118,428 801,943 71.702% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

manual_advapi32_10_5 0.996 1.797 0.534 99.90283649 98.203 

manual_advapi32_10_10 1 1.773 0.551 99.90875651 98.227 

manual_advapi32_10_15 0.999 1.813 0.555 99.90870546 98.187 

manual_advapi32_10_20 0.997 1.928 0.555 99.90637989 98.072 

manual_advapi32_10_25 0.996 1.841 0.569 99.91028406 98.159 

manual_advapi32_10_30 0.998 1.951 0.586 99.9029045 98.049 

manual_advapi32_10_35 0.999 1.935 0.585 99.89508652 98.065 

manual_advapi32_10_40 0.994 2.08 0.594 99.90153695 97.92 

manual_advapi32_10_45 0.998 1.945 0.606 99.89935235 98.055 

manual_advapi32_10_50 0.993 2.118 0.618 99.89860348 97.882 

manual_advapi32_10_55 0.999 1.982 0.643 99.89675165 98.018 

manual_advapi32_10_60 0.997 2.301 0.663 99.89119558 97.699 

manual_advapi32_10_65 0.996 2.456 0.678 99.88695771 97.544 

manual_advapi32_10_70 1 2.51 0.706 99.88131724 97.49 

manual_advapi32_10_75 1 2.801 0.74 99.87840738 97.199 

manual_advapi32_10_80 0.997 2.756 0.764 99.87405457 97.244 

manual_advapi32_10_85 0.999 3.047 0.81 99.85872836 96.953 

manual_advapi32_10_90 0.995 3.68 0.856 99.8236588 96.32 

manual_advapi32_10_95 0.993 4.564 0.923 99.78234111 95.436 

manual_advapi32_10_100 0.993 51.452 0.998 97.57522374 48.548 
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“msvcrt.dll” Import Functions 

Five Functions – msvcrt.dll 

‘strcmp’, ‘__P__environ’, ‘_read’, ‘isctype’, and ‘memchr’ 

Training file Unique Library 

Count 

Library 

Function Count 

Function Injection 

Count 

Injection Percentage 

train_features_0.JSONl 5,231 159,937 24,350 15.22% 

train_features_1.JSONl 4,202 130,416 18,684 14.326% 

train_features_2.JSONl 5,778 183,830 25,890 14.083% 

train_features_3.JSONl 5,777 192,425 25,667 13.338% 

train_features_4.JSONl 5,230 176,556 23,237 13.161% 

train_features_5.JSONl 7,138 225,072 31,917 14.18% 

Total 33,356 1,068,236 149,745 14.017% 

 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

manual_msvcrt_5_5 1 1.812 0.533 99.90669428 98.188 

manual_msvcrt_5_10 1 1.8 0.544 99.90637742 98.2 

manual_msvcrt_5_15 0.999 1.736 0.528 99.90444305 98.264 

manual_msvcrt_5_20 0.998 1.784 0.53 99.90882077 98.216 

manual_msvcrt_5_25 0.998 1.836 0.541 99.90876486 98.164 

manual_msvcrt_5_30 0.993 1.793 0.547 99.90714237 98.207 

manual_msvcrt_5_35 0.998 1.841 0.549 99.90493044 98.159 

manual_msvcrt_5_40 0.997 1.831 0.546 99.9060563 98.169 

manual_msvcrt_5_45 0.996 1.858 0.541 99.90589833 98.142 

manual_msvcrt_5_50 0.994 1.818 0.546 99.90607513 98.182 

manual_msvcrt_5_55 0.994 1.82 0.552 99.89533784 98.18 

manual_msvcrt_5_60 1 1.813 0.564 99.90433013 98.187 

manual_msvcrt_5_65 0.998 1.888 0.561 99.89730125 98.112 

manual_msvcrt_5_70 0.998 1.948 0.574 99.89955739 98.052 

manual_msvcrt_5_75 0.997 1.842 0.571 99.89618596 98.158 

manual_msvcrt_5_80 0.997 2.044 0.591 99.89331908 97.956 

manual_msvcrt_5_85 0.997 1.927 0.602 99.88853725 98.073 

manual_msvcrt_5_90 0.998 2.262 0.638 99.87940372 97.738 

manual_msvcrt_5_95 1 2.8 0.691 99.85315427 97.2 

manual_msvcrt_5_100 0.997 4.114 0.802 99.75700525 95.886 



 

  Page | 171 

Ten Functions – msvcrt.dll 

'strcmp', '__p__environ', '_read', '_isctype', 'memchr', '__p__fmode', '__getmainargs', '_cexit', 

'atexit', and '_assert’ 

Training file Unique Library 

Count 

Library 

Function Count 

Function Injection 

Count 

Injection Percentage 

train_features_0.JSONl 5,231 159,937 46,412 29.018% 

train_features_1.JSONl 4,202 130,416 36,373 27.889% 

train_features_2.JSONl 5,778 183,830 50,169 27.29% 

train_features_3.JSONl 5,777 192,425 48,871 25.397% 

train_features_4.JSONl 5,230 176,556 45,193 25.596% 

train_features_5.JSONl 7,138 225,072 64,476 28.646% 

Total 33,356 1,068,236 291,494 27.287% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

manual_msvcrt_10_5 0.998 1.864 0.542 99.90674445 98.136 

manual_msvcrt_10_10 0.996 1.832 0.538 99.90611006 98.168 

manual_msvcrt_10_15 0.996 1.814 0.528 99.90828948 98.186 

manual_msvcrt_10_20 0.999 1.784 0.54 99.9072734 98.216 

manual_msvcrt_10_25 0.997 1.804 0.535 99.90921441 98.196 

manual_msvcrt_10_30 0.997 1.798 0.538 99.90191497 98.202 

manual_msvcrt_10_35 0.998 1.847 0.545 99.89805365 98.153 

manual_msvcrt_10_40 0.998 1.888 0.543 99.90330687 98.112 

manual_msvcrt_10_45 1 1.782 0.534 99.90429628 98.218 

manual_msvcrt_10_50 0.996 1.795 0.547 99.90214127 98.205 

manual_msvcrt_10_55 1 1.867 0.551 99.9026623 98.133 

manual_msvcrt_10_60 0.998 1.787 0.55 99.90680335 98.213 

manual_msvcrt_10_65 0.999 1.886 0.558 99.90406463 98.114 

manual_msvcrt_10_70 0.993 1.972 0.573 99.90437755 98.028 

manual_msvcrt_10_75 0.997 1.86 0.568 99.89257589 98.14 

manual_msvcrt_10_80 0.999 2.044 0.587 99.89521826 97.956 

manual_msvcrt_10_85 0.998 2.123 0.611 99.88620192 97.877 

manual_msvcrt_10_90 0.998 2.291 0.638 99.87449242 97.709 

manual_msvcrt_10_95 0.997 2.649 0.68 99.84857023 97.351 

manual_msvcrt_10_100 0.996 4.623 0.806 99.74560355 95.377 
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Randomly Selected Functions 

“user32.dll” Import Functions 

Five Functions – user32.dll 

'SetCursor', 'GetSystemMetrics', 'GetDesktopWindow', 'TrackPopupMenu', 'ClientToScreen' 

Training file Unique Library 

Count 

Library Function 

Count 

Function Injection 

Count 

Injection 

Percentage 

train_features_0.JSONl 12,824 654,156 42,939 6.564% 

train_features_1.JSONl 11,664 590,103 39,515 6.696% 

train_features_2.JSONl 13,655 694,225 46,239 6.660% 

train_features_3.JSONl 16,678 835,414 56,176 6.724% 

train_features_4.JSONl 17,940 1,313,214 48,533 3.695% 

train_features_5.JSONl 11,772 511,952 42,643 8.329% 

Total 84,533 4,599,064 276,045 6.002% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

random_user32_5_5 0.993 1.927 0.549 99.90532528 98.073 

random_user32_5_10 0.999 1.784 0.537 99.904929 98.216 

random_user32_5_15 0.998 1.805 0.542 99.90532947 98.195 

random_user32_5_20 1 1.915 0.561 99.89477319 98.085 

random_user32_5_25 0.998 1.867 0.563 99.8972514 98.133 

random_user32_5_30 0.999 1.95 0.569 99.8949143 98.05 

random_user32_5_35 1 1.895 0.574 99.89260108 98.105 

random_user32_5_40 0.997 2.065 0.601 99.88584482 97.935 

random_user32_5_45 0.999 2.025 0.603 99.88949437 97.975 

random_user32_5_50 0.997 2.052 0.621 99.87827024 97.948 

random_user32_5_55 1 2.211 0.639 99.87199413 97.789 

random_user32_5_60 0.997 2.308 0.659 99.87576517 97.692 

random_user32_5_65 1 2.331 0.68 99.8701682 97.669 

random_user32_5_70 0.999 2.413 0.691 99.8624431 97.587 

random_user32_5_75 0.994 2.491 0.715 99.85279526 97.509 

random_user32_5_80 1 2.747 0.764 99.83588854 97.253 

random_user32_5_85 0.998 3.227 0.811 99.82681944 96.773 

random_user32_5_90 0.998 3.631 0.857 99.79327915 96.369 

random_user32_5_95 0.99 5.934 0.931 99.71186741 94.066 

random_user32_5_100 0.569 48.914 0.998 98.41913879 51.086 
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Ten Functions – user32.dll 

'SetCursor', 'GetSystemMetrics', 'GetDesktopWindow', 'TrackPopupMenu', 'ClientToScreen', 

'CloseClipboard', 'PeekMessageA', 'GetDlgItem', 'BeginPaint', 'EmptyClipboard' 

Training file Unique Library 

Count 

Library Function 

Count 

Function Injection 

Count 

Injection Percentage 

train_features_0.JSONl 12,824 654,156 87,294 13.344% 

train_features_1.JSONl 11,664 590,103 81,266 13.771% 

train_features_2.JSONl 13,655 694,225 95,805 13.800% 

train_features_3.JSONl 16,678 835,414 115,694 13.848% 

train_features_4.JSONl 17,940 1,313,214 110,488 8.413% 

train_features_5.JSONl 11,772 511,952 87,960 17.181% 

Total 84,533 4,599,064 578,507 12.578% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

random_user32_10_5 1 1.735 0.53 99.91302554 98.265 

random_user32_10_10 0.996 1.785 0.54 99.90602313 98.215 

random_user32_10_15 1 1.96 0.549 99.89885751 98.04 

random_user32_10_20 1 1.891 0.546 99.89833258 98.109 

random_user32_10_25 0.999 1.854 0.557 99.89558585 98.146 

random_user32_10_30 0.996 2.028 0.573 99.88481099 97.972 

random_user32_10_35 1 1.973 0.59 99.88033077 98.027 

random_user32_10_40 0.998 2.001 0.602 99.88344186 97.999 

random_user32_10_45 0.997 2.013 0.614 99.87800445 97.987 

random_user32_10_50 0.995 2.131 0.627 99.8757583 97.869 

random_user32_10_55 0.996 2.152 0.645 99.86890763 97.848 

random_user32_10_60 0.997 2.221 0.664 99.87108499 97.779 

random_user32_10_65 1 2.268 0.68 99.86566299 97.732 

random_user32_10_70 0.995 2.396 0.71 99.85938025 97.604 

random_user32_10_75 1 2.593 0.748 99.84678703 97.407 

random_user32_10_80 0.994 2.946 0.788 99.83933104 97.054 

random_user32_10_85 0.998 3.018 0.815 99.8203463 96.982 

random_user32_10_90 1 3.905 0.878 99.78895287 96.095 

random_user32_10_95 0.983 5.9 0.936 99.71879549 94.1 

random_user32_10_100 0.264 60.938 0.999 98.03389002 39.062 
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“shell32.dll” Import Functions 

Five Functions – shell32.dll 

'ExtractIconW', 'SHGetDesktopFolder', 'FreeIconList', 'ExtractAssociatedIconExW', 

'DllRegisterServer' 

Training file Unique Library 

Count 

Library Function 

Count 

Function 

Injection Count 

Injection Percentage 

train_features_0.JSONl 7,187 33,299 35,044 105.240% 

train_features_1.JSONl 6,304 28,970 30,545 105.436% 

train_features_2.JSONl 7,447 34,450 36,046 104.632% 

train_features_3.JSONl 9,537 40,372 46,617 115.468% 

train_features_4.JSONl 11,584 78,278 50,252 64.196% 

train_features_5.JSONl 5,691 26,453 27,576 104.245% 

Total 47,750 241,822 226,080 93.490% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

random_shell32_5_5 0.999 1.782 0.531 99.91016627 98.218 

random_shell32_5_10 0.995 1.875 0.54 99.90711866 98.125 

random_shell32_5_15 0.998 1.805 0.543 99.90723896 98.195 

random_shell32_5_20 1 1.86 0.543 99.91042568 98.14 

random_shell32_5_25 0.996 1.797 0.551 99.90494492 98.203 

random_shell32_5_30 1 1.87 0.557 99.90508319 98.13 

random_shell32_5_35 0.998 1.907 0.575 99.90237536 98.093 

random_shell32_5_40 0.997 1.99 0.579 99.90400275 98.01 

random_shell32_5_45 0.999 1.977 0.592 99.90038427 98.023 

random_shell32_5_50 0.997 1.999 0.603 99.89790463 98.001 

random_shell32_5_55 0.998 2.055 0.614 99.89354255 97.945 

random_shell32_5_60 0.997 2.049 0.628 99.89605343 97.951 

random_shell32_5_65 0.996 2.283 0.646 99.88918586 97.717 

random_shell32_5_70 0.997 2.455 0.674 99.88255586 97.545 

random_shell32_5_75 0.998 2.668 0.698 99.87591172 97.332 

random_shell32_5_80 1 2.641 0.72 99.87056884 97.359 

random_shell32_5_85 1 3.12 0.761 99.8526714 96.88 

random_shell32_5_90 0.999 3.308 0.803 99.83860904 96.692 

random_shell32_5_95 0.999 5.068 0.896 99.77321202 94.932 

random_shell32_5_100 0.944 21.954 0.991 99.15268717 78.046 
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Ten Functions – shell32.dll 

'ExtractIconW', 'SHGetDesktopFolder', 'FreeIconList', 'ExtractAssociatedIconExW', 

'DllRegisterServer', 'ShellMessageBoxA', 'ShellAboutW', 'ExtractIconExW', 

'SHBrowseForFolderA', 'SHCreateProcessAsUserW' 

Training file Unique Library 

Count 

Library Function 

Count 

Function 

Injection Count 

Injection Percentage 

train_features_0.JSONl 7,187 33,299 68,775 206.537% 

train_features_1.JSONl 6,304 28,970 60,872 210.120% 

train_features_2.JSONl 7,447 34,450 71,714 208.168% 

train_features_3.JSONl 9,537 40,372 92,215 228.413% 

train_features_4.JSONl 11,584 78,278 106,198 135.667% 

train_features_5.JSONl 5,691 26,453 54,884 207.477% 

Total 47,750 241,822 454,658 188.013% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

random_shell32_10_5 1 1.734 0.53 99.90545204 98.266 

random_shell32_10_10 1 1.849 0.545 99.90021741 98.151 

random_shell32_10_15 0.998 1.795 0.549 99.9145051 98.205 

random_shell32_10_20 0.997 1.867 0.54 99.90825568 98.133 

random_shell32_10_25 1 1.832 0.554 99.90514235 98.168 

random_shell32_10_30 0.999 1.862 0.559 99.89999392 98.138 

random_shell32_10_35 1 1.924 0.57 99.90513604 98.076 

random_shell32_10_40 0.999 1.871 0.578 99.90597338 98.129 

random_shell32_10_45 1 2.026 0.593 99.89424616 97.974 

random_shell32_10_50 0.995 2.08 0.614 99.89824944 97.92 

random_shell32_10_55 0.997 2.122 0.609 99.89443564 97.878 

random_shell32_10_60 0.996 2.232 0.635 99.88967818 97.768 

random_shell32_10_65 1 2.327 0.644 99.88521883 97.673 

random_shell32_10_70 0.996 2.388 0.671 99.87998321 97.612 

random_shell32_10_75 0.997 2.547 0.702 99.87900054 97.453 

random_shell32_10_80 0.998 2.596 0.722 99.87299072 97.404 

random_shell32_10_85 0.998 2.968 0.76 99.85894896 97.032 

random_shell32_10_90 0.991 3.576 0.817 99.83345983 96.424 

random_shell32_10_95 0.991 4.8 0.89 99.77162415 95.2 

random_shell32_10_100 0.944 21.954 0.991 99.15268717 78.046 
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“advapi32.dll” Import Functions 

Five Functions – advapi32.dll 

'CryptAcquireContextA', 'AdjustTokenPrivileges', 'SetSecurityDescriptorDacl', 

'GetSecurityDescriptorDacl', 'UnlockServiceDatabase' 

Training file Unique Library 

Count 

Library 

Function Count 

Function Injection 

Count 

Injection Percentage 

train_features_0.JSONl 12,576 159,639 56,433 35.350% 

train_features_1.JSONl 15,956 237,016 68,782 29.019% 

train_features_2.JSONl 16,272 227,814 70,998 31.164% 

train_features_3.JSONl 14,039 159,156 64,071 40.256% 

train_features_4.JSONl 15,801 217,846 73,433 33.708% 

train_features_5.JSONl 9,910 116,957 44,959 38.440% 

Total 84,554 1,118,428 378,676 33.857% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

random_advapi32_5_5 0.998 1.747 0.533 99.90913011 98.253 

random_advapi32_5_10 0.998 1.781 0.544 99.90669201 98.219 

random_advapi32_5_15 1 1.894 0.563 99.90528096 98.106 

random_advapi32_5_20 1 1.917 0.555 99.90621429 98.083 

random_advapi32_5_25 1 1.941 0.56 99.90894943 98.059 

random_advapi32_5_30 0.995 1.879 0.581 99.90207243 98.121 

random_advapi32_5_35 0.998 1.872 0.588 99.90633421 98.128 

random_advapi32_5_40 0.999 1.994 0.598 99.90085319 98.006 

random_advapi32_5_45 0.999 1.777 0.605 99.90421925 98.223 

random_advapi32_5_50 1 1.971 0.626 99.90039098 98.029 

random_advapi32_5_55 0.998 2.038 0.645 99.90303338 97.962 

random_advapi32_5_60 0.999 1.977 0.644 99.89555245 98.023 

random_advapi32_5_65 1 2.078 0.678 99.8968961 97.922 

random_advapi32_5_70 0.993 2.202 0.704 99.89492523 97.798 

random_advapi32_5_75 0.997 2.373 0.726 99.89142925 97.627 

random_advapi32_5_80 0.997 2.757 0.769 99.87881958 97.243 

random_advapi32_5_85 1 2.883 0.794 99.8619755 97.117 

random_advapi32_5_90 0.99 3.542 0.866 99.83851064 96.458 

random_advapi32_5_95 0.994 5.588 0.93 99.77036701 94.412 

random_advapi32_5_100 0.539 63.209 0.999 96.91026982 36.791 
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Ten Functions – advapi32.dll 

'CryptAcquireContextA', 'AdjustTokenPrivileges', 'SetSecurityDescriptorDacl', 

'GetSecurityDescriptorDacl', 'UnlockServiceDatabase', 'GetAce', 'EqualSid', 'InitializeAcl', 

'CloseServiceHandle', 'CryptAcquireContextW' 

Training file Unique Library 

Count 

Library Function 

Count 

Function 

Injection Count 

Injection Percentage 

train_features_0.JSONl 12,576 159,639 114,085 71.464% 

train_features_1.JSONl 15,956 237,016 139,051 58.667% 

train_features_2.JSONl 16,272 227,814 143,771 63.108% 

train_features_3.JSONl 14,039 159,156 129,613 81.437% 

train_features_4.JSONl 15,801 217,846 145,436 66.760% 

train_features_5.JSONl 9,910 116,957 91,261 78.029% 

Total 84,554 1,118,428 763,217 68.240% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

random_advapi32_10_5 0.999 1.809 0.538 99.90965663 98.191 

random_advapi32_10_10 0.998 1.807 0.544 99.90645946 98.193 

random_advapi32_10_15 0.997 1.837 0.552 99.90745487 98.163 

random_advapi32_10_20 0.997 1.805 0.562 99.91021818 98.195 

random_advapi32_10_25 0.997 1.925 0.576 99.90211576 98.075 

random_advapi32_10_30 0.995 1.834 0.565 99.90755966 98.166 

random_advapi32_10_35 0.999 1.988 0.586 99.89921748 98.012 

random_advapi32_10_40 0.998 1.863 0.595 99.908428 98.137 

random_advapi32_10_45 1 1.887 0.607 99.90483515 98.113 

random_advapi32_10_50 0.998 1.987 0.62 99.90047496 98.013 

random_advapi32_10_55 0.995 1.833 0.632 99.89978298 98.167 

random_advapi32_10_60 0.998 1.84 0.645 99.90276438 98.16 

random_advapi32_10_65 0.997 2.127 0.671 99.89205745 97.873 

random_advapi32_10_70 1 2.411 0.69 99.89050188 97.589 

random_advapi32_10_75 0.992 2.286 0.726 99.88938385 97.714 

random_advapi32_10_80 0.994 2.485 0.765 99.88257789 97.515 

random_advapi32_10_85 0.993 3.015 0.804 99.8610278 96.985 

random_advapi32_10_90 0.994 3.284 0.851 99.84825922 96.716 

random_advapi32_10_95 0.986 5.378 0.927 99.77633088 94.622 

random_advapi32_10_100 0.353 65.769 0.999 97.22543733 34.231 
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“msvcrt.dll” Import Functions 

Five Functions – msvcrt.dll 

'strftime', '_iob', '_assert', '__dllonexit', 'memcmp' 

Training file Unique Library 

Count 

Library 

Function Count 

Function Injection 

Count 

Injection Percentage 

train_features_0.JSONl 5,231 159,937 20,883 13.057% 

train_features_1.JSONl 4,202 130,416 15,103 11.580% 

train_features_2.JSONl 5,778 183,830 21,254 11.561% 

train_features_3.JSONl 5,777 192,425 21,331 11.085% 

train_features_4.JSONl 5,230 176,556 18,981 10.750% 

train_features_5.JSONl 7,138 225,072 24,429 10.853% 

Total 33,356 1,068,236 121,981 11.418% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

random_msvcrt_5_5 0.998 1.763 0.525 99.90527376 98.237 

random_msvcrt_5_10 0.998 1.763 0.525 99.90527342 98.237 

random_msvcrt_5_15 0.998 1.755 0.528 99.9073185 98.245 

random_msvcrt_5_20 1 1.811 0.529 99.90563236 98.189 

random_msvcrt_5_25 0.997 1.854 0.534 99.9070214 98.146 

random_msvcrt_5_30 1 1.807 0.529 99.90367091 98.193 

random_msvcrt_5_35 0.997 1.695 0.533 99.91055077 98.305 

random_msvcrt_5_40 0.994 1.844 0.538 99.90713388 98.156 

random_msvcrt_5_45 1 1.774 0.536 99.90566008 98.226 

random_msvcrt_5_50 0.999 1.782 0.54 99.90566768 98.218 

random_msvcrt_5_55 0.998 1.838 0.543 99.90597869 98.162 

random_msvcrt_5_60 0.995 1.888 0.545 99.90630827 98.112 

random_msvcrt_5_65 0.996 1.8 0.55 99.90256226 98.2 

random_msvcrt_5_70 1 1.961 0.553 99.8986999 98.039 

random_msvcrt_5_75 0.998 1.885 0.548 99.903245 98.115 

random_msvcrt_5_80 0.998 1.896 0.565 99.90174819 98.104 

random_msvcrt_5_85 1 1.988 0.578 99.89862215 98.012 

random_msvcrt_5_90 1 2.069 0.594 99.88850946 97.931 

random_msvcrt_5_95 1 2.426 0.625 99.87477996 97.574 

random_msvcrt_5_100 0.998 2.876 0.689 99.84286116 97.124 
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Ten Functions – msvcrt.dll 

'strftime', '_iob', '_assert', '__dllonexit', 'memcmp', '_controlfp', 'localeconv', 'memchr', 

'malloc', '??1type_info@@UAE@XZ' 

Training file Unique Library 

Count 

Library Function 

Count 

Function 

Injection Count 

Injection Percentage 

train_features_0.JSONl 5,231 159,937 40,027 25.026% 

train_features_1.JSONl 4,202 130,416 30,581 23.448% 

train_features_2.JSONl 5,778 183,830 42,601 23.174% 

train_features_3.JSONl 5,777 192,425 42,096 21.876% 

train_features_4.JSONl 5,230 176,556 37,674 21.338% 

train_features_5.JSONl 7,138 225,072 50,678 22.516% 

Total 33,356 1,068,236 243,657 22.809% 

 

Attack Name 
FPR 1% FNR 1% Threshold 1% ROC Detection Rate 1% 

random_msvcrt_10_5 0.998 1.854 0.53 99.90285945 98.146 

random_msvcrt_10_10 0.998 1.772 0.532 99.90829745 98.228 

random_msvcrt_10_15 1 1.73 0.518 99.90968703 98.27 

random_msvcrt_10_20 0.996 1.684 0.523 99.90835256 98.316 

random_msvcrt_10_25 0.993 1.737 0.524 99.90470328 98.263 

random_msvcrt_10_30 1 1.773 0.528 99.90857437 98.227 

random_msvcrt_10_35 0.999 1.764 0.532 99.90814562 98.236 

random_msvcrt_10_40 0.998 1.798 0.551 99.89949646 98.202 

random_msvcrt_10_45 0.996 1.888 0.543 99.90375495 98.112 

random_msvcrt_10_50 0.999 1.816 0.552 99.90200585 98.184 

random_msvcrt_10_55 0.995 1.897 0.553 99.8973074 98.103 

random_msvcrt_10_60 0.999 1.877 0.555 99.90479969 98.123 

random_msvcrt_10_65 0.999 1.935 0.558 99.90049668 98.065 

random_msvcrt_10_70 0.997 1.839 0.56 99.9013925 98.161 

random_msvcrt_10_75 0.995 1.947 0.585 99.89818232 98.053 

random_msvcrt_10_80 0.998 1.844 0.578 99.89975858 98.156 

random_msvcrt_10_85 0.999 2.242 0.615 99.88516363 97.758 

random_msvcrt_10_90 1 2.34 0.63 99.87929476 97.66 

random_msvcrt_10_95 0.999 2.766 0.677 99.85757581 97.234 

random_msvcrt_10_100 0.998 4.346 0.786 99.76336991 95.654 
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