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ARTICLE

Multi-scale mapping of Australia’s terrestrial and
blue carbon stocks and their continental and
bioregional drivers
Lewis Walden 1, Oscar Serrano 2,3, Mingxi Zhang1, Zefang Shen 1, James Z. Sippo4, Lauren T. Bennett 5,

Damien T. Maher 4, Catherine E. Lovelock 6, Peter I. Macreadie 7, Connor Gorham3, Anna Lafratta3,

Paul S. Lavery 3, Luke Mosley8, Gloria M. S. Reithmaier 9, Jeffrey J. Kelleway10, Sabine Dittmann 11,

Fernanda Adame 12, Carlos M. Duarte 13, John Barry Gallagher 14, Pawel Waryszak 7, Paul Carnell 7,

Sabine Kasel 5, Nina Hinko-Najera5, Rakib Hassan15,16, Madeline Goddard 17, Alice R. Jones18 &

Raphael A. Viscarra Rossel 1✉

The soil in terrestrial and coastal blue carbon ecosystems is an important carbon sink.

National carbon inventories require accurate assessments of soil carbon in these ecosystems

to aid conservation, preservation, and nature-based climate change mitigation strategies.

Here we harmonise measurements from Australia’s terrestrial and blue carbon ecosystems

and apply multi-scale machine learning to derive spatially explicit estimates of soil carbon

stocks and the environmental drivers of variation. We find that climate and vegetation are the

primary drivers of variation at the continental scale, while ecosystem type, terrain, clay

content, mineralogy and nutrients drive subregional variations. We estimate that in the top

0–30 cm soil layer, terrestrial ecosystems hold 27.6 Gt (19.6–39.0 Gt), and blue carbon

ecosystems 0.35 Gt (0.20–0.62 Gt). Tall open eucalypt and mangrove forests have the

largest soil carbon content by area, while eucalypt woodlands and hummock grasslands have

the largest total carbon stock due to the vast areas they occupy. Our findings suggest these

are essential ecosystems for conservation, preservation, emissions avoidance, and climate

change mitigation because of the additional co-benefits they provide.
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The soil in terrestrial and blue carbon (C) ecosystems (BCE),
represents a substantial store of organic C globally, with a
total stock of approximately 1500 to 2400 Gt, including the

~32 Gt in BCE1,2. This stock is larger than that in terrestrial
vegetation and the atmosphere combined, making soil organic
carbon (SOC) sequestration and protection in terrestrial and BCE
(seagrasses, tidal marshes, and mangroves) an important nature-
based solution to mitigate climate change3. Increasing SOC also
provides other co-benefits listed as priorities under the Sustain-
able Development Goals setup by the United Nations Educa-
tional, Scientific and Cultural Organization (UNESCO), such as
improved ecosystem health, biodiversity, food security, water
quality, and coastal protection4–7.

Understanding the environmental drivers of SOC variation in
terrestrial and BCE is imperative to anticipate potential losses
posed by stressors and identify opportunities in climate mitiga-
tion strategies. Changing climate and disturbance regimes can
threaten SOC stocks in both terrestrial and BCE8–10. For example,
the summer of 2019/20 saw an estimated 5.8 million hectares of
temperate forest burnt, which equates to ~21% of their area in
southeast Australia11. Depending on their severity and frequency,
wildfires can influence forest SOC stocks12,13 with the greatest
effects indicated after short-interval high-severity fires14. An
improved understanding of the drivers of SOC variability and
stocks can inform forest management that prioritises C dense
hotspots vulnerable to changes in disturbance regimes and
climate.

BCE are among the most vulnerable and threatened habitats to
C loss from climate change, coastal development, sea level rise,
and deforestation15,16. Future increases in temperature and
rainfall variability with a changing climate may also cause
changes in the distribution and the processes that alter C storage
in BCE17. Although some BCE may transiently increase their
SOC stocks with increased warming18, they are vulnerable to
extreme weather events19,20. For example, ref. 21 estimated the
loss of 0.54–2.45 Mt C from the seagrass beds of Shark Bay,
Western Australia, following a marine heatwave. Similar to ter-
restrial ecosystems, the SOC stocks of BCE are highly vulnerable
to both climate change and anthropogenic disturbances. There-
fore, it is critical to develop accurate spatially explicit estimates of
SOC stocks for these systems using consistent methods across
terrestrial and BCE.

Land management practices can alter SOC stocks22,23. Activ-
ities that disrupt the soil and increase respiration and erosion
release the SOC stored24. In Australia, land use change from
native systems to cropping has released an estimated 51% of the
SOC stored in the top 0.1 m of soil25 and conversion of forest to
cultivation has caused a decrease in SOC of around 30%26. In
BCE, the loss of seagrass meadows exposes the underlying
organic-rich soils to erosional processes27. The conversion of
mangroves to aquaculture ponds or changes in the tidal flow
within estuaries can result in significant C loss28,29. The historical
losses of SOC in terrestrial and BCE have incited interest in
protecting and restoring the vegetation and the underlying SOC
to help mitigate climate change30,31.

In terrestrial environments, soils are typically well drained with
C inputs accumulating from biomass above and within the soil
profile. BCEs are at least periodically inundated, affecting their
physical and chemical soil properties and making the SOC stored
in these habitats distinct from terrestrial environments. The
position of the soil in the intertidal zone and the prevalence of
flooding in BCEs alters the soil water regimes, drainage, and
oxygen availability32 which drive the accumulation and long-term
storage of SOC33,34. Soils with low oxygen availability will have
reduced capacity for microbes to mineralise the C stored in
saturated saline sediments, slowing SOC decomposition35.

Moreover, position in the intertidal zone will affect the deposition
of SOC and minerals in sediments from terrestrial and oceanic
inputs34. The combination of these processes enhance the rate of
C accumulation in BCEs, reduce C-mineralisation and loss of C
from the soil profile, thereby increasing total SOC storage and
making BCEs a long-term store of SOC. Therefore, it is crucial
that baselines of continental SOC are derived consistently and
include both terrestrial ecosystems and BCEs.

Spatially explicit estimates of SOC stocks in a country’s ter-
restrial and BCE are needed for conservation and restoration
practices, informing national inventories, and climate mitigation
policies such as Nationally Determined Contributions under the
United Nations Framework Convention on Climate Change36.
Spatially explicit estimates of SOC stock currently exist for ter-
restrial habitats with global maps37, as well as country-specific
estimates from Australia38, the USA39, France40, China41,
Tunisia42, and other countries. There is a continental map of
Australian BCE stocks43, and also a global map of SOC stocks
under mangroves44. However, we have found no literature on the
combined spatial modelling of terrestrial and BCE anywhere in
the world. We need harmonised datasets and consistent model-
ling of SOC stocks across both ecosystems to improve our
understanding of its variation at different spatial scales. The
connectivity between terrestrial and marine ecosystems45 requires
a holistic understanding of relationships and processes occurring
both inland and along the coast to aid conservation strategies.

Here, we collated and harmonised the most comprehensive
terrestrial and BCE dataset of SOC stocks in Australia. We
modelled the stocks using a multi-scale machine learning method
with climatic, edaphic, mineralogical, vegetation, terrain, and
oceanographic predictors. Our aims were to (i) enhance our
understanding of continental and regional environmental drivers
of SOC stocks in Australia, (ii) estimate the 0–30-cm layer SOC
stocks in Australia, its ecosystem and land uses to identify hot-
spots for conservation, and (iii) digitally map the SOC stocks and
its uncertainty across Australia at a spatial resolution of 90 m to
inform nature-based strategies for climate change mitigation.

Results
We harmonised data from 6,767 sites representing Australia’s
terrestrial ecosystems and BCE and calculated the SOC stocks for
the 0–30-cm layer. It is the largest and most comprehensive
dataset currently available and represents all soil types, ecosys-
tems, and land uses in Australia. We then setup a model to
represent the soil and environmental controls and the spatial
distribution of SOC in terrestrial and BCE. This model describes
SOC as a function of factors related to its formation and dis-
tribution: edaphic, climatic, biotic, terrain, and oceanographic
(see Methods)38,46,47. SOC varies at different scales over the
landscape48. To capture the scale dependence of SOC across
Australia, we decomposed elevation and the topographic wetness
index (TWI), with the discrete wavelet transform (DWT; see
Methods)49,50 (Fig. 1), and used the multi-scale data in our
model. We used the regression-tree method CUBIST to relate
29 spatially explicit proxies of the factors in the model to the SOC
stocks.

The regression-tree algorithm further aids with the multi-scale
understanding of the drivers of SOC and its spatial distribution
because it segments the data into subsets based on a series of rules
with conditional statements (see Methods). Within each segment,
the characteristics of the predictors are similar. Then, within each
division, a least-squares regression predicts the response51. We
analysed the conditions and linear models to describe the drivers
of SOC variation in terrestrial and BCE at the continental scale.
We used the soil, climate, vegetation, multi-scale terrain, and
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oceanographic variables within each partition to discern the
regional drivers of SOC (see Methods). We validated the models
with a tenfold cross-validation, by bootstrapping and using an
independent test set, which showed the models were accurate
(Table 1).

Regionalising Australia’s terrestrial and BCE. CUBIST partitioned
the data into 31 distinct rule sets that regionalise SOC and
characterise the spatial variation in SOC stocks across Australia.
The model separated the data into contiguous regions closely
aligned with habitat type and climate zone, representing

increasing SOC stocks (Fig. 2a). To aid interpretation, we
grouped the rules into eight (Fig. 2) (see Methods). For example,
forests were in rules representing larger SOC stocks, whereas
shrublands and grasslands were in rulesets that represent smaller
stocks (Fig. 2a). In BCE, seagrasses occurred in rulesets repre-
senting soil with smaller SOC stocks. In contrast, mangroves and
tidal marshes were generally in rulesets that represent larger
stocks alongside terrestrial forests (Fig. 2a, b). The spatial
arrangement of the rules across Australia shows that the model
adequately regionalised the dataset into bioclimatic regions
(Fig. 2c).

Fig. 1 Topographic wetness index (TWI) of Australia and wavelet multiresolution decomposition. a The original TWI map (90m × 90m pixels) and
b panel inset showing a magnified section of northern New South Wales. c–f show the levels of wavelet decomposition (4–7) depicting shorter to longer
range spatial variation. Level four represents ~720 m, level five~1440 m, level six~2880m, and level seven represents ~5760m.

Table 1 Summary statistics for the model validation.

Mean 1st quartile 3rd quartile Min Max

Training set cross-validation
ρc 0.76 0.75 0.77 0.72 0.80
RMSE 0.20 0.20 0.21 0.18 0.22
Out-of-bag validation
ρc 0.73 0.73 0.74 0.71 0.77
RMSE 0.21 0.21 0.21 0.19 0.22
Test set validation
ρc 0.78 0.77 0.78 0.76 0.8
RMSE 0.20 0.2 0.21 0.19 0.21
ME −0.01 −0.02 −0.009 −0.03 −0.004
SDE 0.2 0.2 0.21 0.19 0.21

Assessment with the concordance correlation coefficient (ρc), root mean squared error (RMSE), mean error (ME), and the standard deviation of error (SDE). Values of SOC (t ha−1) were log10
transformed.
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Environmental drivers of SOC in terrestrial and BCE. We used
a state factor model to represent the continental and regional dri-
vers of the spatial distribution of SOC in terrestrial ecosystems and
BCE. The model describes the soil as the state, which is a function
of biotic, climate, edaphic, oceanographic and terrain factors that
define the system. For the modelling, these factors are substituted
with spatially explicit proxies, which we used as predictors in our
model (seeMethods). To determine the drivers and to digitally map
the SOC stocks, CUBIST partitions the data into subsets based on the
a series of rules with conditional statements (see Methods). The
data in each subset (described by a ruleset) is then fitted with an
ordinary linear least-squares regression. To determine the drivers
of the SOC at the continental scale we analysed the predictors used
in all of the conditions and the linear models using the variable
importance from CUBIST (see Methods). The most important driver
of the variation in SOC stocks over Australia is Net primary pro-
ductivity (NPP), which highlights the provision of biomass and C
inputs into the soil in terrestrial and BCE. Solar radiation, rainfall,
and clay content were also key drivers of continental SOC stocks
(Fig. 3a). However, at this scale, terrain attributes were less
important. In BCE, the oceanographic predictors, known to vary
with SOC52, were relatively unimportant. Reasons might be the
relative sparseness of the data in BCE, and other variables affecting
SOC across terrestrial and coastal systems, such as elevation, clay
content, and mineralogy, helped to proxy the effects of oceano-
graphic predictors. The continental analysis provides an expected
general overview of the drivers of SOC variation in terrestrial and
BCE in Australia. However, we must describe the region-specific
drivers of SOC to understand C dynamics in these ecosystems
better to aid management strategies for the preservation of current
SOC stocks for climate change mitigation.

To describe the regional drivers we used the regression
coefficient of the linear model fitted to each regionalised subset

of the data that formed the ruleset. We found that multi-scale
terrain attributes were consistently strong drivers of regional SOC
variation (Fig. 3b). In rule one, which is associated with the least
SOC stock and represents mostly grassland and shrubland
ecosystems (Fig. 2a), elevation at a medium scale (of approximately
1500 m) (Fig. 1; see Methods), NPP, and rainfall were the most
important drivers of SOC variation (Fig. 3b). In rule two, associated
with the next largest SOC stock, represents woodlands in terrestrial
ecosystems and seagrasses in BCE (Fig. 2). NPP and rainfall drive
SOC variaion here, but clay content and the clay mineral smectite
were also key drivers. In rule three, associated with grasslands and
woodlands of semi-arid Australia, medium-scale elevation and
kaolinite have the greatest influence on SOC variation, with mean
annual rainfall and the Prescott index also important. Rules four
and five had a mix of terrestrial and BCE data. The Prescott index,
smectite, and total phosphorus, had the greatest influence on SOC
variation in rule four, which includes data that spans terrestrial and
BCE almost equally. The SOC stock in rule five, with the smallest
number of sites, was predominantly controlled by short–medium
scale elevation and kaolinite. Tidal marshes and mangroves
occurred mainly in rule six (Fig. 2). Here, clay content, kaolinite,
and longer scale TWI (Fig. 1; see Methods) drove the variation in
SOC stocks. Rule seven is associated with the largest SOC stock and
represents forests, mangroves, seagrass, and tidal marshes. In
addition to medium–longer scale elevation (Fig. 1; see Methods),
annual rainfall in terrestrial and wave height in BCE drive variation
in SOC stocks. Finally, in rule eight, associated with the largest SOC
stock and comprising mostly temperate forests (Fig. 2a), elevation
and evapotranspiration drive the variation in SOC stocks (Fig. 3b).

Digital mapping of SOC stocks and their uncertainty. We used
the CUBIST model to digitally map the SOC stock in Australia’s

Fig. 2 Continental soil carbon stocks by CUBIST rule. a Boxplot of the eight CUBIST rulesets, separated by ecosystem type. Center line represents median SOC
(t ha−1), upper and lower quartiles represented by the box limits, and whiskers extend to the smallest and largest observations within 1.5 times the
interquartile range. b Violin plot with red point representing median SOC (t ha−1) content of each ruleset highlighting the increase in SOC with rule
number, c spatial distribution of data collated in this study and the rulesets which they occupy.
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terrestrial and BCE (Fig. 4; see Methods). The model’s validation
statistics, which we used to assess predictability (Table 1), show
that the model was unbiased and accurate. We estimate that the
average SOC stock in Australia, including terrestrial and BCE, in
the 0–30 cm layer is 36.2 t ha−1 (95% CI 25.7–51.3 t ha−1). Esti-
mates range from 7.6 t ha−1 in the arid regions of central Aus-
tralia to 582 t ha−1 in the temperate regions of southeastern
Australia and western Tasmania (Fig. 4). Aggregating the mapped
estimates to the continental scale, we estimate total SOC stocks to
be 27.9 Gt (95% CI 19.8–39.6 Gt) (Fig. 4a). The mean stock in
BCE was 61.8 t ha−1 (95% CI 35.4–108.8 t ha−1), ranging from
17.1 t ha−1 in regions with temperate climates to 313 t ha−1 in
regions with subtropical climates. We estimate BCE’s 0–30 cm
total SOC to be 0.35 Gt C (95% CI 0.2–0.6 Gt).

The uncertainties of the estimates were smaller where the
sampling was denser and larger where the sampling was sparse.
For example, estimates of SOC stock in seagrass areas in southern
Australia are more uncertain than those in Western Australia
(Fig. 4b). The dataset was sparser in the center of Australia,
resulting in larger uncertainties (Fig. 4b).

Soil organic carbon stocks and vegetation. The soil under
Australia’s tall open eucalypt forests had the largest mean SOC
stock with 138.1 t ha−1 (95% CI 100–189 t ha−1). Conversely, the
soil under acacia woodlands, which occur in arid and semi-arid
climates, had the lowest mean SOC stocks with 21.5 t ha−1 (95%
CI 14.0–32.5 t ha−1). Rainforests and tall open eucalypt forests
were the only ecosystems with mean SOC stocks that exceeded
100 t ha−1 (Table 2). Open eucalypt (10–30 m canopy height) and
low open eucalypt forests (<10-m canopy height) contain rela-
tively less SOC with a mean of 87.4 t ha−1 (95% CI
63.8–119.6 t ha−1) and 78.5 t ha−1 (95% CI 55.3–110.6 t ha−1),
respectively. Acacia woodlands, hummock grasslands, and euca-
lypt woodlands had less than a quarter of the mean SOC stocks of
tall eucalypt forests. However, given the large spatial extent of

these ecosystems, eucalypt woodlands and hummock grasslands
had the largest total SOC stocks (combined 30% of the total SOC
stocks; Table 2). Acacia shrublands and Tussock grasslands occur
above soils with relatively small mean stocks of 25.3 and
26.3 t ha−1 respectively. However, these systems also occupy a
large extent (831,374 and 1,410,611 km2, respectively). They store
more SOC than soil under tall open eucalypt forests and rain-
forests combined, which hold the largest mean stocks per unit
area but occupy relatively smaller areas (Table 2).

BCE have mean SOC stocks comparable to some of Australia’s
most C dense terrestrial forests. Our mean estimates of SOC stocks
for seagrasses, tidal marshes and mangroves are 50.0 (95% CI
27.1–94.1 t ha−1), 64.7 (95% CI 37.4–111.6 t ha−1), and 79.3 t ha−1

(95% CI 47.7–131.7 t ha−1), respectively (Table 2). Tidal marshes
have the greatest total SOC stocks of the BCE and contribute most to
Australia’s SOC stocks with 0.14 Gt (95% CI 0.08–0.24 Gt, Table 2).
Blue carbon ecosystems occupy approximately 54,500 km2 (0.7% of
the terrestrial and BCE area) in Australia, and contribute
approximately 1.3% (0.35 Gt C, 0.2–0.6 Gt 95% CI) of the total
stocks. The SOC stocks in BCE are among the most variable, and
estimates are the most uncertain compared to all other ecosystems.

Soil organic carbon stocks and land use. Production from irri-
gated agriculture and plantations had the largest mean stocks
with 52.93 t ha−1 (95% CI 42.25–66.28% CI, Table 3). Areas
under production from relatively natural environments, which
include native grazing had the smallest SOC stock, with an
average stock of 32.41 t ha−1 (95% CI 23.55–44.65 t ha−1).
However, because they span ~3,722,989 km2, the soil under these
production systems stores 12.11 Gt (95% CI 8.8–16.68 Gt), which
is ~43% of Australia’s total SOC stocks. The soil used for dryland
cropping and agriculture occupies around 625,630 km2, and its
estimated mean SOC stock is 49.9 t ha−1 (95% CI
39.68–62.66 t ha−1) and its total stock is 3.13 Gt (95% CI
2.49–3.93 Gt).

Fig. 3 Continental and regional drivers of SOC variation derived from the CUBIST model. a Continental control of variation represented with variable
importance (%) and b Regional controls of SOC variation derived by regression coefficients from each of the distinct CUBIST ruleset (from 1–8). Rulesets
correspond to those in Fig. 2. Rules represented by larger numbers depict data with greater SOC stocks. The size of the regression coefficient indicates the
effect, and the sign (positive or negative) indicates its direction.
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Discussion
We used spatial machine learning to model SOC stocks in Aus-
tralia’s terrestrial and BCE simultaneously. An advantage of the
approach is that it leads to knowledge-discovery as it enabled us
to derive an exhaustive and consistent understanding of the
drivers of SOC variation across the continent and to compare the

like-for-like stocks from both ecosystems. The data-driven
machine learning we performed separated the country into
eight distinct bioclimatic regions, where the within-region var-
iation in climate and vegetation was similar. The model’s regional
‘blocking’ of climate and vegetation revealed the underlying
regional drivers of SOC variation. Thus, the model accounted for
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pedogenic processes involving SOC in Australia’s terrestrial and
BCE.

We showed that the continental controls of SOC were above-
ground productivity and climate. Regionally, the drivers of SOC
variation were multi-scale terrain and soil properties specific to
the model-derived bioregions. The drivers of SOC variation in
forest, with large mean SOC stocks, were small-scale elevation,

evapotranspiration, and temperature, where a higher elevation
and evapotranspiration affect biomass production, the C inputs
into the soil and decomposition rates53,54. It has been reported
that temperature and rainfall, coastal geomorphology (tides,
sediment accretion, and nutrient deposition), and the above-
ground biomass affect SOC variation in BCE55–57. Our modelling
shows that elevation, clay content, and mineralogy are key drivers

Fig. 4 Predicted SOC stocks and uncertainty for Australia’s terrestrial and BCEs. a soil organic carbon (SOC) stock (t ha−1) across Australia’s terrestrial
and BCE. Panels are examples of SOC estimates for each of the states and territories of Australia highlighted on the continental map; Northern Territory
(NT), Western Australia (WA), South Australia (SA), Tasmania (TAS), Victoria (VIC), New South Wales (NSW), and Queensland (QLD). In the top
panels, we show estimates for BCE for three states (WA, NT, QLD). To highlight the BCE estimates, we show the terrestrial predictions in grayscale;
b Standardised 95% CI across Australia’s terrestrial and BCE to represent uncertainty. Panels are examples of uncertainty for each of the states and
territories of Australia; Northern Territory (NT), Western Australia (WA), South Australia (SA), Tasmania (TAS), Victoria (VIC), New South Wales
(NSW), and Queensland (QLD). In the top panels, we show uncertainty for BCE for three states (WA, NT, QLD). To highlight the BCE uncertainty, we show
the terrestrial uncertainty in grayscale.

Table 2 Estimates of mean (t ha−1) and Australia-wide (Gt C) SOC stocks in major vegetation groups with 95% confidence
interval of prediction.

Habitat Mean SOC Lower Upper Total stocks Lower Upper Area

(t ha−1) 95% CI 95% CI (Gt C) 95% CI 95% CI (km2)

Terrestrial
Eucalypt tall open forests 138.12 100.23 189.23 0.57 0.41 0.78 41,214
Rainforests and vine thickets 136.05 95.20 193.06 0.39 0.28 0.56 28,837
Eucalypt open forests 87.46 63.81 119.56 1.95 1.42 2.66 221,640
Eucalypt low open forests 78.53 55.34 110.65 0.09 0.06 0.12 10,978
Low-closed forests and tall closed shrublands 71.82 51.42 99.96 0.14 0.10 0.19 19,167
Heathlands 61.92 43.82 87.30 0.24 0.17 0.34 38,340
Cleared, non-native vegetation 49.85 39.55 62.70 5.07 4.02 6.38 1,014,135
Eucalypt woodlands 45.45 33.51 61.37 4.09 3.02 5.53 897,881
Other forests and woodlands 43.26 30.45 61.21 0.23 0.16 0.32 52,200
Melaleuca forests and woodlands 42.59 29.65 60.85 0.41 0.28 0.58 95,269
Callitris forests and woodlands 42.21 33.59 52.62 0.14 0.11 0.18 33,512
Tropical eucalypt woodlands/grasslands 41.93 29.24 59.66 0.64 0.45 0.91 151,998
Other grasslands, herblands, sedgelands, and rushlands 39.62 27.58 56.91 0.42 0.30 0.61 106,820
Mallee woodlands and shrublands 37.50 25.94 54.23 0.76 0.52 1.09 200,991
Eucalypt open woodlands 33.16 23.67 46.38 1.23 0.88 1.72 368,843
Mallee open woodlands and sparse mallee shrublands 32.85 23.00 46.87 0.04 0.03 0.06 11,748
Casuarina forests and woodlands 32.12 21.92 47.25 0.09 0.06 0.14 29,152
Other shrublands 30.43 20.08 46.47 0.33 0.22 0.51 108,948
Acacia forests and woodlands 27.59 19.38 39.28 1.13 0.80 1.61 409,106
Tussock grasslands 26.37 18.62 37.52 1.30 0.92 1.86 492,832
Other open woodlands 25.34 17.60 36.48 0.33 0.23 0.47 127,876
Hummock grasslands 25.26 15.62 40.92 3.58 2.21 5.79 1,410,633
Acacia shrublands 25.26 16.67 38.34 2.11 1.39 3.20 831,374
Chenopod shrublands, samphire shrublands, and forblands 23.59 16.71 33.44 1.15 0.82 1.63 487,038
Acacia open woodlands 21.35 14.04 32.50 0.66 0.43 1.00 306,021
BCE
Mangroves 79.28 47.71 131.69 0.08 0.05 0.13 10,180
Tidal marsh 64.68 37.43 111.61 0.14 0.08 0.25 22,014
Seagrass 49.97 27.06 94.06 0.11 0.06 0.21 22,322

Values are derived from the National Vegetation Information System (NVIS), version 687.

Table 3 Estimates of mean (t ha−1) and total (Gt C) SOC stocks in primary land use types88 with 95% confidence interval of
prediction.

Land use Mean SOC Lower Upper Total stocks Lower Upper Area

(t ha−1) 95% CI 95% CI (Gt C) 95% CI 95% CI (km2)

Conservation and natural environments 36.82 24.68 55.11 10.97 7.36 16.43 2,970,293
Production from relatively natural environments 32.41 23.55 44.65 12.11 8.80 16.68 3,722,989
Production from dryland agriculture and plantations 49.90 39.68 62.66 3.13 2.49 3.93 625,630
Production from irrigated agriculture and plantations 52.93 42.25 66.28 0.26 0.21 0.33 49,034
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of SOC variation in tidal marshes and mangroves. BCE with more
clay content in the soil had more SOC, possibly due to enhanced
C protection and fluvial depositions of SOC in sediments56,58.
Tidal marshes and mangroves had more SOC when wave height
was lower, which suggests these systems sit higher on the inter-
tidal zone or within protected areas with minimal wave-induced
erosion to remove SOC and a greater propagation of above-
ground biomass59. Similarly, SOC increased with total phos-
phorus in tidal marshes where increased nutrient deposition from
adjacent terrestrial systems in the upper tidal areas increases
labile SOC60,61. The understanding gained with our approach
enhances understanding of SOC and its variation in terrestrial
and BCE, and could inform regional and ecosystem-specific
conservation and management strategies that contribute to cli-
mate change mitigation through the preservation of current SOC
stocks and associated avoided emissions.

Most of the SOC in Australia resides in the vast semi-arid and
arid regions under grasslands and shrublands. The mean SOC
stocks in these soils is small, but the large area these systems
occupy results in a sizeable total stock. Soils with the largest mean
SOC stocks occur in eucalypt tall open forests and rainforests
with high annual rainfall, which is conducive to biomass pro-
duction and cooler temperatures that slow decomposition62, and
therefore should constitute hotspots for conservation to avoid
emissions from degraded ecosystems and to preserve the plethora
of additional co-benefits they provide. For example, the indirect
effects of climate change also threaten these systems through
increases in the frequency and severity of disturbance events, like
drought and wildfires11,14,63, which affect the potential for SOC
replenishment through impacts on post-fire vegetation recovery
and productivity64. In BCE mangroves had the largest mean SOC
stock; however, these systems are at risk of C loss from defor-
estation and degradation65,66, rising sea levels, and extreme
weather events causing tree mortality16,67. Our results show a
need for enhanced awareness and the importance of sustainable
management for preserving vulnerable areas with large SOC
stocks to prevent future losses.

The research presented here builds on that of Viscarra Rossel
et al.38 and Serrano et al.43, making our findings the most com-
prehensive and consistent continental investigations of SOC in
Australia. In addition, our results provide the most current spa-
tially explicit estimates of SOC stocks in terrestrial and BCE and
their uncertainty. Viscarra Rossel et al.38 estimated the terrestrial
SOC stock of Australia to be 24.97 Gt (95% CI 19.04–31.83 Gt).
Our estimate of the total SOC stocks is larger as our model
includes new data from Australia’s temperate forests68 and
BCE43. Including data from68 improved our continental estimates
under eucalypt forests and woodlands. Our estimates of the stock
in these systems (see Supplementary Note 2, Supplementary
Table 2) fall within the confidence intervals of the estimated SOC
stock in their small-scale regional study68.

The measurements of the SOC stock in terrestrial ecosystems
were to a maximum depth of 30 cm, as much of the data comes
from agricultural cropping regions. However, the measurements
of SOC in BCE were to a depth of 100 cm. In our research, we
constrained the modelling to 0–30 cm, rather than implementing
depth functions to extrapolate the terrestrial stocks to 100 cm
(e.g.69) because the main objective of this study was to harmonise
the data to model and compare all ecosystems, and because
extrapolation methods (e.g70) tend to introduce errors in the
modelling. Doing so would have hindered the interpretation of
the drivers of SOC variation across terrestrial and BCE and made
the estimates of their stocks significantly more uncertain.

The uncertainty of our estimates is related to the sampling
density within the different ecosystems—sparse sampling results
in more uncertain estimates (Fig. 4b). For instance, estimates of

SOC under seagrasses were most uncertain because of the sparsity
of data along Australia’s vast coastline. Therefore, future research
and soil surveys to improve baselines and monitoring should
target areas where our maps are most uncertain(Fig. 4b). Addi-
tionally, we should also measure other soil properties (e.g. pH,
clay content, mineralogy) to improve our understanding and
modelling of soil in BCE, including the long-term preservation of
SOC linked to adsorption to mineral surfaces organo-metallic
compounds71,72.

The spatially explicit estimates of SOC stocks and uncertainty we
derived could help update Australia’s national inventory and
improve the accuracy of the continental C balance (i.e., additions and
removals) and its reporting. Our research shows how to derive
consistent, spatially explicit multi-scale SOC models that span ter-
restrial and BCE. The approach also enhances our understanding of
SOC variation and produces accurate baselines of continental SOC
stocks that allow direct comparisons between terrestrial and BCE.
The baselines developed here could provide a reference to more
accurately determine the potential of Australian soil management to
sequester C and mitigate climate change. Future work might deter-
mine changes in SOC from land management and climate change
based on the spatially explicit results from this study.

Methods
Using an environmental correlation methodology, we harmonised and modelled
the SOC stocks in terrestrial and BCE. The approach uses climatic, edaphic, biotic,
multi-scale terrain, and oceanographic variables. Our research builds on that of
ref. 38 by supplementing the dataset with samples from native forests and BCE and
further developing the modelling.

The soil C and bulk density data fromViscarra Rossel et al.38, which represent all of
Australia’s terrestrial ecosystems, soil types, and land uses, were supplemented with
data from native forests68 and tidal marsh, mangrove, and seagrass BCE43. The
updated dataset comprised 6767 sites (Table 4). The additional data were compiled
from a broader range of studies and originated from various depth layers. Terrestrial
SOC data were not measured beyond 30 cm depth, however, BCE were consistently
measured to a metre depth. To reduce the extrapolation and associated error of
predicting to a metre depth in terrestrial ecosystems, where most of the data lies,
predictions were limited to from 0–30 cm. To obtain one estimate of the drivers of
SOC variation and stocks for the 0–30 cm layer at each sampling location the soil data
required harmonisation. We used a similar approach to that described in38. First, we
calculated SOC stock for each layer from the three different datasets:

SOCðt ha�1Þ ¼ OC ´BD ´ ð1� gÞ ð1Þ
where OC is the gravimetric proportion of organic C (%), BD is the bulk density
(g cm3) and g is the gravimetric proportion of gravel (>2mm) in the sample. For the
native forest dataset68, g is the sum of the gravimetric proportions of the coarse
mineral fragments, roots and charcoal. The BCE dataset did not contain gravimetric
gravel content.

We harmonised the data from the different soil depth layers with continuous
depth functions as follows38. Sites with data from two depths were fitted with a log-
log model54, while sites with three or more layers with natural cubic splines73. To
reduce the overestimation of SOC stocks, we constrained the cubic spline function

Table 4 Number of sites in each major ecosystem type used
for spatial modelling.

Ecosystem Number of sites

Terrestrial ecosystems
Cleared non-native (cropping) 4249
Woodlands 786
Grasslands 374
Forests 358
Shrublands and heathlands 133
Blue C ecosystems
Tidal marshes 387
Seagrasses 285
Mangroves 205
Total 6767

Values based on high level grouping of National Vegetation Information System (NVIS).
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to be linear beyond the boundary points of the soil depth C data. The coefficients of
the cubic spline and log-log functions were used to estimate SOC stock at every
centimetre from 0–30 cm to obtain total SOC stock estimates for that layer. The
SOC stocks were positively skewed and were log10 transformed before modelling.

Spatial modelling. To derive spatially explicit estimates of SOC stocks across Aus-
tralia’s terrestrial and BCE, we set up amodel that relates themeasured SOC stocks to the
environmental and multi-scale variables related to the formation and distribution of
SOC. A regression-tree model, CUBIST, was used to estimate SOC in areas with no
available SOC stocks but with environmental variables. We describe the approach below.

Spatially explicit determinants of SOC. Climate, organisms, terrain attributes,
parent material, and for some BCE, oceanographic variables affect the spatial varia-
tion of SOC46,47. Therefore, we compiled a list of 29 spatially explicit data that are
proxies for the environmental factors known to control the variation in SOC both
terrestrially and in BCE10,38,47. We did not include data relating to ecosystem dis-
turbance regimes due to a paucity of consistent disturbance history data across the
continent; also as there has been a reported relatively minor influence in determining
forest SOC68. When necessary, the predictors were resampled to the 90-m grid of the
digital elevation model (DEM) using a bilinear interpolation (Table 5).

Preparation of the spatially explicit predictors. Consistent modelling across all
ecosystems requires that the predictors span terrestrial and BCE. Therefore, we
merged the terrestrial 3-arc second shuttle radar topographic mission (SRTM)
3-arc second DEM with bathymetry data74 to get depth below sea level for the
seagrass and mangrove ecosystems. We used net primary productivity (NPP) that
covers the terrestrial and BCE75. They derived the blue C NPP (seagrasses) with a
vertically generalised production model (VGPM76), and for the terrestrial NPP,
they used MODIS Terra MOD17A377. To account for the variation of SOC due to
oceanographic influence, we included spatially explicit predictors of tidal range,
wave energy and wave height in the models. These layers do not have any
meaningful values for terrestrial ecosystems, so we replaced them with zeros in the
terrestrial extent.

There were no parent material and soil property predictors that covered both
terrestrial and BCE. Thus, we used the terrain, climate, and vegetation predictors
that spanned both ecosystems to extrapolate the soil and parent material predictors
to the BCE extent (see Supplementary Note 1, Supplementary Table 1). Following
Young et al.10, the extent of BCE was derived for each of the habitats from SeaMap
Australia78 and merged into a single file. Seagrass ecosystems are generally poorly
mapped across much of Australia, particularly in the Northern Territory and
northern Western Australia. Therefore, these extents underestimate the northern
seagrass meadows43.

Multi-scale decomposition of terrain attributes. Soil properties, including
organic C, vary at different scales. To capture the scale dependency of SOC in our
modelling, we decomposed elevation and the topographic wetness index (TWI)
with the discrete wavelet transform (DWT)49,50.

To decompose the DEM and TWI, we used a Daubechies wavelet function with
two vanishing moments79. The algorithm starts by applying a high-pass and low-pass
filter to the data to separate its detailed (high frequency) and the smooth (low
frequency) components. The algorithm proceeds with the decomposition by applying
the filters to the smooth components49. We decomposed the data into ten scales and
then used inverse wavelet transform to reconstruct the layer, giving a predictor the
same size and resolution as the initial raster. We used four scales to represent the
short to long-range variation in the models. These decomposed predictors explicitly
account for the multi-scale nature of SOC in our models (Fig. 1).

Modelling of SOC stocks. To model and estimate the SOC stocks in Australia’s
terrestrial and BCE, we used the regression-tree algorithm CUBIST80. CUBIST is a
piecewise linear regression-tree. It partitions the response into subsets where the
predictors have similar characteristics and then applies an ordinary least-squares
regression to the data in those subsets, providing localised estimates. A series of if,
then, else conditions define the rules and data subsets. If a condition is true, regress;
else apply the following rule. These conditions can comprise of single or several
attributes. We describe our implementation below.

Model training and validation. Before modelling, we separated the harmonised
dataset into a test and training set at random, with 70% (4736 samples) of the data
used to train the model. The remaining data (2031 samples) were used as an
independent test set (Table 6). CUBIST has two parameters that need to be optimised,
the number of committees and neighbours. We used the training set to select the
optimal combination of parameters using 10-fold cross-validation and a tuning
grid with five values for committees (2, 5, 10, 15, 20) and four neighbouring
observations (2, 5, 7, 9). We used the root mean squared error (RMSE) to select the
optimal combination of committees and neighbours.

Viscarra Rossel et al. 38 implemented CUBIST-kriging to account for any spatial
correlation of errors in the model. We tested this approach and found no
significant increase in model accuracy or skill (Δρc <0.02, ΔRMSE <0.005). The
small increase in model accuracy and skill suggests that CUBIST and the predictors
used already accounted for both deterministic and random components of the SOC
stock variation in Australia.

Quantifying uncertainty. To quantify the uncertainty of the model estimates, we
used the non-parametric bootstrap approach81. Repeated sampling with the
bootstrap provides independent sets of residuals to asses uncertainty and con-
fidence limits for the estimates. We took 30 bootstrap sets of the training data and

Table 5 Spatially explicit predictors known to influence variation in SOC stocks of terrestrial and BCE in Australia.

Factor Name of proxy variable Resolution (m) Source

Climate Prescott index (PI) 90
Annual rainfall 5000 89

Solar radiation 5000 89

Mean annual temperature 2500 89

Pan evaporation 25000 89

Evapotranspiration 10000 89

Organisms Net primary productivity (NPP) 8000 75

Fraction of photosynthetically active radiation (F-par) 250 90

Relief DEM 90 91

Bathymetry 90 74

Aspect 90
Slope 90
Topographic wetness index (TWI) 90
multi-scale TWI (4 scales) 90
multi-scale DEM (4 scales) 90

Soil and Clay content 90 69

parent material Illite 90 92

Smectite 90 92

Kaolinite 90 92

Soil pH 69

Phosphorus 69

Oceanographic Tidal range 90* CAMRIS Maximum Tidal Range
Wave energy 1000 93

Wave height 90* Australian Region GEOSAT Wave

The resolution of the data source for each predictor is also provided.
*Wave height and tidal range were rasterized to 90-m resolution.
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implemented CUBIST—each bootstrap leaving approximately one-third of the
samples out of the original data (out-of-bag samples). CUBIST was then used to
estimate the SOC stocks of the out-of-bag samples, which provided an additional
evaluation of model performance.

CUBIST was then also validated using the test data. To assess model performance,
we measure bias with the mean error (ME), imprecision with the standard deviation
of the error (SDE), and inaccuracy with the root mean squared error (RMSE).We also
calculated the concordance correlation coefficient (ρc)82, which measures the
difference between measured and estimated values and their deviation from the 1:1
line. The statistic evaluates both imprecision and bias82. A ρc value of 1 denotes
perfect agreement, while values of <0.65 generally suggest poor agreement83.

Model interpretation. The CUBIST model partitioned the dataset in to 31 distinct
rules. However, to aid in interpretation of habitat trends and environmental drivers
of SOC stocks we grouped these in to 8 rules. We averaged the coefficients and
rules sequentially in groups of 4, with the final group consisting of 3 rules. To
evaluate the continental drivers of SOC variation we calculated the overall variable
importance of the CUBIST model from each of the bootstrap sets. A variable
importance function (varImp) within the CARET84 package computes a linear
combination of all the predictor variables used in the conditions and linear models
of each ruleset of the CUBIST model. The function then outputs the variable
importance percentage for each of the predictors.

To determine the regional drivers of SOC stocks we reported the predictor variables
and their regression coefficients for each of the linear models from the rulesets.
Predictors were scaled before assessing the regression coefficients to remove the effect of
units from the rulesets. Predictors with a larger positive or negative regression coefficient
were interpreted as having a greater influence on the regional SOC stocks.

Spatial estimates and digital mapping of SOC stocks. The final SOC prediction
was an average of the 30 bootstrap models, and their 95% confidence intervals
quantified uncertainty. We standardised the 95% intervals by dividing the difference
between the upper and lower bounds by the mean estimates from the bootstraps. The
mean SOC stock estimates and their 95% confidence intervals were on the logarithmic
scale, so we back-transformed them to the original unit using Cox’s method85,86.

Total SOC stocks. We calculated Australia’s total SOC stocks and the stocks in
their habitats and land uses. We estimate total SOC stocks as the sum of the cell
(pixel) values, multiplied by the resolutions (Res) of SOC estimates converted to
hectares and dividing by 109 to convert to gigatonnes (Gt) of C.

SOCðGtÞ ¼ ∑SOCðt ha�1Þ ´Res2
109

ð2Þ
We used the National Vegetation Information System (NVIS) (version 687) and

land use types88 to interpret and evaluate the spatially explicit estimates of SOC
stock. We merged the NVIS layer with the BCE extent to extend the coverage over
BCE. Land use types did not extend to the BCE.

Data availability
The dataset used to replicate the methods and findings from this paper will be available
from Zenodo (https://doi.org/10.5281/zenodo.7787493). The maps of SOC stocks and
uncertainty will be available for download from the Terrestrial Ecosystem Research
Network (TERN) data portal (https://portal.tern.org.au).

Code availability
The code used to complete the analysis will be available upon reasonable request from
the corresponding author.

Received: 11 November 2022; Accepted: 5 May 2023;

References
1. Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12,

3269–3340 (2020).

2. Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth
Environ. 2, 826–839 (2021).

3. Bossio, D. et al. The role of soil carbon in natural climate solutions. Nat.
Sustain. 3, 391–398 (2020).

4. Lal, R. Soil carbon sequestration impacts on global climate change and food
security. Science 304, 1623–1627 (2004).

5. Lal, R. Managing soils and ecosystems for mitigating anthropogenic carbon
emissions and advancing global food security. BioScience 60, 708–721 (2010).

6. Sparling, G., Wheeler, D., Vesely, E.-T. & Schipper, L. What is soil organic
matter worth? J. Environ. Quality 35, 548–557 (2006).

7. Kopittke, P. M. et al. Ensuring planetary survival: the centrality of organic
carbon in balancing the multifunctional nature of soils. Crit. Rev. Environ. Sci.
Technol. 52, 4308–4324 (2022).

8. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055
(2009).

9. Reich, P. B. et al. Synergistic effects of four climate change drivers on
terrestrial carbon cycling. Nature Geoscience 13, 787–793 (2020).

10. Young, M. A. et al. National scale predictions of contemporary and future blue
carbon storage. Sci. Total Environ. 800, 149573 (2021).

11. Boer, M. M., Resco de Dios, V. & Bradstock, R. A. Unprecedented burn area of
Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).

12. Bennett, L. T., Aponte, C., Baker, T. G. & Tolhurst, K. G. Evaluating long-term
effects of prescribed fire regimes on carbon stocks in a temperate eucalypt
forest. For. Ecol. Manag. 328, 219–228 (2014).

13. Bennett, L. T. et al. Assessing fire impacts on the carbon stability of fire-
tolerant forests. Ecol. Appl. 27, 2497–2513 (2017).

14. Fairman, T. A., Nitschke, C. R. & Bennett, L. T. Carbon stocks and stability are
diminished by short-interval wildfires in fire-tolerant eucalypt forests. Forest
Ecol. Manag. 505, 119919 (2022).

15. Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion
and degradation of vegetated coastal ecosystems. PLoS One 7, e43542 (2012).

16. Sippo, J. Z. et al. Coastal carbon cycle changes following mangrove loss.
Limnol. Oceanogr. 65, 2642–2656 (2020).

17. Marbà, N., Krause-Jensen, D., Masqué, P. & Duarte, C. M. Expanding
greenland seagrass meadows contribute new sediment carbon sinks. Sci. Rep.
8, 1–8 (2018).

18. Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon.
One Earth 3, 195–211 (2020).

19. Alongi, D. M. Impacts of climate change on blue carbon stocks and fluxes in
mangrove forests. Forests 13, 149 (2022).

20. de Oliveira Gomes, L. E. et al. Ecosystem carbon losses following a climate-
induced mangrove mortality in Brazil. J. Environ. Manag. 297, 113381 (2021).

21. Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s
largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).

22. Kelleway, J. J. et al. A national approach to greenhouse gas abatement through
blue carbon management. Glob. Environ. Change 63, 102083 (2020).

23. Bondeau, A. et al. Modelling the role of agriculture for the 20th century global
terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

24. Mayer, M. et al. Tamm review: influence of forest management activities on
soil organic carbon stocks: a knowledge synthesis. For. Ecol. Manag. 466,
118127 (2020).

25. Luo, Z., Wang, E. & Sun, O. J. Soil carbon change and its responses to
agricultural practices in Australian agro-ecosystems: a review and synthesis.
Geoderma 155, 211–223 (2010).

26. Murty, D., Kirschbaum, M. U., Mcmurtrie, R. E. & Mcgilvray, H. Does
conversion of forest to agricultural land change soil carbon and nitrogen? a
review of the literature. Glob. Change Biol. 8, 105–123 (2002).

27. Salinas, C. et al. Seagrass losses since mid-20th century fuelled CO2 emissions
from soil carbon stocks. Glob. Change Biol. 26, 4772–4784 (2020).

28. Boone Kauffman, J. et al. The jumbo carbon footprint of a shrimp: carbon
losses from mangrove deforestation. Front. Ecol. Environ. 15, 183–188 (2017).

29. Arias-Ortiz, A. et al. Losses of soil organic carbon with deforestation in
mangroves of Madagascar. Ecosystems 24, 1–19 (2021).

30. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role
of coastal plant communities for climate change mitigation and adaptation.
Nat. Clim. Change 3, 961–968 (2013).

31. Nellemann, C. & Corcoran, E. Blue carbon: the role of healthy oceans in
binding carbon: a rapid response assessment (UNEP/Earthprint, 2009).

Table 6 Summary statistics for the test and training data used to calibrate CUBIST model.

N Mean Median SD Minimum 1st quartile 3rd Quartile Maximum Skew

All data 6767 54.15 42.65 40.65 0.33 27.24 69.94 431.59 2.12
Training 4736 53.46 42.52 39.43 0.51 27.25 68.81 390.26 2.01
Test 2031 55.74 43.04 43.34 0.33 27.13 72.13 431.59 2.28

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00838-x

10 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:189 | https://doi.org/10.1038/s43247-023-00838-x | www.nature.com/commsenv

https://doi.org/10.5281/zenodo.7787493
https://portal.tern.org.au
www.nature.com/commsenv


32. Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A. & Hopkinson, C. S.
Global-change controls on soil-carbon accumulation and loss in coastal
vegetated ecosystems. Nat. Geosci 12, 685–692 (2019).

33. Gorham, C., Lavery, P., Kelleway, J. J., Salinas, C. & Serrano, O. Soil carbon
stocks vary across geomorphic settings in Australian temperate tidal marsh
ecosystems. Ecosystems 24, 319–334 (2021).

34. MacKenzie, R., Sharma, S. & Rovai, A. R. Environmental drivers of blue
carbon burial and soil carbon stocks in mangrove forests. In: Dynamic
sedimentary environments of mangrove coasts, 275–294 (Elsevier, 2021).

35. Chapman, S. K., Hayes, M. A., Kelly, B. & Langley, J. A. Exploring the oxygen
sensitivity of wetland soil carbon mineralization. Biol. Lett. 15, 20180407
(2019).

36. Wiese, L. et al. Countries’ commitments to soil organic carbon in nationally
determined contributions. Clim. Policy 21, 1005–1019 (2021).

37. FAO, I. Global soil organic carbon map (gsocmap) technical report. Food and
Agriculture Organization of the United Nations, Rome (2018).

38. Viscarra Rossel, R. A., Webster, R., Bui, E. N. & Baldock, J. A. Baseline map
of organic carbon in Australian soil to support national carbon accounting
and monitoring under climate change. Glob. Change Biol. 20, 2953–2970
(2014).

39. Guo, Y., Amundson, R., Gong, P. & Yu, Q. Quantity and spatial variability of
soil carbon in the conterminous United States. Soil Sci. Soc. Am. J. 70, 590–600
(2006).

40. Meersmans, J. et al. A high resolution map of french soil organic carbon.
Agron. Sustain. Dev. 32, 841–851 (2012).

41. Yu, D. S. et al. Regional patterns of soil organic carbon stocks in China. J.
Environ. Manage. 85, 680–689 (2007).

42. Bahri, H., Raclot, D., Barbouchi, M., Lagacherie, P. & Annabi, M. Mapping
soil organic carbon stocks in Tunisian topsoils. Geoderma Reg. 30, e00561
(2022).

43. Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots
for climate change mitigation. Nat. Commun. 10, 4313 (2019).

44. Sanderman, J. et al. A global map of mangrove forest soil carbon at 30 m
spatial resolution. Environ. Res. Lett. 13, 055002 (2018).

45. Beger, M. et al. Conservation planning for connectivity across marine,
freshwater, and terrestrial realms. Biol. Conserv. 143, 565–575 (2010).

46. Duarte-Guardia, S. et al. Better estimates of soil carbon from geographical
data: a revised global approach. Mitig. Adapt. Strateg. Glob. Change 24,
355–372 (2019).

47. Mazarrasa, I. et al. Factors determining seagrass blue carbon across bioregions
and geomorphologies. Glob. Biogeochem. Cycles 35, e2021GB006935 (2021).

48. Behrens, T., Schmidt, K., MacMillan, R. A. & Viscarra Rossel, R. A. Multi-
scale digital soil mapping with deep learning. Sci. Rep. 8, 15244 (2018).

49. Lark, R. & Webster, R. Analysis and elucidation of soil variation using
wavelets. Eur. J. Soil Sci. 50, 185–206 (1999).

50. Zhao, R. et al. Identifying localized and scale-specific multivariate controls of
soil organic matter variations using multiple wavelet coherence. Sci. Total
Environ. 643, 548–558 (2018).

51. Viscarra Rossel, R. A. et al. Continental-scale soil carbon composition and
vulnerability modulated by regional environmental controls. Nat. Geosci. 12,
547–552 (2019).

52. Alongi, D. M. et al. Carbon cycling and storage in mangrove forests. Annu.
Rev. Mar. Sci. 6, 195–219 (2014).

53. Hobley, E., Wilson, B., Wilkie, A., Gray, J. & Koen, T. Drivers of soil organic
carbon storage and vertical distribution in eastern australia. Plant Soil 390,
111–127 (2015).

54. Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon
and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

55. Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses.
Nat. Clim. Change 7, 523–528 (2017).

56. Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat.
Clim. Change 8, 534–538 (2018).

57. Twilley, R. R., Rovai, A. S. & Riul, P. Coastal morphology explains global blue
carbon distributions. Front. Ecol. Environ. 16, 503–508 (2018).

58. Kelleway, J. J., Saintilan, N., Macreadie, P. I. & Ralph, P. J. Sedimentary factors
are key predictors of carbon storage in SE Australian saltmarshes. Ecosystems
19, 865–880 (2016).

59. Balke, T., Swales, A., Lovelock, C. E., Herman, P. M. & Bouma, T. J. Limits to
seaward expansion of mangroves: translating physical disturbance
mechanisms into seedling survival gradients. J. Exp. Mar. Biol. Ecol. 467,
16–25 (2015).

60. Sanders, C. J. et al. Elevated rates of organic carbon, nitrogen, and phosphorus
accumulation in a highly impacted mangrove wetland. Geophys. Res. Lett. 41,
2475–2480 (2014).

61. Macreadie, P. I., Allen, K., Kelaher, B. P., Ralph, P. J. & Skilbeck, C. G.
Paleoreconstruction of estuarine sediments reveal human-induced weakening
of coastal carbon sinks. Glob. Change Biol. 18, 891–901 (2012).

62. Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass
carbon stocks and lessons from the world’s most carbon-dense forests. Proc.
Natl. Acad. Sci. USA 106, 11635–11640 (2009).

63. Bowman, D. M., Williamson, G. J., Price, O. F., Ndalila, M. N. & Bradstock, R.
A. Australian forests, megafires and the risk of dwindling carbon stocks. Plant,
Cell Environ. 44, 347–355 (2020).

64. Nolan, R. H. et al. Limits to post-fire vegetation recovery under climate
change. Plant Cell Environ. 44, 3471–3489 (2021).

65. Adame, M. F. et al. Future carbon emissions from global mangrove forest loss.
Global Change Biol. 27, 2856–2866 (2021).

66. Chatting, M. et al. Future mangrove carbon storage under climate change and
deforestation. Front. Mar. Sci. 9, 58 (2022).

67. Clive, N. et al. Enso-driven extreme oscillations in mean sea level destabilise
critical shoreline mangroves–an emerging threat. PLoS Clim. 1, e0000037
(2022).

68. Bennett, L. T. et al. Refining benchmarks for soil organic carbon in Australia’s
temperate forests. Geoderma 368, 114246 (2020).

69. Viscarra Rossel, R. A. et al. The australian three-dimensional soil grid:
Australia’s contribution to the globalsoilmap project. Soil Res. 53, 845–864
(2015).

70. Malone, B., McBratney, A. & Minasny, B. Empirical estimates of uncertainty
for mapping continuous depth functions of soil attributes. Geoderma 160,
614–626 (2011).

71. Kaiser, K. & Guggenberger, G. The role of dom sorption to mineral surfaces in
the preservation of organic matter in soils. Org. Geochem. 31, 711–725 (2000).

72. Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma
124, 3–22 (2005).

73. Bartels, R. H., Beatty, J. C. & Barsky, B. A. An introduction to splines for use in
computer graphics and geometric modeling (Morgan Kaufmann, 1995).

74. Whiteway, T. Australia Bathymetry and Topography Grid, June 2009. Tech.
Rep., Geoscience Australia, Canberra (2009).

75. OceanProductivity. Ocean Productivity: Online Land/Ocean Data. http://orca.
science.oregonstate.edu/2160.by.4320.yearly.hdf.land.ocean.merge.php.

76. Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from
satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

77. Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of
the MODIS terrestrial gross and net primary production global data set.
Remote Sens. Environ. 95, 164–176 (2005).

78. Lucieer, V. et al. A seafloor habitat map for the Australian continental shelf.
Sci. Data. 6, 1–7 (2019).

79. Daubechies, I. Orthonormal bases of compactly supported wavelets. Commun.
Pure Appl. Math. 41, 909–996 (1988).

80. Quinlan, J. R. et al. Learning with continuous classes. In: 5th Australian joint
conference on artificial intelligence. 92, 343–348 (World Scientific, 1992).

81. Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H.The elements of
statistical learning: data mining, inference, and prediction. Vol. 2 (Springer,
2009).

82. Lin, L. I.-K. A concordance correlation coefficient to evaluate reproducibility.
Biometrics 45, 255–268 (1989).

83. Shen, Z. et al. Miniaturised visible and near-infrared spectrometers for
assessing soil health indicators in mine site rehabilitation. Soil 8, 467–486
(2022).

84. Kuhn, M. Building predictive models in r using the caret package. J. Stat.
Softw. 28, 1–26 (2008).

85. Zhou, X. H. & Tu, W. Confidence intervals for the mean of diagnostic test
charge data containing zeros. Biometrics 56, 1118–1125 (2000).

86. Olsson, U. Confidence intervals for the mean of a log-normal distribution. J.
Stat. Educ. 13 (2005) https://doi.org/10.1080/10691898.2005.11910638.

87. Department of Climate Change Energy the Environment and Water. National
vegetation information system v6.0 (2020).

88. ABARES. Catchment Scale Land Use of Australia – Update December 2020.
Tech. Rep., Australian Bureau of Agricultural Resource Economics and
Sciences, Canberra (2021) https://doi.org/10.25814/aqjw-rq15.

89. Jones, D. A., Wang, W. & Fawcett, R. High-quality spatial climate data-sets for
australia. Australian Meteorol. Oceanogr. J. 58, 233–248 (2009).

90. Donohue, R. J., McVICAR, T. R. & Roderick, M. L. Climate-related trends in
australian vegetation cover as inferred from satellite observations, 1981–2006.
Glob. Change Biol. 15, 1025–1039 (2009).

91. Wilson, G. J., N. D. T. R. A. & Inskeep, C. Geoscience Australia, 3 second
SRTM Digital Elevation Model DEM v01. Bioregional Assessment Source
Dataset. Geoscience Australia (2010). http://data.bioregionalassessments.gov.
au/dataset/12e0731d-96dd-49cc-aa21-ebfd65a3f67a.

92. Viscarra Rossel, R. A. Fine-resolution multiscale mapping of clay minerals in
Australian soils measured with near infrared spectra. J. Geophys. Res. 116,
F04023 (2011).

93. Hughes, M. Geological and oceanographic model of Australia’s continental
shelf (2011). http://pid.geoscience.gov.au/dataset/ga/71995.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00838-x ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:189 | https://doi.org/10.1038/s43247-023-00838-x | www.nature.com/commsenv 11

http://orca.science.oregonstate.edu/2160.by.4320.yearly.hdf.land.ocean.merge.php
http://orca.science.oregonstate.edu/2160.by.4320.yearly.hdf.land.ocean.merge.php
https://doi.org/10.1080/10691898.2005.11910638
https://doi.org/10.25814/aqjw-rq15
http://data.bioregionalassessments.gov.au/dataset/12e0731d-96dd-49cc-aa21-ebfd65a3f67a
http://data.bioregionalassessments.gov.au/dataset/12e0731d-96dd-49cc-aa21-ebfd65a3f67a
http://pid.geoscience.gov.au/dataset/ga/71995
www.nature.com/commsenv
www.nature.com/commsenv


Acknowledgements
R.A.V.R., L.W., Z.S., and O.S. thank the Australian Government for funding this research
via grant ACSRIV000077. O.S. thanks the additional support of I+D+i projects
RYC2019-027073-I and PIE HOLOCENO 20213AT014 funded by MCIN/AEI/10.13039/
501100011033 and FEDER20213AT014. We thank contributions from Dr. Andy Stevens,
Lindsay Hutley, and the many colleagues who contributed to the collection of soil
samples and data used in this research. This work is supported by the use of (i) Ter-
restrial Ecosystem Research Network (TERN) infrastructure, which is enabled by the
Australian Government’s National Collaborative Research Infrastructure Strategy
(NCRIS) and (ii) computational resources in the Pawsey Supercomputing Centre, which
is funded by the Australian Government and the Government of Western Australia.

Author contributions
R.A.V.R. conceived and planned the research. L.W. performed the data analysis and with
R.A.V.R. led the writing. O.S., M.Z., and Z.S. contributed to the data analysis and writing.
J.Z.S. and D.T.M. collated the B.C.E. data and with O.S., C.L., P.M., C.G., A.L., P.S.L.,
L.M., G.R., J.J.K., S.D., F.A., C.M.D., J.B.G., P.W., P.C., M.G., and A.R.J. contributed that
data. L.T.B., S.K., and N.H.N. contributed data from southeastern Australian forests. R.H.
contributed to aspects of the data analysis. All authors edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43247-023-00838-x.

Correspondence and requests for materials should be addressed to Raphael A. Viscarra
Rossel.

Peer review information Communications Earth & Environment thanks Faming Wang
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Primary Handling Editors: Leiyi Chen and Clare Davis.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00838-x

12 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:189 | https://doi.org/10.1038/s43247-023-00838-x | www.nature.com/commsenv

https://doi.org/10.1038/s43247-023-00838-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsenv

	Multi-scale mapping of Australia’s terrestrial and blue carbon stocks and their continental and bioregional drivers
	Authors

	Multi-scale mapping of Australia’s terrestrial and blue carbon stocks and their continental and bioregional drivers
	Results
	Regionalising Australia’s terrestrial and BCE
	Environmental drivers of SOC in terrestrial and BCE
	Digital mapping of SOC stocks and their uncertainty
	Soil organic carbon stocks and vegetation
	Soil organic carbon stocks and land use

	Discussion
	Methods
	Spatial modelling
	Spatially explicit determinants of SOC
	Preparation of the spatially explicit predictors
	Multi-scale decomposition of terrain attributes
	Modelling of SOC stocks
	Model training and validation
	Quantifying uncertainty
	Model interpretation
	Spatial estimates and digital mapping of SOC stocks
	Total SOC stocks

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


