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Abstract
In this review, flat plate and concentrate-type solar collectors, integrated collector–storage systems, and solar water heaters 
combined with photovoltaic–thermal modules, solar-assisted heat pump solar water heaters, and solar water heaters using 
phase change materials are studied based on their thermal performance, cost, energy, and exergy efficiencies. The maximum 
water temperature and thermal efficiencies are enlisted to evaluate the thermal performance of the different solar water heat-
ers. It is found that the solar water heaters’ performance is considerably improved by boosting water flow rate and tilt angle, 
modification of the shape and number of collectors, using wavy diffuse and electrodepositioned reflector coating, application 
of the corrugated absorber surface and coated absorber, use of turbulent enhancers, using thermal conductive working fluid 
and nanofluid, the inclusion of the water storage tank, and tank insulation. These items increase the heat transfer area and 
coefficient, thermal conductivity, the Reynolds and Nusselt numbers, heat transfer rate, and energy and exergy efficiencies. 
The evacuated tube heaters have a higher temperature compared to the collectors with a plane surface. Their thermal perfor-
mance increases by using all-glass active circulation and heat pipe integration. The concentrative type of solar water heaters 
is superior to other solar heaters, particularly in achieving higher water temperatures. Their performance improves by using 
a rotating mirror concentrator. The integration of the system with energy storage components, phase change materials, or a 
heat pump provides a satisfactory performance over conventional solar water heaters.
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Graphical abstract
Modification of solar water heaters
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Abbreviation
C  Collector
CFD  Computational fluid dynamics
COP  Coefficient of performance
CPC  Compound parabolic concentrator
CT  Coiled turbulator
CSC  Coconut shell charcoal
DWHR  Drain water heat recovery
DX-SAHP  Direct-expansion solar-assisted heat pump
EFDM  Explicit finite difference method
FPC  Flat plate collector
ETC  Evacuated tube collector
GRL-HPI  Gravity return loop heat pipe
HP  Heat pump
HPI-SC  Heat pipe solar collector
ICS  Integrated collector–storage system
MT  Matrix turbulator
PCM  Phase change material
PTC  Parabolic trough collector
PV/T  Photovoltaic/thermal
SA  Stearic acid
SWH  Solar water heater
TES  Thermal energy storage

T-SWH  Thermosyphon-based solar water heater
WG  Water-in-glass

Introduction

Energy is contextual for human activities. In the past, fos-
sil fuels were used as the primary energy source; however, 
renewable energies are recently considered a game-changer 
for development (Strielkowski et al. 2021). Energy poli-
cies in some countries are aimed to provide sustainable and 
secure energy. To this end, renewable energies play a leading 
role (Siampour et al. 2021). A solar water heater (SWH) con-
verts solar energy into heat and heats water flowing through 
it. Accordingly, the water temperature is increased for vari-
ous applications. Financial estimations are a decision-mak-
ing factor in using an SWH (Almutairi et al. 2021). Consum-
ers require information about the cost and performance of 
different SWHs against electrical or fossil fuel-driven water 
heaters as a critical deciding factor for adopting SWHs in 
the future (Sharma 2021).

Studies on SWH usage in China, Turkey, Taiwan, Africa, 
Middle East countries, etc. have revealed some useful finan-
cial and environmental results, which will be covered in this 
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study. It is estimated that 610,500 kg of  CO2 per month can 
be saved by installing 10,330 SWHs in the towns, though 
hot water consumption may vary by household (Curry, et al. 
2017). The policy measures implemented for the contribu-
tion of SWHs confirm reducing the 300–500 kg of  CO2 
emission per year from the residential sector (Yamaguchi 
et al. 2013). Future research would explore the coevolu-
tion patterns of environmental and economic motivations 
by comparing the incentives provided by the government 
toward the innovations that lower carbon emissions in 
regions at a progressing stage (Yu and Huang 2020). Mar-
kets remain robust by lower payback periods and availabil-
ity of local dealers/installers. With the government subsidy 
program and the implementation of tax breaks and tax 
credits, an SWH can be favorably compared to electrical 
or fossil fuel-running water heaters (Nasirov et al. 2021). 
The financial characteristics of the SWHs could give a life 
cycle saving of €4280.0 over a payback period of 5 years 
(Koroneos and Nanaki 2012). In Turkey, the SWHs decrease 
the annual greenhouse gas emissions by 790 kt  CO2-eq and 
save $162.5 M/yr via the reduction in imports of natural gas 
(Uctug and Azapagic 2018). SWH use in Malaysia saves 2 
billion kWh of electricity and prevents the emission of 1560 
kt of  CO2 per year (Jing 2015).

SWHs are classified into direct and indirect circulation 
cycles. In the direct type, water is circulated through the 
system using a pump, while in the indirect circulation sys-
tem, a non-freezing fluid is circulated through the collectors 
using a pump. The heat is transferred to the water using a 
heat exchanger (Peng et al. 2023). A schematic of these two 
types of SWHs is illustrated in Fig. 1.

A flat plate collector (FPC) was the first design of any 
SWHs before the introduction of concentrative collectors. 
The evacuated tube collector (ETC) containing heat pipe 
(HPI) and water-in-glass evacuated tube solar water heater 
(WGET-SWH) types has been proposed for evacuated tube-
type solar water heaters (ET-SWHs) (Shafieian et al. 2019a, 
b). The integrated collector–storage (ICS) schemes have 
also been introduced. In conventional SWHs, the collection 
and storage are in separate units, and the water is circulated 
through the system either via a pump or by natural convec-
tion. In ICS-SWHs, the same configuration serves as the 
collector and storage system (Farzan et al. 2023).

Different designs of SWHs are presented in Fig. 2. In 
FPCs, an absorber tube with various configurations absorbs 
the solar energy and heats the water which moves in it. This 
tube is installed in a box with a glass top cover, insulated 
bottom, and walls. The ET-SWH has parallel rows of glass 
tubes. Each tube includes a glass outer tube and a metal or 
glass absorber tube. The inner tube absorbs solar energy, 
and the space between the inner and outer tubes is evacuated 
to prevent heat loss. It is categorized into all-glass passive 
circulate, all-glass active circulate, and heat pipe integrated 

types. In the first category, natural convection causes water 
heating, and the heated water moves into the water storage 
tank. In the second category, the water moves down from 
the cold manifold, and after heating using solar energy, it 
moves up to the hot water manifold. In the third category, 
volatile fluid in a sealed component strengthens thermal 
energy absorption. The parabolic trough collector (PTC) 
uses the mirrored surface of a linear parabolic reflector to 
focus solar radiation onto an absorber pipe. Consequently, 
the hot water flows through the absorber pipe. The design of 
an SWH depends on the geographical location, weather and 
operating conditions, heat loss, human error, consistency 
and coherency of data, collector type, tilt angle, conductivity 
of the working fluid, etc. The energy and exergy efficiencies 
are used to characterize the thermal performances of SWHs 
(Shrivastava et al. 2017).

The collectors with thermosyphon flow are commonly 
used for domestic and small-capacity applications. Water 
flowing through the collector absorbs heat and flows nat-
urally toward the storage tank. Water in the collector is 
replaced by cold water through a header at the bottom of 
the collector. A thermosyphon-based solar water heater 
(T-SWH) requires an uninterrupted supply of cold water. 

Fig. 1  Schematic of the direct and indirect SWHs
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Forced flow SWHs are used where an uninterrupted supply 
of hot water is required all day and night. The water in the 
collector heats up as the collector is exposed to the sun. 
As the water temperature reaches the preset temperature, 
a control system switches ON the pump, and the water is 
forced into the water storage tank. The hot water in the 
collector is replaced with cold water. As the temperature 
decreases below the preset value, the pump is switched 
OFF. This cycle continues during the operation. The flow 
diagrams of the thermosyphon-based and forced-type solar 
collectors are presented in Fig. 3.

In ICS-SWH, the storage and auxiliary equipment are 
eliminated due to the esthetic view of their installation on 
the rooftop; hence, the cost is reduced. ICS-SWH contains 
a heater and an insulated tank. The qualitative behavior 
of any SWH is predicted through the solution of the main 
differential equations and the steady-state or transient 
conditions in much better quantitative agreement with 
the experiment. Operating at atmospheric pressure and a 
partial vacuum is noticeable. Utilizing a partial vacuum 
is tricky and may decrease the performance of the sys-
tem, while the heat loss coefficient also reduces at vacuum 
(Farzan et al. 2023). The schematic of an ICS-SWH is 
presented in Fig. 4.

Unique features and advantages of SWHs have turned 
them into attractive options for solar applications and 
drawn significant attention in recent years. To date, sev-
eral studies have been published summarizing findings 
relevant to the utilization of SWHs in various forms and 
configurations. However, to the authors' knowledge, a 
comprehensive review that surveys and provides an over-
view of the studies carried out to improve the thermal 
performance of solar water systems (mainly during the last 
decade) by implementing different strategies has not been 
published to date. Therefore, in this paper, the latest strat-
egies, methods, and designs to enhance the performance 
of these systems along with their effectiveness, contribu-
tion, advantages, and disadvantages were reviewed and 
discussed. Flat plate- and concentrate-type solar collec-
tors, ICS systems, SWHs combined with PV/T modules, 
solar-assisted heat pump SWHs, and SWHs using phase 
change material (PCM) were studied based on the thermal 
performance, cost, energy, and exergy efficiencies. Other 
review papers have concentrated on the thermal perfor-
mance of either one type of SWH or the thermodynamic 
analysis, while this paper has focused on all related topics 
to SWHS to shade a way for future research. Moreover, 
challenges and research gaps were identified and recom-
mendations for future research potentials were presented.

Fig. 2  Type of solar collectors: A flat plate collector: serpentine and 
parallel tubing, B evacuated tube collector, C parabolic trough collec-
tor (Milani and Abbas 2016)

▸
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Design strategies

Flat plate- and concentrate-type solar collectors have been 
used to supply heat to SWHs. Their performance is com-
pared using outlet water temperature from a collector or 
storage tank, as well as energy and exergy efficiencies, and 
overall cost. It has been proved that the concentrative col-
lectors with sufficient area and time let the water be ade-
quately heated. Moreover, HPI, PCM, heat pump (HP), and 
reflector integration can boost the performance of an SWH. 
In the following sections, the thermal performance of the 
flat plate solar water heaters (FP-SWH), cylindrical solar 
water heaters (C-SWH), parabolic trough solar water heaters 
(PT-SWH), hybrid solar water heaters (H-SWH) and SWHs 
incorporating PCMs will be reviewed.

Flat plate solar water heaters (FP‑SWH)

FP-SWHs are categorized based on their absorber char-
acteristics, flow inserts, vortex generators, and insulation 
material. Conventional and once-through designs have been 
developed. Water is continually cycled through the panels in 
the conventional design, while in the once-through type, the 
water passes once through the solar panel and then enters 
the hot water storage tank (Karwa et al. 2018). It has been 
tried to enhance the heat transfer coefficient, decrease the 
pressure drop and heat loss, and overcome the drawback of 
the conventional SWHs by saving solar energy for the early 
morning, late evening, and nighttime applications (Ven-
gadesan and Senthil 2020). The double-glassed FP-SWH 
performs better than the single-glassed type due to a lower 
heat loss to the atmosphere (Nirmala 2020). The schematic 
of the double-glassed and single-glassed FPCs is presented 
in Fig. 5. 

Fig. 2  (continued)

Fig. 3  Flow diagram of the forced-type and thermosyphon-based 
SWHs

Fig. 4  Schematic of the ICS-SWH (Gertzos et al. 2008)
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The performance study of the FP-SWH with three types 
of twisted tape experimented by Almeshaal et al. (2020) 
confirmed the positive effect of using twisted tape inside 
the riser tubes as a turbulator. The geometric profile of a 
riser tube in an FP-SWH was modified by creating the dim-
ples inside the riser tube (Arun et al. 2020). It caused turbu-
lence and swirl flow throughout the riser to improve the heat 
transfer. The experimental and computational fluid dynam-
ics (CFD) results were compared. The hot water output 
increased at the low water flow rates, while at higher flow 
rates, it was moderately constant. Twist ratio variation from 
3 to 12 led to heat transfer rate improvement by 18–70%, 
though the pressure drop augmented by about 87–132%, as 
compared to a plane collector. Due to the lower plate tem-
perature, the heat loss decreased (Kumar and Prasad 2000). 
The thermal efficiency of an FP-SWH with pebble stones as 
a porous medium and the riser tube containing an agitator 
was developed by Kanimozhi et al. (2019). Placing an agita-
tor and the pebble stones increased the convective heat trans-
fer and reduced thermal loss leading to a slow increase in 
energy efficiency. The maximum energy efficiency of 86.4% 
and 59.59% was obtained in the case of SWH without and 
with an agitator, respectively. Using a hindrance promoter 
was another option to improve the thermal performance 
of an FP-SWH (Rohit Khargotra and Kumar 2021). At the 
optimal values of the parameters, the hindrance promoter 
improved the Nusselt number by 4.56 times higher than the 
smooth tube. The rectangular-winglet- and delta-winglet-
type vortex generators within the circular tube of an FPC 
were simulated (Da Silva 2019). The vortex generators were 
coupled to augment the heat transfer rate between tube walls 
and working fluid. The primary and corner vortexes were 
recognized on the flow, which increased the heat transfer 
rate, even though the corner vortex was more obvious for 
the rectangular-winglet generator (independent of the attack 
angle and Reynolds number). The secondary flow produced 
by the inserts through the corner vortex was observed via 
the rectangular-winglet generator. A maximum heat transfer 

rate resulted in 45° for vortex generators. However, the opti-
mum ratio between the rate of heat transfer and the drop in 
pressure penalty was obtained at 30° for the delta-winglet 
generator. Modifications of the risers are illustrated in Fig. 6. 

The absorber is the heart of an SWH, which absorbs 
the sunlight and warms up the water. The efficiency of a 
collector depends on the absorptance and emittance of the 
absorber. There is an urgent need to develop highly efficient, 
structurally, thermally, optically, and mechanically stable 
solar absorber coating. The emittance is comparatively less 
significant than the solar absorptance. Most solar collectors 
use spectrally selective absorber coating with low emittance 
and high absorptance at the infrared spectrum and in the 
solar range, respectively (Bello and Shanmugan 2020). The 
collector with the electrodeposited coating had a better per-
formance than the one coated with CuO. At temperatures 
˃50 °C, it performed similarly to a  TiO2-based collector. This 
was due to lower heat losses from the backside of the Cu flat 
plates with a Ni coating (Lizama-Tzec et al. 2019). Coating 
the absorber with black chrome and nickel–cobalt coating 
on copper and using the reflectors improved the heat absorp-
tion. The system’s thermal efficiency with a nickel–cobalt 
absorber was higher due to its higher emittance than the 
black chrome panel. By increasing the flow rate, more heat 
was absorbed leading to higher thermal efficiency while 
a further increase in flow rate decreased the time of heat 
absorption and led to a lower thermal efficiency (Ramesh 
et al. 2022). Furthermore, free convection took place inside 
FPCs with boosted flow rates. Hence, the water flow rate 
should be boosted according to the solar radiation inten-
sity, collector area, and temperature difference between the 
hot water leaving the collector and the cold water entering 
it. The maximum outlet temperature of about 96 °C was 
obtained as the CuO/H2O mixture absorbed more heat due 
to more heat transfer coefficient at high temperatures. Due 
to the short contact time of the nanoparticle inside the riser 
tubes, a lower water temperature was obtained in forced cir-
culation. The copper, copper oxide, aluminum oxide, and 

Fig. 5  Schematic of the single- and double-glazing flat plate collectors
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titanium oxide nanoparticles in water were used to improve 
the thermal performance of an FP-T-SWH (Darbari and 
Rashidi 2021). Among the introduced nanoparticles, cop-
per oxide had the best thermal efficiency. The useful energy 
and energy efficiency increased by increasing the flow rate 
(higher Reynolds number and the heat removal factor, lead-
ing to an improvement in the convective heat transfer rate 
inside the tubes and a reduction in the thermal resistance 
between the fluid inside the absorber and the tube) and vol-
ume fraction of nanoparticles (due to a reduction in the aver-
age temperature of the absorber, hence, a lower heat loss). 
The maximum energy efficiency of 80% was obtained at a 
solid volume fraction of 0.05 for the solar intensity of 200 
W/m2. The ambient temperature variation from 20 to 40 °C 
enhanced the energy efficiency by 5.5%, while, when the 
water temperature increased from 30 to 55 °C, it reduced 
the energy efficiency by 15%. Using a mixture of CuO–MgO 
(0.1–0.1%) in an FP-SWH also showed better performance 
compared to pure water (Janardhana et al. 2022).

In SWH containing corrugated-surface-based absorber 
without flow rate, the highest water temperature reached 
58 °C and 78 °C during winter and spring, respectively. In 
the case of the absorber with flow rate, the daily energy 
efficiency of the solar collector increased from 59 to 67%, 
when the mass flow rate increased from 0.005 to 0.013 kg/s 
(Yassen et al. 2019). A comparative analysis of the perfor-
mance of circular and a trapezoidal surface with absorber 
tubes indicated better performance of the trapezoidal surface 
over the circular absorber by energy and exergy efficiency 
improvement by about 4% and 6%, respectively, due to the 
reduction in the heat loss (Sharma, 2022). The sinusoidally 
folded absorber sheet also ensured a higher water tem-
perature, hence a higher flow rate compared to a flat plate 
absorber. It means the collector's useful gain is linked with 
the flow rate and by increasing the gain, the flow rate also 
increases via the collector (Yehualashet et al. 2022). Differ-
ent types of absorber plates are presented in Fig. 7.

The effect of the tracking orientations such as vertical-
axis (V), north–south (NS), east–west (EW), and inclined 
east–west (IEW) on SWH’s performance was numeri-
cally investigated. The Perez diffuse model with the hourly 
weather data was utilized. The study provided a compre-
hensive outlook to adopt the FPC incorporated with vari-
ous single-axis and dual-axis trackers in the northern hemi-
sphere (Bahrami et al. 2022). The collector installation at an 
improper angle reduced the received solar radiation.

An ICS-SWH is a water heating system that alchemizes 
solar radiation directly into heat (Rao and Somwanshi 
2022). The highest collection efficiency can be increased 

Fig. 6  Schemes of the vortex generator (Almeshaal et  al., 2020), 
twisted tape agitator (Kumar and Prasad 2000), and hindrance pro-
moter (Rohit Khargotra and Kumar 2021)

▸
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by 36.17%. Despite many advantages of these systems, high 
heat losses during the night decreased the efficiency of the 
system. Introducing baffle plate structure, insulation of tank, 
connecting tanks in series, using PCMs and reverse ther-
mosyphon valve minimized the heat losses from the system.

Cylindrical solar water heaters (C‑SWH)

Designing a C-SWH with a high heat collection rate is com-
plex. Many investigations have been performed to improve 
its design and thermal performance. High-throughput 
screening (HTS) technique using machine learning estimates 
the probable combinations of extrinsic properties of these 
heaters. ET-SWHs have the disadvantages of slow water 
temperature increase as well as a slow response to loading, 
which can be rectified using an optimum closed-loop pulsat-
ing HPI (Siritan et al. 2022). The solar radiation intensity 
is the main parameter affecting the SWH performance. At 
higher solar radiation intensity, water viscosity decreases, 
and the density gradient becomes more significant for simi-
lar temperature differences, leading to a more significant 
driving force and producing natural circulation. The ET-
SWH containing argon in the space between the cover and 

the absorber is also recommended due to the lower Prandtl 
number of argon in comparison with the air (Sadeghi et al. 
2019).

In SWH with a low tilt angle, the cold water of the stor-
age tank moves down along the lower wall of tubes and then 
returns to the storage tank along the upper wall of tubes, 
whereas, for the SWH with a high tilt angle, the situation in 
the morning is the same as the SWH with a low tilt angle 
(Fig. 2B). In the afternoon, the cold water from the stor-
age tank moves down (fully or partially mixed with the hot 
water) and then returns to the water storage tank. The shorter 
tube distance leads to worse thermal performance due to 
more sun shading between tubes.

The performance of T-ET-SWH and ET-SWH incorporat-
ing 20 wickless HPIs containing methanol was compared. 
The inner glass tube was coated with Al–N/Al. Daily effi-
ciency improvement of the system by HPI over the thermos-
yphon system was 22.5%, 32.4%, and 42.5% for no loading, 
continuous loading, and intermittent loading, respectively 
(Al-Joboory 2019). The T-ETC modeling showed the 
explicit finite difference method (EFDM) makes a better 
accuracy than the thermal resistance technique (Wannago-
sit et al. 2018). The effect of working fluid (e.g., ammonia, 

Fig. 7  Schematic of the different absorbers. a Corrugated-type absorber (Mokhlif et al. 2021), b micro-heat pipe array absorber (Deng and Yu 
2016)
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methanol, acetone, pentane, and water) on the technical per-
formance of an ET-SWH investigated by Arab and Abbas 
(2013) resulted in the superiority of the ammonia against 
its counterpart owing to a sudden decrease in the thermal 
resistance between 9 and 15 h.

The performance of two designs of a WGET-SWH (220-L 
tank and 2.9  m2 collector area; in-tank boost: Design A and 
preheater with boost tank: Design B) was compared with 
an FPC (300-L tank and 3.7  m2 collector area) by TRNSYS 
(Budihardjo and Morrison, 2009). The thermal performance 
of two FPCs was better than that of a WGET-SWH. The 
performance of ETC was less sensitive to tank size. Annual 
energy savings of FPC, Design A, and Design B were 77%, 
70.9%, and 66.2%, respectively. Coupling a larger tank with 
Design B resulted in a minor reduction in annual solar frac-
tion, representing the improved collector performance. Two 
ET-SWHs with the same area were modeled. One utilized 
internal HPI condensers (Case 1), whereas the other used 
external ones (Case 2) (Redpath 2012). Case 1 was 17% 
more efficient than Case 2. These systems were feasible for 
hot water production in northern maritime climates.

The thermal performance of an ET-SWH at six ETC 
tilt angles (15°, 20°, 25°, 30°, 35°, and 40°) was evaluated 
(Kumar et al. 2023). The highest thermal efficiency was 
75.04% at the tilt angle of 15°, which was 5.3%, 11.6%, 
12.8%, 17.5%, and 18% more than the efficiency at tilt 
angles of 20°, 25°, 30°, 35°, and 40°, respectively. The low-
est energy payback time was 1.14 years at this tilt angle. 
The payback time was from 1.67 to 2.26 years at other tilt 
angles. The energy payback time was minimum for ETC 
installed at a tilt angle of 15°. WGET-SWH produced high 
levels of stratification at low tilt angles (β < 27°), which was 
comparable to those obtained in systems with stratification 
baffles or promoters (Bracamonte 2017). This result was 
confirmed by an 18% higher thermal efficiency at a tilt angle 
of 15° compared to a tilt angle of 40°. Using a shorter tube 
was recommended due to better thermal performance than 
a longer one and less probable to be damaged during trans-
portation. It was found that compact concrete absorbers in 
SWH with a spiral tube arrangement are more cost-effective 
than traditional flat plate collectors. In this arrangement at 
the lowest mass flow rate (0.005 kg/s) inside the spiral tube, 
the maximum water temperature in typical sand and concrete 
absorbers reached 75 °C and 70 °C, respectively (Edwin 
et al. 2023).

A major disadvantage of the ETCs is the weak circu-
lation of water at their lower end. It makes them inactive 
most of the time and decreases the effective absorber area. 
Using turbulators and the flat and wavy diffuse reflectors 
can overcome this disadvantage. The incorporation of tur-
bulators significantly improves the performance of the ET-
SWH by introducing turbulent flow within the tubes. The 
investigations presented that the water temperature in the 

tank reached 75 °C, 79 °C, and 81 °C for plain (without 
twisted tapes) ETC, ETC equipped with flat and wavy dif-
fuse reflectors, respectively. The wavy diffuse reflector had 
better performance due to the extra energy saving in the 
range of 12.2–16.7% at different zones. An optimized ETC 
consisting of 10 tubes with a reflector showed the impor-
tance of the distance between tubes as well as the distance 
between the reflector and collector (Arun et al. 2020; Kong 
et al. 2020a, b, c). Experiments on ETC with matrix tur-
bulator (MT-ETC), ETC with coiled turbulator (CT-ETC), 
and ETC without turbulator (simple ETC) revealed that the 
turbulator-equipped designs could significantly enhance 
the tube mean temperature (Vasanthaseelan et al. 2021). 
The plain ET-SWH, ET-SWH with a twist ratio of 2 (Twist 
2), and the ET-SWH with a twist ratio of 3 (Twist 3) were 
experimented with by Gunasekaran et al. (2021). The inserts 
reduced velocity and provided a uniform temperature distri-
bution. They augmented the heat transfer at moderately high 
temperatures. The inserts avoided conducive heat transfer 
at a low temperature. The daily thermal efficiency of the 
plain ET-SWH, Twists 2 and 3 were 68.4%, 75.2%, and 73%, 
respectively. The photograph of CT, MT, and twisted tape 
designs is shown in Fig. 8.

Parabolic trough solar water heaters (PT‑SWH)

FPCs and ETCs are widely used for water heating systems; 
however, incorporating other types of more efficient solar 
collectors based on the concentration concept in water heat-
ing applications can enhance energy savings and environ-
mental impacts. CPCs are one of the promising solar collec-
tors for domestic hot water applications. The concentrating 
collectors are equipped with mirrored surfaces to concen-
trate the solar energy on its receiver which is positioned at 
the focal point of the surface. Water flows into the receiver 
and absorbs the heat. These collectors reach much more 
temperatures than FPCs and ETCs. A good concentrator 
should be designed to improve the energy efficiency of the 
SWHs. Performance comparison of the empty tube PTC 
and PTC-equipped rings attached to different twisted tapes 
presented that the attachment of the ring improves the heat 
transfer rate; however, it augments the pressure drop. To 
overcome the pressure drop, modification should be made 
in the rings. It has been concluded that the Nusselt num-
ber increases up to 101% for the modified rings leading to 
a thermal performance improvement of 24% (Isravel et al. 
2020). The feasibility of utilization of CPC in several loca-
tions worldwide (latitudes of 0, 15, 30, 45, and 60°N) by 
solar radiation range of 2509–852 kWh/m2 and electricity 
cost range of 0.04–0.28 USD/kWh was investigated. In loca-
tions with high electricity costs, even in cases of low solar 
radiation, investment in CPC had the highest profits (Gilani 
and Hoseinzadeh, 2021). Preheating of boiler feed water 
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(Pathak et al. 2021), generating steam for use in the textile 
industries (Eskin 2000), water treatment (Li et al. 2022), 
and desalination plants (Rahimi-Ahar and Hatamipour 2020) 
are the applications of CPC technology. CPC by providing 
hot water of > 60 °C can also be used in medium-sized food 
industries (Ktistis et al. 2021; Yılmaz et al. 2023).

ICS-SWHs convert solar radiation into heat at a consid-
erable conversion rate. It consists of the main components 

of a vessel and a reflector. Figure 9 presents the schematic 
of an ICS-PT-SWH. Due to the inherent freeze protection 
of an ICS-SWH, it offers a promising technique for water 
heating in colder climates. These compact systems are of 
low cost with a high solar collection efficiency. The ther-
mal analysis on an ICS-CPC showed that mirror, steel sheet, 
and aluminum foil have the maximum daily efficiencies of 
66.7%, 47.6%, and 43.7%, respectively (Panahi et al. 2019). 

Fig. 8  Photograph of a coiled turbulator, b matrix turbulator (Vasanthaseelan et al. 2021), twisted tape (Gunasekaran et al. 2021)

Fig. 9  Schematic of ICS-SWH 
(Smyth et al. 2005)
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Selecting a proper concentrator, controlling hot water with-
drawal, coupling the absorber to the storage tank, and devel-
oping an ICS-SWH system increase the thermal efficiency 
of SWHs. The position of the absorber pipe relative to the 
PTC substantially affected the system's efficiency by 70% 
while for an absorber pipe positioned at the focal line of 
the collectors, it was less than 60%. An increase in the solar 
radiation intensity decreased the thermal efficiency of the 
proposed systems. The lowest and the highest efficiencies 
were in July and April, respectively. It means the highest 
efficiency was obtained on colder days or in colder areas 
(Avargani et al. 2020).

The thermal performance of SWH was evaluated for 
transparent baffles positioned at various parts in the col-
lector cavity. The baffles positioned at the upper part of the 
exit aperture of the CPC decreased the thermal losses by 
convection suppression without a meaningful increase in 
the optical losses (Smyth, et al. 2005). The CPC using a 
plastic substrate permitted the heater to reach an optical effi-
ciency of nearly 65%. The energy efficiency of 55–35% was 
obtained in the proposed design depending on the solar radi-
ation intensity (Smyth et al. 2004). An ICS-SWH equipped 
with a linear PTC with a reflector made of rectangular and 
rotating mirrors was designed by Harmim et al. (2019). The 
setup was effective during winter with a daily efficiency of 
36.4–51.6%. Under a clear sky with an initial water tem-
perature of 22 °C, the water temperature reached 49 °C. The 
schematic of an ICS-SWH containing a PTC with rotating 
mirrors is shown in Fig. 10.

An ICS-SWH was theoretically studied to evaluate the 
thermal and optical behaviors of the heater and clarify the 
effect of the truncation. The heater consisted of the upper 
part with two parabolic sections and the lower part with 
three involute reflectors. The concentration ratio and the 
height of the upper concentrating stage were important 
parameters. A maximum temperature of about 60 °C was 
obtained for full and truncated CPC. For the full CPC, the 
direct solar ray falling on the aperture plane provided more 
reflections before reaching the absorber, while for truncated 
CPC, less reflection was made. It means a reduction in the 
mean number of reflections had a positive influence on the 
optical performance of the studied heater. A reduction in the 
size of the storage tank was suggested to maintain an accept-
able level of the mean temperature (Benrejeb et al. 2016). 
The reflection of the solar radiation on the CPC reflectors 
was simulated using a ray-tracing model in an ICS-SWH 
consisting of two symmetrical parabolic and three involute 
reflectors (Kong et al. 2020a, b, c). The design of the lower 
stage concentrator showed a meaningful enhancement in 
optical efficiency. The proposed system reached the maxi-
mum water temperature of 65 °C. The reflector shape was 
modified, in which the old reflector had three parabolic sec-
tions, and the modified one had two involute parts and two 

parabolic sections; hence, the system size was reduced while 
keeping an acceptable level of the mean water temperature. 
This truncation reduced the manufacturing cost and facili-
tated its installation.

Hybrid solar water heaters (H‑SWH)

An FPC was equipped with a controllable sun tracker PV 
unit to increase the absorbed solar radiation. The heater pro-
duced hot water of 50 °C and electricity for the households 
in winter. The maximum overall average energy efficiency 
was 62% (Touaba et al. 2020). When the economic, envi-
ronmental, and energy benefits were considered, the solar 
thermal system was more favorable compared with PV and 
PV/T systems. An ICS-SWH combined with a PV/T module 
offered a promising approach for water heating and electric-
ity generation. A high tank water mass and the solar cell 
packing factor led to a high PV/T efficiency. It was due to 
the high temperatures of the solar cell and the water in the 
tank. The planar and tubular thermoelectric generators also 
could increase the quantity of the produced hot water (Fad-
douli et al. 2020).

A direct-expansion solar-assisted heat pump water heater 
(DX-SAHP-WH) comprised of the electronic expansion 
valve, compressor, solar collector/evaporator, and condenser 
enhances the thermal performance of the heater by hybridi-
zation technology. Remote buildings in cold areas benefit 
from the winter heating system of air source HP coupled 
with an ET-SWH (Li et al. 2023).

Fig. 10  Schematic of ICS-SWH containing a parabolic reflector with 
rotating mirrors (Harmim et al. 2019)
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The schematic of a typical DX-SAHP-WH is presented 
in Fig. 11.

A quasi-dynamic mathematical model of a DX-SAHP-
WH was developed at different compressor speeds. The 
mathematical equations governing lumped elements were 
established to model the compressor and expansion valve. 
The uniform flow distributed parameter methods were used 
to model the unglazed FPC/evaporator and condenser. A 
minor impact of the compressor speed on the average coef-
ficient of performance (COP) was noticed. Under distinctive 
working conditions, the COP reached above 4.6 for various 
compressor speeds, when the water temperature changed 
from 28.2 to 61 °C. When the mean compressor speed was 
reduced from 2910 to 2650 rpm, the COP increased by 7.5%. 
By increasing the compressor speed, the evaporating temper-
ature stabilized while slowing down the compressor speed 
stabilized the compressor power (Kong et al. 2020a, b, c).

The multi-criteria optimization of a DX-SAHP-WH using 
R-134a by genetic algorithm (GA) was performed by the 
trial and error technique (Cao et al. 2020). The compari-
son of single- and bi-criteria optimization results confirmed 
the superiority of this optimization method. The bi-criteria 
optimization results revealed that collector efficiency was 
reduced by 1.6% compared to the primary model, while the 
COP improved by about 20%. The performance of the opti-
mized heater was enhanced so that the working hours of the 
heater decreased to 109 h. In a DX-SAHP-WH, as the gas 
cooler outlet pressure and temperature increased, the water 
inlet temperature also increased; hence, the COP decreased. 
The relative humidity variation from 31.6% to 55.8% and 
solar radiation intensity increase from 30.17 to 876.9 W 
 m−2 increased the COP by 6% and 30%, respectively. The 
increase in solar radiation led to an increase in compressor 
suction and discharge temperatures, evaporating pressure, 
and water flow rate, while the reduction in the collector effi-
ciency was concluded (Duarte et al. 2021). A DX-SAHP-WH 
comprised an expansion valve, a compressor, a micro-chan-
nel solar collector/evaporator, and a condenser was designed 
(Kong et al. 2020a, b, c). R290 with a refrigerant charge of 

410 g or 350 g were used, and the average COP ranged from 
2.12 to 4.43. A DX-SAHP-WH charged with 800 g R134a 
produced water with a maximum temperature ranging from 
55 to 60 °C, while the COP of the system was more than 3.0 
(Kong et al. 2018). By increasing the ambient temperature or 
solar radiation intensity, the COP increased, while the heat-
ing time decreased. Modeling of DX-SAHP-WH, including 
the collector/evaporator under typical frosting conditions, 
presented the superiority in delaying frosting compared to 
the traditional evaporator (Kong et al. 2020a, b, c). The col-
lector efficiency enhanced effectually during the growth of 
frost crystals.

Solar water heaters incorporating phase change 
material (PCM)

SWHs incorporating PCMs as thermal energy storage (TES) 
have been developed since the 1970s (Shalaby et al. 2020). A 
schematic of SWH containing PCM is illustrated in Fig. 12.

Fig. 11  Schematic of the DX-
SAHP-WH (Nuntaphan et al. 
2009)

Fig. 12  Schematic of a solar water heater containing phase change 
material (Mandal et al. 2019)
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PCMs are classified as inorganic, organic, and eutectic 
materials. They are encapsulated within the side surface of 
the storage tank. The remaining energy of PCMs helps in 
any sudden thermal loads during the night. PCMs catego-
rize into solid–gas, solid–liquid, liquid–gas, and solid–solid 
states (Kee et al. 2018). The solid–liquid PCMs are com-
monly used in SWHs due to the limitations of the three 
other types of PCMs. The solid–solid types have relatively 
low heat transformation, significant volume variation, and 
high pressure in the existence of gas. During the daytime, 
the temperature of PCM increases, and PCM absorbs heat; 
it reaches the melting point and absorbs heat at a certain 
temperature. The PCM absorbs thermal energy and stores 
heat without a significant increase in temperature until all 
PCM melts. During the night, the surrounding temperature 
of the liquid PCM decreases and solidifies the material, con-
sequently releasing the stored latent heat to the surround-
ing environment. Adding high thermal conductive fillers to 
a pure PCM improves thermal conductivity and stability, 
hence speeding up the heat storing and releasing rates during 
phase change. Forming a stable composite by polymeriza-
tion, physical blending, or encapsulation is recommended. 
Notably, during the melting, the PCM is confined in the 
layered and the movement of the PCM is limited; hence, 
using stable composite PCM is strengthened. The integra-
tion of PCM increases the outlet temperature and extends 
the operating hours due to a thermal lag caused by energy 
storage, hence a delay in the temperature response (Tamuli 
and Nath 2023).

A proper PCM has a demanded melting/freezing tempera-
ture within the desired usage temperature range, high values 
of latent heat of fusion, thermal conductivity, specific heat, 
and density, a small difference between densities of solid and 
liquid phases, congruent melting of the materials, insignifi-
cant supercooling, high chemical stability, non-corrosivity, 
non-poisonous, nonflammability, non-explosivity, and abun-
dant supply at a low cost (Liu et al. 2012). Adding nanofill-
ers in lower concentration improves these characteristics and 
provides more hot water for the next day morning as com-
pared to a conventional SWH. Several attempts have been 
made to increase the heat exchange between the water and 
PCM. Different PCMs used in SWHs, their characteristics, 
and their effect on the thermal efficiency of the SWH are 
tabulated in Table 1. Aluminum oxide nanofillers could aug-
ment the energy storing capacity of an SWH (Dhinakaran 
et al. 2020). PCM-containing nanofillers absorbed more heat 
energy and released the heat for a longer time, leading to a 
33% increase in water temperature. The low thermal conduc-
tivity of the PCM was compensated by dividing the storage 
system into thin slices (Shalaby et al. 2020). Shell and finned 
tube latent heat storage system integrated with the FP-SWH 
design provided a large heat transfer area between the stor-
age material and the working fluid. The maximum energy 

efficiency of 65% was achieved when a paraffin wax/water 
mixture was used. This heater was able to provide hot water 
at a maximum temperature of 60 °C. A double-walled tank 
by embedding the PCM in the outer part of the tank with two 
positive functionalities of thermal insulation and thermal 
storage led to the highest water temperature of 80.3 °C and 
the maximum thermal efficiency of 74% at a water flow rate 
of 1.75 l/min. Moreover, the maximum thermal stratification 
occurred at a water flow rate of 1.25 l/min, and it weakened 
by increasing the flow rate (Yari et al. 2023). The thermal 
efficiency in an ET-SWH in stagnation mode (without water 
flow) was improved from 66 to 82% using PCM. By flowing 
mode variation from 10 to 27 l/h, no considerable reduc-
tion in the heat gain of the collector was observed; however, 
40 l/h plunged the discharge efficiency (Sadeghi et al. 2022).

A mixture of paraffin wax and nano-CuO was used as a 
thermal energy reservoir (Mandal et al. 2019). An increase 
in the nano-CuO concentration in the CuO-PCM mixture 
decreased the outlet temperature of the water. This was 
because of the large volume/surface area of nano-CuO lead-
ing to transferring the maximum thermal energy to the water 
instead of absorbing it as well as the low heat capacity of 
CuO-PCM nanocomposite over the paraffin. A maximum 
temperature of about 58 °C was stored by base paraffin in 
the gap of 2 cm between the glazing and the absorber. It 
was concluded that the nano-CuO was not effective during 
the night. A solar storage tank coupled to a PCM (NaOAc, 
 3H2O) module was simulated and showed that increasing 
the PCM amount reduced the melting and enhanced the heat 
losses to the surrounding (Bouhal et al. 2018). A PCM was 
prepared by modification of coconut shell charcoal (CSC) by 
 H2O2 and then was stabilized by stearic acid (SA) (Xie et al. 
2020). The thermal conductivity of the SA/CSC was about 
2.9 times more than that of pure SA. The modified CSC 
appeared more super macropores contributed to the impreg-
nation of SA than non-modified CSC. SA/CSC composite 
had excellent thermal stability at high working temperatures 
(180 °C). The composite was stable during phase change and 
had good thermophysical properties as well as more heat 
transfer efficiency than pure SA. The maximum temperature 
of the water leaving the FPC, CPC, and ETC was about 115, 
105, and 104 °C, respectively.

The performance of ET-SWH was studied without PCM 
and using the paraffin and nano-CeO2 diffused in paraffin 
with mass fractions of 0.5%, 1.0%, and 2.0%. PCM-con-
taining nanoparticles was well performed because of the 
nonlinear increase in thermal conductivity by increasing the 
nanoparticle concentration. The PCM-containing 1.0% of 
nanoparticles used in thermosyphon-based WGET-SWH led 
to the maximum first and second law efficiencies of 89.15% 
and 8.59%, respectively (Kumar and Mylsamy 2020). It was 
due to a low reduction in latent heat and proper shrinking 
of the gap between solidification and melting points. A set 
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of ET-HP arrays coupled to a tank filled with three types 
of PCM based on paraffin wax was modeled (Bazri et al. 
2019). The maximum energy efficiency of the PCM coupled 
with SWH on a sunny day was 54%, while this efficiency 
increased to 58% on a cloudy or rainy day. The average 
efficiencies of the heater containing three used PCMs were 
increased from 10 to 58% compared with the design without 
PCM.

A transparent glass cover was placed at 0.02 m from 
the absorber, polyurethane insulation, and using a cop-
per pipe as a heat exchanger provided hot water of 75 °C. 
Paraffin wax, a paraffin wax nanocomposite with 1.0 
wt% SCi and CuO, used as the PCMs in an ET-T-SWH 
(Manirathnam et al. 2021). The thermal conductivity of 
paraffin wax by the diffusion of CuO and SCi nanopar-
ticles was meaningfully augmented (22.53%). The water 
temperature in the cases of PCM and nanocomposite 
PCM was 53 °C and 56 °C, respectively, while for the 
heater without PCM, it was 45 °C. The energy efficien-
cies were found to be approximately 34%, 38%, and 42%, 

respectively, for ET-T-SWH without PCM, with PCM, and 
with nanocomposite PCM (Mandal et al. 2020). A double-
pipe helical coil heat exchanger containing PCM (RT-50) 
in the annulus SWHs (creating a turbulent mode of water 
flow in the inner pipe) was simulated. The k-ε RNG tur-
bulence model well described the turbulent flow. Among 
helical pitch, outer and inner pipe diameters, Reynolds 
number, and fluid inlet temperature, the outer and inner 
pipe diameters and fluid inlet temperature were the main 
factors influencing the storage system's design. The 1.5% 
and 42% increases in the inlet temperature and the inner 
pipe diameter enhanced the melting rate by 27% and 92%, 
respectively, while a 20% increase in the outer pipe diam-
eter led to a 52% reduction in the melting rate (Najafabadi 
et al. 2022). Adding PCM into a mantled hot water tank 
increased the outlet water temperature in the tank com-
pared to without a PCM case. Furthermore, placing the 
mantle resulted in rapid maximization of temperature 
within the tank. In addition, replacing the PCM tubes on 
the top section of the tank resulted in an enhancement of 

Table 1  PCMs used in SWHs and their characteristics

PCM/nanoadditives Latent heat of 
fusion (kJ/kg)

Melting 
point 
(°C)

Thermal 
conductivity 
(W/m.K)

Density (kg/m3) Specific heat (kJ/
kg.K)

Energy 
efficiency 
(%)

Ref.

NA 189 49 NA NA NA 48 (Al Imam et al. 2023)
Paraffin 166.7 60.5 NA NA 0.172 38.3 (Manirathnam et al. 

2021)SCi-CuO (1%)/par-
affin

160.3 59.6 NA NA 0.226 41.7

Paraffin 140.2 63.74 0.18 NA NA 69.64 (Kumar and Mylsamy 
2020)CeO2(0.5%)/paraffin 137.8 63.44 1.255 76.11

CeO2(1%)/paraffin 135.7 62.66 0.313 79.2
CeO2(2%)/paraffin 108.6 63.01 0.376 76.77
Paraffin wax (liquid) 189 53–74 0.17–0.47 822–1330 2.34–2.76 47–58 (Bazri et al. 2019)
Paraffin wax (solid) 0.22–0.57 917–1470 2.05–2.48
NaOAc,  3H2O 173 NA 5 1340 Liquid: 3.68 NA (Bouhal et al. 2018)

Solid: 4.02
N-eicosane 237.4 36.5 Liquid: 0.16 Liquid: 780 Liquid: 2.2 NA (Allouhi et al. 2018)

Solid: 0.212 Solid: 820 Solid: 1.9 (Papadimitratos et al. 
2016)Dual PCM tritriaco-

ntane/
256 72 NA Liquid: 782 Liquid: 1.11 52.21

Solid: 810 Solid: 0.87
Erythritol 339.8 118 NA Liquid: 1300 Liquid: 2.76

Solid: 1480 Solid: 1.38
RT42 graphite 139.7 43 5 789 1.57 35 (Chaabane et al. 2014)
Myristic acid 189 54 Liquid: 0.19 1000 3.67 40

Solid: 0.17
Cu(1%)/paraffin 160.3 60.5 0.226 976.5 Liquid: 2.1 52 (Al-Kayiem and Lin 

2014)Solid: 1.85
Paraffin 166.7 59.6 0.172 908.6 Liquid: 2.2 51.1

Solid: 1.905
Stearic acid 186.5 60–61 0.18 Liquid: 1150 Liquid: 2.38 50.3 (Sari and Kaygusuz 

2001)Solid: 1080 Solid: 2.83
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19.6% in the outlet water temperature compared to the case 
without PCM (İzgi and Arslan 2022).

Solar water heater’s performance

Some of the noticeable research along with key features and 
findings are listed in Table 2. The results can be summarized 
as follows:

• In FP-SWH, forced flow circulation and using a V-cut 
tube insert were the best options due to the water 
temperature and energy efficiency of 90 °C and 82%, 
respectively. The collector installation at a 10° tilt angle 
improved the water temperature and energy efficiency 
by 8 °C and 13%, compared to a collector installed at 
30°. Using nanofluid increased the water temperature 
while having an insignificant effect on energy efficiency. 
A double-pass design can be a good candidate due to 
a low solar collecting area (0.135  m2) and high energy 
efficiency (77%).

• In cylindrical-type SWHs, the collector installation at a 
proper tilt angle and providing vacuum space between the 
absorber and outer glass cover had a significant effect on 
water temperature.

• SWH equipped with CPC with inserting nail-type twisted 
tape and stainless steel absorber had better thermal per-
formance compared to the system containing aluminum 
and copper absorbers.

• In similar operating conditions and collector areas, the 
CPC-type collectors had the highest water temperature 
compared to the ETC and FPC types. Operation on 
cloudy days, rainy days, or dusty glass weakened the 
thermal performance of all types of solar heaters; hence, 
using PCM, TES, an insulated hot water storage tank, and 
cleaning the glass improved the thermal performance.

Thermodynamics and thermoeconomic 
studies

Several theories were introduced for the exergy analysis of 
a domestic SWH to save the cost and preserve its thermal 
efficiency in desired values (Rahimi-Ahar et al. 2020). The 
exergy losses from the storage tank and the collector due 
to imperfect thermal insulation should be considered. The 
exergy destruction via the collector and storage tank was 
caused by the irreversibility of heat transfer via the collec-
tor and irreversibility due to the mixing of water at various 
temperatures within the tank (Rahimi-Ahar and Hatami-
pour 2023). The exergo-economic analysis of different 

SWHs using conversion, utilization, and recycling proce-
dures showed that the highest exergy efficiencies of the 
SWH by solar collecting areas of 2  m2 and 4  m2 were in 
the range of 2–3%. An increase in collector area decreased 
the exergy efficiency and increased the cost rate of irrevers-
ibility. Though the large collectors could collect further heat 
from the sun and had more input exergy, the output exergy 
from the collector was also high. The maximum exergy 
was destructed in colder seasons of the year due to the low 
exergy contents for output and input streams (Thangavelu 
et al. 2021). Using nanofluid in FP-SWHs could augment the 
exergy and energy efficiencies of the collector by up to 30% 
and 24%, respectively (Vengadesan and Senthil 2020). Up 
to a 30 °C increase in the outlet temperature of the water can 
be achieved using the  Al2O3 nanoparticles compared to an 
SWH containing pure water (Sivasubramanian et al. 2022). 
An absorber plate coated with copper oxide nanoparticles 
(CuO NPs) increased the energy efficiency by about 36% 
compared to the exergy efficiency of SWH with flat absorber 
plates. The exergy efficiency improvement by this coating 
was about 11% higher than that of the matte black absorber 
(Nazari et al. 2022).

The solar PV/T system was introduced as an economic 
technology. The maximum energy and exergy efficiencies of 
92.7% and 15.58% were obtained for an HPI-SWH by the 
optimum number of glass tubes during cold days (Shafieian 
et al. 2019a, b). The overall efficiency of an HPI-SWH was 
determined using an adjustable flow rate method regulating 
the working fluid mass flow rate by variation of the solar 
intensity. The plant operated in similar weather conditions 
using distilled water (Case I), the optimized nanofluid (Case 
II) at a constant flow rate, and the optimized nanofluid at a 
variable flow rate (Case III). The exergy efficiency of Cases 
II and III, respectively, increased by 1.58% and 2.66% more 
than that in Case I (Shafieian et al. 2019a, b). The thermo-
dynamics analysis of a PCM layer coupled to the HPIs of 
an FPC was performed to evaluate the SWH performance 
during discharging and charging. For a higher PCM thick-
ness, the latent heat storage improved the heating necessi-
ties at night and reduced the exergy efficiency. By increas-
ing the PCM thickness, the difference between the melting 
and solidification times was increased, and the exergy was 
destroyed through heat transfer between the absorber and 
PCM. The energy and exergy efficiencies of 76.95% and 
2.625% resulted in a system with PCM and 77.61% and 
3.34% for a system without PCM, respectively (Hamed 
et al. 2017). It should be noted that the overall exergy and 
energy efficiencies are affected by water withdrawal flow 
rates and ambient temperature. The highest energy efficiency 
of a T-SWH reached 32% and 26% in summer and winter, 
respectively (Chargui, 2021).

A temperature-controlled SWH (TC-SWH) was exer-
getically studied at the temperature range of 40–55 °C and 
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compared with a T-SWH. The maximum energy efficien-
cies of 65% and 60% were obtained for the TC-SWH and 
T-SWH, respectively, due to the higher exergy content of 
hot water in the tank of TC-SWH (Ceylan 2012). A solar-
assisted vapor injection HP cycle with a sub-cooler was 
developed to enhance the thermal performance of the tra-
ditional sub-cooler vapor injection HP cycle. An FPC of 
5  m2 was used, and energy and exergy efficiencies of 76% 
and 45% resulted. The energy efficiency of the cycle was 
enhanced with increasing solar radiation intensity, whereas 
the change in exergy efficiency showed an opposing ten-
dency (Chen and Yu 2018).

Economic views

The levelized cost of heat includes capital costs, operating 
and maintenance costs, and all costs during its life. Each 
SWH should be modified to reduce the levelized cost. The 
SWHs address the economic potential in electricity saving, 
reducing  CO2 emission, and developing the related busi-
nesses and SWH industrial clusters (Mamouri and Bénard 
2018). The techno-economical modeling of an HP-SWH 
by multi-energy cooperative utilization assisted in its com-
mercialization. A government subsidy requires and the pro-
ject has benefits for all investors who are involved (Li et al. 
2019). The ET-SWH for Michigan’s climate had a payback 
period as low as eight years (Mamouri and Bénard 2018). 
The cost of an SWH containing a linear Fresnel reflector was 
$378.87, which could be recovered after 16 years from its 
first use (Said et al. 2021).

The techno-economic benefits of FP-SWHs using stain-
less steel, copper, and glass-lined storage tanks were evalu-
ated through the Monte Carlo analysis. The SWHs with 
electric boosters and glass-lined storage tanks showed 
excellent thermal performance. The SWHs offered better 
long-term economic viability compared to the conventional 
systems at modest auxiliary energy consumption (Rezvani 
et al. 2017). The thermoeconomically optimization of an 
FP-SWH showed that mass flow rate and insulator thickness 
were the main deciding factors. At the same time, collector 
length did not affect the performance. For energy inputs of 
0.5 kW, 1.5 kW, and 2 kW, the efficiency was enhanced 
by 0.123%, 0.740%, and 1.506%, compared to the energy 
input of 1 kW. The minimum annual saving of $155.1 was 
obtained (Hajabdollahi and Hajabdollahi 2017). Long-term 
research led to lowering the cost of FP-SWH by replacing 
Cu tubes with Cu–Al plates and galvanized steel (G.S.)–Al 
tubes. A similar thermal performance was found by SWHs 
with Cu–Cu, Cu–Al, and G.S.–Al fins in FPC. The SWHs 
provided 100 L of water at an average temperature of 62 °C 
when the inlet water temperature to the heater was 23.9 °C. 
The cost of the SWH with Cu–Cu and G.S.–Al collectors 

was $136.7 (Rs. 10,250) and $106.7 (Rs. 8000), respectively. 
The payback period varied between 2.92 and 4.53 years 
depending on the used fuel (electricity, firewood, or fossil 
fuels) (Nahar 2002). Economical comparison of the single-
phase open T-ET-SWH and two-phase closed T-ET-SWH 
confirmed the two-phase closed T-SWH is technically more 
acceptable due to its higher energy efficiency with indirect 
fluid circulation. It presented more climate flexibility and 
generated more hot water per collector area compared to the 
single-phase T-SWH; however, it was less favorable because 
of the higher investment and longer cost payback period. The 
investment for the two-phase and single-phase T-SWHs was 
$943.4 (6000 RMB) and $833.4 (5300 RMB), respectively 
(Chow et al. 2013). An FPC instructed by a concrete slab 
consisting of metal fibers positioned in a wooden box and 
immersed serpentine Cu tube was economically investigated. 
Tests were conducted on summer and winter, and rainy days 
for several water flow rates. The dimples improved the tem-
perature by 2.5 °C. The cost of a collector without a wooden 
box and a stand was $97.6. The connection of the water 
storage tank and piping insulation was estimated at $285.3 
(Rs. 19,000), which was lower than ET-SWH ($300.3 = Rs. 
20,000). Collector cost would reduce significantly if mass 
procurement of materials and collector fabrication during 
construction of roof slab was considered (Sable 2017).

SWH integrated with the V-trough reflector could 
enhance the thermal performance of the SWH by the opti-
cal efficiency of about 70.5%, and the maximum tempera-
ture of 85.9 °C. The system containing the solar collector, 
storage tank, and pump had a fixed capital cost of $355.9 
(1489.40 RM) and a payback period of 12.2 and 8.9 years 
for discounted and undiscounted forms, respectively (Chong 
et al. 2012).

A hybrid HP-SWH was proposed to enhance the operat-
ing performance of an HP. The maximum saving was $225.3 
and $86.5 per year compared to the electric and gas water 
heaters, respectively. The temperature of water increased up 
to 34 °C and the air source evaporator was switched to an 
evaporator and compensated for the ineffectiveness of the 
SWH at low solar radiation (Xian et al. 2020). The thermal 
performance of an SWH-HP with a modified solar collector 
was evaluated by Nuntaphan et al. (2009). The R22/R124/
R152a was used as the refrigerant mixture. The COP was 
in the range of 2.5–5.0, and the best payback period was 
2.3 years. The single solar collector produced a water tem-
perature of 56 °C when the water tank volume was 100–300 
L. A T-SWH-HP unit whose pump was powered by the 
steam produced by an FPC was studied by Roonprasang 
et al. (2008). The collector temperature was 70–90 °C, and 
a daily energy efficiency of 7–13% resulted. The conven-
tional system and the proposed SWH had a price of $1361 
and $1331 with a payback period of 9.21 and 9  years, 
respectively.
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Challenge and prospects

Requirement for extended collecting area in FP-SWHs, a 
low-pressure outlet water stream in all-glass passive ET-
SWHs which affects the natural circulation within tubes, 
decreasing the efficiency of the reflector and collectors 
over a long time due to being dusty or dirty (especially 
in PT-SWHs), higher construction and maintenance cost 
of ET-SWHs and PT-SWHs, heat loss from the tubes and 
storage tank to the environment, and the possibility of 
breaking the glass in all types of SWHs are the challeng-
ing issues of SWHs. The cylindrical and parabolic through 
types of solar water heaters rectify the requirement for a 
high collecting area in FPC configuration. The difficulty in 
the natural circulation of water within the tubes caused by 
the reduction in the pressure of the outlet water stream was 
resolved by the modification of all-glass passive circula-
tion to all-glass active circulation and heat pipe integra-
tion to the ET-SWH arrangement. Specifically, it can be 
recommended that:

• The collector’s orientation is required to be equipped 
with a sun tracker for all types of SWHs to absorb the 
maximum solar energy during the day.

• Evacuated tubes can be combined with CPC, creating 
a new design of collectors, which might be at temper-
atures ranging from 100 to 180 °C. This innovative 
type can be used to heat the high flow rates of water 
or produce hot water for industries (e.g., desalination 
processes).

• Double and triple vacuum glazing can be developed to 
control heat loss, which might be interesting for water 
heating above 120 °C.

• Replacing the glass cover of an FPC and tubes of the 
ETC and PTC with transparent polymers can overcome 
the danger of glass breaking in SWHs.

• Self-cleaning reflectors and absorbers should be devel-
oped to maximize the absorbed thermal energy over 
time and in dusty weather.

• Using the insulated cover during the night and baffle 
plate structure, PCM materials, and reverse thermosy-
phon valve can be some of the strategies to minimize 
the heat losses from the ICS-SWHs during the night.

The main objective of developments in the SWHs’ 
design is an increase in solar collecting area and heat 
storage durability. Researchers can fulfill these objectives 
and achieve either effective designs or proper materials. 
The heat transfer fluid with high heat capacity using nano-
composites, application of polymeric or thermochemical 
materials, and PCMs can be the best options for enhance-
ment in convective heat transfer rate, heat absorption, and 

heat storage. Therefore, the main research topics arise in 
the field of materials research. Anti-corrosive and anti-
reflective insulators, vacuum insulation, selective absorb-
ers with long-term stability and without deterioration 
resulting from UV exposure, and coating of absorbers to 
resist stagnation temperatures should be considered in the 
design of SWHs.

It should be noted that a storage system based on chemi-
cal reaction has negligible losses, whereas sensible heat 
storage dissipates the stored thermal energy to the environ-
ment and needs to be insulated. Thermal energy storage via 
a controllable chemical reaction can produce higher energy 
compared to energy storage based on latent or sensible heat. 
This technique is not currently commercially viable.

Conclusions

Unique features and advantages of SWHs have turned them 
into attractive options for solar applications and drawn sig-
nificant attention in recent years. In this work, flat plate- and 
concentrate-type solar collectors, ICS systems, SWHs com-
bined with PV/T modules, solar-assisted heat pump SWHs, 
and SWHs using PCMs were studied based on their thermal 
performance, cost, energy and exergy efficiencies. The con-
cluding remarks obtained from this review are summarized 
as follows:

• The performance of the SWHs is significantly changed 
by inlet water flow rate, the shape and number of col-
lectors (solar collecting area), tilt angle, absorber shape, 
selective coating type, the existence of turbulator and 
agitator, using working fluid (single nanofluid and hybrid 
nanofluids) and PCM, incorporating storage tank, and 
insulator property. Optimization of operating conditions 
increases the convective heat transfer, thermal conductiv-
ity, Reynolds and Nusselt numbers, heat conduction rate, 
energy, and exergy efficiencies.

• The conventional FP-SWHs can produce hot water of 
about 50 ºC. Using proper working fluid or electrodeposi-
tioned reflector coating, CuO/H2O nanofluids, and corru-
gated absorber surface produced hot water of 58–96 °C. 
The energy efficiency range from 63 to 86% in the modi-
fied SWHs.

• The use of ETCs led to a higher temperature (more than 
80 °C) and a lower energy efficiency (less than 70%) 
compared to the collectors with a plane surface. ET-SWH 
has the disadvantages of slow water temperature increase, 
slow response to loading, and weak circulation of water 
at the lower end of the tube, but the use of HPI, turbula-
tor, and wavy diffuse reflector overcame these problems. 
Using a PCM in ET-SWH for more energy storage and 
better heat transfer provides a satisfactory performance 
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over the conventional ET-SWHs. Modification of all-
glass passive circulation to all-glass active circulation 
and heat pipe integration to the ET-SWH arrangement 
could rectify the difficulty in the natural circulation of 
water within the tubes caused by a reduction in the pres-
sure of the outlet water stream.

• The CPC-WH type is superior to the other SWHs, par-
ticularly in achieving higher water temperatures. Using a 
mirror concentrator has a better performance compared 
to steel- and aluminum-type concentrators. The rotating 
mirror had about 15% higher energy efficiency in com-
parison with a regular mirror.

• The concentrating type of ICS-SWHs has better ther-
mal efficiency at a reduced cost, but suffers from higher 
thermal losses during the night which can be resolved by 
using PCM.

• The SWHs containing PCM and HP with exergy efficien-
cies of 16% and 45% and energy efficiency of about 76% 
strengthened the application of these hybrid technolo-
gies.

• Economical views confirmed that the FP-SWHs have 
minimum production costs in the range of $97.6–$155.1 
with a minimum payback of about 2.9 years. The linear 
Fresnel reflector by $378.87 and T-ET-SWH with $833.4 
has the next ranking. The SWH-HP systems act better 
than electric, gas, and conventional SWHs by a cost of 
$225.3, $86.5, and $30, respectively.

• The main objective of developments in the SWHs’ design 
is an increase in solar collecting area and heat storage 
durability. Researchers can fulfill these objectives by 
either effective designs (using concentrating collectors) 
or proper materials (using nanocomposites, application 
of polymeric or thermochemical materials, and PCMs).
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