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Abstract (500 words) 

Alzheimer’s disease (AD) is the most common form of dementia in the elderly whose main 

neuropathological features are the presence of extracellular senile plaques in the brain and the 

intracellular accumulation of hyperphosphorylated tau filaments. However, a relatively cheap 

and non-invasive method for the diagnosis of AD remains elusive. Recent studies have 

indicated that cerebral biochemical changes take place decades before the clinical onset of the 

disease, but current methodologies, brain scan (PET amyloid imaging) and cerebrospinal 

fluid (CSF) analysis, are unsuited for community-wide screening. Brain scanning methods 

non-invasively assess amyloid load but are extremely expensive and cannot be used for 

clinical routine analyses. Conversely, CSF analysis measuring specific AD-related 

biomarkers (Aβ and tau) are invasive and require trained personnel. While these 

methodologies are considered the best options for identifying individuals at risk for AD, 

neither technique is suitable for community-wide screening. These problems could be solved 

by developing an AD-related blood-based biomarker panel that could reflect the amount of 

amyloid deposition in the brain, identifying individuals at risk for AD, thereby bypassing the 

need for current methodologies. This blood analysis would be a cheap and non-invasive 

community screen, and thus suitable for use in clinical pathology laboratories. 

In this thesis, I am presenting my work on specific blood-based AD-related biomarkers. The 

first part of the thesis is focused on High Density Lipoprotein (HDL) subclasses and its 

protein cargo. Previous studies have indicated that small HDL subclass is linked to anti-

inflammatory and anti-oxidative features, while many of the molecules associated to HDL, 

have been related to AD. My initial analysis has indicated that protective small HDL subclass 

is reduced in AD and positively correlate with cognitive functions. Furthermore, I have also 

isolated HDL particles and shown that HDL composition is changed in AD, with a significant 

increase of cholesterol/ApoA-I and ApoD/ApoA-I ratios and reduced ApoA-II/ApoA-I ratio. 
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Additionally, cholesterol/ApoA-I ratio is also positively associated to increased ventricular 

volume, while ApoA-II/ApoA-I and ApoJ/ApoA-I ratios are positively associated with grey 

matter volume, hippocampal volume and are negatively associated with ventricular volume. 

Taken together, these data indicate that plasma HDL composition is related to brain 

volumetric data and has the potential to be used as part of a broader AD-related biomarker 

panel. 

In the second part of this thesis, in collaboration with colleagues, I have evaluated the levels 

of specific AD-related biomarkers (Aβ1-42, Aβ1-40, t-tau, p-tau181, glial fibrillary acidic 

protein (GFAP) and neurofilament light chain (NFL)) in two different cohorts. Our results 

have indicated that Aβ1-42/Aβ1-40 ratio, p-tau181 and GFAP levels are reliable biomarkers 

for identifying individuals with ongoing brain amyloidosis and could also be used in a 

broader AD-related biomarker panel. 

While additional studies are necessary, these early data indicate that the development of a 

specific biomarker panel for AD is achievable. This discovery would allow for the detection 

of individuals at risk for AD before the clinical onset of the disease, thereby allowing for 

early medical intervention(s). 
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Chapter 1 

Background 
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1.1 Alzheimer’s Disease  

Alzheimer’s Disease (AD), which is the most common form of dementia in the elderly, is a 

progressive neuropathological disease that was first reported by Alois Alzheimer in 1907 in 

his article "Uber eine eigenartige Erkankung der Hirnrinde" and subsequently translated [1]. 

AD symptoms include memory loss, altered behaviour and hallucination among others. In the 

later stages of the disease individuals are in constant need of care because of their inability to 

perform daily tasks. The disease is characterized by two major neuropathological features, (a) 

the presence of the extracellular deposition of amyloid β (Aβ) in the brain in the form 

amyloid plaques and (b) the presence of intracellular accumulation of hyperphosphorylated 

tau filaments [2]. Overtime, the continuous accumulation of Aβ and hyperphosphorylated tau 

leads to neuronal death and brain atrophy. Unfortunately, there is no cure for AD. 

 

1.2 Sporadic AD vs Familial AD 

AD can be classified into two main categories, sporadic AD, with a late onset (>65 year old) 

and familial AD, with an early onset (<65 year old). Sporadic AD is by far the most common 

form of the disease, accounting for more than 95% of all cases of AD. While there are no 

know causes for this form of the disease, many risk factors have been associated to its onset. 

Among the known risk factors, diseases such as diabetes and metabolic syndrome, reduced 

physical activity, diets rich in fat/cholesterol and cardiovascular diseases are the most 

common [3-9]. Genetically, the presence of the APOE ε4 allele is also the most common risk 

factor for AD [10-12]. 

With regards to the familial AD, specific mutations on three genes (APP, PS1 and PS2) have 

been associated with the onset of the disease at an earlier age. For APP, more than 60 
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mutations have been described, however not all mutations are considered pathogenic, but 

usually, those mutations that are associated with familial AD are found near the 3 major 

cleavage sites of Aβ (α-, β- and γ-secretases) and are usually associated with increased 

production of the toxic Aβ42 form, albeit in some case the mutations affect the extent of Aβ 

oligomerization and/or the rate of Aβ degradation. Among the mutations that have been 

associated with familial AD, Swedish (KM670/671NL), Flemish (A692G), Arctic (E693G), 

Dutch (E693Q), D694N (Iowa), V717F (Indiana) and V717I (London) [13-19]. In addition, 

many of the AD-predisposing mutations also increase the extent of Cerebral Amyloid 

Angiopathy (CAA).  

Mutations in the PS1 gene are by far more frequent and aggressive, causing around the 75% 

of familial AD cases with an age of onset as early as 40 years [20]. On the other hand, 

mutations in the PS2 gene are rare, representing only the 5% of all familial AD cases and also 

less aggressive, with an age of onset of 60 years [20]. More than 300 PS1 and 80 PS2 

mutations have been discovered, and as for APP, not all mutations are considered pathogenic. 

However, unlike for APP, mutations in the PS1 and PS2 genes are spread across the entire 

molecule and not confined in a specific region. Pathogenic mutations, like those used in 

animal models such as P117L, M139T, M146L, H163R, A246E and L286V (for PS1) and 

N141I (for PS2) which represent a minimal part of all PS1 and PS2 mutations, tend to alter 

the production of Aβ42 and to affect the Aβ42/Aβ40 ratio [21-24].  

Animal models of the disease used in laboratory experiments include either include a single 

or a combination of all major APP/PS1/PS2 mutations. Among the most common and widely 

used mice models are 5xFAD (APP: KM670/671NL, I716V, V717I; PS1: M146L, L286V), 

APPDutch (APP: E693Q), APP23 and Tg2576 (APP: KM670/671NL), APP/PS1 (APP: 

KM670/671NL; PS1:A246E), APP/PS1 (APP: KM670/671NL; PS1: Δexon9), TgCRND8 
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(APP: KM670/671NL, V717F), APP/PS2 (APP: KM670/671NL; PS2: N141I) and TgSwDI 

(APP: KM670/671NL, E693Q, D694N).  

 

1.3 Processing of APP and generation of toxic Aβ 

Aβ is a proteolytic fragment, usually 40-42 amino acids long, generated from a longer trans-

membrane protein – the Amyloid Precursor Protein (APP). APP is a trans-membrane protein 

that is coded on chromosome 21 and, through alternative splicing, three different isoforms, 

APP695, APP751 and APP770, are generated. While APP751 and APP770 are ubiquitously 

expressed, APP695 is preferentially expressed in the brain [25-27]. Overall, APP is cleaved 

via two major pathways. In the non-amyloidogenic pathway, APP is cleaved by α-secretase, 

at a site in the middle of the Aβ sequence; this is followed by the γ-secretase cleavage. This 

pathway does not generate Aβ, instead produces secreted/soluble APP cleaved at the α-

cleavage site (sAPPα), the small proteolytic fragment p3, and a C-terminal fragment (often 

referred to as the APP intracellular domain or AICD). In the alternative amyloidogenic 

pathway, APP is first cleaved by β-secretase (known as β-site APP cleavage enzyme-1 

BACE-1), and the subsequent cleavage by γ-secretase generates the Aβ peptide and sAPPβ 

(as well as the C-terminal fragment) and this is considered the pathological amyloidogenic 

pathway (see figure 1). In general, therapies aimed at these three secretases are aiming to 

increase α-secretase activity and/or inhibit the β or γ-secretase activities. As already 

indicated, Aβ is a 4.5 kDa peptide and is the main component of the amyloid plaques in AD 

brain. Aβ42 displayed high tendencies of aggregating in neurotoxic species and is therefore 

extremely relevant in the progression of AD (Burdick et al., 1992, Jarrett et al., 1993). It is 

known that Aβ42 monomers, sequentially aggregates before becoming senile plaques. These 

intermediate aggregating steps include the formation of small oligomers, high molecular 
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weight oligomers, protofibrils and fibrils [28-32]. Recent findings have highlighted the 

importance of small oligomers, rather than senile plaques, as effectors of neurotoxicity in the 

brain [33, 34]. Their role in the disease has been investigated and it has been reported that 

small oligomers (mostly dimers, trimers and dodecamers) are responsible for neuronal 

dysfunction, play an extensive role in neurotoxicity and synaptic degeneration and their 

levels correlate with the progression of the disease [35-40]. Studies in transgenic mice have 

supported the importance of small oligomers promoting neurotoxicity, by indicating that mice 

expressing oligomers display synaptic degeneration and neuronal death in the absence of 

senile plaques [41]. To further confirm that oligomeric assembly plays an important part in 

the early stage of the disease, other studies performed on transgenic mice reported that Aβ 

oligomers are associated with cognitive defects [42, 43]. Reduction of oligomer production 

also reduces the synaptotoxicity and increases long-term potentiation [32, 44]. Additionally, 

the assembly of Aβ oligomers, which is followed in the long term by the formation of senile 

plaques, have been reported to increase the extent of inflammation in the areas surrounding 

senile plaques, with increased activation of astrocytes and microglia [45-49]. These 

inflammatory events eventually increased the presence of inflammatory molecules, such as 

cytokines and chemokines, in the proximity of the plaques, causing further neuronal damage 

[50-54]. For these reasons, several studies in mouse models of AD involving therapeutic 

peptides that targeted Aβ oligomerization, reported in some cases improved cognitive 

functions [55-64]. 

1.3.1 α-secretase 

In the non-amyloidogenic pathway, α-secretase is the enzyme responsible for cleaving the 

APP molecule at the position Lys612-Leu613 of the APP695 protein (corresponding to the 

sequence Lys16-Leu17 of the Aβ fragments) [65]. Such cleavage, which prevents Aβ 
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formation by cutting the hypothetical Aβ fragment in the middle, then generates sAPPα and 

C83 (or CTFα). Accordingly, in AD individuals carrying the Swedish mutation, reduced 

levels of sAAPα were observed [66]. The subsequent cleavage of C83 by γ-secretase then 

generates p3 and AICD (Figure 1 – non amyloidogenic pathway) [67]. Initially, three 

members of the A Disintegrin And Metalloproteinases (ADAM) members were thought to be 

α-secretases, ADAM-9, ADAM-10 and ADAM-17 [68-72]. However, further studies 

indicated that ADAM-10 is the main enzyme responsible for the cleavage of APP in neurons 

and studies in transgenic mice confirmed the importance of ADAM-10 as α-secretase 

involved in APP cleavage [73-76].  

1.3.2 β-secretase 

In the amyloidogenic pathway, β-secretase (β-site APP-cleaving enzyme – BACE) is the 

enzyme responsible for cleaving the APP molecule at the position Met596-Asp597 

(corresponding to the sequence Met-Asp1 of the Aβ fragments) [77-79]. This cleavage, which 

does not cut Aβ in the middle of its sequence, generates sAPPβ and C99 (or CTFβ). 

Subsequently, γ-secretase cleavage of C99 then generates Aβ and AICD (Figure 1 – 

amyloidogenic pathway). In accordance, increased β-secretory activity was observed in AD 

patients [80, 81]. Albeit BACE exists in two isoforms (BACE1 and BACE2) which shares 

more than 60% of homology, BACE2 involvement in Aβ generation is minimal as its 

expression in the brain is relatively low [82]. In transgenic mouse model of AD, BACE 

deficiency restored memory deficits and led to negligible Aβ production [83, 84]. 

1.3.3 γ-secretase 

γ-secretase is the final enzyme in APP processing responsible for the C83 and C99 (CTFα 

and CTFβ, respectively), to generate p3 and AICD from C83 and Aβ and AICD from C99. 

The enzyme is composed of 4 different subunits: Presenilins (PS1 or PS2), Presenilin 



23 

 

Enhancer 2 (PEN2), Anterior Pharynx-Defective 1 (APH1) and Nicastrin [85]. While the γ-

secretase activity is associated to PS1 and PS2, the other members of the γ-secretase complex 

(Nicastrin, APH1 and PEN2) are necessary for the stabilization of the complex and for the 

complete enzyme activity [86-89]. In animal models, expression of mutated PS genes (with 

mutations causing familial AD) increased Aβ42 expression compared to animals expressing 

wild type PS genes [90, 91]. 

 

1.4 The importance of early diagnosis 

Currently, over 50 million people worldwide are affected with dementia, of which, as 

mentioned, Alzheimer’s disease represent the most common form. This number is expected 

to increase to ~131 million by 2050. In Australia, dementia is the second leading cause of 

death. In addition, the increasing number of individuals affected by the disease would spike 

up even more the enormous costs for care that are an incredible financial burden weighting 

on families and governments. As for any disease, early diagnosis would allow for early 

therapies, which would, at the very least, improve the quality of life of affected individuals 

and delay their placement in aged-care facilities. Besides an obvious improvement about 

individual lifestyle, delayed placement in aged-care facilities would incredibly reduce the 

financial burden associated to it. The potential for preventive therapy based on early 

diagnosis has been demonstrated in several clinical trials. As of today, early diagnosis can 

only be performed by brain imaging or analysis of CSF biomarkers, which do manifest ~2-3 

decades prior to symptom onset [92]. However, current methodologies are unsuited for 

community-wide screening for a variety of reasons. Brain imaging can be obtained by 

scanning methods (e.g., structural and functional MRI or positron emission tomography 

(PET) of cerebral metabolism with 18F-fluorodeoxyglucose (FDG) and amyloid tracers like 
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11C-Pittsburgh Compound-B), but they are expensive and cannot currently be used for 

routine clinical examination. On the other hand, CSF biomarker analysis, which could 

provide an accurate assessment of AD-related biomarkers, relies on CSF collection by lumbar 

puncture, an invasive technique that requires trained personnel and carries and inherent risk. 

It goes without saying that unveiling a blood-based biomarker panel would eventually lead to 

the development of a which is sorely missing. Such development would close the existing 

gap and would lead to the development of a cheap, reliable and non-invasive blood-based 

preclinical diagnostic assay that could detect AD biomarker changes and could be routinely 

used in clinical labs for identifying those individuals at risk for AD in which early 

biochemical changes have started but clinical symptoms are yet to appear. By detecting early 

changes, we would be able to begin preventative therapies long before the onset of the 

clinical symptoms, when they are likely to be more effective. Early therapies would 

eventually have two extremely significantly outcomes. The first is that early intervention will 

delay the onset of the disease in affected individuals, which would therefore greatly improve 

their quality of life by allowing them to carry on their daily routine for longer and with better 

results. The second, is such delayed onset of the disease will in turn delay the placement of 

individuals in nursing homes, greatly reducing all care-associated costs and relieving the 

financial burden associated with it. 
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1  | INTRODUC TION

Alzheimer's disease (AD) is the leading cause of dementia in the el-
derly and the number of affected individuals is set to increase in the 
next decades. The two main features of AD are represented by ex-
tracellular amyloid plaques of amyloid β (Aβ) in the brain parenchyma 
and intracellular neurofibrillary tangles of tau protein. In the past 
decades several lines of evidence have indicated that high-density 
lipoproteins (HDL) are strongly involved in the aetiology and the 

progression of the disease, although the overall analysis of HDL lev-
els and their association with cognitive functions somehow lacked 
consensus. Many of the proteins associated with HDL are also linked 
to AD and Aβ formation/catabolism, some displaying protective fea-
tures while others do not, it is not surprising the association between 
HDL levels and AD provided confounding results. It is therefore pos-
sible that components of HDL ‘protein cargo’, more than the HDL 
levels alone, are responsible for neuroprotection and affect Aβ for-
mation and/or deposition.
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Abstract
High-density lipoproteins (HDL) are a heterogeneous class of molecules whose main 
function is to remove excess cholesterol through a mechanism called reverse trans-
port, in which cholesterol is transported from peripheral organs and from arterial 
foam cells to the liver, where it is subsequently eliminated with bile. While its ability 
to eliminate excess cholesterol has always been viewed as its main feature, its benefi-
cial effects go beyond this single effect. Many of the proteins that are associated with 
HDL are responsible for anti-oxidant and anti-inflammatory properties. These pro-
teins that are associated with HDL during its generation and remodelling, are referred 
to as ‘protein cargo’, which has been extensively analysed by mass spectrometry 
analysis in healthy and diseased individuals. In this review, we discuss the pathway 
that leads to HDL formation and its subsequent remodelling and catabolism with 
regards to the possible involvement of HDL ‘protein cargo’ in Alzheimer's disease.
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2  | HDL METABOLISM

2.1 | Reverse cholesterol transport and generation 
of HDL

In reverse cholesterol transport the formation of HDL particles is 
initiated by the cholesterol transporter ATP-binding cassette trans-
porter A1 (ABCA1), which catalyses the first step in HDL formation, 
where free cholesterol is added to free Apolipoprotein A-I (ApoA-I) 
of the nascent HDL. ABCA-1 is a protein that belongs to the ABC 
family of transporters, it is localized at the cell surface (Neufeld 
et  al.,  2001) and it is ubiquitously expressed (Fan et  al.,  2013; 
Haghpassand, Bourassa, Francone, & Aiello, 2001; Jeon et al., 2015; 
Kielar et  al.,  2001), whereas the intestine and liver are the main 
sources of plasma ApoA-I (Sliwkowski & Windmueller, 1984). To a 
minor extent, another member of the ABC transporters, ABCA7, 
which shows 54% homology with ABCA1 (Kaminski et  al.,  2000), 
has been linked to HDL formation. However, compared to ABCA1, 
ABCA7 seems to be more efficient in regulating the efflux of phos-
pholipids rather than cholesterol (Abe-Dohmae et al., 2004; Hotta, 
Abe-Dohmae, Taguchi, & Yokoyama, 2015; Quazi & Molday, 2013; 
Wang et  al.,  2003). ApoA-I is the main apolipoprotein of HDL in 
plasma and induces the translocation of cholesterol and phospho-
lipids in the cytosolic lipid-protein particle with phospholipase C 
involvement (Ito, Li, Nagayasu, Kheirollah, & Yokoyama, 2004; Ito, 
Nagayasu, Kato, Sato, & Yokoyama, 2002; Ito, Nagayasu, Kheirollah, 
Abe-Dohmae, & Yokoyama,  2011). ApoA-II is fused together with 
the nascent lipoprotein A-I (LpA-I) particle to generate LpA-I/A-II 
molecules, which carry > 95% of plasma ApoA-II (Clay, Pyle, Rye, & 
Barter, 2000; Gao, Yuan, Jayaraman, & Gursky, 2012; Gauthamadasa 
et al., 2010). Following this initial step, lecithin:cholesterol acyltrans-
ferase (LCAT) converts the free cholesterol into cholesteryl esters 
(CE) by mediating the transfer of a fatty acid to the hydroxyl group 
of the cholesterol (Jonas,  2000). This reaction takes place on the 
surface of HDL particles (Sorci-Thomas, Bhat, & Thomas, 2009) and 
requires ApoA-I as an activator. However, while ApoA-I is the major 
activator of LCAT on HDL, other apolipoproteins can also activate 
it, though to a lesser degree (Steyrer & Kostner, 1988). Conversely, 
ApoE is the major activator of LCAT activity on low-density lipopro-
tein (LDL) (Zhao, Thorngate, Weisgraber, Williams, & Parks, 2005). 
LCAT is mainly produced by the liver, although astrocytes have also 
shown the capacity to produce it in the brain (Hirsch-Reinshagen 
et al., 2009; Warden et al., 1989).

2.2 | Remodelling of HDL

Upon transformation of free cholesterol into cholesteryl esters, the 
nascent discoidal HDL molecule becomes a more stable spherical 
HDL3 beginning a remodelling process that eventually culminates in 
the generation of larger HDL2 particles. During this process in which 
several enzymes are involved, HDL-associated proteins are also af-
fected as some of them are specifically associated with HDL3 or 

HDL2 or to different extents with both particles (Figure 1). There are 
indications that along this remodelling process, as the HDL particles 
become larger, LCAT loses its activity, which can be attributed to 
the ability of sphingomyelin to inhibit LCAT binding to the lipopro-
tein, as well as a direct inhibition from the product itself (Bolin & 
Jonas, 1996). Phospholipid transfer protein (PLTP) (a) mediates the 
fusion of small HDL particles into a larger one (accompanied by the 
release of smaller particles) (Lusa, Jauhiainen, Metso, Somerharju, 
& Ehnholm, 1996; Rye & Barter, 1986) through a process that also 
involves the release of ApoA-I from HDL and whose conversion 
rate is affected by the ApoA-I/ApoA-II ratio (Jauhiainen et al., 1993; 
Pussinen, Jauhiainen, & Ehnholm,  1997; Pussinen, Jauhianinen, 
Metso, Tyynela, & Ehnholm, 1995; Tu, Nishida, & Nishida, 1993) and 
(b) mediates the transfer of phospholipids between ApoB-rich lipo-
proteins to HDL (Tall, Krumholz, Olivecrona, & Deckelbaum, 1985). 
The enlargement of HDL requires the intrinsic phospholipid trans-
fer activity of PLTP and is promoted by triglyceride enrichment in 
the HDL core (Huuskonen et al., 2000; Jauhiainen et al., 1993; Rye, 
Jauhiainen, Barter, & Ehnholm, 1998). Additionally, in the reverse cho-
lesterol pathway, PLTP may act as a free cholesterol acceptor upon 
interaction with ABCA1, acting as an intermediary from the cell to 
the lipoproteins (Oram, Wolfbauer, Vaughan, Tang, & Albers, 2003). 
Cholesteryl ester transfer protein (CETP) transfers the CE to the sur-
face of ApoB-containing lipoproteins, mostly LDL and very low-den-
sity lipoprotein (VLDL), in exchange for triglycerides (Deckelbaum 
et al., 1982). This action is viewed as lowering HDL while increasing 
LDL, suggesting that cholesterol is secreted from the liver after being 
taken up by LDL receptors via this pathway, rather than through 
the scavenger receptor-BI. As for PLTP activity, CETP activity is 
also affected by the apolipoprotein content, as it is reduced in the 

F I G U R E  1   Distribution of high-density lipoproteins (HDL)-
associated protein into different HDL subclasses. Expression 
of proteins on HDL particles is different depending upon the 
maturation stage of HDL, with some proteins preferring either 
HDL2 or HDL3 subclasses, whereas other proteins not displaying 
any preference
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presence of ApoA-II compared to ApoA-I alone (Lagrost, Persegol, 
Lallemant, & Gambert, 1994). While CETP is mainly produced in the 
liver and adipose tissue (Radeau et  al.,  1995; Swenson, Simmons, 
Hesler, Bisgaier, & Tall, 1987), PLTP is ubiquitously expressed (Albers 
et al., 1995; Guo et al., 1999; Jiang et al., 1998; Vuletic et al., 2003). 
Hepatic lipase (HL), primarily synthesized in the liver (Semenkovich 
et al., 1989; Stahnke, Sprengel, Augustin, & Will, 1987) and endothe-
lial lipase (EL), mainly synthesized in the endothelial cells but also in 
several other tissues (Jaye et al., 1999), belong to the triacylglycerol 
lipase family. Their function is to hydrolyse phospholipids and tri-
glycerides (HL) or mostly phospholipids (EL) on HDL, although they 
have different specificity for phospholipids (Duong et al., 2003). In 
the case of HL, its action on HDL particles is followed by the release 
of ApoA-I (Clay, Newnham, & Barter, 1991). By this action, HL and 
EL are viewed as negative regulators of plasma HDL (Edmondson 
et al., 2009; Jansen, Verhoeven, et al., 1997; Singaraja et al., 2013; 
Tilly-Kiesi et al., 2004) as hydrolysis of their respective substrates 
reduces the levels of large HDL2 with formation of smaller HDL3 
and pre-β HDL (Mowri, Patsch, Smith, Gotto, & Patsch,  1992; 
Patsch, Prasad, Gotto, & Bengtsson-Olivecrona,  1984), although 
some reports indicate that the remnant-HDL2 particles generated 
by the action of HL possess different features from HDL3 particles 
(Guendouzi et al., 1999). Additionally, EL in synergy with serum amy-
loid A (SAA), reduces the formation of nascent HDL through a mech-
anism that inhibits ABCA1-mediated ApoA-I lipidation (Wroblewski 
et  al.,  2011). The presence of ApoA-II on HDL particles increases 
their affinity for HL, however, there is no consensus about the 
ApoA-II effects on HL activity as some reports indicate increased 
activity, whereas other reports describe ApoA-II presence as inhibi-
tory (Boucher et al., 2004; Hime, Barter, & Rye, 1998; Mowri, Patsch, 
Gotto, & Patsch, 1996; Mowri et al., 1992). The presence of ApoE on 
HDL instead increases the HL activity (compared to ApoA-I/HDL) in 
an isoform-dependent manner, with ApoE2 being the most potent 
activator (Hime, Drew, Hahn, Barter, & Rye, 2004). The same effect 
of ApoA-II can be seen for EL, in which albeit ApoA-II inhibited the 
phospholipase activity of EL, in the presence of ApoA-I, the con-
comitant presence of ApoA-II may either increase or decrease EL 
phospholipase activity compared to ApoA-I alone (Broedl, Jin, Fuki, 
Millar, & Rader, 2006; Jahangiri et al., 2005). Studies in animal mod-
els also support the notion that HL and EL are negative regulators of 
HDL (Braschi et al., 1998; Dichek et al., 1998; Ishida et al., 2003; Ma 
et al., 2003; Mezdour, Jones, Dengremont, Castro, & Maeda, 1997; 
Otera et al., 2009). Interestingly, in a double knock-out transgenic 
mouse model (HLko/ELko), HDL levels were higher than in either sin-
gle knock-out models, indicating additive, rather than overlapping, 
effects on HDL metabolism (Brown et al., 2010).

2.3 | Catabolism of HDL

Upon enlargement, HDL molecules can in turn be taken up by 
the liver by the scavenger receptor BI protein, facilitated by HL 
(Lambert et al., 1999; Ohashi, Mu, Wang, Yao, & Chen, 2005) where 

cholesterol is eliminated through the bile (Kozarsky et  al.,  1997). 
Scavenger receptor-BI (SR-BI) is a scavenger receptor mainly ex-
pressed in liver and steroidogenic tissue whose main functions are 
to (a) bind HDL particles and internalize cholesteryl esters, (b) pro-
vide cholesterol for steroid synthesis (Acton et al., 1996; Kinoshita 
et al., 2004; Rigotti et al., 1996) and (c) facilitate cholesterol efflux 
from cells (Ji et al., 1997; Jian et al., 1998; Truong, Aubin, Falstrault, 
Brodeur, & Brissette, 2010). It is still under debate whether SR-BI 
binds preferentially to ApoA-I rich or ApoA-II rich lipoprotein (de 
Beer et al., 2001; Pilon et al., 2000), however, it has a higher affin-
ity for large cholesterol-rich α-HDL molecules rather than lipid-free 
ApoA-I or pre β-HDL (Liadaki et al., 2000; Lund-Katz, Liu, Thuahnai, 
& Phillips,  2003). Animal models over-expressing or depleting/in-
activating SR-BI gene were observed to have reduced HDL levels 
for the former and increased HDL levels for the latter (Ji, Wang, 
et  al.,  1999; Kozarsky et  al.,  1997; Rigotti et  al.,  1997; Varban 
et al., 1998). Another receptor that has been linked to HDL catab-
olism is the P2Y13, a G-coupled receptor that mediates the endo-
cytosis of HDL from the hepatocyte surface by generation of ADP 
(Jacquet et  al.,  2005; Martinez et  al.,  2003). The use of two ago-
nists of P2Y13 (AR-C69931MX and CT1007900) increased the he-
patic HDL uptake and increased bile secretion (Goffinet et al., 2014; 
Jacquet et al., 2005). The use of a partial agonist of P2Y13, Cangrelor, 
increased biliary secretion and HDL uptake in wild type and SR-BIko 
mice, but had no effect on P2Y13ko mice, indicating that P2Y13 plays 
a role in HDL catabolism that is independent of the action of SR-BI 
(Fabre et al., 2010). CD36 (another member of the SR Class B family) 
has also been suggested to be a receptor for HDL (as well as for VLDL, 
LDL and modified LDL) (Calvo, Gomez-Coronado, Suarez, Lasuncion, 
& Vega, 1998). As for SR-BI, its affinity for HDL is affected by the 
presence of ApoA-II (de Beer et al., 2004). In CD36ko animals, there 
is a significant decrease in hepatic HDL and CE uptake, whereas cul-
tured cells over-expressing CD36 showed increased CE uptake and 
HDL internalization (Brundert et al., 2011) (Figure 2).

3  | HDL COMPOSITION

3.1 | Mass spectrometry as primary method

Over the previous decades, the role of HDL has been revised and 
repeated studies have indicated that HDL particles are not solely 
responsible for reverse cholesterol transport, but are also involved 
in other important cellular processes, such as mediators of inflam-
mation and/or oxidation. These additional properties are because 
of the presence of several HDL-associated proteins (referred as 
HDL-protein cargo), which are added to and removed from HDL 
during HDL generation and remodelling (discussed in the next 
section). While some of these proteins are similarly expressed on 
HDL subclasses throughout the whole maturation process, others 
are specifically expressed only in specific stages of HDL matura-
tion, conferring HDL-specific subclass-related features. Mass spec-
trometry (MS) analysis has been one of the chosen methods for the 
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analysis of HDL protein cargo. Early reviews have compared find-
ings from several studies with regard to the proteins associated 
with HDL, indicating substantial variability across these studies 
(Ronsein & Vaisar, 2019; Shah, Tan, Long, & Davidson, 2013; Yassine 
et al., 2014). Interestingly, as reported in one of the most recent re-
views, more than 500 proteins have been detected across all studies, 
However, only two proteins (ApoA-I and ApoL-I) were consistently 
identified in all studies, whereas only 21 proteins were identified in 
at least the 75% of all studies (Ronsein & Vaisar, 2019). This disparity 
in results can be ascribed to the different methods used to isolate 
HDL (several variants of ultracentrifugation and/or immunoaffinity), 
using the MS analysis itself (whether isolated HDL particles are as-
sessed by matrix-assisted laser desorption/ionization time of flight 
mass spectrometry or liquid chromatography/electrospray ioniza-
tion tandem mass spectrometry), but other factors, likely related to 
the cohorts used, may also contribute to these discrepancies.

3.2 | Mass spectrometry analysis of HDL in 
health and disease

Many studies which have assessed HDL composition have analysed 
healthy controls only, whether as individuals or as pooled samples. 
Studies that have assessed by MS analysis the HDL protein cargo 
in distinct HDL subclasses, namely HDL2 and HDL3, have unveiled 

a specific pattern in which some proteins are similarly expressed in 
HDL2 and HDL3, whereas others are preferentially associated with 
either one subclass. Although these studies were performed using 
different HDL isolation methods and different MS analyses, it ap-
pears there is a consensus about the preference of several proteins to 
HDL subclasses. For instance major apolipoproteins such as ApoA-I 
and ApoA-II appear to be similarly expressed on both HDL2 and 
HDL3, whereas ApoE displayed a small, but not exclusive preference 
for larger HDL2, like ApoC-I. On the other hand, for paraoxonase-1 
(PON-1), PON-3, ApoJ, ApoL-I, ApoA-IV and α1-anti-trypsin over-
all results indicated their preference for smaller HDL3, in some case 
an exclusive preference (Davidson et al., 2009; Gordon, Deng, Lu, 
& Davidson, 2010; Heller et al., 2005; Holzer et al., 2016; Karlsson, 
Leanderson, Tagesson, & Lindahl, 2005). While these studies have 
reported that HDL cargo composition is affected by remodelling, 
other studies have reported that several diseases can affect HDL. 
In Coronary Heart Disease patients, one study reported increased 
levels of ApoA-IV, ApoE, ApoC-IV, PON and Complement factor C3 
specifically in HDL3 subclass, whereas another indicated increased 
levels of HDL-associated fibrinogen, along with increased levels of 
SAA, and complement factor C5. In parallel, the levels of -synuclein, 
ApoC-I, ApoC-II and Fatty Acid Binding Protein were decreased. The 
increase in SAA on HDL is, however, common to other diseases such 
as Acute Coronary Syndrome (along with Complement factor C3), 
End-Stage Renal Disease (along with ApoC-II, Surfactant Protein B 

F I G U R E  2   Graphic representation of high-density lipoproteins (HDL) pathway. Changes occurring in HDL particles during generation, 
remodelling and catabolism and the enzymes involved in such modifications
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and α1-microglobulin) and Liver Disease (along with ApoE). In Liver 
Disease, in which HDL particles tend to shift towards larger HDL2 
subclass, reduced levels of ApoA-I, ApoA-II, ApoC-I, ApoC-II and 
PON were also reported (Alwaili et al., 2012; Trieb et al., 2016; Vaisar 
et al., 2007; Weichhart et al., 2012; Yan et al., 2014). Interestingly, 
aging is also a factor in modulating HDL protein cargo by increas-
ing the levels of SAA and reducing the levels of ApoE (Holzer 
et al., 2013).

4  | HDL AND THE BR AIN

4.1 | Brain HDL versus plasma HDL

Brain HDL differs substantially from plasma HDL as it is gener-
ated in situ, rather than transported across the blood–brain bar-
rier (BBB). This is a consequence of the inability of cholesterol to 
cross the BBB which therefore requires an alternative mechanism 
for HDL production. While in plasma the main apolipoprotein is 
ApoA-I, brain-resident cells, such as astrocytes and neurons, gener-
ate HDL in which ApoE, and to a minor extent ApoJ, are the main 
apolipoproteins (Boyles, Pitas, Wilson, Mahley, & Taylor,  1985; 
Cordero-Llana et  al., 2011; Fagan et  al., 1999; Laping et  al., 1994; 
Morgan et  al.,  1995; Oropeza, Wekerle, & Werb,  1987; Pasinetti, 
Johnson, Oda, Rozovsky, & Finch, 1994; Pitas, Boyles, Lee, Foss, & 
Mahley, 1987; Xu et al., 2006). Further evidence that brain-resident 
cells produce their own HDL in situ came from the analysis of HDL 
particles from liver-transplanted individuals, in which plasma HDL 
particles post-surgery had the ApoE phenotype of the donor, whereas 
the cerebrospinal fluid (CSF) HDL maintained the ApoE phenotype 
of the recipient (Linton et al., 1991) (Figure 3a). Additionally, a recent 

study in 22 non-demented individuals indicated a significant correla-
tion between plasma and CSF levels of ApoA-I, ApoJ and ApoC-III, 
whereas no correlation was found between plasma and CSF levels 
of ApoE, also indicating brain synthesis of ApoE (Koch et al., 2017). 
In contrast, ApoA-I which is not produced in the brain, can be trans-
ported in the CSF across the BBB at the choroid plexus (Stukas, 
Robert, et al., 2014) or through an SR-BI-mediated process as sug-
gested in an in vitro BBB model (Balazs et al., 2004) (Figure 3b). Upon 
generation of discoidal HDL from astrocytes (LaDu et  al.,  1998), 
the particles undergo remodelling and HDL particles found in the 
CSF acquire a spherical structure similar to the structure of plasma 
HDL. This remodelling is under the control of the same enzymes that 
control the remodelling in plasma, all of which are expressed in the 
CNS, with the sole exception of HL (Albers, Tollefson, Wolfbauer, 
& Albright, 1992; Albers et al., 1995; Collet, Francone, Besnard, & 
Fielding,  1999; Demeester et  al.,  2000; Doolittle, Wong, Davis, & 
Schotz, 1987; Gander et al., 2002; Hirsch-Reinshagen et al., 2009; 
Paradis et al., 2004; Vuletic et al., 2003; Yamada et al., 1995). A de-
tailed study indicated that four different classes of HDL are present 
in the CSF (Lp ApoA-I, Lp ApoE, Lp ApoA-I/ApoE and Lp noApoA-I/
noApoE). Although ApoA-I and ApoE may or may not be present, 
all four subclasses contain ApoA-IV, ApoD and ApoJ. Interestingly, 
ApoA-II is present only in Lp ApoA-I but absent in Lp ApoA-I/ApoE 
(Koch et  al.,  2001). These differences in the main apolipoprotein 
also reflect differences in cholesterol and phospholipid content 
and in size, as Lp ApoE are bigger than Lp ApoA-I (Koch et al., 2001; 
Pitas, Boyles, Lee, Hui, & Weisgraber,  1987). Another study indi-
cated the presence of three different lipoprotein groups in the CSF, 
with the main two being Lp ApoA-I and Lp ApoE, depending on the 
major apolipoprotein of the two, with also the presence of small 
amounts of ApoA-IV, ApoD and ApoJ. A third group in which the 

F I G U R E  3   High-density lipoproteins (HDL) generated in the brain and periphery are different. (a) Brain-resident cells produce their own 
HDL, which was demonstrated by HDL particle analysis from liver-transplanted individuals in which plasma HDL particles post-surgery have 
the ApoE phenotype of the donor, whereas cerebrospinal fluid HDL maintained the ApoE phenotype of the recipient. (b) Although ApoA-I is 
not produced in the brain, it can be transported across the blood–brain barrier and be present in small amounts on brain-generated HDL, in 
which the main apolipoprotein is ApoE
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major apolipoprotein was Lp ApoA-IV was also present and this sub-
group of lipoproteins was bigger in size compared to the other two 
(Borghini, Barja, Pometta, & James, 1995). However, there is no ApoE 
isoform-related difference in the composition of Lp ApoE (Rebeck 
et al., 1998). As the brain is a rather isolated environment, it prevents 
cholesterol entry from the blood stream, but it also prevents excess 
cholesterol in the brain to cross the BBB. Unlike in the bloodstream, 
where cholesterol is eliminated through the SR-BI (or alternative re-
ceptors) on the hepatocytes as CE, the major elimination route in 
the brain involves cholesterol conversion to 24-hydroxycholesterol 
by the action of 24S-hydroxylase. Because of its higher solubility, 
24-hydroxycholesterol can then cross the BBB into the bloodstream 
where it is picked up by circulating lipoproteins and delivered to the 
liver for the elimination process (Lütjohann et al., 1996).

4.2 | HDL effects on brain regions and cognitive 
functions and their implications for AD

When evaluating HDL with regard to brain volume and cognitive 
functions, several reports have associated higher HDL levels with 
better cognitive outcomes and/or increased brain volume. High 
serum HDL levels have been associated with greater hippocampal 
volume, whereas low serum levels were associated with a greater 
risk of dementia in a study in which serum LDL and serum total 
cholesterol levels did not show any association (Wolf et al., 2004). 
Further studies indicated that high plasma HDL levels were associ-
ated with a reduced risk for AD, albeit plasma HDL levels were not 
associated with the risk for mild cognitive impairment (MCI) (Reitz 
et  al.,  2008, 2010). Another study showed that serum HDL levels 
inversely correlated with brain amyloid β (Aβ) deposits, whereas 
showing a positive correlation between brain Aβ deposits and serum 
LDL levels (Reed et al., 2014). In other studies, low serum HDL lev-
els were associated with increased white matter changes (Crisby, 
Bronge, & Wahlund, 2010) or a higher probability of memory defi-
cits (Singh-Manoux, Gimeno, Kivimaki, Brunner, & Marmot, 2008). 
Serum HDL levels were also associated with grey matter volume and 
better cognitive functions or higher mini mental state examination 
scores (Atzmon et al., 2002; Bates et al., 2017; Ward et al., 2010). 
Recent publications have summarized the association between 
brain lipids and dementia and suggested that HDL and ApoE lev-
els were inversely associated with dementia (Koch & Jensen, 2016; 
Wellington & Frikke-Schmidt, 2016). However, a few reports from 
The Rotterdam Scan Study failed to confirm the protective role of 
HDL (dan Heijer, Hofman, Koudstaal, & Breteler, 2005; van Velsen 
et  al.,  2013). Anti-oxidant and anti-inflammatory HDL properties 
are the key features for the protective role of HDL, as oxidized HDL 
(oxHDL) and oxidized LDL (oxLDL) have been consistently linked 
to increased neuronal death (Keller, Hanni, & Kindy,  2000; Keller, 
Hanni, & Markesbery,  1999; Sugawa, Ikeda, Kushima, Takashima, 
& Cynshi, 1997; Vaisar et al., 2007). Metabolic syndrome, which is 
a risk factor for dementia, is associated with high oxidative stress 
and altered HDL anti-oxidant and anti-apoptotic properties (Hansel 

et al., 2004; de Souza et al., 2008). It is important to note that the 
majority of HDL protective effect, whether by reducing amyloid 
deposition or by modulating cognitive effects, are associated with 
brain areas mostly affected in AD, such as hippocampus and cortex 
(Scahill, Schott, Stevens, Rossor, & Fox, 2002).

4.3 | The glymphatic and the meningeal 
lymphatic systems

The glymphatic system is a recently identified system, equivalent to 
the lymphatic system in the periphery, that has the function of clear-
ance of waste as well as the distribution of several compounds in the 
brain parenchyma (Benveniste et al., 2019; Jessen, Munk, Lundgaard, 
& Nedergaard,  2015). The CSF produced in the choroid plexus is 
directed to the subarachnoid space where it enters the brain pa-
renchyma in the perivascular space surrounding arteries and it is in 
contact with the astrocytic end feet on the outer side. The presence 
of Aquaporin-4 on the astrocytic end feet facilitates the CSF/ISF ex-
change into the brain parenchyma leading towards the diffusion of 
particles into the brain (Iliff et al., 2012). The bulk flow of ISF collects 
waste products and eventually exits the parenchyma through the 
perivascular space surrounding the veins where the fluid, through 
the meningeal lymphatic system (a network of lymphatic vessels that 
drains fluids through meninges) is then directed towards the cervical 
lymphatic system (Hershenhouse, Shauly, Gould, & Patel, 2019; Da 
Mesquita, Fu, & Kipnis, 2018). The glymphatic/meningeal lymphatic 
waste collection system is mostly active during sleep and reduced 
functions have been observed in aged mice (Iliff et al., 2013; Kress 
et  al.,  2014; Xie et  al.,  2013). As Aβ clearance in the brain is me-
diated by many pathways, including the glymphatic and meningeal 
lymphatic systems, sleep deprivation and reduced glymphatic and 
meningeal lymphatic functions have been linked to reduced waste 
clearance with consequent increased brain Aβ deposition (Peng 
et al., 2016; Shokri-Kojori et al., 2018; Tarasoff-Conway et al., 2015; 
Wang et  al.,  2019; Xu et  al.,  2015). However, the glymphatic sys-
tem is not only responsible for the clearance of waste, but through 
perivascular space surrounding arteries, but not veins, it transports 
small lipophilic molecules and distributes ApoE in the brain paren-
chyma. The diffusion of ApoE is isoform-specific, with ApoE2 dif-
fusing more than ApoE4, whereas ApoE3 diffuses at an intermediate 
level (Achariyar et al., 2016; Rangroo Thrane et al., 2013).

5  | HDL IN AD PATHOLOGY

Some of the HDL-associated proteins described in this section are 
not solely carried on HDL, but also on other lipoproteins such LDL 
and/or VLDL. As we have previously reported, several lines of evi-
dence indicated that HDL molecules are protective in AD and while 
it would be intuitive to associate apolipoprotein protective effects 
with HDL, we cannot exclude that some of these protective effects 
may not be mediated through HDL.
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5.1 | Involvement of ABCA1 in AD pathology and 
lipidation of ApoE

HDL generation is a complex process that involves several proteins 
and enzymes. As several reports have indicated that HDL displayed 
protective features, changes in any of the proteins carried onto HDL 
or on any of the enzymes that are responsible for HDL generation/
remodelling may also alter Aβ deposition and cognitive functions 
associated with such changes. The role of ABCA1 in initiating HDL 
formation in the periphery by lipidating ApoA-I, is paralleled in the 
CNS by its role in lipidating astrocyte-secreted ApoE, which has 
been suggested to be a key factor that modulates Aβ processing and 
degradation (Jiang et al., 2008). In vitro and in vivo studies have con-
firmed that the absence of ABCA1 in the brain (or in brain-derived 
primary cultures) alters CNS ApoE metabolism and reduced its li-
pidation state (Hirsch-Reinshagen et al., 2004; Wahrle et al., 2004). 
Animal models of AD lacking ABCA1 (APP23/ABCA1+/+,−/−, PDAPP/
ABCA1+/+,+/−,−/−, APPswe/PS1Δ9/ABCA1+/+,+/−,−/− and Tg-SwDI-B/
ABCA1+/+,−/−) reported that brain soluble ApoE levels were greatly 
reduced and Aβ deposition was increased, possibly through mecha-
nisms involving Aβ clearance and degradation as APP processing was 
unaffected (Hirsch-Reinshagen et al., 2005; Koldamova, Staufenbiel, 
& Lefterov, 2005; Wahrle et al., 2005). Interestingly, in an AD mouse 
model heterozygous for ABCA1 (APPswe/hApoE3/PSΔ9/ABCA1+/− 
and APPswe/hApoE4/PS1Δ9/ABCA1+/−) increased memory deficits 
and increased Aβ deposition were present only in mice with human 
ApoE4, but not with human ApoE3. This may be a consequence 
of plasma HDL levels, significantly higher in human ApoE3 mice 
compared to human ApoE4 mice (Fitz et  al.,  2012). In the APP23 
transgenic mouse heterozygous for ABCA1 (APP23/ABCA1+/+,+/−), 
memory deficits correlated with the levels of oligomeric Aβ, but not 
with the levels of insoluble Aβ (Lefterov et al., 2009). In vivo effects 
of ABCA1 depletion are summarized in Table  1. Conversely, brain 
over-expression of ABCA1 in PDAPP mice (PDAPP and PDAPP/
ABCA1Tg) showed decreased Aβ deposition and fewer Aβ plaques. 
These results may be a consequence of increased ApoE lipidation 
observed in this study (Wahrle et al., 2008). Up-regulation of ABCA1 
can also be achieved through stimulation of nuclear hormone liver 
X receptors and retinoid X receptors with the ligands T0901317 
and 22-hydroxycholesterol for the former and 9-cis-retinoic acid 
and 13-cis-retinoid acid for the latter. In vitro experiments have 
indicated that up-regulation of ABCA1 through these pathways in-
creased ApoE lipidation and was followed by decreased Aβ secretion 
(Koldamova et al., 2003; Koldamova, Lefterov, et al., 2005), whereas 
in vivo experiments (APP23, Tg2576 and APPswe/PS1Δ9) employing 
T0901317 or GW3965 (another liver X receptors agonist) increased 
ApoE lipidation, improved memory deficits and reduced Aβ plaques 
and soluble and insoluble Aβ deposition, possibly though mechanisms 
that modulate Aβ clearance (Donkin et  al.,  2010; Fitz et  al.,  2010, 
2014; Jiang et al., 2008; Koldamova, Lefterov, et al., 2005; Riddell 
et al., 2007) (Table 2). The improvement of the ApoE lipidation state, 
which is suggested to be one of the factors that modulate Aβ deposi-
tion, is specifically a more prominent process in the brain, as ApoE is 

the major apolipoprotein in brain-derived HDL compared to plasma-
derived HDL, where ApoA-I is the major constituent. However, de-
spite an increased expression of ABCA1 in the hippocampus of AD 
patients (Akram, Schmeidler, Katsel, Hof, & Haroutunian, 2010; Kim 
et al., 2010), ABCA1-mediated cholesterol efflux is reduced in the 
disease, although the reduced levels of CSF-ApoE or ApoA-I from 
AD patients used in these studies may be the direct cause of reduced 
cholesterol efflux (Khalil, Berrougui, Pawelec, & Fulop, 2012; Yassine 
et al., 2016). These results were recently confirmed in another study 
in which ABCA1- and ABCG1-mediated cholesterol efflux was im-
paired in CSF from AD patients, but not from non-AD demented 
patients (Marchi et  al.,  2019). Regardless, these data highlight the 
central role that reverse cholesterol transport plays in the disease 
and the importance of ABCA1.

5.2 | ApoA-I and inhibition of Aβ toxicity

ApoA-I has shown to display protective features in the central 
nervous system as it redistributes lipids to damaged membranes 
and plays a role in regenerating and remyelinating nerves and 
axons after injury (Boyles et al., 1989; LeBlanc et al., 1989; Posse 
de Chaves, Rusinol, Vance, Campenot, & Vance, 1997). In light of 
these protective generic effects, it was therefore suggested that 
ApoA-I may protect against AD. In in vitro experiments, the discov-
ery that the direct interaction of ApoA-I with APP inhibits Aβ aggre-
gation and toxicity (Koldamova, Lefterov, Lefterova, & Lazo, 2001) 
was then confirmed in other reports that have indicated the pro-
tective role of ApoA-I, by reducing the toxicity mediated by the 
carboxy-terminal fragment of APP (Maezawa et al., 2004) and, by 
direct interaction with Aβ, preventing the amyloid-induced toxicity, 
through a mechanism that likely involved inhibition of Aβ protofi-
bril formation (Paula-Lima et  al.,  2009). Animal studies have also 
supported previous findings, suggesting a protective role of ApoA-I 
in the disease. Over-expression of ApoA-I in a triple transgenic 
mouse model (APPswe/PS1Δ9/hApoA-ITg) resulted in reduced 
cognitive deficits and reduced cerebral amyloid angiopathy (CAA), 
despite unaltered Aβ deposition. These findings may be associated 
with reduced neuroinflammation, as HDL-associated Paraoxonase 
(PON) activity is increased in plasma, therefore increasing HDL 
anti-oxidative and anti-inflammatory properties (Lewis et al., 2010). 
Cognitive functions in transgenic mice (APPswe/PS1Δ9) were 
also improved upon treatment with an ApoA-I mimetic peptide (in 
combination with pravastatin, although pravastatin was given at 
concentrations that were not affecting Aβ processing), and such 
improvements were associated with decreased Aβ load, decreased 
glial activation and inflammatory markers. However, decreased 
Aβ deposition in the brain was not a consequence of altered APP 
processing (Handattu et  al.,  2009). Depletion of ApoA-I (PDAPP/
ApoA-I+/+,+/−,−/−) significantly reduced cholesterol levels in the brain 
and plasma, while increasing plasma levels of ApoE, although brain 
ApoE and Aβ levels were unaffected (Fagan et al., 2004). In a differ-
ent AD transgenic model (APPswe/PS1Δ9/ApoA-I+/+,−/−), depletion 
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of ApoA-I increased CAA and Aβ aggregation and worsened cogni-
tive defects without affecting APP processing, soluble Aβ and Aβ 
deposition and brain ApoE levels (Lefterov et al., 2010). It appears 
that ApoA-I does not alter APP processing and Aβ deposition, but 
rather modulates mechanisms that reduce Aβ toxicity. High serum 
ApoA-I levels have also been associated with a reduced risk of de-
mentia in the Honolulu-Asia Aging Study and dementia risk was 
even lower in individuals with no ApoE4 allele (Saczynski, White, 
Peila, Rodriguez, & Launer, 2007). Also, overall plasma and CSF lev-
els of ApoA-I are reduced in AD and correlate with the severity of 
the disease (Johansson et al., 2017; Liu et al., 2006; Merched, Xia, 
Visvikis, Serot, & Siest, 2000; Shih et al., 2014). To further confirm 
the protective role for ApoA-I, an inverse correlation was found 
between serum ApoA-I levels and white matter lesions in elderly 
(Yin et  al.,  2014) and low plasma ApoA-I levels (as well as ApoH) 
increased the risk for cognitive decline (Song et al., 2012). A sche-
matic representation of the effects of ABCA1 and ApoA-I is illus-
trated in Figure 4.

5.3 | The ABCA1ko, ApoA-Iko, ApoEko, ApoA-I/
ApoEdko paradigm

A further step towards understanding the role of ABCA1, ApoA-I 
and ApoE was taken when a double ko (ApoA-I/ApoEdko) mouse 
model was generated, with the goal to mimic the results obtained in 
the ABCA1ko mouse model (Fitz et al., 2015) and compare them to 
the single ApoA-Iko and ApoEko and wild-type (WT) models. All these 
models were generated on an AD background (APPswe/PS1Δ9/
ABCA1ko, APPswe/PS1Δ9/ApoA-Iko, APPswe/PS1Δ9/ApoEko and 
APPswe/PS1Δ9/ApoA-I/ApoEdko). The ABCA1ko lacks ApoA-I 
and has extremely reduced levels of ApoE, therefore the ApoA-I/
ApoEdko should have confirmed such findings. Surprisingly, the 
ApoA-I/ApoEdko results more closely reflected those obtained in the 
single ApoEko model. Parenchymal Aβ deposition in the hippocam-
pus and in the cortex and brain soluble and insoluble levels of Aβ, 
which were either increased or unaffected in ABCA1ko and ApoA-Iko 
compared to WT, were extremely reduced in ApoA-I/ApoEdko and 

F I G U R E  4   ATP-binding cassette 
transporter A (ABCA1) and ApoA-I 
provide protection through different 
pathways. ABCA1 protection is associated 
with greater ApoE lipidation, which 
enhances amyloid β (Aβ) degradation, 
whereas ApoA-I protection is associated 
with a direct effect on Aβ in the formation 
of ApoA-I:Aβ complexes. Both pathways 
converge at the end by reducing the 
formation of toxic Aβ oligomers with 
improved cognitive functions
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were comparable to the levels of ApoEko. These results were sup-
ported by an increased clearance of Aβ in ApoEko and in ApoA-I/
ApoEdko. Of the possible causes for such unexpected observations, 
the authors proposed that the lack of ABCA1 is paralleled by the vir-
tual absence of ApoE-HDL in the CNS that alters the clearance of Aβ 
and reduces the Aβ efflux from the brain. However, the authors also 
acknowledge that these hypotheses do not fully explain the reduced 
Aβ deposition in the ApoA-I/ApoEdko compared to ABCA1ko. A pos-
sible explanation could come from the lipoprotein profile. Because 
of the absence of CE activity, cholesterol in mice is mostly associated 
with HDL rather than VLDL/LDL (Agellon et  al.,  1991; Jiao, Cole, 
Kitchens, Pfleger, & Schonfeld, 1990). In this study, plasma of WT 
mice display almost only HDL, whereas ApoEko and ApoA-I/ApoEdko 
genotypes were associated with the highest levels of VLDL/LDL 
(ApoA-I/ApoEdko also had the highest levels of Aβ42 in plasma). This 
would suggest that high plasma levels of VLDL/LDL would in turn 
increase the Aβ efflux from the brain through a mechanism named 
‘peripheral sink’ (DeMattos et al., 2001) as suggested by the authors 
themselves. Conversely, the levels of oligomeric Aβ, increased in 
ABCA1ko compared to WT, in ApoA-I/ApoEdko were not decreased. 
However, the ABCA1ko and the ApoA-I/ApoEdko models both dis-
played memory deficits and altered neuronal architecture compared 
to WT, which would exclude the presence of Aβ oligomers as the 
cause of such deficits, as the oligomer levels in the ApoA-I/ApoEdko 
were comparable to WT (the study also excludes the presence of Aβ 
as possible cause for memory deficits as mice not harbouring the 
APP transgene display the same memory deficits). This altered neu-
ronal morphology (which is noticeable only in the CA1 region of the 
hippocampus, but not in the CA2 region) may instead be associated 
with the absence of HDL-containing ApoE in the CNS (although data 
on ApoEko are not available). These different behaviours underline 
a more complex role of lipoprotein and apolipoproteins associated 
with them, as the absence of ApoE on HDL may be responsible for 
the altered neuronal structure, but the brain Aβ levels may be more 
closely related to the VLDL/LDL levels in plasma. This ApoE effect in 
mice had already been reported (APPV717F+/−/ApoE+/+,+/−,−/−, PDAPP/ 
ApoE+/+,+/−,−/−, APPsw/ApoE+/+,+/−,−/−,), as ApoEko mice have shown 
decreased levels of plaques, indicating that murine ApoE is neces-
sary for plaque formation. However, the addition of human ApoE 
transgene on an ApoE null background (APPV717F+/−/ApoE+/+,−/−, 
APPV717F+/−/hApoE3+/− and APPV717F+/−/hApoE4+/−) reduces the 
plaque even further than the ApoE null mouse model (Bales 
et al., 1997, 1999; Holtzman et al., 1999, 2000).

5.4 | ApoE isoforms and the detrimental role of 
ApoE4 in AD

The role of ApoE in AD has been extensively studied over 20 years. 
In humans, this 299-aminoacid protein is present in three different 
isoforms that differ at amino acid residue positions 112 and 158 
of the protein. While ApoE2 has cysteine at positions 112 and 158 
and ApoE3 differs by having arginine at position 158, ApoE4 has 

arginine at both positions (Huang & Mahley,  2014). Structurally, 
in ApoE4 the Arg-112 causes the Arg-61 to extend away from the 
helix and interact with the Glu-255 to confer a compact structure 
to ApoE4. In contrast, in the human ApoE3, Cys-112 does not 
cause Arg-61 to protrude, limiting its binding to the Glu-255 and 
allowing the molecule to have a more relaxed structure (Zhong 
& Weisgraber,  2009). This structural difference between ApoE3 
(or ApoE2) and ApoE4 may also be one of the main reasons of 
the different distribution of ApoE isoforms on different lipopro-
teins, as ApoE4 is preferentially associated with Very Low-Density 
Lipoproteins (VLDL), whereas ApoE3 is more closely associated 
with HDL (Nguyen et  al.,  2010). This different distribution may 
also be a reason for the higher predisposition of ApoE3 to form 
complexes with ApoA-II, which can then be directed towards HDL 
in a more efficient way (Gregg et  al.,  1986; Weisgraber,  1990). 
The alteration of this binding domain by substituting the Arg-
61 with a Thr-61 in ApoE4 also induces Aβ production similar to 
the levels obtained with ApoE3 rather than ApoE4 stimulation 
(Ye et  al.,  2005). It is widely accepted that the presence of the 
allele ApoE4 is a major risk factor for late-onset AD and causes 
the onset of the disease at an earlier age (Corder et  al.,  1993; 
Strittmatter et  al.,  1993). The hypotheses behind this different 
behaviour are multiple and affect several biological processes in 
the CNS. Many of the ApoE4-related effects are associated with 
several aspects of Aβ. For instance in vitro, in human brains and 
in murine models of AD (PDAPP, 5xFAD), ApoE4 is associated 
with increased Aβ production, accumulation and oligomerization 
(Bales et  al.,  2009; Hashimoto et  al.,  2012; Koffie et  al.,  2012; 
Ye et  al.,  2005; Youmans et  al.,  2012). However, ApoE4-treated 
hippocampal neurons failed to be protected against Aβ oligomer 
insults and this was not true for ApoE3-treated neurons, which 
were protected through mechanisms involving over-expression of 
Protein Kinase Cε (Sen, Alkon, & Nelson,  2012). The stimulation 
with Aβ oligomers also affects long-term potentiation (LTP) more 
strongly in ApoE4 mice than in ApoE2 or ApoE3 mice (Trommer 
et al., 2005). Reduced clearance, either by reducing the expression 
of an Aβ-degrading enzyme, Insulin-Degrading Enzyme or by other 
mechanisms has also been associated with the presence of ApoE4 
(Castellano et al., 2011; Cook et al., 2003; Deane et al., 2008; Du, 
Chang, Guo, Zhang, & Wang, 2009). Lipidation of ApoE, mentioned 
previously, plays an important role in ApoE binding to Aβ for its 
subsequent degradation, is also affected by APOE genotype, 
with ApoE3 having a higher affinity for Aβ than ApoE4 (Tokuda 
et al., 2000). Comparatively, degradation of Aβ is also affected in 
astrocytes from ApoE4 mice that eliminate Aβ plaques less effec-
tively than astrocytes from ApoE3 mice (Simonovitch et al., 2016). 
Finally, in an AD mouse model (Tg2576/hApoE3 and Tg2576/
hApoE4), the expression of ApoE4 induces CAA at a greater rate 
than ApoE3 (Fryer et  al.,  2005). However, not all ApoE4-related 
effects can be associated with Aβ and its downstream effects on 
neurons. For instance, ApoE3 binds to and slows Tau phospho-
rylation, in stark contrast with ApoE4 which does not bind Tau, 
promoting its phosphorylation and destabilizing microtubules 
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(Strittmatter et  al.,  1994). Several other studies have evaluated 
the role of tau with regard to ApoE4. Increased Tau phosphoryla-
tion has been more prominent in ApoE4, but not in ApoE3 mice 
and correlated with the presence of ApoE C-terminal truncated 
fragments, which are reported to induce cognitive deficits and 
neurodegeneration. Indeed, ApoE4 is more prone to such inter-
nal cleavage than ApoE3, hence the increased neurotoxicity as-
sociated with it. It is, however, interesting that such cleavage was 
present only in neuron-specific ApoE (under the Neuron-Specific 
Enolase promoter) but not in astrocyte-specific ApoE (under the 
Glial Fibrillary Acidic Protein promoter) and the accumulation of 
cytotoxic fragments was more prominent in Alzheimer-related af-
fected areas, such as hippocampus and cortex, rather than in an 
unaffected area such as cerebellum (Brecht et  al.,  2004; Harris 
et  al.,  2003). Such phosphorylation of Tau has been associated 
with several pathways, including the extracellular signal-regulated 
kinase and Calpain-cyclin-dependent kinase 5 signalling pathways 
(Harris, Brecht, Xu, Mahley, & Huang, 2004; Zhou et al., 2016). In 
a tauopathy mouse model (P301S/ApoE2, P301S/ApoE3, P301S/
ApoE4, P301S/ApoE−/−), the presence of ApoE4 was associated 
with increased brain atrophy and increased astrocytic activation 
and the damage caused by the treatment of P301S neurons with 
recombinant ApoE isoforms was more prominent with ApoE4 (Shi 
et  al.,  2017). For instance in a Tau-dependent fashion, the pres-
ence of ApoE4 (but not ApoE3) reduced the number of GAD67- 
and Somatostatin-positive interneurons in the dentate gyrus area 
and preceded cognitive deficits (Andrews-Zwilling et  al.,  2010). 
The presence of ApoE4 also affected other processes in the brain 
which were related to impulse transmission between neurons. In 
ApoE4/4 mice attenuation of excitatory transmission was higher 
than in ApoE3/3, but was partially rescued by ApoE2 in ApoE2/4 
mice. However, the dendritic length in neurons was lower in the 
presence of ApoE4, regardless of the presence of ApoE2 (Klein, 
Mace, Moore, & Sullivan, 2010). These results were in accordance 
with a previous research which indicated that spine density and 
dendritic arborization in cortical neurons in ApoE4 mice were re-
duced (Dumanis et al., 2009). ApoE4 also failed to protect against 
age-dependent neurodegeneration, as indicated by the loss of 
synaptophysin-positive pre-synaptic terminals and MAP2-positive 
neuronal dendrites, which was not detected in ApoE3 mice (Buttini 
et al., 1999). In addition, another study indicated that neurogenesis 
is reduced in ApoE4 knock-in mice, compared to ApoE2 and ApoE3 
mice (Koutseff, Mittelhaeuser, Essabri, Auwerx, & Meziane, 2014). 
APOE genotype has also been repeatedly reported to affect the 
hippocampal volume in MCI and AD, with the ApoE4 strongly as-
sociated with increased atrophy and reduced hippocampal volume 
(Agosta et  al.,  2009; Hostage, Roy Choudhury, Doraiswamy, & 
Petrella, 2013; Manning et al., 2014; Moffat, Szekely, Zonderman, 
Kabani, & Resnick,  2000; Tang, Holland, Dale, & Miller,  2015). 
Since lower plasma ApoE levels were also associated with smaller 
hippocampus (Teng et  al.,  2015), whereas higher plasma levels 
were associated with lower brain amyloidosis (Koch et al., 2018), 
APOE genotype may orchestrate such effects as individuals 

carrying the ε4 allele are known to display lower levels of ApoE. 
More detailed reading of these and other ApoE effects are re-
viewed elsewhere (Huang & Mahley, 2014;Mahley& Huang, 2012; 
Yu, Tan, & Hardy, 2014). Murine ApoE differs substantially from 
human ApoE, despite having an arginine at the position 112, like 
human ApoE4. The reason of this altered behaviour lies on the 
amino acid at the position 61 which is an arginine in humans but a 
is threonine in mice (and in most other species as well), which does 
not lead to the ApoE4-like compact structure (despite the pres-
ence of Arg-112 and Glu-255), instead its behaviour resembles the 
human ApoE3 (Zhong & Weisgraber, 2009).

5.5 | ApoJ and Aβ clearance

ApoJ (or Clusterin) is an atypical apolipoprotein which is associ-
ated with HDL, produced in a variety of tissues and has chap-
eron activity (Calero et al., 2000; de Silva, Harmony, Stuart, Gil, 
& Robbins,  1990; de Silva, Stuart, et  al.,  1990). Although there 
is consensus ApoJ is increased in AD and it is a binding partner 
for Aβ (Ghiso et al., 1993; Matsubara, Frangione, & Ghiso, 1995), 
the main role of ApoJ in AD is rather contradictory, as there is no 
agreement whether its role in the disease is more protective or 
more detrimental. The ApoJ:Aβ complex is known to interact with 
the Low-Density Lipoprotein receptor-related protein 2 (Megalin), 
which mediates the efflux and the clearance of Aβ from and to the 
brain (Bell et al., 2007; Hammad, Ranganathan, Loukinova, Twal, 
& Argraves,  1997; Zlokovic et  al.,  1994, 1996). Several reports 
have indicated that ApoJ levels are increased in plasma and brain 
regions in AD that are specifically associated with senile plaques 
(Gupta et al., 2016, 2017; Howlett, Hortobagyi, & Francis, 2013; 
Lidstrom et al., 1998; Miners, Clarke, & Love, 2017). Although high 
levels of ApoJ in plasma were associated with higher hippocampal 
volume and slower brain atrophy rates in MCI, higher entorhinal 
cortex atrophy rates were associated with higher plasma and CSF 
ApoJ levels in AD, corroborating other findings in which higher 
plasma ApoJ levels were associated with faster cognitive decline 
(Desikan et  al.,  2014; Jongbloed et  al.,  2015; Koch et  al.,  2018; 
Thambisetty et al., 2010, 2012). Primary neurons treated with Aβ 
increased intracellular ApoJ levels, and this intracellular ApoJ in-
crease was also observable in a transgenic model of AD (APPswe/
PS1Δ9) (Wang et al., 2017). The fact that ApoJ is a binding partner 
for Aβ on the surface of HDL (Koudinov, Matsubara, Frangione, & 
Ghiso, 1994) and that this binding, unlike the ApoE-Aβ binding, is 
not altered by the ApoJ lipidation state (Calero et al., 1999), still 
leaves unanswered questions about the role of ApoJ in the disease 
as contradictory findings have been described. ApoJ has shown 
the capacity to bind to the Aβ in vitro, reducing its toxic effects 
(Cascella et  al.,  2013; Matsubara, Soto, Governale, Frangione, & 
Ghiso,  1996; Narayan et  al.,  2011, 2012; Yerbury et  al.,  2007). 
It also appears that the protective effects of ApoJ relies on its 
capacity to alter Aβ aggregation by inhibiting its primary and 
secondary nucleation (Beeg et al., 2016). On the other hand, Aβ 
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modulates its toxicity by up-regulating intracellular ApoJ and ac-
tivating Dickkopf WNT signalling pathway inhibitor 1, whereas 
these effects were reduced in primary neurons devoid of ApoJ 
(Killick et al., 2014; Robbins et al., 2018).

5.6 | Synergistic effects surrounding ApoE and ApoJ

ApoE and ApoJ are the two main apolipoproteins expressed in the 
central nervous system and have been related to the transport and 
the clearance of Aβ. We have previously discussed that murine 
ApoE is necessary for plaque formation as AD mice lacking ApoE 
do not have Aβ deposition. In these transgenic mice (APPV717F+/−/
ApoE+/+,+/−,−/−), the reduction of Aβ deposits in the cortex and 
the hippocampus is APOE dose-dependent, with the heterozy-
gous ApoE carriers (ApoE+/−) showing intermediate deposition. 
Accordingly, such reduced deposition was also paralleled by reduced 
activated glia associated with Aβ deposition (Bales et  al.,  1997, 
1999). Interestingly, a mouse model of AD (APPV717F+/+, PDAPP/
ApoJ+/+,+/−,−/−) lacking ApoJ displayed reduced fibrillar Aβ and neu-
ritic dystrophy compared to the mice expressing ApoJ, although 
fibrillar Aβ and neuritic dystrophy are independent of each other. 
It is noteworthy that despite comparable Aβ deposition, regardless 
of the expression of ApoJ, PDAPP/ApoJ−/− have markedly reduced 
Thioflavin-S positive amyloid plaques in the cortex and in the hip-
pocampus, which indicates a less ‘compact’ structure (DeMattos 
et  al.,  2002). Another report indicated that APP/PS1 mice lacking 
ApoJ (APPswe/PS1Δ9/ApoJ+/+,−/−) also displayed reduced Aβ deposi-
tion in the brain parenchyma. However, such decreased brain amyloid 
deposition was counter-balanced by a noticeable amyloid vascular 
deposition with CAA (Wojtas et al., 2017). Together, these results 
suggested that both ApoE and ApoJ were facilitating the fibrilliza-
tion of Aβ in the brain and the consequent neuronal damage asso-
ciated with it. However, a successive study unexpectedly indicated 
that in absence of both ApoE and ApoJ (PDAPP/ApoE/ApoJdko) there 
was a consistent increase in Aβ deposition, suggesting that ApoE and 
ApoJ have additive effects in regulating Aβ deposition. This effect 
was, as mentioned, rather unexpected since lacking either ApoE or 
ApoJ led to a reduction of Aβ deposition. Interestingly, the neuritic 
dystrophy surrounding the plaques was similar in PDAPP/ApoE+/+/
ApoJ+/+ as it was in the PDAPP ApoE/ApoJdko, suggesting that while 
both molecules are involved in Aβ deposition, the Aβ-related damage 
is independent of their expression (DeMattos et al., 2004).

5.7 | ABCA7 and phagocytosis

In line with previous experiments suggesting ABCA1 to be a pro-
tective factor in Aβ generation, in vitro over-expression of ABCA7 
also reduced the secretion of Aβ without affecting APP processing 
(Chan et al., 2008). Furthermore, depletion of ABCA7 in three mouse 
models of AD (J20/ABCA7+/+,−/−, CRND8/ABCA7+/+,−/− and APPswe/
PS1Δ9/ABCA7+/+,−/−) reported increased levels of cerebral Aβ (Kim 

et al., 2013; Sakae et al., 2016; Satoh, Abe-Dohmae, Yokoyama, St 
George-Hyslop, & Fraser, 2015). It is important to note, however, that 
the primary mechanism behind the protective features of ABCA7 
towards Aβ metabolism might not be an increased ApoE lipidation 
state as it is for ABCA1 (Jiang et al., 2008). Rather, several reports in-
dicated that the protective effects of ABCA7 are mediated by other 
mechanisms, as depletion of ABCA7 increased APP endocytosis 
(Satoh et al., 2015) and reduced efficiency in taking up Aβ oligom-
ers (Fu, Hsiao, Paxinos, Halliday, & Kim, 2016; Kim et al., 2013). This 
would also be consistent with the fact that the primary functions of 
ABCA7 are related to phagocytic activity (Iwamoto, Abe-Dohmae, 
Sato, & Yokoyama, 2006; Jehle et al., 2006). However, increased lev-
els of β-secretase have also been suggested as a potential mecha-
nism behind Aβ increase (Sakae et al., 2016).

5.8 | LCAT and PLTP

Although the majority of the molecules involved in AD, most no-
tably ApoA-I, ApoE and ABCA1, are involved in the initial steps of 
HDL generation, other molecules downstream in the HDL genera-
tion and remodelling have also been associated with AD, though to a 
much lesser extent. Interestingly, in a murine model of AD (APPswe/
PS1Δ9/LCAT+/+,−/−) deficiency of LCAT had no effect on Aβ metabo-
lism and on cerebral and vascular amyloid load (Stukas, Freeman, 
et al., 2014), despite greatly reduced levels of ApoA-I in plasma and 
CSF. This is counterintuitive, considering that ABCA1 and ApoA-I 
deficiency have been associated with increased Aβ levels and wors-
ening of cognitive defects. This may be explained by the fact that 
amyloid clearance is affected by reduced lipidation of ApoE, there-
fore deficiency in ABCA1 reduces ApoE lipidation, but LCAT defi-
ciency does not, and while ApoA-I levels are reduced, a small amount 
of it is still present, mostly in the pre-β form. However, LCAT activity 
in the CSF of AD patients has been reported to be significantly lower 
than in the CSF of controls (Demeester et al., 2000). Downstream in 
the remodelling process, PLTP deficiency has been shown to alter Aβ 
processing and to increase memory deficits by altering APP turno-
ver, steering APP towards β- and γ-secretases. It was also suggested 
that PLTP itself could be a carrier of APP to the cell surface, as it 
was reported that APP and PLTP displayed interaction. Additionally, 
in transgenic animals lacking PLTP (APPswe/PS1Δ9/PLTP+/+,−/−) in-
creased brain expression of β-site APP - cleaving enzyme 1 and PS1 
were also reported, whereas PLTP deficiency did not affect a disin-
tegrin and metalloproteinase 10 (Tong et al., 2015).

5.9 | HDL receptors

Both HDL receptors belonging to the SR Class B family (SR-BI and 
CD36) have shown to play a central role in Aβ processing. It has 
been widely demonstrated that activated microglia surround amy-
loid plaques in the AD brain, secreting a variety of pro-inflamma-
tory molecules which overtime are harmful for the brain. However, 
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activated microglia has also shown Aβ phagocytosis capacity. As the 
binding of Aβ to microglia is a key step in glial activation, several 
receptors have been indicated as potential ligands for Aβ. SR-BI has 
shown the capacity to bind fibrillar Aβ and generate reactive oxygen 
species production in neonatal microglia (Husemann, Loike, Kodama, 
& Silverstein, 2001). Additionally, in mouse models of AD (J20/SR-
BI+/+,+/−), reduction in SR-BI increased amyloid deposition and CAA, 
and worsened cognitive and memory performance through an 
ApoA-I and ApoE-independent mechanism (Thanopoulou, Fragkouli, 
Stylianopoulou, & Georgopoulos,  2010). Similar to SR-BI, CD36 
binding to Aβ induces the release of H2O2 in microglia and mac-
rophages and this release is partially inhibited by antibodies against 
CD36 (Coraci et al., 2002). Activation of the pro-inflammatory cas-
cade upon Aβ binding was subsequently confirmed by another group 
who reported microglial activation through Src kinase family mem-
bers (Moore et al., 2002). Furthermore, activation of microglia and 
the ensuing phagocytosis in macrophages was caused by the binding 
of Aβ to a complex involving CD36, CD47 and α6β1-integrin. This, in 
turn, generated the release of pro-inflammatory molecules through 
a tyrosin-based signalling cascade (Bamberger, Harris, McDonald, 
Husemann, & Landreth,  2003; Koenigsknecht & Landreth,  2004). 
In mouse models of AD (APPswe/PS1Δ9 and J20), up-regulation 
of CD36 through the use of peroxisome proliferator-activated 
receptor-γ agonists such as Rosiglitazone, Pioglitazone and DSP-
8658, was shown to improve memory deficits and to reduce amy-
loid plaques by enhancing microglial uptake (Escribano et al., 2010; 
Yamanaka et  al.,  2012). However, CD36 has also been shown to 
mediate vascular damage through a mechanism that involves ROS 
production from NADPH oxidase (Park et al., 2011).

5.10 | ApoA-II and ApoA-IV

ApoA-II and ApoA-IV have also been linked to neuroprotection and, 
as for ApoA-I, their involvement is associated with mechanisms that 
do not affect APP processing. ApoA-II displayed different proper-
ties when interacting with ApoE, as it forms complexes with ApoE2 
and ApoE3 but not with ApoE4. In cell culture supernatant, ApoE2/
ApoA-II and ApoE3/ApoA-II complexes were able to increase cell vi-
ability by binding to Aβ, reducing its internalization. These protective 
features were missing in ApoE4-treated cells because of the absence 
of ApoE4/ApoA-II complexes (Yamauchi et al., 2000). Although we 
had indicated in the previous chapter that in CSF ApoA-II is present 
only in Lp ApoA-I, but absent in Lp ApoA-I/ApoE and here we re-
port different effects of ApoA-II/ApoE complexes, it is important 
to remember that these data were obtained in vitro and, more im-
portantly, plasma HDL composition is different than CSF HDL-like 
particles. ApoA-IV, just like ApoA-I, is increased at the site of repair 
in peripheral nerve injuries, although this increased concentration is 
because of a transfer of ApoA-IV from plasma, rather than increased 
synthesis (Boyles, Notterpek, & Anderson,  1990). A transgenic 
mouse model of AD lacking ApoA-IV (5xFAD/ApoA-IV+/+,−/−) dis-
played increased cerebral Aβ paired with increased spatial learning 

deficits. As APP processing is unaffected by the ablation of ApoA-IV, 
data strongly suggest that ApoA-IV involvement is more associated 
with Aβ clearance (Cui, Huang, He, Zhang, & Luo, 2011).

5.11 | Other Apolipoproteins

ApoC-III is a 79-aminoacid apolipoprotein, synthesized in the liver 
and the intestine and carried on VLDL and HDL (Brewer, Shulman, 
Herbert, Ronan, & Wehrly, 1974). ApoC-III has been associated with 
hypertriglyceridemia through mechanisms that involved increased 
TG-rich VLDL production and reduced TG catabolism by lipopro-
tein lipase inhibition (Sundaram et  al.,  2010; Wang, McConathy, 
Kloer, & Alaupovic, 1985). ApoC-III binds Aβ and its plasma levels 
were lower in healthy controls with the familial history of AD and 
AD patients, suggesting that it could be used as an early marker for 
AD (Shih et al., 2014). Additionally, CSF levels of ApoC-III (as well as 
ApoD and ApoH) positively correlated with atrophy rates in the in-
ferior and middle temporal cortex (Mattsson et al., 2014). ApoD be-
longs to the lipocalin superfamily and is more frequently associated 
with HDL, but unlike the majority of other apolipoproteins which 
are mainly produced in the liver and intestine, ApoD is ubiquitously 
expressed, although it appears that the brain is one of the regions 
with the highest ApoD expression (Drayna et  al.,  1986; Eichinger, 
Nasreen, Kim, & Skerra, 2007; Seguin, Desforges, & Rassart, 1995). 
ApoD is a key molecule in triglyceride metabolism as high plasma 
levels have been associated with reduced levels of triglycerides in 
mice, through mechanisms that increase lipoprotein lipase activity, 
therefore increasing TG catabolism rather than reducing its synthe-
sis (Perdomo et al., 2010). It has also been proposed that ApoD is 
up-regulated and has protective features against oxidative stress, 
both in vitro and in vivo (Bajo-Graneras et  al.,  2011; Ganfornina 
et al., 2008; He et al., 2009). In light of these findings, several stud-
ies have reported increased levels of ApoD in CSF, hippocampus and 
prefrontal cortex of AD patients, strongly suggesting that neuro-
toxic biochemical changes, such as augmented inflammation and oxi-
dative stress, could in turn activate protective defence mechanisms 
such as ApoD up-regulation. Additionally, in brain regions specifi-
cally affected in AD such as the hippocampus and prefrontal cor-
tex, increased levels of ApoD were reported and correlated with the 
levels of lipid peroxidation products (Bhatia et al., 2013; Glockner & 
Ohm, 2003; Terrisse et al., 1998; Thomas et al., 2003). In postmor-
tem brain, the increase in ApoD in the frontal and temporal cortex 
was observed in AD patients, but not in Frontotemporal Dementia 
patients who had ApoD levels comparable to controls (Bhatia, Kim, 
Shepherd, & Halliday, 2019). In rats, increased mRNA levels of ApoD 
in the hippocampus were also observed after entorhinal cortex le-
sions, a region that is strongly affected in AD (Terrisse et al., 1999). 
Nonetheless, ApoD has also been reported to be a component of 
amyloid plaques (Desai et al., 2005). Finally, a study in AD transgenic 
animals (APPswe/PS1Δ9/ApoD−/−, APPswe/PS1Δ9/hApoD+/+ and 
PDAPP) have reported increased ApoD mRNA, whereas another has 
associated the absence of ApoD with an increased number of amyloid 
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plaque in the hippocampus and the over-expression of ApoD with a 
reduced number of them (Li et al., 2015; Thomas, Sautkulis, Criado, 
Games, & Sutcliffe, 2001). These results suggest that ApoD in AD 
could be physiologically increased to protect agaist the presence of 
amyloid plaques, whereas its transgenic over-expression would in-
stead reduce the formation of amyloid plaques themselves. ApoF 
is an atypical apolipoprotein that is mainly associated with HDL, 
although a small fraction is also associated with LDL (He, Greene, 
Kinter, & Morton, 2008; Koren, McConathy, & Alaupovic, 1982) and 
is an important modulator of HDL. It acts as Lipid Transfer Inhibitor 
Protein given its ability to inhibit CE transfer amongst lipoproteins, 
and this activity appears to be restricted to the LDL-bound ApoF 
fraction, which as a consequence increases the CE transfer from 
HDL to VLDL, hence lowering HDL levels (Morton & Greene, 1994; 
Wang, Driscoll, & Morton, 1999). Accordingly, the over-expression 
of ApoF reduces HDL in mice, while unexpectedly, ApoF deficiency 
has no effect (Lagor et al., 2009, 2012). However, there is no current 
link between ApoF expression/activity and AD. ApoM is an apoli-
poprotein secreted from the kidneys and liver, that is carried by a 
small fraction of HDL particles (Christoffersen et al., 2006; Zhang 
et al., 2003). Although there are contradictory data regarding the im-
portance of the absence of ApoM in the formation of pre-β HDL, its 
presence increased the formation of larger pre-β HDL, which in turn 
increased the cholesterol efflux, leading to an increased protection 
against atherosclerosis (Elsoe, Christoffersen, Luchoomun, Turner, & 
Nielsen, 2013; Mulya et al., 2010; Wolfrum, Poy, & Stoffel, 2005). 
Additionally, ApoM has also displayed anti-oxidant activity for its 
capacity to bind oxidized phospholipids, hence enhancing the anti-
oxidant activity of HDL itself, and its anti-apoptotic activity by bind-
ing to and delivering sphingosine-1-phosphate (S1P) to the vascular 
endothelium (Christoffersen et  al.,  2008, 2011; Elsoe et  al.,  2012; 
Ruiz, Frej, et al., 2017; Ruiz, Okada, & Dahlback, 2017). Additionally, 
S1P appears to be more prominent in the HDL3 fraction, which is the 
fraction more prominently associated with HDL protective features 
(Kontush, Chantepie, & Chapman, 2003; Kontush et al., 2007). In a 
proteomic analysis of CSF, ApoM levels were significantly reduced 
in AD patients compared to controls (Khoonsari et al., 2016), which 
corroborates other reports of decreased S1P levels in the AD brain 
(Couttas et al., 2014; He, Huang, Li, Gong, & Schuchman, 2010).

5.12 | The anti-oxidant effects of Paraoxonase

Paraoxonase (PON) is an enzyme with paraoxonase/arylester-
ase/lactonase activity produced in the liver that is mainly associ-
ated with HDL, although small quantities can also be found on 
VLDL (Bergmeier, Siekmeier, & Gross,  2004; Deakin, Moren, & 
James, 2005). It is associated with ApoJ and is activated by ApoA-I 
on HDL, steps that are necessary for the full display of its protec-
tive features such as increasing cholesterol efflux in in vitro experi-
ments, an effect that is mediated by ABCA1 (Berrougui, Loued, & 
Khalil, 2012; Gaidukov & Tawfik, 2005; Kelso et al., 1994; Rosenblat, 
Vaya, Shih, & Aviram, 2005). Conversely, over-expression of ApoA-II 

appears to be pro-atherogenic because of its capacity to displace 
PON from HDL (Castellani et  al.,  1997; Ribas et  al.,  2004). As for 
many proteins associated with HDL, each stage of HDL maturation is 
associated with different proteins and therefore with different prop-
erties. PON is mainly expressed in the small HDL3 fraction, which is 
also the fraction that is mostly associated with anti-oxidant features 
(Bergmeier et al., 2004; Camont et al., 2013; Kontush et al., 2003). 
In fact, PON inhibits the generation of lipid peroxides and pre-
vents the damage caused by oxLDL (Garcia-Heredia et  al.,  2013; 
Mackness, Arrol, Abbott, & Durrington,  1993; Mackness, Arrol, & 
Durrington,  1991). Therefore, PON levels/activity in serum or in 
HDL-isolated fraction were diminished in several diseases, which 
at least in part reflects the inability of HDL to fully display its anti-
oxidant, anti-inflammatory and anti-apoptotic properties (Kappelle, 
Bijzet, Hazenberg, & Dullaart, 2011; Murakami et al., 2013). Several 
reports have indicated, not without slight discrepancies among PON 
enzymes involved, that overall serum PON activity was down-reg-
ulated in AD patients (Bacchetti et al., 2015; Cervellati et al., 2015; 
Paragh et al., 2002). Such decrease in PON activity in AD patients 
may be, at least in part, the cause behind the up-regulated oxLDL 
levels in the disease, which in turn may increase the secretion of Aβ 
from neuronal cells (Bacchetti et al., 2015; Dias et al., 2014).

5.13 | Serum Amyloid A (SAA) and HDL remodelling

SAA is an acute-phase protein that travels on HDL and whose levels 
greatly increase during inflammatory states. As a consequence, SAA 
has been associated with HDL remodelling, the protective properties 
of HDL. During inflammatory states, it has been suggested that SAA 
increases its concentration on HDL by displacing ApoA-I from HDL 
itself, although this is not true in the absence of an acute phase pro-
tein (Coetzee et al., 1986; Hosoai et al., 1999; Parks & Rudel, 1985). 
SAA capacity to displace apolipoprotein from HDL is not limited 
to ApoA-I, since in the CSF SAA has been associated with the dis-
placement of ApoE, the main brain-derived HDL apolipoprotein, 
with this effect being more prominent in ApoE4 individuals (Miida 
et al., 2006). In turn, this HDL remodelling has been associated with 
a loss of protective properties, common to several diseases. For in-
stance cholesterol efflux is impaired in HDL derived from inflamed 
human and mice and it is inversely correlated with the extent of SAA 
on HDL (Vaisar et al., 2015). Albeit one report indicated that, in order 
to affect the cholesterol efflux, the concentration of SAA on HDL 
must be relatively high (>50%) (Banka et al., 1995). Other data from 
mice (WT and SAA−/−) and humans indicated that cholesterol efflux 
and HDL anti-inflammatory properties are affected by the presence 
of SAA on HDL, which blocks HDL access to the adipocyte mem-
branes (Han et al., 2016). In patients with End-Stage Renal Disease 
and Sistemic Lupus erythematosus, HDL displayed reduced anti-
inflammatory properties as a consequence of SAA enrichment (Han 
et  al.,  2016; Tolle et  al.,  2012). In metabolic syndrome patients (a 
condition that is considered a risk factor for AD), high levels of SAA 
correlated with lower PON activity, suggesting that the SAA-driven 
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damage on HDL may affect PON (Kappelle et al., 2011). Alteration 
in HDL particles (mainly HDL3) with reduced anti-oxidative ca-
pacity was also reported in Myocardial Infarction patients, where 
reduced levels of ApoA-I were paralleled by an increase in SAA, 
lysophosphatidylcholine and phosphatidic acid (Rached et al., 2015). 
However, in the absence of SAA, an acute phase response does 
not alter HDL size in mice, but induces changes on HDL such as in-
creased phospholipid and decreased total proteins, which can be a 
consequence of the absence of CETP in mice (de Beer et al., 2010). In 
spite of many reports that have indicated that SAA on HDL is one of 
the key molecules responsible for reduced HDL protective features, 
a few reports have indicated that the presence of SAA on HDL does 
not affect anti-oxidative functions of HDL and promote cholesterol 
efflux (Jayaraman, Haupt, & Gursky, 2016; Sato et al., 2016; van der 
Westhuyzen, Cai, de Beer, & de Beer, 2005). While SAA seems to 
play a prominent role in inflammatory states and alters the activi-
ties of HDL, little is known about its involvement in AD, despite in-
creased levels in the disease (Elovaara, Maury, & Palo, 1986; Gupta 
et  al.,  2017). It is, however, known that the SAA-driven displace-
ment of ApoE from HDL-CSF discussed earlier is more prominent 
in ApoE ε4 carriers, than in ε2 or ε3 carriers, affecting Aβ clearance 
and therefore suggesting another possibility by which the ε4 allele of 
ApoE may play a role in AD (Miida et al., 2006).

5.14 | Plasminogen activator inhibitor 1 (PAI-1) and 
plasmin-related Aβ degradation

PAI-1 belongs to the serpins family (Serine Protease Inhibitors) and is 
the natural inhibitor of tissue and urokinase Plasminogen Activator 
(tissue plasminogen activator, tPA and urokinase plasminogen ac-
tivator, uPA, respectively), which are the two main enzymes re-
sponsible to convert plasminogen to plasmin. Plasmin is reportedly 
responsible for Aβ cleavage, therefore, this pathway is stimulated 
by the up-regulation of tPA and uPA. These results were also con-
firmed in several animal models, in which tPA activity is reduced in 
AD models (CRND8, Tg2576) and inefficiently cleared brain-injected 
Aβ in tPA−/− or plasminogen−/− mouse models (Melchor, Pawlak, 
& Strickland,  2003; Tucker, Kihiko, et  al.,  2000; Tucker, Kihiko-
Ehmann, Wright, Rydel, & Estus, 2000). As positive regulation of the 
tPA-plasminogen pathway leads to Aβ cleavage, molecules involved 
in its negative regulation should play the opposite role in the disease. 
As expected, PAI-1 levels are increased in the brain of mouse mod-
els of AD. Expectedly, in PAI-1−/− AD mouse models (APP/PS1Δ9/
PAI+/−,−/−), there is a decreased brain Aβ load and reduced levels of 
soluble Aβ, which is also associated with increased tPA activity (Liu 
et al., 2011). In support of these findings, a recent study reported 
that the administration of a PAI-1 inhibitor increases tPA, uPA and 
plasmin activity in the hippocampus of treated mice (APP/PS1Δ9) 
and reduces Aβ plaques (Akhter et al., 2018). Although the direct as-
sociation of PAI-1 with HDL is under investigation, its secretion from 
adipocytes is stimulated by HDL3 in a S1P dose-dependent manner, 
rather than HDL2 (Lee et al., 2010). One report suggested that plasma 

PAI-1 levels could be used as diagnostic marker for AD as they are 
significantly increased in the disease, whereas other reports have 
not been able to corroborate these results given that levels were un-
changed in AD, in both plasma and CSF (Ban et al., 2009; Martorana 
et al., 2012; Oh, Lee, Song, Park, & Kim, 2014). Additionally, no dif-
ference was observed in the tPA and plasminogen levels in the CSF 
of AD patients (Martorana et al., 2012).

6  | THE GENETIC S BEHIND HDL AND AD

6.1 | ABCA1 and ABCA7

Mutations in all genes involved in HDL generation, remodelling and 
catabolism may affect HDL levels at different levels, from a mild al-
teration to a more severe deficiency. Tangier Disease is caused by 
mutations in the ABCA1 gene and it is characterized by extremely 
low levels of HDL and peripheral neuropathy. These mutations in the 
ABCA1 gene reduce the cholesterol efflux from macrophages, lead-
ing to the formation of foam cells with increased risk of Coronary 
Heart Disease (Bodzioch et  al.,  1999; Brooks-Wilson et  al.,  1999; 
Fitzgerald et al., 2002; Lawn et al., 1999; Marcil et al., 1999; Rust 
et al., 1999). Although this is a rather rare disease in which HDL is 
almost absent, other mutations have shown to have a milder effect 
on HDL levels, either reducing or increasing its levels. Since high 
HDL levels have been and still are considered protective against AD, 
mutations in genes that are involved in HDL formation have been 
evaluated in several studies. Data from one study indicating an in-
creased frequency of the 219K (R219K) mutation in AD (Rodriguez-
Rodriguez et  al.,  2007) were then confirmed in another study, in 
which females carrying the same mutation had an increased risk of 
developing AD, whereas males displayed opposite trend (albeit non-
significantly) (Sundar, Feingold, Minster, Dekosky, & Kamboh, 2007). 
This increased risk for AD is in contradiction with other studies which 
indicated that carriers of the 219K allele have a lower incidence of 
AD and higher levels of HDL (Wang & Jia, 2007; Xiao et al., 2012). 
However, other reports indicated that the 219K carrier is associated 
with lower CSF cholesterol in healthy controls and with a delayed 
age of onset in AD, but the alleles were not differently distributed in 
AD compared to healthy controls (Wollmer et al., 2003). Additionally, 
although one study indicated the allele 1587K (R1587K) to be in-
creased in AD (Chu et al., 2007), two studies evaluated the haplotype 
combination of three genes (R219K, I883M, R1587K). With the ex-
ception of the I883M site, both studies indicated that the haplotypes 
carrying the 219K and the 1587R (K-x-R) were significantly more pre-
sent in the AD population (Katzov et al., 2004; Rodriguez-Rodriguez 
et al., 2007). Two meta-analysis studies focused on the ABCA1 com-
mon variants R219K, I883M and R1587K did not show any signifi-
cant association with AD (Jiang et al., 2012; Wang et al., 2013). A rare 
loss-of-function mutation (N1800H) was associated in heterozygous 
individuals with decreased levels of cholesterol, ApoE and ApoA-I 
and with an increased risk for AD (Nordestgaard, Tybjaerg-Hansen, 
Nordestgaard, & Frikke-Schmidt,  2015). Studies in the promoter 
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region of the ABCA1 gene also suggested that homozygotes for the 
TT genotype (C-14T) have a higher risk for AD, whereas the G-17C 
did not show any association (Rodriguez-Rodriguez et  al.,  2007; 
Sundar et al., 2007). Unlike in ABCA1, mutations in ABCA7 have been 
detected in several genome-wide association studies (GWAS) and 
ABCA7 has resulted in one of the genes that most strongly is asso-
ciated with AD. These mutations detected in GWAS are located in 
introns (rs3764650 and rs4147929) and exons (rs3752246, G1527A) 
(Hollingworth et  al.,  2011; Lambert et  al.,  2013; Naj et  al.,  2011). 
Other meta-analyses have then confirmed the genetic involve-
ment of ABCA7 with the disease (Almeida, dos Santos, Trancozo, & 
de Paula, 2018; Ma et al., 2018). To date, the risky G allele of the 
rs3764650 has been associated with reduced ABCA7 expression, 
hippocampal atrophy, increased plaque pathology and subsequent 
cognitive decline (Andrews, Das, Cherbuin, Anstey, & Easteal, 2016; 
Ma et al., 2018; Ramirez et al., 2016; Shulman et al., 2013; Vasquez, 
Fardo, & Estus,  2013), whereas the G1527A mutation affected 
Aβ deposition (Hughes et  al.,  2014). Three other mutations not 
included in the GWAS studies (rs3752242 and rs4147912 both 
intronic and rs3752240 synonimous V915V) have also been as-
sociated with altered cerebral Aβ pathology, whereas a fourth one 
(rs72973581 G215S) is protective and more expressed in controls 
(Sassi et al., 2016). Finally, other studies reporting that rare loss-of-
function mutations were associated with AD (Cuyvers et al., 2015; 
Steinberg et al., 2015) have strengthened the role of ABCA7 in the 
disease, indicating that the correct ABCA7 activity/expression is 
necessary to provide neuroprotection

6.2 | Apolipoproteins

Correct interaction between ApoA-I and its ABCA1 is necessary for 
the generation of functional HDL particles. Mutation of APOA-I in 
the region comprised between the amino acids 218–231 displayed 
reduced binding to ABCA1 with consequent reduced levels of HDL 
(Chroni et al., 2003; Fotakis, Kateifides, et al., 2013; Fotakis, Tiniakou, 
et al., 2013). The correct interaction between ApoA-I and LCAT is 
also a necessary step in HDL formation, for which the ApoA-I helix 
domain at the amino acid position 143–164 regulates LCAT activa-
tion (Sorci-Thomas et al., 1998). In accordance, mutation of ApoA-I 
in the region comprised between the amino acids 140–160 limits 
the interaction of ApoA-I with LCAT and its subsequent activation, 
resulting in reduced levels of functional HDL (Cho & Jonas, 2000; 
Koukos, Chroni, Duka, Kardassis, & Zannis, 2007a, 2007b; Roosbeek 
et al., 2001; Sviridov, Hoang, Sawyer, & Fidge, 2000). The carriers 
of the AA genotype for the G-75A polymorphism of APOA-I have 
been associated with an earlier age of onset compared to the other 
genotypes (Vollbach et  al.,  2005). However, other studies, while 
linking this polymorphism to cognitive decline and altered HDL 
levels, failed to identify a genetic association with AD (Helbecque, 
Codron, Cottel, & Amouyel, 2008; Smach et al., 2011). Several mu-
tations have also been described in APOA-IV, although the two most 
common are a T347S and Q360H aminoacid substitutions (Lohse, 

Kindt, Rader, & Brewer,  1990a, 1990b, 1991). These mutations 
have been associated with altered lipid profile, including triglyc-
eride clearance, cholesterol absorbance and overall variability of 
HDL particles (Gomaraschi et  al.,  2010; Hockey, Anderson, Cook, 
Hantgan, & Weinberg,  2001; Jansen, Lopez-Miranda, et  al.,  1997; 
Weinberg et  al.,  2000). Although one study indicated a genetic 
association between the APOA-IV Q360T polymorphism and AD, 
two other reports failed to confirm this finding (Csaszar, Kalman, 
Szalai, Janka, & Romics,  1997; Ji, Urakami, et  al.,  1999; Merched, 
Xia, Papadopoulou, Siest, & Visvikis, 1998). A study among African-
American evidenced that out of four polymorphisms on APOD rarely 
seen among Caucasians, the F36V mutation on the APOD gene is 
associated with lower HDL3 and ApoA-I levels. Interestingly, car-
riers of the F36V mutation are also increased, albeit non-signif-
icantly, in AD patients (Desai, Bunker, Ukoli, & Kamboh,  2002; 
Desai et  al.,  2003). Additional studies have reported other APOD 
polymorphisms were associated with AD (F15S, rs1568565 on Int2 
and rs1568566 on Int3), however, their association with HDL lev-
els remains unclear (Chen et al., 2008; Helisalmi et al., 2004). Two 
major genome-wide association studies (GWAS) have indicated a 
strong linkage between APOJ and AD (Harold et al., 2009; Lambert 
et  al.,  2009). In these studies, several intronic polymorphisms 
(rs11136000, rs933188 and rs227990) have been associated with 
the disease, along with polymorphisms on other genes such as 
Complement component Receptor 1 (CR1) and Phosphatidylinositol 
Binding Clathrin Assembly Protein (PICALM) (Harold et  al.,  2009; 
Lambert et  al.,  2009). Other subsequent studies have then con-
firmed a strong genetic involvement of APOJ in AD, in form of allelic 
and haplotype variance (Corneveaux et al., 2010; Gu et al., 2011; Jun 
et al., 2010). Genetic variation on APOJ has therefore been associ-
ated with increased brain Aβ deposition with reduced memory and 
faster cognitive decline for the carrier of the C-risky allele of the 
rs11136000 polymorphism (Pedraza et  al., 2014; Tan et  al., 2016; 
Thambisetty et al., 2013). This is in accordance with data on healthy 
controls, in which carriers of the C-risky allele displayed neural inef-
ficiency and reduced hippocampal volume (Lancaster et al., 2015). 
Additionally, carriers of the G-risky allele of the rs9331888 poly-
morphisms have also been associated with increased brain Aβ depo-
sition and reduced hippocampal volume (Tan et al., 2016). However, 
while the direct effects of these polymorphisms are is not fully 
understood, a few studies have indicated that altered ApoJ plasma 
levels and altered ApoJ alternative splicing are among the possibili-
ties (Mullan et al., 2013; Schurmann et al., 2011; Szymanski, Wang, 
Bassett, & Avramopoulos, 2011; Xing et al., 2012).

6.3 | LCAT, PLTP and CETP

On the other end, mutations in the LCAT gene, which cause 
a drop in LCAT activity, may also be responsible for greatly re-
duced HDL, CE levels and ApoA-I levels. Mutation in LCAT is re-
sponsible for two similar diseases, named Fish Eye Disease when 
LCAT activity is partially reduced and Familial LCAT deficiency 
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when LCAT activity is almost completely absent (Kuivenhoven 
et  al.,  1997). Unlike with APOA-I in which all mutation affecting 
the binding to LCAT were clustered in a relatively small portion 
of the APOA-I gene, LCAT mutation are spread across the whole 
molecule. Several reports have indicated that missense mutation 
(P10Q, G30S, A93T, T123I, R135Q, R135W, T147I, Y156N, R158C, 
L209P, V309M, T321M, C337Y and T347M), nonsense muta-
tions (Y83STOP and P260STOP) and frameshift mutations (H35 
>61Stop and Q376 >416Stop) have all been associated with re-
duced or absent LCAT activity rather than the inability of LCAT to 
correctly bind to ApoA-I (Baass et al., 2009; Fotakis, Kuivenhoven, 
Dafnis, Kardassis, & Zannis, 2015; Funke et al., 1993; Idzior-Walus 
et al., 2006; Kasid, Rhyne, Zeller, Pritchard, & Miller, 2001; Klein 
et al., 1992, 1993; Kuivenhoven et al., 1996; Rosset, Wang, Wolfe, 
Dolphin, & Hegele, 2001; Yang et al., 1997). Mutations affecting 
PLTP have been described in previous studies, in which lower PLTP 
activity is associated with altered HDL remodelling, most nota-
bly smaller HDL particle size but in higher numbers (Aouizerat 
et  al.,  2006; Vergeer, Boekholdt, et  al.,  2010). This is in accord-
ance with the notion that PLTP mediates the fusion of small HDL3 
particles into larger HDL2, therefore a reduced PLTP activity is 
viewed as a limiting factor in such remodelling maintaining HDL 
particles as HDL3 (Vergeer, Boekholdt, et  al.,  2010). It is there-
fore fitting that high PLTP activity, which reduced the number 
of HDL3 particles, has been associated with an increased risk 
of cardiovascular diseases (van Haperen et  al.,  2002; Moerland 
et al., 2008; Robins, Lyass, Brocia, Massaro, & Vasan, 2013; Schlitt 
et al., 2003), since HDL3 particles have been described protective 
against atherosclerosis (Kontush et  al.,  2003). In GWAS, a PLTP 
polymorphism linked to higher PLTP transcripts was also associ-
ated with higher HDL levels (Kathiresan et  al.,  2009). However, 
a study in a Japanese population did not report any genetic as-
sociation between five polymorphisms on PLTP and AD (Kuerban, 
Shibata, Komatsu, Ohnuma, & Arai, 2010). Several CETP mutations 
have been associated with greatly reduced levels of CETP, with 
consequent reduction in protein activity. Mutations in the CETP 
gene, mostly in Japanese individuals, in the intron 14 (Int14T and 
Int14A), exon 5 (L151P), exon 9 (R268Stop and R282C) and exon 
15 (D442G) led to minimal or null levels of CETP with greatly in-
creased levels of HDL (Brown et al., 1989; Inazu et al., 1990, 1994; 
Nagano et al., 2002; Teh, Dolphin, Breckenridge, & Tan, 1998). In 
some instances, ApoA-I levels were also increased, whereas ApoB 
levels were decreased (Inazu et  al.,  1990; Teh et  al.,  1998). An 
analysis of studies performed between 1970 and 2008 indicated 
that the C-629A and I405V mutations lead to lower CETP activity, 
higher HDL and higher ApoA-I levels (Thompson et al., 2008). As 
it is widely accepted that high levels of HDL provide protection 
against cardiovascular disease, CETP mutations that increase HDL 
levels are often associated with reduced risk of coronary heart 
disease (CHD), although results from several studies are contro-
versial (Curb et al., 2004; Guo et al., 2016; Millwood et al., 2017; 
Moriyama et al., 1998; Robins et al., 2013; Thompson et al., 2008; 
Zhong et al., 1996). It is therefore fitting that two mutations that 

reduced CETP activity and also increased HDL and ApoA-I levels 
(C-629A and I405V) have been associated with reduced memory 
decline, reduced brain atrophy and reduced risk for AD (Lythgoe 
et al., 2015; Murphy et al., 2012; Rodriguez et al., 2006; Sanders 
et al., 2010; Sundermann et al., 2016).

6.4 | HL and EL

HDL particles were also affected by mutations in the HL and EL 
genes, the majority of which, by lowering the enzymes’ activity, 
affected the remodelling of HDL2. Many HL mutations have been 
associated with reduced levels and/or reduced activity of the li-
pase (Durstenfeld, Ben-Zeev, Reue, Stahnke, & Doolittle,  1994; 
Knudsen et  al.,  1996, 1997; Ruel et  al.,  2003; Tilly-Kiesi 
et al., 2004). Associated with such reduced activity were various 
degrees of higher HDL levels, higher HDL2 fractions and higher 
HDL triglyceride content. Intronic (Intron 1) and promoter re-
gion (C-480T) mutations have also been linked to HL deficiency 
(Brand, Dugi, Brunzell, Nevin, & Santamarina-Fojo, 1996; Jansen, 
Verhoeven, et al., 1997). However, although one report indicated 
a genetic association, results are controversial (Laws et al., 2010; 
Xiao et al., 2012; Zhu, Taylor, Bennett, Younkin, & Estus, 2008). 
As for EL, a variety mutations have been identified in humans, but 
only a small subset of these have been associated with increased 
plasma HDL levels, as some of these mutations do not affect EL 
activity (Razzaghi et  al.,  2013). Among all mutations, T111I and 
N396S are two of four mutations (G26S and T298S being the 
other two) found in individuals with high HDL levels (deLemos, 
Wolfe, Long, Sivapackianathan, & Rader, 2002). However, several 
reports have associated high HDL levels with reduced EL activity 
caused by the N396S mutation (Edmondson et al., 2009; Singaraja 
et  al.,  2013; Voight et  al.,  2012), whereas the mutation T111I, 
which does not affect EL activity, appears to have questionable 
effect on HDL levels, if any (Reilly, Foulkes, Wolfe, & Rader, 2005; 
Vergeer, Cohn, et al., 2010). However, in spite of being associated 
with higher HDL levels, the Ser carrier in the N396S mutation has 
been associated with depressive symptoms and greater white mat-
ter lesions (Amin et al., 2017).

6.5 | HDL receptors

HDL levels are also affected by mutations in the SR-BI gene, which 
is involved in HDL catabolism. First reported in 1999 (Acton 
et al., 1999), other reports have subsequently confirmed that several 
mutations in the SR-BI gene affect HDL levels, possibly by altering 
the CE uptake rate in hepatocytes (Brunham et al., 2011; Morabia 
et al., 2004; Osgood et al., 2003; Vergeer et al., 2011; Zeng, Tang, 
Ye, Su, & Jiang, 2017). Accordingly, mutations in another HDL recep-
tor, CD36, have been associated with altered HDL levels and risk for 
metabolic syndrome (Love-Gregory et al., 2008). However, the in-
tronic polymorphism rs3211982, which has been associated with AD 
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(Sery et al., 2017), was not among those associated with metabolic 
syndrome and HDL levels.

7  | CONCLUSIONS

It is clear that the association between AD and HDL goes beyond 
the simple evaluation of HDL levels, which more often than not, 
shows minimal or no alteration at all. As of today, there is enough 
evidence to support the theory that HDL composition plays a 
more important role than previously assumed, as the delicate bal-
ance between protective and dangerous molecules carried during 
the various stages of HDL maturation may play a prominent role 
in protecting or predisposing to AD. This HDL alteration of com-
position, often associated with the HDL3 protective subclass, has 
already been reported for many other diseases, some of which are 
considered risk factors for AD. Recently, there has been a consist-
ent commitment towards improving prevention and reducing the 
risk for AD by acting on lifestyle factors such as healthy diets and 
increased physical exercise. Among diets, the Mediterranean Diet 
(rich in fruits, vegetables, bread and other grains, potatoes, beans, 
nuts and seeds, uses olive oil as a primary fat source and limits 
the consumption of dairy products, eggs, fish and poultry) has 
been linked to a reduced rate of AD, but it has also shown the ca-
pacity to improve HDL functionality, which is directly associated 
with the quality of the HDL protein cargo composition. While this 
does not represent a direct cause-effect link, it would be also un-
fair to dismiss it as simply random effect. Additionally, the use of 
synthetic HDL has also been tested as therapeutic agent in acute 
coronary syndrome and albeit this avenue could be tested in AD, 
previous data regarding the importance of high HDL levels have 
provided conflicting results and it appears that cargo composi-
tion is more important than absolute levels. In accordance, several 
HDL-associated proteins have been linked to neurodegeneration 
and brain atrophy, often in AD-related brain areas such as the hip-
pocampus and cortex, but very rarely to areas that are unaffected 
in the disease such as cerebellum. Taken together, these data paint 
a broad picture that indicates a very strong association between 
HDL, and more importantly HDL-associated cargo with AD. It is 
therefore necessary a more detailed analysis of HDL-associated 
proteins to understand their role in the disease, as not only indi-
cated by the detrimental role of ApoE4, compared to ApoE3 or 
ApoE2, but also by the synergistic interaction between ApoE and 
ApoJ or the unexpected effects observed in ApoA-I/ApoEdko mice.
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4.1 Abstract 

Background: The link between cholesterol and Alzheimer’s disease (AD) has received much 

attention, as evidence suggests high levels of cholesterol might be an AD risk factor.  The 

carriage of cholesterol and lipids through the body is mediated via lipoproteins, some of 

which, particularly apolipoprotein E (ApoE), are intimately linked with AD. as In humans, 

high density lipoprotein (HDL) is regarded as a “good” lipid complex due to its ability to 

enable clearance of excess cholesterol via ‘cholesterol reverse transport’, although its 

activities in the pathogenesis of AD are poorly understood.  There are several subclasses of 

HDL; these range from the newly formed small HDL, to much larger HDL.  

Objective: We examined the major subclasses of HDL in healthy controls, mild cognitively 

impaired and AD patients who were not taking statins to determine whether there were HDL 

profile differences between the groups, and whether HDL subclass levels correlated with 

plasma amyloid β (Aβ) levels or brain Aβ deposition.  

Methods: Samples from AIBL cohort were used in this study. HDL subclass levels were 

assessed by Lipoprint while Aβ1-42 levels were assessed by ELISA. Brain Aβ deposition 

was assessed by PET scan. Statistical analysis was performed using parametric and non-

parametric tests. 

Results: We found that small HDL subclass is reduced in AD patients and it correlates with 

cognitive performance while plasma Aβ concentrations do not correlate with lipid profile or 

HDL subfraction levels. 

Conclusions: Our data indicate that AD patients exhibit altered plasma HDL profile and that 

HDL subclasses correlate with cognitive performances. 
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Abstract
Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting 
that high levels could be detrimental, but this effect is likely attributed to Low-Density 
Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) 
cholesterol levels have been associated with reduced brain amyloidosis and improved 
cognitive function. However, recent findings have suggested that HDL-functionality, 
which depends upon the HDL-cargo proteins associated with HDL, rather than HDL 
levels, appears to be the key factor, suggesting a quality over quantity status. In this 

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

Abbreviations: AD, Alzheimer's Disease; Aβ, amyloid-β; BBB, blood-brain barrier; CAA, cerebral amyloid angiopathy; CRP, C-reactive protein; CSF, cerebrospinal fluid; GM, grey matter; 
HC, healthy control; HC-Conv, healthy control converter; HDL, high-density lipoprotein; HL, hippocampus left; HR, hippocampus right; LD, lipid droplets; LDL, low-density lipoprotein; 
LTP, long-term potentiation; MMSE, mini-mental state examination; SAA, serum amyloid A; SUV, standardized uptake values; SUVR, standardized uptake value ratio; VLDL, very 
low-density lipoproteins; WM, white matter.
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1  |  INTRODUC TION

Alzheimer's disease (AD) is a neurodegenerative disease which is 
characterized by the extracellular deposition of amyloid β (Aβ) in the 
brain to form amyloid plaques and by the intracellular accumulation 
of hyperphosphorylated tau filaments (Masters et al., 2015). These 
combined events eventually are responsible for neuroinflammation, 
neuronal death, and reduction of brain volume, ultimately leading to 
the onset of disease symptoms. Several reports have indicated that 
diet, high cholesterol, high low-density lipoproteins (LDL) choles-
terol, and low high-density lipoproteins (HDL) cholesterol levels are 
possible AD risk factors. Low cholesterol levels have been linked to 
Aβ precursor protein (AβPP) processing through the non-
amyloidogenic pathway (Buxbaum et al.,  2001; Fassbender 
et al., 2001; Kojro et al., 2001; Simons et al., 1998), while high levels 
of intracellular cholesterol have been linked to an increase in Aβ 
deposition in the brain (Burns et al.,  2003; Refolo et al.,  2000; 
Wahrle et al., 2002). These results were also supported by studies in 
rodents indicating that high-fat diets affect brain amyloid levels and 
brain mass (Levin-Allerhand et al., 2002; Pedrini et al., 2009; Refolo 
et al.,  2000). Many studies have therefore suggested a protective 
role of HDL for AD, indicating that higher HDL cholesterol levels 
have been associated with better cognitive outcomes, higher MMSE, 
a reduced risk for AD (but not to MCI), and increased brain grey mat-
ter and hippocampal volume (Atzmon et al., 2002; Bates et al., 2017; 
Reitz et al.,  2008; Reitz et al.,  2010; Ward et al.,  2010; Wolf 
et al., 2004). Furthermore, HDL cholesterol levels have been shown 
to inversely correlate with brain Aβ deposits (Reed et al.,  2014). 
Conversely, low HDL cholesterol levels were associated with white 
matter changes, a higher probability of memory deficits, or a greater 
risk of dementia (Crisby et al., 2010; Singh-Manoux et al., 2008; Wolf 
et al., 2004). However, in spite of several studies indicating a protec-
tive role for HDL, other reports failed to confirm such an association 
(den Heijer et al.,  2005; van Velsen et al.,  2013). Additionally, 

discrepancies were also reported when assessing the overall levels 
of HDL cholesterol, with some studies indicating altered levels of 
HDL cholesterol between controls and AD, while other studies did 
not (den Heijer et al., 2005; Isbir et al., 2001; Reitz et al., 2004; Xiao 
et al.,  2012; Zhang et al.,  2004). These findings may indicate that 
HDL particles provide actions that go far beyond the classical role of 
excess cholesterol elimination by the liver. Many of these effects, 
such as anti-inflammatory and anti-oxidant, are mediated through 
HDL-protein cargo, which comprises many apolipoproteins (and sev-
eral other proteins) that are associated with and form the HDL parti-
cles, extensively described in several studies (Ronsein & Vaisar, 2019; 
Shah et al.,  2013; Yassine et al.,  2014). For example, ApoA-I, the 
major constituent of plasma HDL, has shown protective effects in 
AD by binding to Aβ and its precursor protein (AβPP), reducing Aβ 
aggregation and Aβ-induced toxicity (Koldamova et al., 2001; Paula-
Lima et al., 2009). In animal studies, overexpression of ApoA-I re-
duced cognitive deficits and cerebral amyloid angiopathy (CAA), 
despite unaltered Aβ deposition, likely through reduced neuroin-
flammation (Lewis et al., 2010). Conversely, depletion of ApoA-I in-
creased CAA and Aβ aggregation with consequent worsening of 
cognitive function without altering APP processing and Aβ deposi-
tion (Lefterov et al., 2010). Altogether, it appears that ApoA-I modu-
lates Aβ toxicity through mechanisms other than altering APP 
processing and Aβ deposition. Whilst high levels of ApoA-I have 
been associated with a reduced risk of dementia (Saczynski 
et al., 2007), reduced levels of ApoA-I have been described in AD 
and correlate with the severity of the disease (Kawano et al., 1995; 
Liu et al., 2006; Merched et al., 2000). On the other hand, ApoE is 
the major constituent of CSF HDL and the ε4 isoform is considered 
the major risk factor for sporadic AD (Corder et al., 1993; Strittmatter 
et al., 1993). ApoE ε4 isoform has been associated with increased Aβ 
production, accumulation and oligomerization (Bales et al.,  2009; 
Hashimoto et al., 2012; Koffie et al., 2012; Ye et al., 2005; Youmans 
et al., 2012) and with reduced Aβ clearance (Castellano et al., 2011; 

report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-
III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy 
controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to 
HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as 
an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher 
cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume 
and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios 
were associated with greater cortical grey matter volume (and for ApoA-II also with 
greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical 
status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE 
ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in 
AD patients the composition of HDL is altered, which may affect HDL functionality, 
and such changes are associated with altered regional brain volumetric data.

K E Y W O R D S
HDL, cholesterol, Alzheimer's disease, HDL-cargo, ApoE, amyloid-β
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Cook et al., 2003; Deane et al., 2008; Du et al., 2009). With regard to 
Aβ degradation mediated by binding to ApoE, ApoE ε3 binds to Aβ 
more efficiently than ApoE ε4 and astrocytes from ApoE ε4 trans-
genic mice clear amyloid plaques less efficiently than astrocytes 
from ApoE ε3 transgenic mice (Simonovitch et al.,  2016; Tokuda 
et al., 2000). Additionally, in an AD mouse models, CAA is induced 
more prominently by ApoE ε4 compared to ApoE ε3 (Fryer 
et al.,  2005) and Aβ stimulation affected Long Term Potentiation 
(LTP) more prominently in ApoE ε4 transgenic mice rather than in 
ApoE ε2 or ApoE ε3 transgenic mice (Trommer et al., 2005). ApoE ε4 
has also been strongly associated with increased atrophy and re-
duced hippocampal volume (Agosta et al., 2009; Hostage et al., 2013; 
Manning et al., 2014; Moffat et al., 2000; Tang et al., 2015). Finally, 
since low levels of ApoE and ApoE ε4 levels were found significantly 
reduced in AD patients (Beffert et al., 1999; Gupta et al., 2011), it is 
fitting that lower plasma ApoE levels are linked with the smaller hip-
pocampus (Teng et al., 2015), while higher plasma ApoE levels are 
linked with reduced brain amyloidosis (Koch et al., 2018). ApoA-II is 
capable to form complexes with ApoE ε2 and ApoE ε3 but not with 
ApoE ε4 and these complexes (ApoE ε2/ApoA-II and ApoE ε3/
ApoA-II) increased cell viability by binding to Aβ and reducing its in-
ternalization. Such protective features were absent in ApoE ε4-
treated cells because of the absence of ApoEε4/ApoA-II complexes 
(Yamauchi et al.,  2000). An AD transgenic mouse model lacking 
ApoA-IV displayed increased cerebral Aβ and learning deficits, likely 
through mechanisms that are associated with Aβ clearance (Cui 
et al., 2011), while the absence of ApoD was associated with an in-
creased number of amyloid plaque in the hippocampus and, at the 
opposite, overexpression of ApoD was associated with a reduced 
number of them (Li et al.,  2015). ApoJ forms complexes with Aβ 
(ApoJ:Aβ) for their interaction with low-density lipoprotein receptor-
related protein 2 (Megalin), which mediates the transport and the 
clearance of Aβ from and to the brain (Bell et al.,  2007; Hammad 
et al.,  1997; Zlokovic et al.,  1994; Zlokovic et al.,  1996). Levels of 
ApoJ are increased in plasma and brain regions of AD patients, spe-
cifically in areas that are loaded with amyloid plaques (Bertrand 
et al.,  1995; Gupta et al.,  2016; Gupta et al.,  2017; Howlett 
et al.,  2013; Lidstrom et al.,  1998; May et al.,  1990; Miners 
et al., 2017). However, it is important to point out that the composi-
tion of plasma HDL is different from CSF HDL as not all apolipopro-
teins associated with HDL are produced by brain-resident cells. In 
the CSF ApoE and ApoJ are the main apolipoproteins, while ApoA-I, 
the main constituent of plasma HDL is not produced in the central 
nervous system. However, damage to the blood-brain barrier (BBB), 
common in AD, allows ApoC-III, not usually produced in the brain, to 
be detected in the CSF (Picard et al.,  2022), while ApoA-I can be 
transported across the BBB at the choroid plexus (Stukas et al., 2014). 
In general, lipid dysregulation in the brain affects AD like many other 
neurodegenerative diseases. In this regard, lipid droplets (LD) which 
are cytoplasmatic organelles containing cholesteryl esters which 
provide energy for cell metabolism and membrane synthesis 
(Walther & Farese Jr., 2012) were first described by Alois Alzheimer 
(Alzheimer et al., 1995). In AD, lipid droplet accumulation is an event 

that takes place before amyloid accumulation, emphasizing the im-
portance of lipid metabolism in the disease (Hamilton et al., 2015). 
The importance of LD in AD and many other neurodegenerative dis-
eases was recently assessed (Farmer et al., 2020; Ralhan et al., 2021).

Modulation of HDL cargo has been observed and reported in 
many diseases, such as Coronary Heart Disease, Acute Coronary 
Syndrome, End Stage Renal Disease and Liver Disease (Alwaili 
et al.,  2012; Trieb et al.,  2016; Vaisar et al.,  2007; Weichhart 
et al., 2012; Yan et al., 2014). Aging has also been reported to be a 
factor in modulating HDL protein cargo (Holzer et al., 2013). In light 
of these tight connections between HDL-protein cargo and AD and 
the fact that modulation of HDL protein cargo is a common factor 
in many other diseases, our goal in this study is to determine if HDL-
protein cargo is altered in AD and if specific changes can be directly 
associated with the extent of brain amyloidosis. If so, alteration of 
HDL-protein cargo could serve as a direct measurement of amyloid 
deposits in the brain, providing a diagnostic tool that could indicate 
healthy controls at risk for AD.

2  |  MATERIAL AND METHODS

2.1  |  Participants

The AIBL study was conducted in accordance with the Declaration of 
Helsinki and was approved by the ethics committees of St. Vincent's 
Health and Austin Health in Melbourne and Hollywood Private 
Hospital and Edith Cowan University in Perth (Australia; Protocol 
number HPH215). All volunteers gave written and informed consent 
before participating in our study. A total of 213 participants were 
divided into stable healthy controls (HC, n = 87, HC for at least 36 
months (t1 = 18 months and t2 = 36 months after HDL-cargo analy-
sis (t0))), healthy controls converters (HC-Conv, n = 38, HC at the 
time of HDL-cargo analysis (t0) but converted to MCI/AD within the 
following 36 months (either at t1 or t2)) and Alzheimer's patients 
(AD, n = 88, from t0 through t2) from the AIBL cohort were used in 
this study (Figure S1). Exclusion criteria included a history of non-AD 
dementia, schizophrenia, bipolar disorder, current depression (GDS 
score above 5/15), Parkinson's disease, uncontrolled hypertension 
(systolic BP > 170 or diastolic BP > 100), cancer (other than basal 
cell skin carcinoma) within the last two years, symptomatic stroke, 
uncontrolled diabetes, or current regular alcohol use exceeding two 
standard drinks per day for women or four per day for men (Ellis 
et al., 2009). The AIBL Study clinical panel meets on a monthly basis 
to discuss baseline classification for each new patient and to ensure 
that diagnoses were made in accordance with the NINCDS-ARDA 
criteria (McKhann et al., 1984; Winblad et al., 2004). Body param-
eters such as weight, height, blood pressure, and pulse rate were 
evaluated during the examinations. Blood was drawn from overnight 
fasting participants and collected to obtain plasma for our analysis. 
APOE status was determined by genotyping cells from whole blood 
as previously described (Gupta et al., 2011). Total cholesterol, LDL, 
HDL, and TG levels in plasma were also assessed.
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2.2  |  HDL fractionation

HDL fraction was obtained by precipitating VLDL and LDL fractions 
using a solution identical to the one reported in the Quantolip® 
protocol (Reagent A: Na2HPO4x2H2O 8 g/L, NaH2PO4xH2O 11 g/L, 
Na2EDTA 1 g/L, Sodium Azide 0.9 g/L, Polyethylenglycol 20,000 
95 g/L). Briefly, 30 μl of plasma were mixed with 60 μl of Reagent 
A and sat for 10 min at RT, followed by 15 min of centrifugation at 
2500 g. The supernatant containing the HDL fraction was then col-
lected, aliquoted, and stored at −80°C until analysis. HDL isolation 
by Polyethylenglycol precipitation has already been used in the past 
(Kostner et al., 1985).

2.3  |  HDL and HDL-associated protein 
measurement in HDL fractions

HDL-cholesterol in HDL fractions (dilution 1:75) was assessed using 
HDL-Cholesterol Assay Kit (Cell Biolabs) using the manufacturer's 
instructions.

HDL-cargo proteins in HDL fractions were assessed by Bioplex 
analysis. Serum Amyloid A (SAA) levels associated with HDL frac-
tions (dilution 1:200) were evaluated using SAA bioplex kit (Merck 
Millipore) using the manufacturer's instructions. A broad panel of 
Apolipoprotein (ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, 
ApoH, ApoJ, and CRP) levels associated with HDL fractions (dilution 
1:10,000) were evaluated using Pro Human Apolipoprotein Panel 
bioplex kit (Biorad) using the manufacturer's instructions (Jóźwiak 
et al., 2022; Mlambo et al., 2020).

2.4  |  Calculations of HDL and HDL-
associated proteins

For references and calculation, in this paragraph, we will refer 
to cholesterol-HDLPL as the cholesterol concentration on HDL 
in plasma (PL) and to cholesterol-HDLHF as the cholesterol con-
centration on HDL in the HDL fraction (HF). We will also refer to 
Apolipoproteins/SAA/CRP as ProteinHF, for formula convenience, as 
all proteins were measured in the HDL fraction.

To calculate the correct amount of each Protein (in ng) or cho-
lesterol (in μg) per μg of ApoA-I in the HDL fraction, we used the 
following formulas: ProteinHF(ng/ml)/ApoA-IHF(μg/ml) and Cholesterol-
HDLHF(μg/ml)/ApoA-IHF(μg/ml). This calculation indicates the HDL-
cargo composition with regard to ApoA-I which is the major and 
more stable apolipoprotein in HDL particles.

To calculate the correct amount of each Protein (in μg) (as-
sociated to HDL) in 1 ml plasma, we used the following formula: 
ProteinHF(μg/ml)/Cholesterol-HDLHF(mg/ml)*Cholesterol-HDLPL(mg/
ml).

For general purposes, we will refer to HDL-cargo to the 10 ana-
lytes assessed (Cholesterol, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, 
ApoH, ApoJ, CRP, SAA) compared to ApoA-I levels.

2.5  |  PET scan

PET scans consisting of 30 min acquisitions were performed 40 min 
after injection of 370 MBq 11C-PiB. PET images were processed 
using a semi-automatic region-of-interested method as previously 
described (Villemagne et al.,  2011). Standardized uptake values 
(SUV) for 11C-PiB were calculated for all brain regions examined. 
The SUV ratio (SUVR) was calculated by dividing all regional SUV 
by the cerebellar cortex SUV. However, the centiloid scale was re-
cently proposed to provide a standard quantification of Aβ-PET im-
ages. In the centiloid scale, the Aβ burden can be expressed with 
values ranging from 0 (the typical Aβ burden in young controls) to 
100 (the typical Aβ burden in mild AD patients) (Klunk et al., 2015). 
Centiloid values were generated using CapAIBL as described else-
where (Bourgeat et al., 2018).

2.6  |  MRI imaging

Scanning centers either in Melbourne or Perth were used to ac-
quire images using Siemens 3T Trio and Siemens 3T Skyra scanners 
(Melbourne) or Siemens 3T Verio and Siemens 1.5T Avanto scan-
ners (Perth). The scans also included a 3D MPRAGE (Magnetization 
Prepared Rapid Acquisition Gradient Echo) image (voxel size 
1.2 × 1 × 1 mm3, repetition time/echo time  =  2300/2.98, flip 
angle = 9°). A 3D T2-weighted Fluid-attenuation inversion recovery 
(FLAIR) sequence, included in the image acquisition protocol, was 
obtained using two different sets of parameters. Gradient Recalled 
Echo (GRE) images used for SWI (Susceptibility-Weighted Imaging) 
and QSM (Quantitative Susceptibility Mapping) were also acquired. 
Full details of protocols and parameters are described elsewhere 
(Fowler et al., 2021).

2.7  |  Statistical analysis

The operator was unaware of the experimental groups during the 
experiments and data collection. The sample size was determined 
using G-Power, assuming a Cohen's D of 0.5 (medium-size effect). 
For such analysis, to obtain a significance of p < 0.05, n = 64 sam-
ples were required in both HC and AD groups. Data were assessed 
for normality using Skewness and Kurtosis analysis and were log-
transformed when values were outside of the −2/+2 range. An in-
terquartile range test was used to assess for outliers. Participant 
demographic and clinical characteristics were compared using ei-
ther ANOVA or Wilcoxon Signed Ranks test for age, HDL, MMSE, 
and Brain Aβ deposition, and the Chi-squared test for Gender, Site, 
APOE ε4 allele status, and brain Aβ deposition status. Statistical 
comparison of biomarker means in different groups was performed 
using Generalized linear models, unadjusted or adjusted for age, 
gender, and APOE ε4 allele status. When necessary, data were log-
transformed to better approximate normal distribution. p-values less 
than 0.05 were regarded as nominally significant, with values less 
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than 0.005 (Bonferroni adjusted value [0.05/10]) regarded as statis-
tically significant. Partial correlation analysis was run upon adjust-
ment for adjustment for covariates such as age, gender, and APOE 
ε4 allele status. Analyses were carried out using the R Statistical 
Environment (R Core Team, www.r-proje​ct.org, v4.0.2) and SPSS 
version 27. For the Generalized linear model analyses, outliers were 
replaced with the median value for each marker. For the correlation 
analyses, outliers were not replaced.

We applied recursive feature elimination (RFE) to rank the HDL-
cargo proteins in differentiating different groups of individuals (AD, 
HC-Conv, and HC) based on random forest (RF) classifier. RF is 
among the most robust to noise and missing data machine learning 
methods and RF is robust to overfitting and redundancy in predic-
tors (Grinberg et al., 2020). RFE first fit the RF model using all the 
proteins as predictors, where each predictor was then ranked using 
its importance to the classification performance. At each iteration 
of the RFE process, top-ranked predictors were retained, the model 
was refitted and performance was reassessed. Consequently, the 
proteins and factors that did not improve the classification accu-
racy were removed, and the top predictors were used to fit the final 
model. 1000 trees were used to build the RF model and root mean 
square error (RMSE) was used as the criterion to select the optimal 
model. Auto tuning was then applied to optimize the parameters of 
the RF. We implemented RFE with RF classification using caret pack-
age v6.0-86 (Kuhn, 2008). This was performed by ten times five-fold 
cross-validation. This variable selection method provided insight 
into which variables and/or factors have the most distinguishing 
power in classifying Alzheimer's patients, thus those proteins and 
factors can serve as biomarkers for better diagnosis and prognosis. 
We evaluated all HDL-cargo proteins as potential biomarkers and 
assessed the 5 most important with the goal to determine the best 
set of proteins relevant to other factors as diagnostic and prognostic 
biomarkers.

3  |  RESULTS

The basic demographics of the study participants are summarized in 
Table 1. In total, 87 stable healthy controls (HC), 38 HC-Converters 

(HC-Conv), and 88 Alzheimer's patients (AD) were studied (all par-
ticipants were 65 years old and older). All 213 samples were evalu-
ated for total HDL cholesterol levels and Mini-Mental State Exam 
(MMSE) scores, while a smaller subset was assessed for brain amy-
loid deposition (assessed by PET scan) (Table 1).

The levels of HDL-cargo proteins, along with HDL cholesterol 
(which refers to the cholesterol associated with HDL particles), were 
assessed compared to the levels of ApoA-I, which is the main apo-
lipoprotein expressed on HDL particles. Generalized linear model 
(HC compared to AD) corrected for age, gender, and APOE ε4-carrier 
status are shown in Table 2. Of the 10 HDL-cargo analytes assessed 
among clinical groups, analyses showed statistically significant in-
creases in cholesterol/ApoA-I (p < 0.001 and p = 0.001, unadjusted 
and adjusted, respectively) and ApoD/ApoA-I (p < 0.001 for both un-
adjusted and adjusted) and a significant decrease in ApoA-II/ApoA-I 
(p < 0.001 for both unadjusted and adjusted) in AD participants as 
compared with controls (Table 2).

We then assessed if such changes in HDL cholesterol and HDL-
cargo (compared to ApoA-I) occurred before the conversion from 
HC to AD or if such changes were mainly associated with the ongo-
ing disease. Generalized linear model corrected for age, gender, and 
APOE ε4-carrier status for HC compared to HC-Conv are shown in 
Table 3. Unlike the HC vs AD comparisons, only the levels of cho-
lesterol/ApoA-I were nominally significantly (increased in HC-Conv 
as compared with HC; p  =  0.019 and p  =  0.031, unadjusted and 
adjusted, respectively). All other analytes in the HDL-cargo did not 
statistically differ between HC and HC-Conv, suggesting that some 
HDL-cargo remodeling (such as ApoA-II/ApoA-I and ApoD/ApoA-I) 
takes place once after the clinical onset of the disease (Table 3).

As the cholesterol/ApoA-I was the only analyte that differed be-
tween HC and HC-Conv, we investigated if such change took place 
in the proximity of the clinical onset or years before. As the HC-Conv 
group includes individuals who converted to MCI/AD at 18 and 36 
months, we assessed if the increased ratio of cholesterol/ApoA-I in 
HC-Conv was affected by a similar magnitude in both HC-Conv groups 
(i.e. @18 & 36 months, Figure 1). Interestingly, individuals whose con-
version to MCI/AD will take place within 18 months and were, there-
fore, closer to conversion (HC-Conv 18m) had a cholesterol/ApoA-I 
ratio significantly higher than in HC (p < 0.001) and similar to the AD 

HC HC-Conv AD p

N 87 38 88

Age 73 ± 6 75 ± 7 77 ± 7 0.27

Gender (M/F) 43/44 19/19 39/49 0.75

Site (Melbourne/Perth) 45/42 19/19 58/30 0.10

APOE ε4 (no/yes) 57/30 19/19 26/62 <0.001

HDL Cholesterol (mg/dl) 64 ± 15 68 ± 21 65 ± 17 1.00

MMSE 29 ± 1 28 ± 1 20 ± 4 <0.001

Brain Aβ deposition (n/y) 60/23 7/4 1/18 <0.001

Note: Values are presented as mean ± SD or as frequency. Analysis was considered significant with 
p < 0.05 (bold).

TA B L E  1  Demographic characteristics, 
HDL levels, cognitive score, and amyloid 
brain deposition in HC, HC-Conv, and AD 
participants
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group (Figure 1). Conversely, individuals whose conversion to MCI/AD 
will take place in 36 months and therefore were farther from conver-
sion (HC-Conv 36m) had levels similar to HC (Figure 1), suggesting that 
cholesterol overload on HDL takes place shortly before conversion to 
AD (within 18 months before conversion).

Additionally, we have analyzed if the levels of HDL-cargo proteins 
were altered when assessed as levels of HDL-associated protein per 
ml of plasma (Table S1). However, as many of the HDL-protein cargo 
are not exclusively expressed on HDL (with the sole exception of 
ApoA-I), these values do not represent the total amount of circulat-
ing protein in plasma, but only the fraction that it is directly associ-
ated with HDL particles.

To determine the effect of APOE genotype on HDL-cargo, we 
then assessed if any HDL-cargo protein was influenced by APOE 
genotype and clinical classification, or by APOE genotype alone. 

ApoE/ApoA-I ratio was significantly affected by APOE genotype 
(p < 0.001) alone. However, there was no significant interaction 
between clinical classification and APOE genotype, indicating 
that differences in ApoE levels were solely affected by APOE gen-
otype, while ApoE levels within each APOE genotype were not 
affected by the clinical classification (Figure 2a). When assessed 
by APOE genotype alone, ApoE/ApoA-I ratio showed the high-
est levels in APOE ε2/3 (p < 0.001 vs ε3/3, ε3/4, and ε4/4), while 
APOE ε4/4 showed the lowest (p < 0.001 vs ε3/3, ε2/4 and ε3/4) 
(Figure 2b). Of the remaining 9 HDL-cargo analytes, no HDL-cargo 
protein (compared to ApoA-I) was affected either by APOE gen-
otype alone or by the interaction between clinical classification 
and APOE genotype, indicating that their levels were independent 
of APOE genotype or the clinical classification within each APOE 
genotype (data not shown).

HC (n) AD (n) p pa

μgCholesterol/μgApoA-I 1.34 ± 0.33 (87) 1.54 ± 0.38 (88) 0.000183 0.00139

ngApoA-II/μgApoA-I 293 ± 87 (77) 246 ± 53 (88) 6.11e-05 0.000403

ngApoC-I/μgApoA-I 298 ± 73 (75) 273 ± 66 (85) 0.0213 0.274

ngApoC-III/μgApoA-I 58.4 ± 20.5 (87) 56.9 ± 19.8 (88) 0.617 0.531

ngApoD/μgApoA-I 44.3 ± 8.1 (87) 49.8 ± 9.2 (88) 4.36e-05 0.000383

ngApoE/μgApoA-I 13.7 ± 5.3 (87) 10.4 ± 4.5 (88) 2.25e-05 0.0243

ngApoH/μgApoA-I 524 ± 155 (87) 492 ± 141 (88) 0.149 0.126

ngApoJ/μgApoA-I 46.4 ± 10.4 (87) 45.1 ± 9.7 (88) 0.382 0.751

ngCRP/μgApoA-I 5.39 ± 3.36 (87) 4.63 ± 2.37 (88) 0.0867 0.117

ngSAA/μgApoA-I 12.9 ± 14.8 (87) 18.9 ± 20.1 (88) 0.0284 0.107

Note: Values are presented as mean ± SD. Generalized Linear Model analyses were performed 
unadjusted (p) and adjusted for age, gender, and ApoE ε4-carrier status (pa). Data are presented as 
raw values, but statistical analysis was performed on log-transformed data to better approximate 
normal distribution. Analysis was considered significant with p < 0.05 (bold).
aData were adjusted for age, gender, and ApoE ε4-carrier status.

TA B L E  2  Comparison of HDL-
cholesterol and HDL-cargo (ApoA-II, 
ApoC-I, ApoC-III, ApoD, ApoE, ApoH, 
ApoJ, CRP, and SAA) expressed as a ratio 
to ApoA-I in stable HC vs AD

HC (n) HC-Conv (n) p pa

μgCholesterol/μgApoA-I 1.34 ± 0.33 (87) 1.51 ± 0.38 (38) 0.0188 0.0307

ngApoA-II/μgApoA-I 293 ± 87 (77) 272 ± 69 (36) 0.156 0.195

ngApoC-I/μgApoA-I 298 ± 73 (75) 291 ± 72 (35) 0.611 0.928

ngApoC-III/μgApoA-I 58.4 ± 20.5 (87) 56.9 ± 17.7 (38) 0.687 0.709

ngApoD/μgApoA-I 44.3 ± 8.1 (87) 43.8 ± 6.1 (38) 0.711 0.613

ngApoE/μgApoA-I 13.7 ± 5.3 (87) 12.6 ± 4.1 (38) 0.238 0.733

ngApoH/μgApoA-I 524 ± 155 (87) 516 ± 118 (38) 0.759 0.742

ngApoJ/μgApoA-I 46.4 ± 10.4 (87) 44.1 ± 8.8 (38) 0.211 0.43

ngCRP/μgApoA-I 5.39 ± 3.36 (87) 4.76 ± 1.18 (38) 0.128 0.334

ngSAA/μgApoA-I 12.9 ± 14.8 (87) 9.4 ± 9.4 (38) 0.113 0.152

Note: Values are presented as mean ± SD. Generalized Linear Model analyses were performed 
unadjusted (p) and adjusted for age, gender, and ApoE ε4-carrier status (pa). Data are presented as 
raw values, but statistical analysis was performed on log-transformed data to better approximate 
normal distribution. Analysis was considered significant with p < 0.05 (bold).
aData were adjusted for age, gender, and ApoE ε4-carrier status.

TA B L E  3  Comparison of HDL-
cholesterol and HDL-cargo (ApoA-II, 
ApoC-I, ApoC-III, ApoD, ApoE, ApoH, 
ApoJ, CRP, and SAA) expressed as a ratio 
to ApoA-I in stable HC vs HC-Converters
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    |  59PEDRINI et al.

To determine if any of the HDL-cargo analytes correlated with 
brain amyloid levels in individuals with ongoing brain amyloido-
sis (HC, HC-Conv, and AD), correlation analyses were carried out 
(Table 4). In unadjusted correlations, only the levels of cholesterol/
ApoA-I significantly correlated with the levels of brain amyloid 
(p = 0.036). However, upon correction for age, gender, and APOE 
ε4-carrier status, the correlation analysis only approached nomi-
nal significance (p = 0.061). None of the other HDL-cargo analytes 
were significantly correlated with brain amyloid levels, regardless of 
whether the analysis was carried out unadjusted or adjusted for age, 
gender, and APOE ε4-carrier status (Table 4).

Subsequently, we carried out a correlation analysis (adjusted for 
age, gender, and APOE ε4-carrier status) to determine if any HDL-
cargo protein levels were associated with brain volumetric parame-
ters such as grey matter volume (GM), white matter volume (WM), 
ventricle volume (Vent), left and right hippocampal volume (HL 
and HR, respectively) in individuals with ongoing brain amyloidosis 
(Table 5). Cholesterol/ApoA-I ratio positively and significantly cor-
related with ventricular volume (p  =  0.043), while negatively cor-
related with grey matter volume, albeit this was not quite significant 
(p  =  0.063). ApoA-II/ApoA-I ratio positively correlated with grey 
matter and hippocampal volume (p < 0.001, p = 0.038 and p = 0.035 

F I G U R E  1  Graphical representation 
of cholesterol levels on HDL (to ApoA-I 
levels) in healthy controls (HC), healthy 
controls who will convert to MCI/AD in 36 
months (HC-C36), healthy controls who 
will convert to MCI/AD in 18 months (HC-
C18), and AD participants (AD) (ANOVA 
df = 2, F = 5.633, 0 < 0.01). p-values 
from pairwise comparisons unadjusted 
for confounders. Statistical analysis was 
performed using log-transformed data to 
better approximate normal distribution. 
*p < 0.05; ***p < 0.001.

F I G U R E  2  Graphic representation of ApoE levels (to ApoA-I levels) in different APOE genotypes (ε2/3. ε3/3, ε2/4, ε3/4, and ε4/4) in 
different clinical groups (healthy controls (HC), healthy controls converters (HC-Conv), and AD patients (AD)) (Figure 2a) (ANOVA df = 8, 
F = 1.131, p = 0.344). Graphical representation of ApoE levels (to ApoA-I levels) in different APOE genotypes (ε2/3. ε3/3, ε2/4, ε3/4, and 
ε4/4). p-values from pairwise comparisons unadjusted for confounders. Statistical analysis was performed using log-transformed data to 
better approximate normal distribution. p < 0.05; **p < 0.01, ***p < 0.01 (Figure 2b) (ANOVA df = 4, F = 29.236, p < 0.001).
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for GM, HL, and HR, respectively), while negatively correlated with 
ventricular volume (p  =  0.024). ApoJ/ApoA-I ratio positively cor-
related with grey matter and left hippocampal volume (p  =  0.029 
and p = 0.033, respectively), while right hippocampal volume only 
trended toward significance (p  =  0.080). None of the other HDL-
cargo analytes were significantly correlated with brain volumetric 
parameters (Table 5).

On assessing whether MMSE scores were associated with any 
HDL-cargo analytes in AD patients, MMSE scores were found to de-
crease with the disease progression. No HDL-cargo analytes were 
significantly associated with MMSE score or MMSE longitudinal 
changes, suggesting that HDL-cargo is not involved with altered 
cognitive impairment changes (Table S2).

RFE variable selection indicated that among all the HDL-cargo 
protein variables ApoE/ApoA-I and ApoD/ApoA-I have the best dis-
tinguishing powers in classifying AD and HC, followed by ApoA-II/
ApoA-I, CRP/ApoA-I, and cholesterol/ApoA-I (data not shown).

4  |  DISCUSSION

Over the past decades, the importance of cholesterol, LDL, and HDL 
in AD have been extensively studied, and in this regard, it is widely 
accepted that high cholesterol levels and high LDL levels are consid-
ered risk factor for the disease, albeit it appears that such increased 
risk is present at mid-life and disappeared with increased age (Mielke 

Centiloid t0 (0m)

r p ra pa

μgCholesterol/μgApoA-I 0.314 0.036 0.292 0.061

ngApoA-II/μgApoA-I −0.041 0.790 −0.030 0.850

ngApoC-I/μgApoA-I 0.228 0.142 0.163 0.314

ngApoC-III/μgApoA-I 0.065 0.685 0.020 0.900

ngApoD/μgApoA-I −0.041 0.791 −0.021 0.893

ngApoE/μgApoA-I 0.009 0.952 −0.077 0.629

ngApoH/μgApoA-I −0.086 0.575 −0.060 0.707

ngApoJ/μgApoA-I −0.074 0.629 −0.089 0.574

ngCRP/μgApoA-I −0.186 0.222 −0.189 0.229

ngSAA/μgApoA-I 0.026 0.867 −0.028 0.858

Note: Pearson's correlation unadjusted and adjusted for age, gender ApoE ε4-carrier status was 
performed between HDL-cargo and brain amyloid data. Analysis was considered significant with 
p < 0.05 (bold).
aData were adjusted for age, gender, and ApoE ε4-carrier status. For all analytes n = 45 except for 
ngApoC-I/μgApoA-I where n = 43.

TA B L E  4  Correlation and partial 
correlation of HDL-cholesterol and 
HDL-cargo (ApoA-II, ApoC-I, ApoC-III, 
ApoD, ApoE, ApoH, ApoJ, CRP, and 
SAA) expressed as a ratio to ApoA-I 
with brain amyloid deposition and brain 
amyloid deposition longitudinal changes in 
individuals with ongoing brain amyloidosis 
(PiB+)

TA B L E  5  Partial correlation of HDL-cholesterol and HDL-cargo (ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) 
expressed as a ratio to ApoA-I with brain volumetric parameters in individuals with ongoing brain amyloidosis (PiB+)

GM t0 WM t0 Vent t0 HL t0 HR t0

ra pa ra pa ra pa ra pa ra pa

μgCholesterol/μgApoA-I −0.327 0.063 −0.105 0.562 0.355 0.043 −0.201 0.263 −0.263 0.140

ngApoA-II/μgApoA-I 0.543 <0.001 0.183 0.308 −391 0.024 0.363 0.038 0.368 0.035

ngApoC-I/μgApoA-I 0.002 0.993 −0.077 0.680 −0.140 0.452 −0.021 0.912 0.011 0.953

ngApoC-III/μgApoA-I 0.190 0.290 −0.027 0.883 −0.036 0.844 0.109 0.548 0.185 0.304

ngApoD/μgApoA-I 0.140 0.438 0.097 0.592 −0.174 0.333 0.076 0.673 0.104 0.564

ngApoE/μgApoA-I −0.067 0.712 −0.184 0.306 −0.005 0.977 0.229 0.200 0.093 0.605

ngApoH/μgApoA-I 0.301 0.089 0.055 0.760 −0.129 0.475 0.163 0.365 0.125 0.487

ngApoJ/μgApoA-I 0.380 0.029 0.033 0.855 −0.324 0.066 0.373 0.033 0.309 0.080

ngCRP/μgApoA-I 0.291 0.101 0.105 0.561 −0.256 0.150 0.284 0.109 0.231 0.196

ngSAA/μgApoA-I 0.204 0.255 0.127 0.482 0.029 0.872 0.007 0.969 0.003 0.986

Note: Pearson's correlation adjusted for age, gender ApoE ε4-carrier status was performed between HDL-cargo and brain volumetric parameters at 
t0. Analysis was considered significant with p < 0.05 (bold).
Abbreviations: GM, grey matter volume; HL, left hippocampal volume; HR, right hippocampal volume; Vent, ventricular volume; WM, white matter volume.
aData were adjusted for age, gender ApoE ε4-carrier status. For all analytes n = 36 except for ngApoC-I/μgApoA-I where n = 34.
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et al., 2005). As such, a clear distinction between the roles of LDL 
and HDL has indicated that while LDL cholesterol levels were as-
sociated with increased brain amyloid deposition (Reed et al., 2014), 
high HDL cholesterol levels were instead considered protective. 
This latest notion came from several studies in which HDL choles-
terol levels were associated with lower brain amyloid deposition, a 
reduced risk for AD, better cognitive functions, and higher MMSE 
scores (Atzmon et al., 2002; Bates et al., 2017; Reitz et al., 2010). It 
is, however, important to note that recent evidence suggested that 
HDL functionality, rather than HDL overall levels, determine HDL 
functions (Rosenson et al., 2016).

In this report, we, therefore, assessed the HDL-cargo com-
position (Cholesterol, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, 
ApoH, ApoJ, CRP, and SAA, all measured as ratio to ApoA-I) in 
stable healthy control, healthy controls who will convert to MCI/
AD within 36 months and AD to determine if any of the HDL-cargo 
analytes were associated to brain amyloid deposition, brain vol-
umetric parameters (cortical grey matter, cortical white matter, 
ventricular volume, hippocampal volume), and cognitive func-
tions scores (MMSE). We found an increased amount of choles-
terol/ApoA-I ratio (in both HC-Conv and AD, compared to HC), 
increased ApoD/ApoA-I (in AD), and decreased ApoA-II/ApoA-I 
ratios (in AD). While the cholesterol/ApoA-I ratio varies in the 
general population and as a function of HDL size and HDL mat-
uration, the increased cholesterol/ApoA-I ratio on HDL particles 
in our study was unexpected, as the overall plasma levels of HDL-
Cholesterol were unchanged in all clinical groups. Since ApoA-I 
is solely expressed on HDL, our data also indicated that levels of 
HDL-associated ApoA-I per ml of plasma were significantly lower 
in AD. Such a decrease can be considered an ApoA-I decrease 
in plasma and is in accordance with other reports which have 
indicated lower levels of ApoA-I in AD (Kawano et al., 1995; Liu 
et al., 2006; Merched et al., 2000). As ApoA-I is also the main (and 
more stable in number on HDL particles) Apolipoprotein on HDL, 
and in consideration of its reduced levels in AD, our data suggest 
that in AD (and in HC-Converters, but only in those who are within 

18 months from conversion to MCI/AD), there is a reduced num-
ber of HDL particles which are overloaded with cholesterol. This 
would explain the lower amount of ApoA-I in plasma, but the in-
creased amount of cholesterol on HDL particles (increased cho-
lesterol/ApoA-I ratio) would counterbalance the reduced numbers 
of HDL particles and explain the absence of different Cholesterol-
HDL plasma levels across clinical groups. Accordingly, most of 
the other HDL-cargo proteins (evaluated in the same assay with 
ApoA-I), which have shown reduced levels in AD compared to HC 
per ml of plasma (HDL-associated protein cargo/ml plasma), do not 
display a different ratio to ApoA-I, suggesting that there is no al-
tered composition of HDL particle, but rather a reduced number.

Overall, the only exception in the composition, along with the 
Cholesterol/ApoA-I ratio which occurs before the clinical conversion 
from HC to MCI/AD, are ApoA-II/ApoA-I ratio, which is decreased 
in AD compared to HC and ApoD/ApoA-I ratio, which is increased 
in AD compared to controls. However, since both ApoA-II/ApoA-I 
and ApoD/ApoA-I ratios are not altered in HC-Conv compared to 
stable HC, it is possible that such changes take place once the dis-
ease has started, unlike the cholesterol overload which may happen 
before the onset of the disease (Figure 3). It has to be noted that in 
this study we focused on HDL composition assessed as apolipopro-
tein ratio to ApoA-I on HDL particles, which may represent a bet-
ter marker for conversion to AD and/or pathological changes in AD, 
rather than individual plasma apolipoprotein levels, which could pro-
vide confounding results as many apolipoproteins are shared among 
several lipoprotein particles (LDL, VLDL).

Interestingly, ApoE/ApoA-I ratio was significantly lower in carriers 
of the allele APOE ε4 and lowest in the homozygous carrier for the 
allele APOE ε4. Such ApoE/ApoA-I ratio, which defines HDL composi-
tion, was not affected by clinical classification but was solely affected 
by APOE genotype. As the presence of the allele APOE ε4 is widely 
considered the biggest risk factor for sporadic AD, such reduced ApoE 
presence on HDL may reduce HDL functionality, therefore providing 
an additional explanation for the increased risk associated with APOE 
genotype. This reduced binding of ApoE ε4 to HDL (with a preferential 

F I G U R E  3  Schematic representation of HDL remodeling in which cholesterol on HDL particles increases before the conversion to AD, 
while the decrease in ApoA-II and the increase in ApoD take place once the disease has started.
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binding to chylomicrons and VLDL) is also in accordance with other 
studies (Poirier et al., 2014). In this regard, several studies which eval-
uated the effects of ApoE inducers, such as Liver-X-receptor (LXR) ag-
onists, have reported protective effects in transgenic AD mice (Fitz 
et al., 2010; Lefterov et al., 2007; Riddell et al., 2007), supporting the 
notion that high levels of ApoE are beneficial in the disease. However, 
one limitation of this study is that it was not powered to determine the 
effects of ApoE genotype on disease progression.

When the influence of HDL-cargo on regional brain volumes was 
assessed, we selected individuals with ongoing brain amyloidosis, in 
whom regional changes may be more prominent. Higher cholesterol/
ApoA-I ratio on HDL resulted to be marginally associated with lower 
grey matter volume. In parallel, higher cholesterol levels were also 
associated with greater ventricular volume. While this seems to be 
counterintuitive at first, as higher HDL cholesterol levels have been 
associated with protective features, the cholesterol increase here 
mentioned is per HDL particle (overall plasma HDL levels were unaf-
fected in this study). In this report we suggest that cholesterol over-
load on HDL is detrimental as it affected brain volumetric parameters, 
suggesting that HDL quality may be more important than quantity 
itself. Such a hypothesis would also be in accordance with another re-
port indicating that cholesterol overload on HDL has a negative effect 
on HDL anti-atherogenic functions (Qi et al., 2015), while an increased 
cholesterol/ApoA-I ratio on HDL can be a predictor of cardiovascu-
lar disease and associated mortality (Rhee et al., 2017). In accordance 
with these findings, a lower cholesterol/ApoA-I ratio was linked to 
protective features, as higher levels of small HDL particles (known to 
have lower cholesterol/ApoA-I ratio) in CSF have been associated with 
better cognitive performances (Martinez et al., 2022).

Conversely, ApoA-II/ApoA-I, and ApoJ/ApoA-I ratio displayed 
the opposite effect on grey matter and ventricular volume, with 
higher levels of both proteins being associated with higher grey 
matter volume and smaller ventricular volume. In addition, a higher 
ApoA-II/ApoA-I ratio was also significantly associated with higher 
hippocampal volume (both left and right). It is, therefore, fitting that 
ApoA-II and ApoJ on HDL particles displayed protective features, 
as both proteins have previously been linked to AD for their ca-
pacity to bind to Aβ reducing its effects (Bell et al., 2007; Hammad 
et al., 1997; Yamauchi et al., 2000). Ultimately, we observed a trend 
between higher cholesterol levels on HDL and higher levels of brain 
amyloid deposition, further indicating that cholesterol overload on 
HDL may result in non-functional HDL particles with consequent 
negative impact.

Taken together, our study suggested that in AD (a) there is a re-
configuration of HDL particles with significant increased cholesterol/
ApoA-I ratio (which may take place before the onset of the disease), 
increased ApoD/ApoA-I and reduced ApoA-II/ApoA-I ratios on HDL 
which may affect HDL functionality itself; (b) such reconfiguration 
with the consequent increase of cholesterol/ApoA-I ratio on HDL is 
associated in individuals with ongoing brain amyloidosis with lower 
cortical grey matter volume and greater ventricular volume; while (c) 
other apolipoproteins on HDL, such as ApoA-II and ApoJ, displayed 
protective features and higher levels of both were associated in 

individuals with ongoing brain amyloidosis with higher cortical grey 
matter volume and smaller ventricular volume; and (d) that ApoE/
ApoA-I ratio on HDL are solely a function of APOE genotype and re-
duced levels of ApoE on HDL in APOE ε4 carrier may further alter 
HDL functionality, reduce its protective features and provide another 
reason for the increased risk associated with APOE genotype.

Altogether, these data are supporting the notion that the func-
tionality of HDL is related to its protein cargo and it is independent 
of its absolute levels, and that HDL cargo and HDL functionality may 
be altered in AD as they are in many other diseases. Further studies 
will, however, be necessary to better define the extent of HDL func-
tionality in relationship with HDL-cargo in the disease.
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Abstract

Introduction:This study involved a parallel comparison of the diagnostic and longitudi-

nalmonitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau),

phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclin-

ical Alzheimer’s disease (AD).

Methods: Plasma proteins were measured using Simoa assays in cognitively unim-

paired older adults (CU), with either absence (Aβ−) or presence (Aβ+) of brain amy-

loidosis.

Alzheimer’s Dement. 2022;18:1141–1154. © 2021 the Alzheimer’s Association. 1141wileyonlinelibrary.com/journal/alz
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Results: Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in

Aβ+ CU compared with Aβ− CU cross-sectionally. GFAP had the highest effect size

and area under the curve (AUC) in differentiating between Aβ+ and Aβ−CU; however,

no statistically significant differences were observed between the AUCs of GFAP, p-

tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the

AUCofGFAPwas higher than theAUCof t-tau. The combination of a basemodel (BM),

comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status

with GFAP was observed to have a higher AUC (>90%) compared with the combina-

tion of BM with any of the other proteins investigated in the current study. Longitu-

dinal analyses showed increased GFAP and p-tau181 in Aβ+ CU and increased NFL in

Aβ−CU, over a 12-month duration. GFAP, p-tau181, p-tau231, andNFL showed signif-

icant correlations with cognition, whereas no significant correlations were observed

with hippocampal volume.

Discussion: These findings highlight the diagnostic and longitudinal monitoring poten-

tial of GFAP and p-tau for preclinical AD.

KEYWORDS

Alzheimer’s disease, amyloid beta, blood biomarkers, brain amyloid beta, diagnosis, glial fibril-
lary acidic protein, longitudinal monitoring, neurofilament light, preclinical Alzheimer’s disease,
p-tau181, p-tau231, single molecule array, tau

1 INTRODUCTION

Alzheimer’s disease (AD), a progressive neurodegenerative disease

that causes cognitive deterioration and ultimately death, is the most

common form of dementia and accounts for nearly 60% to 70% of its

cases. In 2020, ≈50 million people were living with dementia globally,

and there are close to 10million new cases every year.1 Given that only

symptomatic drugs are available, but yet no cure or disease-modifying

treatment forAD, the identificationofdiagnostic and longitudinalmon-

itoring biomarkers for at-risk populations is paramount to aid in assess-

ing the efficacy of clinical trials.

Theexistenceof a longpreclinical phase, that is, prior to themanifes-

tation of clinical symptoms, during which the hallmark proteinopathies

(amyloid plaques and neurofibrillary tangles) develop, has provided the

opportunity for the investigation of biomarkers that can assist diagno-

sis and prognosis for such at-risk populations. For instance, positron

emission tomography (PET) and cerebrospinal fluid (CSF) analysis can

reveal abnormal levels of brain amyloid beta (Aβ) and hyperphospho-

rylated tau (p-tau), pathologies that begin to accumulate ≈20 years

before symptom onset.2,3 However, routine application of these mark-

ers in the clinical setting may be hampered by their limited availability,

high costs, and invasiveness, and therefore more accessible diagnos-

tic approaches such as blood-based biomarkers are being investigated

intensively.

Several recent studies have reported that plasma glial fibrillary

acidic protein (GFAP), total tau (t-tau) and p-tau181 and p-tau231, and

neurofilament light (NFL) levels are higher in AD and have suggested

that they could serve as potential blood biomarkers for AD, given

that they likely reflect AD-related neuropathological processes such as

astrogliosis and the disruption of the axonal cytoskeletal structure.4–9

In the current study, we conducted a parallel investigation of plasma

GFAP; t-tau, p-tau181, and p-tau231; and NFL in preclinical AD, by

comparing the circulating levels of these proteins between cognitively

unimpaired older adults (CU) with absence of brain amyloidosis (Aβ−)
and CUwhowere classified as being within the preclinical stage of AD,

characterized by presence of brain amyloidosis (Aβ+). Plasma GFAP,

tau (including t-tau, p-tau181, and p-tau231), and NFL levels were

measured using an ultra-sensitive, single-molecule array (Simoa) plat-

form, and analyzed cross-sectionally at baseline and at a 12-month

follow-up timepoint, to determine if they could differentiate between

these groups. We hypothesized that these plasma biomarkers would

be higher in theAβ+ group comparedwith theAβ− group at both base-

line and the 12-month follow-up. Validating our cross-sectional obser-

vations 12 months apart would provide insight into the reliability of

these biomarkers in preclinical AD and assess if they have value to

assist with the identification of Aβ+ CU for recruitment into clinical

trials. We observed higher plasma GFAP, p-tau181, and p-tau231 con-

centrations in the Aβ+ group comparedwith the Aβ− group, and GFAP

had the highest effect size. No statistically significant differences were

observed between GFAP, p-tau181, and p-tau231 in distinguishing

betweenAβ+ andAβ− groups; however, GFAPhad the highest discrim-

inative accuracywhen added to amodel comprising the AD risk factors

of age, sex, and apolipoprotein E gene (APOE) ε4 status compared with

the other proteins added to amodel comprising the AD risk factors.

In addition, we assessed longitudinal changes in plasma GFAP,

t-tau, p-tau181, p-tau231, and NFL in the Aβ− and Aβ+ groups over
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a 12-month period, given that understanding longitudinal changes in

blood biomarkers over time would provide valuable insight into deter-

mining whether the use of these biomarkers as outcome measures

may have value for improving the efficacy of designing and inter-

preting disease-modifying clinical therapeutic trials. We posited that

these plasma measures would increase over a 12-month duration in

the Aβ+ group. We observed increased GFAP and p-tau181 in the

Aβ+ group and increased NFL in the Aβ− group, over this 12-month

duration.

We also evaluated the correlations of the plasmamarkers with cog-

nition and hippocampal volume and observed that GFAP, p-tau181,

p-tau231, and NFL showed significant correlations with cognition,

whereas no significant correlations were observed with hippocampal

volume.

2 METHODS

2.1 Cohort

The Kerr Anglican Retirement Village Initiative in Ageing Health

(KARVIAH) cohort volunteers (N = 206) were required to meet a

set of screening inclusion and exclusion criteria to be eligible for the

cohort. Briefly, the inclusion criteria comprised an age range of 65-

90 years, good general health, no known significant cerebrovascular

disease, fluent in English, adequate/corrected vision and hearing to

enable testing, and no objective cognitive impairment as screened by

a Montreal Cognitive Assessment (MoCA) score ≥26. MoCA scores

lying between 18 and 25 were assessed on a case-by-case basis by the

study neuropsychologist following stratification of scores according to

age and education.10 The exclusion criteria comprised the diagnosis

of dementia based on the revised criteria from the National Institute

on Aging−Alzheimer’s Association,11 the presence of an acute func-

tional psychiatric disorder (including lifetime history of schizophrenia

or bipolar disorder), a history of stroke, severe or extremely severe

depression (based on the Depression, Anxiety, Stress Scales; DASS),

and uncontrolled hypertension (systolic blood pressure [BP]>170mm

Hg or diastolic BP >100 mm Hg). One hundred thirty-four volunteers

met the inclusion/exclusion criteria. These 134 participants under-

went a 12-month placebo-curcumin intervention (UTN: U1111-1144-

1011). One hundred five of these 134 participants underwent neu-

ropsychometric evaluation, blood collection, and cerebral amyloid beta

(Aβ) imaging. Within these 105 participants, 100 participants (com-

prising 50 placebo and 50 curcumin intervention) were considered to

have normal global cognition based on their Mini-Mental State Exam-

ination (MMSE ≥26) 12 at baseline and were included in the current

study.

At baseline, plasmaGFAP, t-tau, andNFL concentrations were avail-

able in all 100 (n(Aβ−) = 67, n(Aβ+) = 33) participants included in the

current study, whereas p-tau181 and p-tau231 were available in 97

(n(Aβ−) = 67, n(Aβ+) = 30) and 96 (n(Aβ−) = 67, n(Aβ+) = 29) partici-

pants, respectively, due to sample availability. At the 12-month follow-

up timepoint, plasma GFAP, t-tau, and NFL concentrations were avail-

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using PubMed. Although several studies have been

conducted on the diagnostic performance of individ-

ual plasma biomarkers, a parallel comparison of candi-

date Alzheimer’s disease (AD) plasma biomarkers cross-

sectionally and longitudinally within the preclinical stage

is lacking.

2. Interpretation: Our findings suggest that among all

plasma biomarkers included in this study, plasma glial fib-

rillary acidic protein (GFAP) combined with the AD risk

factors (age, sex, and apolipoprotein E gene (APOE) ε4 sta-
tus) had the highest accuracy in differentiating between

cognitively unimpairedolder adults (CU)with amyloidosis

(Aβ+) andwithout amyloidosis (Aβ−) indicating its poten-
tial as a diagnostic marker for preclinical AD. In addition,

the increase in GFAP and phosphorylated tau (p-tau181)

inCUAβ+over12months indicates their potential as lon-

gitudinal monitoringmarkers for preclinical AD.

3. Future directions: Further studies are required to val-

idate the current observations in independent cohorts,

including the establishment of clinical cut-off points for

implementation in clinical settings.

HIGHLIGHT

∙ Plasma GFAP, t-tau, p-tau181 and p-tau231 levels are

higher in Aβ+ vs Aβ−CU

∙ No significant difference was observed in plasma NFL lev-

els between Aβ+ and Aβ−CU

∙ AD risk factors and GFAP combined, had an AUC>90% in

differentiating Aβ+ vs Aβ−CU

∙ GFAP and p-tau181 increased longitudinally over 12

months in Aβ+CU

able in 95 (n(Aβ−) = 64, n(Aβ+) = 31) participants, whereas p-tau181

and p-tau231 were available in 95 (n(Aβ−) = 64, n(Aβ+) = 31) and 93

(n(Aβ−) = 63, n(Aβ+) = 30) participants, respectively. In addition, par-

ticipants with a Memory Assessment Clinic - Questionnaire (MAC-Q)

score ≥25 were considered as subjective memory complainers (SMC,

n = 76; a specific form of subjective cognitive decline, defined by self-

reported memory complaints). At baseline, plasma GFAP, t-tau, and

NFL concentrations were available in all 76 (n(Aβ−)= 52, n(Aβ+)= 24)

SMC participants included in the current study, whereas p-tau181 and

p-tau231 were available in 75 (n(Aβ−) = 52, n(Aβ+) = 23) and 73

(n(Aβ−) = 52, n(Aβ+) = 21) SMC participants, and at the 12-month

follow-up timepoint, plasmaGFAP, t-tau, andNFL concentrations were
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available in 74 (n(Aβ−) = 49, n(Aβ+) = 25) SMC participants, whereas

p-tau181 andp-tau231were available in 74 (n(Aβ−)=49, n(Aβ+)=25)

and 72 (n(Aβ−) = 48, n(Aβ+) = 24) SMC participants, respectively.

Details of the participants analyzedwithin the current study have been

reported inSupplementaryFigure1.All participantswerebased inSyd-

ney, Australia. All volunteers provided written informed consent prior

to participation, and the Bellberry and Macquarie University Human

Research Ethics Committees provided approval for the study.

2.2 Neuroimaging

Neuroimaging was conducted within 3 months of blood collection at

Macquarie Medical Imaging in Sydney. Positron emission tomogra-

phy (PET) studies were conducted over as a 20-minute static scan

(4 × 5 minute frames) that was acquired 50 minutes after an intra-

venous bolus of 18F-florbetaben (FBB). Neocortical Aβ load was calcu-
lated as the mean standard uptake value ratio (SUVR) of the frontal,

superior parietal, lateral temporal, lateral occipital, and anterior and

posterior cingulate regions using image processing software, CapAIBL

(v2.0).13, 14 Participantswith anFBBPETSUVR≥1.35were considered

Aβ+, while those with an FBB PET SUVR< 1.35 were considered Aβ−.
Available Aβ-PET data for participants at baseline and at 12-month

follow-up have been illustrated in Supplementary Figure 1.

In addition, participants passing all standard magnetic resonance

imaging (MRI) inclusion/exclusion criteria underwentMRI as described

previously using a General Electric (GE) 3 Tesla scanner (Model

750W).15 Hippocampal volume calculated from the images acquired

was normalizedwith the total intracranial volume comprising the cere-

brospinal fluid, gray matter, and white matter. Data for 94 participants

at baseline and 81 participants at the 12-month follow-up were avail-

able.

2.3 Blood collection, APOE genotyping,
measurement of plasma GFAP, t-tau, p-tau181,
p-tau231, and NFL

Aminimum of 10 hours overnight fasted bloodwas collected from par-

ticipants using standard processing methods.16 APOE genotype was

determined from purified genomic DNA extracted from 0.5 mL whole

blood as described previously.16

Protein concentrations in ethylenediaminetetraacetic acid (EDTA)

plasma were measured employing the ultra-sensitive single-molecule

array (Simoa) platform. GFAP, t-tau, and NFL were measured using

the Neurology 4-Plex A kit (QTX-102153, Quanterix, Billerica, Mas-

sachusetts, United States), which also includesUCH-L1, but this

biomarker failed our quality control criteria because of high (>20%)

coefficients of variation (CVs). P-tau181 and p-tau231 were measured

using the in-house assays developed at the University of Gothenburg,

Sweden.5,8 In addition, p-tau181wasmeasured using the P-Tau 181V2

Simoa Advantage Assay (QTX-103714, Quanterix, Billerica, MA, USA)

in 19 samples, each at baseline and at the 12-month follow-up time-

point; Supplementary Figure 2 shows the correlation between the two

assays. Calibrators and samples were run in duplicate for all assays.

Quality control (QC) was achieved by assessing in duplicate the levels

of two controls included in the Simoakits at thebeginningof eachplate.

The analytical lowest limit of quantificationwas 0.467 pg/mL for GFAP,

0.053 pg/mL for t-tau, 1 pg/mL for p-tau181, 1 pg/mL for p-tau231, and

0.241 pg/mL for NFL. The average%CVwas 2.72% for the GFAP assay,

7.48% for the t-tau assay, 8% for the p-tau181 assay, 12% for the p-

tau231 assay, and 3.65% for the NFL assay.

2.4 Neuropsychological tests

Study participants underwent a comprehensive battery of neuropsy-

chological testing at baseline and 12 months as described previously,

and composite scores were generated for verbal and visual episodic

memory and working memory and executive function. In addition, a

global composite z-score was constructed using the verbal and visual

episodic memory z-scores, working memory and executive function z-

scores, andMMSE z-scores as described previously.17

2.5 Statistical analyses

Descriptive statistics including means and standard deviations were

calculated for Aβ− and Aβ+ groups with comparisons employing Stu-

dent t tests or chi-square tests as appropriate. Linear models were

employed to compare continuous variables between Aβ− and Aβ+
groups corrected for covariates age, sex, and APOE ε4 carrier status

both cross-sectionally and longitudinally (repeated measures). Depen-

dent variables were natural log transformed to better approximate

normality and variance homogeneity as required. Spearman correla-

tion coefficient (rs) was employed to investigate correlations between

continuous variables. Logistic regression with Aβ−/+ as response was

used to evaluate predictivemodels and receiver-operating characteris-

tic (ROC) curves constructed from the logistic scores. The areas under

the curves (AUCs) for different plasma proteins were compared using

the DeLong test. To determine the accuracy of each protein in distin-

guishing between Aβ− and Aβ+ groups, the R package cut-point was

used. All analyses and data visualization were carried out using IBM

SPSS (v27), GraphPad Prism (v8) or R (v4.0.3).

3 RESULTS

3.1 Cohort characteristics

No significant differenceswere observed betweenAβ− andAβ+ group

characteristics in age, sex, body mass index (BMI), subjective memory

complaint (SMC) status,MMSEscores, andhippocampal volumes; how-

ever, a significantly higher frequency of APOE ε4 allele carriers was

observed in the Aβ+ group compared with the Aβ− group (P < .0001),

as expected (Table 1).
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CHATTERJEE ET AL. 1145

TABLE 1 Cohort characteristics

Aβ– Aβ+ p

Age (years, mean±SD; Aβ–=67, Aβ+=33) 77.78±5.56 79.00±5.44 .300

Sex (Male/Female; Aβ–=67, Aβ+=33) 19/48 13/20 .266

BMI (mean±SD; Aβ–=67, Aβ+=33) 27.46±4.43 27.94±4.85 .626

APOE ε4 carriers (N (%); Aβ–=67, Aβ+=33) 5 (7.46) 16 (48.48) <.0001

Subjectivememory complainers (N (%); Aβ–=67, Aβ+=33) 52 (77.61) 24 (72.72) .591

MMSE (mean±SD; Aβ–=67, Aβ+=33), baseline 28.54±1.16 28.76±1.12 .368

MMSE (mean±SD; Aβ–=64, Aβ+=32), 12m 28.87±1.12 28.81±1.50 .818

Hippocampal volume% (mean±SD; Aβ–=63, Aβ+=31), baseline 0.40±0.039 0.39±0.038 .901

Hippocampal volume% (mean±SD; Aβ–=52, Aβ+=29), 12m 0.38±0.04 0.38±0.04 .562

FBB-PET SUVR (mean±SD; Aβ–=67, Aβ+=33), baseline 1.16±0.09 1.70±0.24 -

FBB-PET SUVR (mean±SD; Aβ–=64, Aβ+=32), 12m 1.16±0.09 1.72±0.24 -

Cohort characteristics including age, sex, bodymass index (BMI),APOE ε4 status, subjectivememory complainer status (assessed by theMemoryAssessment

Clinic - Questionnaire (MAC-Q) score) are presented at baseline. The mini-mental state examination (MMSE) scores, hippocampal volume and brain Aβ load
represented by the standard uptake value ratio (SUVR) of ligand 18F-Florbetaben (FBB) in the neocortical region normalisedwith that in the cerebellum, have

been compared betweenAβ- (SUVR<1.35) and Aβ+ (SUVR≥1.35) study participants at baseline and a 12-month follow-up timepoint (12m). Chi-square tests

or linear models were employed as appropriate.

3.2 Associations of AD-related risk factors, age,
sex, and APOE ε4 allele status, with plasma GFAP,
t-tau, p-tau181, p-tau231, and NFL measures

Plasma GFAP, p-tau181, p-tau231, and NFL measures were observed

to have significant positive correlations with age, at both baseline and

the 12-month timepoint (P < .05; Supplementary Table 1A). Plasma t-

tau was observed to be significantly higher in females compared with

males before and after adjusting for covariates, age, and APOE ε4 allele
status, at both baseline and the 12-month timepoint (Supplementary

Table 1B). Plasma p-tau231was observed to be significantly higher in

APOE ε4 allele carriers compared with non-carriers before and after

adjusting for covariates, ageand sex, at bothbaselineand the12-month

timepoint (Supplementary Table 1C). No associations were observed

for age, sex, or APOE ε4 allele status with protein measures not listed

above.

3.3 Cross-sectional comparisons of plasma GFAP,
t-tau, p-tau181, p-tau231, and NFL between Aβ− and
Aβ+ groups

Plasma GFAP, p-tau181, and p-tau231 were significantly higher in the

Aβ+ group compared with the Aβ− group, at both baseline and the 12-

month timepoint, before and after adjusting for covariates age, sex, and

APOE ε4 allele carrier status (P < .05). Plasma t-tau was higher in the

Aβ+ group compared with the Aβ− group, with a trend toward signifi-

cance at baseline, and appeared significant at the 12-month timepoint

both before and after adjusting for covariates. Plasma NFL, however,

was not significantly different between the Aβ− and Aβ+ groups, at

baseline and the 12-month timepoint, before and after adjusting for

covariates (Table 2A, Supplementary Table 2A, Figure 1). In addition,

in these analyses, a large effect size was observed for GFAP, medium

to large for p-tau181 and p-tau231, medium for t-tau, and small for

NFL.18 Furthermore,within the SMCsubset, similar observationswere

found for plasma GFAP, t-tau, p-tau181, p-tau231, and NFL between

the Aβ+ and Aβ− group, at both baseline and the 12-month timepoint

(Table 2B, Supplementary Table 2B).

3.4 Evaluation of plasma GFAP, t-tau, p-tau181,
p-tau231, and NFL as predictors of brain Aβ status

At baseline, the diagnostic accuracies between the Aβ− and Aβ+
groups are illustrated using ROC curves in Figure 2. Plasma GFAP

was observed to have the highest AUC (79%, 95% confidence inter-

val [CI] 69–89%) in differentiating between the Aβ− and Aβ+ groups

when compared with all other proteins considered independently.

However, although there was a significant difference in the AUC for

GFAP versus t-tau (P < .05) and GFAP versus NFL (P < .005), there

was no statistically significant difference in the AUC for GFAP versus

p-tau181 (P > .05) or p-tau231 (P > .05). In addition, the AUCs of p-

tau181andp-tau231werealsoobserved tobe significantlyhigher than

the AUC of NFL (P < .05) (Supplementary Table 3A). Similar obser-

vations were also noted at the 12-month timepoint (Supplementary

Table 3A).

In addition, at baseline, we generated a base model (BM) incorpo-

rating the AD risk factors age, sex, and APOE ε4 allele status, and we

observed that this base model was significantly outperformed when

the plasma protein GFAP (P = .001) was added to it, whereas a trend

toward significance was observed when p-tau181 (P = .054) or p-

tau231 (P= .077) was added to the BM. However, the addition of t-tau

or NFL to the BM did not have a significant additional contribution to

the BMAUC in distinguishing Aβ+ from Aβ− (Figure 2, Supplementary
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1146 CHATTERJEE ET AL.

TABLE 2 Cross-sectional differences in plasma proteinmeasures between Aβ- and Aβ+ at baseline and 12m in all participants and the
subjective memory complainer subset

Table 2A. All participants Aβ- Aβ+

Baseline Mean SD Mean SD p pa Partial η2

GFAP (pg/mL; Aβ-=67, Aβ+=33) 146.96 49.48 211.39 86.04 7e-6 1.12e-8 .292

t-tau (pg/mL; Aβ-=67, Aβ+=33) 1.20 0.36 1.35 0.40 .065 .050 .040

p-tau181 (pg/mL, Aβ-=67, Aβ+=30) 13.55 5.61 17.52 5.68 .002 .041 .045

p-tau231 (pg/mL; Aβ-=67, Aβ+=29) 11.57 6.44 19.21 7.39 2e-6 2.7e-4 .137

NFL (pg/mL; Aβ-=67, Aβ+=33) 19.39 8.90 21.05 10.35 .408 .408 .007

12m Follow-up Aβ- Aβ+

GFAP (pg/mL; Aβ-=64, Aβ+=31) 150.84 60.35 234.87 109.29 2e-6† 6.7e-7 .241

t-tau (pg/mL; Aβ-=64, Aβ+=31) 1.22 0.39 1.45 0.41 .012 .011 .070

p-tau181 (pg/mL; Aβ-=64, Aβ+=31) 13.65 5.83 19.16 6.15 5.2e-5 8.1e-4 .118

p-tau231 (pg/mL; Aβ-=63, Aβ+=30) 11.00 6.64 18.38 8.24 1.2e-5 2.5e-4 .142

NFL (pg/mL; Aβ-=64, Aβ+=31) 20.84 10.94 23.33 10.50 .294 .492 .005

Table 2B: SMCs Aβ- Aβ+

Baseline Mean SD Mean SD p pa Partial η2

GFAP (pg/mL; Aβ-=52, Aβ+=24) 147.85 47.07 229.50 93.49 6e-6† 2.5e-7 .314

t-tau (pg/mL; Aβ-=52, Aβ+=24) 1.16 0.37 1.45 0.39 .002 .016 .079

p-tau181 (pg/mL; Aβ-=52, Aβ+=23) 13.35 5.41 17.92 6.06 .002 .010 .092

p-tau231 (pg/mL; Aβ-=52, Aβ+=21) 12.05 6.71 19.46 7.26 8.4e-5 .001 .148

NFL (pg/mL; Aβ-=52, Aβ+=24) 19.47 9.13 23.08 11.00 .138 .132 .032

12m Follow-up Aβ- Aβ+

GFAP (pg/mL; Aβ-=49, Aβ+=25) 154.10 61.00 244.68 113.35 2.7e-5 2.9e-5 .225

t-tau (pg/mL; Aβ-=49, Aβ+=25) 1.20 0.36 1.46 0.42 .007 .007 .101

p-tau181 (pg/mL; Aβ-=49, Aβ+=25) 13.47 5.56 17.48 6.37 8e-5 .002 .129

p-tau231 (pg/mL; Aβ-=48, Aβ+=24) 11.28 6.94 18.81 8.82 1.8e-4 .002 .130

NFL (pg/mL; Aβ-=49, Aβ+=25) 21.26 11.51 23.98 11.16 .335 .547 .005

Plasma protein measures were compared between Aβ- and Aβ+ cognitively normal older adults in (A.) all participants using general linear models. The same

analyses were carried out (B.) in a subset of the cohort that only comprised subjective memory complainers (SMCs). † represents p-values obtained from

natural log transformed protein concentrations to better approximate normality when required. pa represents p-values adjusted for age, sex and APOE ε4
status. Partial η2 estimates (for analyses adjusted for age, sex andAPOE ε4 status) represents effect size for comparisonAβ- vsAβ+ groups.Data arepresented

inmean±SD. Suggested norms for partial η2: small= 0.01; medium= 0.06; large= 0.14.

Table 3B). Similar observations were noted at the 12-month timepoint

(Figure 2, Supplementary Table 3B).

Furthermore at baseline, the AUC for BM+GFAP was observed

to be significantly higher than the AUCs observed for BM+t-tau

(P = .002), BM+p-tau181 (P = .002), BM+p-tau231 (P = .014),

and BM+NFL (P = .001). At the 12-month timepoint, the AUC for

BM+GFAP was observed to be significantly higher than the AUCs

observed for BM+t-tau (P = .049) and BM+NFL (P = .01); however,

it became nonsignificant when compared with BM+p-tau181 (P= .10)

and BM+p-tau231 (P= .15) (Supplementary Table 3B).

The AUCs from the combination of the three plasma proteins that

demonstrated the highest AUCs individually (namely GFAP, p-tau181,

and p-tau231, for Aβ−/+ status) at baseline and at the 12-month time-

point were 85% (CI 76-93%) (Figure 2) and 83% (CI: 74-91%) (Fig-

ure 2), respectively. At baseline, the AUC of the combination of these

three proteins was significantly higher than the AUCs of GFAP, t-tau,

p-tau181, and NFL individually, and a trend toward significance was

observed for p-tau231. At the 12-month timepoint, the AUC of the

combination of these three proteins was only observed to be signifi-

cantly higher than the AUCs of t-tau, p-tau231, andNFL.

In addition, when these three proteins were combined with the BM,

the AUC was further improved to 94% (CI 89-98%) (Figure 2) and

91% (CI 84%-98%) (Figure 2), at baseline and at the 12-month time-

point, respectively (Supplementary Table 3B). At baseline and the 12-

month timepoint, the AUC of the combination of these three proteins

and the BM was significantly higher than the AUCs of t-tau+BM, p-

tau181+BM, p-tau231+BM, and NFL+BM individually; however, no

significant difference was observed with GFAP+BM.

Furthermore, at 80% sensitivity, p-tau181 alone was observed

to have the highest diagnostic accuracy to detect preclinical AD
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CHATTERJEE ET AL. 1147

F IGURE 1 Comparison of plasmaGFAP, t-tau, p-tau181, p-tau231, andNFL between Aβ− and Aβ+ cognitively normal older adults at baseline
and at 12-month follow-up. Plasma protein measures were compared between cognitively normal Aβ− and Aβ+ older adults using linear models,
at baseline (BL) and at the 12-month follow-up timepoint (12months). The line segment within each jitter plot represents themedian of the data
and error bars in the graphs represent the interquartile range for the Aβ− and Aβ+ groups. * P< .05, **P≤.001, ***P≤.0001

(BL: accuracy = 68%, specificity = 63%, negative predictive value

[NPV] = 88%, positive predictive value [PPV] = 47%; 12 m: accu-

racy = 69%, specificity = 63%, NPV = 87%, PPV = 50%) when com-

pared with the other proteins independently, whereas the accuracy

for GFAP+BM was observed to be the highest (BL: accuracy = 86%,

specificity = 88%, NPV = 91%, PPV = 74%; 12 m: accuracy = 85%,

specificity= 87%, NPV= 90%, PPV= 74%) compared with all proteins

considered individually or in combinations, as shown in Supplementary

Table 4A. Sensitivity, specificity, accuracy, Youden’s cut point, NPV, and

PPV at Youden’s index are provided in Supplementary Table 4B.

3.5 Longitudinal changes in plasma GFAP, t-tau,
p-tau181, p-tau231, and NFL over a 12-month
duration in Aβ− and Aβ+ groups

There was a significant interaction effect of time*Aβ status on GFAP

levels in all participants; GFAP increased more over 12 months in the

Aβ+ group versus the Aβ- group before adjusting for covariates. How-
ever, the interaction term became nonsignificant after adjusting for

covariates age, sex, and APOE status. No interaction effects between

time and Aβ status were observed for t-tau, p-tau181, p-tau231, and

NFL changes over 12 months between the Aβ− group and Aβ+ group

before and after adjusting for covariates (Table 3A, Supplementary

Table 5A).

The main effect of time was significant for plasma GFAP and p-

tau181 in all participants and approached significance for plasma NFL,

where these protein measures were observed to increase over a 12-

month duration, before and after adjusting for covariates. No signifi-

cant main effect of timewas observed for t-tau and p-tau231.

Further investigation of pairwise comparisons for plasma GFAP, p-

tau181, andNFLwithin eachAβ status group in all participants, showed
the significant effect of time on GFAP was restricted to the Aβ+ group

only, before and after adjusting for covariates. In addition, a signif-

icant effect of time on p-tau181 was similarly observed only in the

Aβ+ group, but only reached statistical significance after adjusting for

covariates.Of interest, a significant effect of timeonNFLwas observed

in the Aβ− group only, before and after adjusting for covariates

(Table 3A, Supplementary Table 5A, Figure 3). However, the absolute

differences in NFL levels cross-sectionally and in change over time
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1148 CHATTERJEE ET AL.

F IGURE 2 Receiver-operating characteristic curves for the prediction of Aβ− versus Aβ+ participants at baseline and at the 12-month
follow-up timepoint. Receiver-operating characteristic (ROC) curves are presented at baseline for (A) GFAP, t-tau, p-tau181, p-tau231, and NFL;
(B) basemodel comprising AD risk factors, age, sex, apolipoprotein E (APOE) ε4 allele status (BM), BM+GFAP, BM+t-tau, BM+p-tau181,
BM+p-tau231, and BM+NFL; (C) panel of top three performing proteins (GFAP, p-tau181, p-tau231); and (D) BM+ panel of top three performing
proteins (GFAP, p-tau181, p-tau231). ROC curves are presented at 12months for (E) GFAP, t-tau, p-tau181, p-tau231, andNFL; (F) BM, BM+GFAP,
BM+t-tau, BM+p-tau181, BM+p-tau231, and BM+NFL; (G) panel of top three performing proteins (GFAP, p-tau181, p-tau231); and (H) BM+

panel of top three performing proteins (GFAP, p-tau181, p-tau231). Data from 95 participants were utilized for analyses at baseline (Aβ−, n= 67,
Aβ+, n= 28) and 92 participants at 12months (Aβ−, n= 63, Aβ+, n= 29), given that all required data were available for these participants.
Abbreviations: AUC, area under the curve; CI, confidence interval

were similar in Aβ− and Aβ+ in the overall cohort, with considerable

overlap between groups; hence NFL may have limited value as a pre-

clinical AD biomarker. The estimates of effect size are presented in

Supplementary Table 6, wherein small to medium effect sizes were

observed for GFAP and p-tau181 in the Aβ+ and for NFL in the Aβ−
groups.18

The longitudinal analyses also confirmed our cross-sectional obser-

vations with a significant main effect of Aβ−/+ status on plasma GFAP,

t-tau, p-tau181, and p-tau231 levels, wherein these proteins were

observed to be higher in the Aβ+ group at both timepoints (Table 3A,

Supplementary Table 5A). GFAP and p-tau isoforms were significantly

different between the Aβ+ and Aβ− group, supporting a potential role
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1150 CHATTERJEE ET AL.

F IGURE 3 Longitudinal changes in plasma proteinmeasures between Aβ− and Aβ+ cognitively normal older adults over a 12-month duration.
The estimatedmarginal means of the plasma proteins are illustrated for Aβ− (blue) and Aβ+ (red) cognitively normal older adults along time, ie,
baseline (BL) to the 12-month follow-up timepoint (12months). Protein measures for GFAP, t-tau, and NFLwere available for 67 Aβ− and 31 Aβ+
at both timepoints, whereas p-tau181 data were available for 67 Aβ− and 30 Aβ+ at both timepoints and for p-tau231, 66 Aβ−, and 29 Aβ+ at
both timepoints. Error bars represent± 2 SE

for these plasma proteins as diagnostic and longitudinal monitoring

biomarkers in preclinical AD. Similar observations were also noted

within the SMC subset (Table 3B, Supplementary Table 5B, Supplemen-

tary Figure 3).

3.6 Association of plasma GFAP, t-tau, p-tau181,
p-tau231, and NFL with cognition and hippocampal
volume

At baseline, plasma GFAP was observed to be inversely corre-

lated with the working memory and executive function compos-

ite score (rs= −.257, P = .010) and the global composite score

(rs= −.200, P = .047). P-tau181 inversely correlated with the global

composite score (rs= −.209, P = .040), which was also seen for p-

tau231 (rs= −.278, P = .006), and p-tau231 additionally correlated

inversely with the verbal and visual episodic memory composite score

(rs= −.254, P = .013). As expected, plasma NFL inversely corre-

lated with the verbal and visual episodic memory composite score

(rs=−.335,P= .001), theworkingmemoryandexecutive function com-

posite score (rs= −.347, P < .0001), and the global composite score

(rs=−.438, P< .0001).17

At the 12-month follow-up timepoint, plasma GFAP remained to be

inversely correlated with the working memory and executive function

composite score (rs= −.234, P = .021) and the global composite score

(rs= −.273, P = .007), whereas a trend toward a significant inverse

correlation was observed between p-tau181 and the global compos-

ite score (rs= −.174, P = .086). As expected, plasma NFL continued to

inversely correlate with the verbal and visual episodic memory com-

posite score (rs= −.342, P = .001), working memory and executive

function composite score (rs=−.371, P< .001), and the global compos-

ite score (rs=−.456, P< .001).

No significant correlation was observed between the plasma pro-

teins and hippocampal volume at baseline, except for a trend toward

significance for p-tau231 (rs= -.213, P= .078); however, this trendwas

not observed at the 12-month timepoint.

4 DISCUSSION

In the current study, for the first time to the best of our knowledge, we

evaluated plasma GFAP, t-tau, p-tau181, p-tau231, and NFL in paral-

lel between a cognitively unimpaired Aβ+ older adult group (preclini-

cal AD) and a cognitively unimpaired Aβ− older adult group. We found

higher plasma GFAP, p-tau181, and p-tau231 in the cognitively unim-

paired Aβ+ group. We further validated our cross-sectional findings

observed at baseline in a 12-month follow-up timepoint to re-examine

the differences in plasma protein levels, and continued to find higher

plasmaGFAP, p-tau181, and p-tau231 in the preclinical AD group, sug-

gesting that the plasma protein differences observed between these
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CHATTERJEE ET AL. 1151

two groups are consistent and potentially reliable candidate markers

for the diagnosis of preclinical AD. Our results held in the subjective

memory complainer subset, further supporting the potential utility of

GFAP and p-tau isoforms as preclinical AD biomarkers.

We found no significant difference between the AUCs for GFAP,

p-tau181, and p-tau231 in differentiating between cognitively unim-

paired Aβ+ older adults and cognitively unimpaired Aβ− older adults,

although GFAP showed the highest AUC among these three pro-

teins. However, when GFAP was added to the AD risk factors, age,

sex, and APOE ε4 status, the AUC was significantly higher compared

with the AUCs of p-tau181 or p-tau231 added to the AD risk fac-

tors at baseline. Of interest, although the AUC of the combination

of the AD risk factors with the three highest performing proteins

(ie, BM+GFAP+p-tau181+p-tau231) was significantly higher than the

AUC of t-tau, p-tau181, p-tau231, or NFL combined with the AD risk

factors (ie, t-tau+BM/p-tau181+BM/p-tau231+BM/NFL+BM), no sig-

nificant difference was observed with GFAP+BM at baseline and the

12-month timepoint. Corroborating this observation, GFAP+BM was

also observed to have the highest accuracy. Although further studies

are required to validate these observations, it may be suggested that

plasma GFAP levels may reflect pathological mechanisms additional to

those associated with the well-known risk factors for AD within the

preclinical stage.

Most interestingly, we also show for the first time that GFAP and p-

tau181 increasedwith time in cognitively unimpaired Aβ+ older adults

and NFL increased with time in cognitively unimpaired Aβ− older

adults, over a 12-month duration. Similar observationswere also noted

in the subjective memory complainer subset. Together, these observa-

tions suggest that GFAP and p-tau181may have potential in serving as

longitudinal monitoring markers and outcome measures for relatively

shorter clinical trials conducted in preclinical AD populations, whereas

the longitudinal increase in NFL observed with time in the Aβ− group

could possibly indicate that NFL reflects other ongoing neurodegener-

ative processes that are not directly associated with Aβ pathology.
Among the five proteins investigated in the current study, GFAP, p-

tau181, and p-tau231 showed the highest estimates of effect size for

the cross-sectional analyses between the Aβ− and Aβ+ groups in all

participants (GFAP > p-tau231 > p-tau181). These estimates of effect

sizes mostly met the “large” cut-off, which may be indicative of their

clinical utility value. Longitudinally, GFAP was observed to have the

highest estimates of effect size, followedbyp-tau181 in theAβ+ group,

whereas NFLwas observed to have the highest estimates of effect size

in the Aβ− group. However, these effect sizes fell mostly within the

small to moderate range but may still have utility in assessing the effi-

cacy of clinical trials.

In line with our observations of higher GFAP levels observed in

the Aβ+ group in this study, GFAP, a marker of astrogliosis,19 has

been reported to be higher in preclinical AD and is associated with

brain amyloidosis.4,7,20–22 Higher GFAP levels have also been reported

in AD patients compared with controls.4,23 Increased GFAP has also

been observed around Aβ plaques in the brains of individuals with

mild cognitive impairment (MCI) due to AD,24 and its expression has

been observed to correlate with Aβ plaque density in AD.25 Higher

plasmaGFAP levels observed in theAβ+groupwithin the current study

could thus be due to GFAP upregulation associated with astrogliosis

in Aβ+ individuals. Astrogliosis has been reported to occur within the

early stages of AD pathogenesis, and cultured astrocytes exposed to

amyloid isolated from human AD brains have been observed to trig-

ger astrogliosis.26,27 In addition, studies employing 11C-deuterium-L-

deprenyl PET, further support that reactive astrocytosis is a prodromal

feature in the early stages of AD development.24 Furthermore, simi-

lar to our longitudinal findings, Cicognola and colleagues have shown

that plasmaGFAP increases at a faster rate in Aβ+MCI comparedwith

Aβ−MCI.21 In addition, Oeckl and colleagues report that GFAP distin-

guished between AD and behavior variant frontal temporal dementia,

with 89% sensitivity and 79% specificity.23 However, further studies

comparing plasmaGFAP levels in AD versus other neuropathologically

defined non-AD neurodegenerative diseases are required to confirm

the specificity of plasma GFAP alterations for AD, given the existence

of mixed pathologies.

In addition, higher plasma p-tau181 levels have been reported

in individuals with MCI and AD compared with cognitively unim-

paired older adult groups and individuals with other neurodegenera-

tive diseases.5,28–31 These studies have also showed that p-tau181 lev-

els are higher in cognitively unimpaired Aβ+ older adults compared

with cognitively unimpairedAβ− older adults and our findings from the

current study are in linewith these observations. It has been suggested

that the early dysregulation in neuronal tau metabolism is likely to be

associated with early Aβ pathology, attributed to the release of solu-

ble p-tau181 in blood.28,30 Similarly, p-tau231 has relatively recently

been reported to be elevated in the blood in individuals with MCI and

AD compared with cognitively unimpaired older adult groups and indi-

viduals with other neurodegenerative diseases.8 This study8 has also

reported that p-tau231 levels are higher in cognitively unimpairedAβ+
older adults compared with cognitively unimpaired Aβ− older adults,

and our findings at baseline and the 12-month timepoint are in line

with these observations. Of interest, p-tau231 has been reported to

identify the clinical stages of AD and neuropathology as strongly as p-

tau181; however, it increases relatively earlier when comparedwith p-

tau181, with subtle Aβ deposition.8 It is important to note that plasma

p-tau217, like p-tau181 and p-tau231, has also been reported to be

higher in cognitively unimpaired Aβ+ older adults compared with cog-

nitively unimpaired Aβ− older adults,32 but has been observed to have

ahigherdiscriminative accuracybetweenADandnon-ADneurodegen-

erativediseases comparedwithplasmap-tau181.33 Of interest, plasma

p-tau217hasbeen reported to correlatewithbrain amyloidosis in early

disease stages.34 Furthermore, plasma p-tau217 has been observed to

increase inPresenilin 1 (PSEN1)E280Aautosomal dominantAD (ADAD)

mutation carriers≈20 years before symptom onset.33

Plasma t-tau is known as a marker of neuronal injury and shows

a very marked increase in disorders with acute neuronal injury, such

as cardiac arrest.35 In contrast, although CSF t-tau shows a marked

increase in AD,36 plasma t-tau levels show only a discrete change in

AD, and there is no correlation between plasma and CSF t-tau lev-

els in AD-control cohorts.37 The reason for this discrepancy is not

known, but a possible explanation may be that, in contrast to p-tau,

 15525279, 2022, 6, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.12447 by E

dith C
ow

an U
niversity, W

iley O
nline L

ibrary on [13/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1152 CHATTERJEE ET AL.

non-phosphorylated tau is also produced in the peripheral nerves or

tissue,38 and it is estimated that only≈20%of plasma t-tau comes from

the CNS,39 and thus peripherally produced tau will blur possible dif-

ferences in brain-derived tau in plasma in AD. Although hypothetical,

this could explain why the difference in t-tau levels was non-significant

between cognitively unimpaired Aβ+ older adults compared with cog-

nitively unimpaired Aβ− older adults at baseline, but became signifi-

cant after 12 months, which may be attributed to a possible increase

in preclinical AD pathogenesis severity in 12months.

Plasma NFL, reflecting neuronal injury, was not significantly higher

in cognitively unimpaired Aβ+ older adults compared with cognitively

unimpaired Aβ− older adults at baseline or at the 12-month time-

point, suggesting that NFL may not have value as a preclinical AD

marker for identifying cognitively unimpaired older adults at risk for

AD. These observations are in line with those reported by Mattsson

and colleagues, wherein no significant differences in plasma NFL were

observed between Aβ− and Aβ+ controls.40 In contrast, in a PSEN1

E280A ADAD Colombian kindred, higher plasma NFL levels and a

higher annual rate of plasma NFL change have been observed 22 years

prior to the estimated age at symptom onset in the mutation carriers

comparedwith non-carriers.41 Similarly, a higher annual rate of change

of serumNFLhasbeenobserved16.2 years before theestimatedageat

symptom onset in mutation carriers compared with non-carriers from

theDominantly InheritedAlzheimerNetwork cohort.42 Elevatedblood

NFL levels (or a higher annual rate of change of blood NFL levels),

reflecting neurodegeneration, observed so early in the ADAD patho-

genesis trajectory prior to symptom onset, could be attributed to the

aggressive nature of ADAD mutations when compared with sporadic

AD.

In the current study, we also noted inverse correlations of plasma

GFAP, p-tau181, p-tau231, and NFL with cognitive performance; how-

ever, the strength of these associations was at best small to moderate

in this cognitively unimpaired cohort. No significant associations were

observed for GFAP, p-tau181, p-tau231, and NFL with hippocampal

volume. These observations could be attributed to the very early stage

within the AD pathogenesis trajectory, the study Aβ+ participants in

this study may lie in. However, it is interesting to note that such promi-

nent changes appear in the cognitively unimpaired Aβ+ blood prior to

any apparent hippocampal atrophy.

Findings from the current study highlight potential blood biomark-

ers for the diagnosis and longitudinal monitoring of cognitively unim-

paired individuals within the preclinical AD stage. Further stud-

ies in larger research cohorts, for example, the Australian Imaging,

Biomarker and Lifestyle (AIBL) Study of Aging cohort, are required to

validate the current findings. In addition, future studies also need to

establish clinical cut-off points for implementation in clinical settings,

employing standardized blood collection, processing, and storage pro-

tocols. The establishment of clinical cut-off scores will also be assay

dependent; for example, the difference in absolute levels observed

between the two p-tau181 assays (ie, the in-house assay developed

at the University of Gothenburg vs the Quanterix assay) are visible in

Supplementary Figure 2, even though a near-perfect correlation was

observed between the two assays. In addition, a majority of the stud-

ies conducted on the aforementioned proteins are primarily in Cau-

casian cohorts, and therefore further data frommultiple races and eth-

nic backgrounds need to be investigated. Studies will also need to val-

idate established cut-off points in individuals with other comorbidities

in the future.

It is acknowledged that the current study had limitations with

regard to its modest sample size. However, the cross-sectional com-

parisons investigated were consistent, 12 months apart, which is a

strength of the study. Although plasma biomarker data available for

the maximum number of participants were used in the current study,

cross-sectional differences for a direct comparison using the same par-

ticipants for all biomarkers showing similar observations are presented

in Supplementary Table 7. Another limitation to be considered within

the current study is that the longitudinal change in plasma GFAP, t-

tau, p-tau181, p-tau231, and NFL was investigated over 12 months,

which may not have been long enough to observe changes in the other

proteins, that is, t-tau and p-tau231. However, given the budget con-

straints for small scale clinical trials, outcome measures that show

changes within 12 months may also be considered suitable. In addi-

tion, this cohort underwent a 12-month placebo-curcumin interven-

tion, although all statistical analyses were conducted with and with-

out adjusting for this intervention. Furthermore, longitudinal com-

parison of plasma protein measures between Aβ− and Aβ+ partici-

pants within the placebo group, also had similar observations (Supple-

mentary Table 8). Another limitation within the current study is that

Aβ42/Aβ40 ratios and p-tau217 were not included. However, in a pre-

vious study we noted that Aβ42/Aβ40 ratios had an AUC <70% in dif-

ferentiating between cognitively unimpairedAβ−older adults and cog-

nitively unimpaired Aβ+ older adults, using the same platform in the

same cohort20 and, therefore, more sensitive assays such as immuno-

precipitation followedbymass-spectrometryapproaches, for example„

that were employed by Nakamura and colleagues may be required.43

Because we did not have access to the p-tau217 assay, this was not

included in the current study.

To conclude, in the current study, we observed higher plasma GFAP,

t-tau, p-tau181, and p-tau231 in preclinical AD. Furthermore, plasma

GFAP and p-tau181 increasedwith time in preclinical AD. These obser-

vations strongly highlight the diagnostic and longitudinal monitoring

potential of plasmaGFAP and p-tau isoforms in preclinical AD.
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Abstract

Introduction: Plasma amyloid beta (Aβ)1-42/Aβ1-40 ratio, phosphorylated-tau181

(p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) are

putative blood biomarkers for Alzheimer’s disease (AD). However, head-to-head
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2 CHATTERJEE ET AL.

cross-sectional and longitudinal comparisons of the aforementioned biomarkers

across the AD continuum are lacking.

Methods: Plasma Aβ1-42, Aβ1-40, p-tau181, GFAP, and NfL were measured utilizing

the SingleMolecule Array (Simoa) platform and compared cross-sectionally across the

AD continuum, wherein Aβ-PET (positron emission tomography)–negative cognitively

unimpaired (CUAβ−, n= 81) andmild cognitive impairment (MCI Aβ−, n= 26) partici-

pantswere comparedwithAβ-PET–positive participants across theADcontinuum (CU

Aβ+, n=39;MCIAβ+, n=33; ADAβ+, n=46) from theAustralian Imaging, Biomarker

& Lifestyle Flagship Study of Ageing (AIBL) cohort. Longitudinal plasma biomarker

changeswere also assessed inMCI (n=27) andAD (n=29) participants comparedwith

CU (n=120) participants. In addition, associationsbetweenbaselineplasmabiomarker

levels and prospective cognitive decline and Aβ-PET load were assessed over a 7 to

10-year duration.

Results: Lower plasma Aβ1-42/Aβ1-40 ratio and elevated p-tau181 and GFAP were

observed in CU Aβ+, MCI Aβ+, and AD Aβ+, whereas elevated plasma NfL was

observed in MCI Aβ+ and AD Aβ+, compared with CU Aβ− and MCI Aβ−. Among the

aforementioned plasma biomarkers, for models with and without AD risk factors (age,

sex, and apolipoprotein E (APOE) ε4 carrier status), p-tau181 performed equivalent to

or better than other biomarkers in predicting a brain Aβ−/+ status across the AD con-

tinuum. However, for models with and without the AD risk factors, a biomarker panel

of Aβ1-42/Aβ1-40, p-tau181, and GFAP performed equivalent to or better than any

of the biomarkers alone in predicting brain Aβ−/+ status across the AD continuum.

Longitudinally, plasma Aβ1-42/Aβ1-40, p-tau181, and GFAPwere altered inMCI com-

pared with CU, and plasma GFAP and NfL were altered in AD compared with CU. In

addition, lower plasmaAβ1-42/Aβ1-40 and higher p-tau181, GFAP, andNfLwere asso-
ciatedwith prospective cognitive decline and lower plasmaAβ1-42/Aβ1-40, andhigher
p-tau181 and GFAPwere associated with increased Aβ-PET load prospectively.
Discussion: These findings suggest that plasma biomarkers are altered cross-

sectionally and longitudinally, along the AD continuum, and are prospectively asso-

ciated with cognitive decline and brain Aβ-PET load. In addition, although p-tau181

performed equivalent to or better than other biomarkers in predicting an Aβ−/+ sta-

tus across the AD continuum, a panel of biomarkers may have superior Aβ−/+ status

predictive capability across the AD continuum.

KEYWORDS

Alzheimer’s disease, amyloid beta, blood biomarkers, brain amyloid beta, diagnosis, glial fibrillary
acidic protein, longitudinal monitoring, neurofilament light, p-tau181, single molecule array

HIGHLIGHTS

∙ Area under the curve (AUC) of p-tau181≥AUCof Aβ42/40, GFAP, NfL in predicting
PET Aβ−/+ status (Aβ−/+).

∙ AUC of Aβ42/40+p-tau181+GFAP panel ≥ AUC of Aβ42/40/p-tau181/GFAP/NfL
for Aβ−/+.

∙ Longitudinally, Aβ42/40, p-tau181, and GFAPwere altered inMCI versus CU.

∙ Longitudinally, GFAP andNfL were altered in AD versus CU.
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CHATTERJEE ET AL. 3

∙ Aβ42/40, p-tau181, GFAP, and NfL are associated with prospective cognitive

decline.

∙ Aβ42/40, p-tau181, and GFAP are associated with increased PET Aβ load prospec-
tively.

1 INTRODUCTION

Abnormal amyloid beta (Aβ) and taubuildup in the brainmeasuredwith

positron emission tomography (PET), and Aβ42 and phosphorylated-

tau181 (p-tau181) levels in the cerebrospinal fluid (CSF) are the

current corebiomarkersofAlzheimer’s disease (AD). Thesebiomarkers

reflect AD neuropathology and begin to manifest two decades before

the appearance of clinical symptoms.1,2 However, the high cost, low

throughput, and exposure to radiation associated with PET and the

perceived invasiveness and expertise associatedwith lumbar puncture

have all highlighted the need for surrogatemarkers in the blood.

Plasma Aβ (Aβ1-42/Aβ1-40 ratio), p-tau181, glial fibrillary acidic

protein (GFAP) and neurofilament light (NfL) are some of the puta-

tive blood-based biomarkers for AD.3,4 Circulating levels of these

biomarkers have been reported to reflect AD-related neuropatholog-

ical processes such as impaired clearance of brain Aβ, disruption of

the axonal cytoskeletal structure, and reactive astrogliosis.3,5–9 Previ-

ous studies have reported lower plasma Aβ1-42 and Aβ1-42/Aβ1-40
ratio5,10–14 and higher plasma p-tau181 and GFAP in preclinical AD,

prodromal AD, and AD dementia.5,6,12,15–17 In addition, blood-based

NfL levels have been observed to be higher in both prodromal AD and

AD dementia.18–20

However, head-to-head studies of the aforementioned plasma

biomarkers across the AD continuum are lacking. Therefore, in the

current study, we carried out a head-to-head comparison of plasma

Aβ1-42/Aβ1-40 ratio, p-tau181, GFAP, and NfL alterations between

Aβ-PET–negative (Aβ–) and Aβ-PET–positive (Aβ+) individuals across
the AD continuum and evaluated the Aβ–/+ status predictive perfor-

mance of these biomarkers against each other before and after the

addition of AD risk factors, as well as evaluated their Aβ–/+ predic-

tive performance as a biomarker panel before and after the addition of

AD risk factors. In addition, we investigated the longitudinal changes

in plasma biomarkers between the diagnostic groups over 36 months

and investigated the association of plasma biomarkers at baseline with

prospective cognitive decline and brain Aβ-PET load over a duration of
7 to 10 years.

2 METHODS

2.1 Participants

Participants were from the Australian Imaging, Biomarker & Lifestyle

Flagship Study of Ageing (AIBL) cohort. Participant exclusion criteria

are described in detail elsewhere.21 Briefly, exclusion criteria com-

prised a history of non-AD dementia, schizophrenia, bipolar disorder,

significant current (but not past) depression, Parkinson disease, cancer

(other than basal cell skin carcinoma) within the last 2 years, symp-

tomatic stroke, uncontrolled diabetes, or current regular alcohol use

exceeding two standard drinks per day for women or four per day for

men. Participants were classified as individuals with AD based on the

National Institute of Neurological and Communicative Disorders and

Stroke and the Alzheimer’s Disease and Related Disorders Associa-

tion (NINCDS-ADRDA) criteria22 andmild cognitive impairment (MCI)

based on reduced cognitive performance often involving memory, rep-

resenting a high-risk state for the development of AD.23,24 Participants

were defined as preclinical AD (cognitively unimpaired [CU] Aβ+), pro-
dromal AD (MCI Aβ+), or AD (AD Aβ+) for cross-sectional analyses
based on clinical criteria and Aβ+ status. Plasma Aβ1-42/Aβ1-40 ratio,
p-tau181, GFAP, and NfL data were available for 225 participants (81

CU Aβ−, 39 CU Aβ+, 26 MCI Aβ−, 33 MCI Aβ+, and 46 AD Aβ+) at
timepoint 1. Follow-up samples were not available for 49 of the 225

participants at timepoint 1. Therefore, plasma biomarker data at the

18- and 36-month follow-up timepoints were available for 80 CU Aβ−
(79 CU Aβ− for p-tau181), 40 CU Aβ+, 13 MCI Aβ−, 14 MCI Aβ+, and
29 AD Aβ+ (28 AD Aβ+ for p-tau181) participants. Aβ−/+ status for

participants who did not undergo an Aβ-PET scan at any given time-

point was determined from the previous/next immediate timepoint.

Participants were defined as CU (n = 120), MCI (n = 27), or AD (n

= 29) based on clinical criteria only, for longitudinal analyses, albeit

all AD were Aβ+. All participants provided written informed consent

before participation. This study was approved by the Human Research

Ethics Committees of St. Vincent’s Health (HREC/028/06) and Austin

Health (HREC/18/Austin/201) in Melbourne and Hollywood Private

Hospital (HPH215) and Edith Cowan University (ECU1878 Mar-

tins) in Perth, and Macquarie University (520221061636006) in

Sydney.

2.2 Measurement of plasma p-tau181, Aβ1-40,
Aβ1-42, GFAP, and NfL

Ethylenediaminetetraacetic acid (EDTA) plasma p-tau181, Aβ1-40,
Aβ1-42, GFAP, and NfL concentrations were measured utilizing the

ultra-sensitive single molecule array (Simoa) platform. Level of p-

tau181 was measured using the P-Tau 181 V2 Simoa Advantage Assay

(QTX-103714, Quanterix, Billerica, MA), with calibrators and samples

run in duplicates. Average Coefficient of Variation CV)% for p-tau181
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4 CHATTERJEE ET AL.

RESEARCH INCONTEXT

1. Systematic Review: The authors reviewed the literature

using PubMed. Several studies have been conducted on

thediagnostic performanceof individual plasmabiomark-

ers; however, head-to-head comparisons of the puta-

tive Alzheimer’s disease (AD) plasma biomarkers cross-

sectionally and longitudinally across the AD continuum

are lacking.

2. Interpretation: Our findings suggest that among the

plasma biomarkers included in this study, phosphorylated

tau181 (p-tau181) performed ≥ the other biomarkers

in predicting brain amyloid beta (Aβ)−/+ status across

the AD continuum. However, a biomarker panel of Aβ1-
42/Aβ1-40, p-tau181, and glial fibrillary acidic protein

(GFAP) performed ≥ any of the biomarkers alone in

predicting brain Aβ−/+ positron emission tomography

(PET) status across the AD continuum. Longitudinally,

Aβ1-42/Aβ1-40, p-tau181, andGFAPwere altered in pro-
dromal AD, and GFAP and neurofilament light (NfL) were

altered in AD. Aβ1-42/Aβ1-40, p-tau181, GFAP, and NfL

were associated with prospective cognitive decline and

Aβ1-42/Aβ1-40, p-tau181, and GFAP were associated

with increased Aβ PET load prospectively.
3. Future Directions: Further studies need to validate the

current observations in independent cohorts including

establishment of clinical cutoffs for implementation in

clinical settings.

was 5.58%. Aβ1-40, Aβ1-42, GFAP, and NfL were measured using the

Neurology 4-Plex E kit (QTX-103670, Quanterix, Billerica, MA), where

calibrators were run in duplicates and samples in singlicates. Average

CV% of previous batches run in duplicate in our laboratory for Aβ1-40,
Aβ1-42, GFAP, and NfL were 1.56%, 2.91%, 3.26%, and 3.20%, respec-
tively. Quality control (QC) was attained by assessing the levels of

the positive controls provided in the Simoa kits. The analytical lowest

limit of quantification was 0.338 pg/mL for p-tau181, 4.08 pg/mL for

Aβ1-40, 1.51 pg/mL for Aβ1-42, 11.6 pg/mL for GFAP, and 1.6 pg/mL

for NfL. The average %CV of the two quality controls was 1.7% and

6.6% for p-tau181, 0.2% and 2.19% for Aβ1-40, 1.28% and 1.06% for

Aβ1-42, 1.68% and 1.46% for GFAP, and 0.17% and 1.48% for NfL,

respectively.

2.3 Neuroimaging

All participants underwent Aβ-PET imagingwith either 11C-Pittsburgh

Compound B (PiB), 18F-NAV4694 (NAV), 18F-Flutemetamol (FLUTE),

or 18F-Florbetapir (FBP) to determine neocortical Aβ load. PiB, NAV,
and FBP PET scan acquisition consisted of 20 min (4 × 5 min) dynamic

scans acquired at 50 min after an intravenous bolus injection of 370

MBq (±10%) for PiB or 185MBq (±10%) for NAV or FBP (±10%). Sim-

ilarly, the participants who received FLUTE also underwent a 20 min

(4 × 5 min) PET acquisition starting at 90 min after injection of 185

MBq (±10%) of FLUTE. All Aβ imaging results were expressed in Cen-

tiloids (CL). Aβ-PET scans were spatially normalized using CapAIBL.25

The standard CL method was applied to determine Aβ burden. A CL

value>20was selected to determine a high Aβ (Aβ+) scan.

2.4 Neuropsychological testing

Participants underwent a comprehensive battery of neuropsycholog-

ical tests as described previously.21 For this study, the primary mea-

sures used to examine global cognitive abilities were the Mini-Mental

State Examination (MMSE; scores range from 0 to 30, indicating

severe impairment to no impairment),26 Clinical Dementia Rating scale

(CDR; scores range from 0 to 3, indicating no impairment to severe

impairment),27 CDR-Sum of Boxes (CDR-SOB; scores range from 0 to

18, indicating no impairment to severe impairment), and the Preclini-

cal Alzheimer Cognitive Composite (PACC) constructed using episodic

memory, executive function, and orientation as described previously.28

2.5 Statistical analyses

Descriptive statistics including means and standard deviations were

calculated for each group with comparisons employing Kruskal-Wallis

tests for continuous variables with non-parametric distributions, gen-

eral linear models for continuous variables with parametric distribu-

tions, and chi-square tests for categorical variables. Linear models

employed to compare plasma biomarkers between groups cross-

sectionally were adjusted for covariates age, sex, apolipoprotein E

(APOE) ε4 carrier status, Aβ-PET tracer, and site. Logistic regression

with Aβ−/+ as response was used to evaluate predictive models and

receiver-operating characteristic (ROC) curves were constructed from

the logistic scores. To determine the diagnostic performance of each

protein in distinguishing between groups, the R package cut point was

used. The areas under the curves (AUCs) for different plasma proteins

were compared using DeLong test. Linear mixed-effects models were

used to compare plasma biomarkers longitudinally between diagnostic

groups and were adjusted for the covariates age, sex, APOE ε4 car-

rier status, Aβ−/+ status, andPET tracer. Associations betweenplasma

biomarker levels at timepoint 1with prospective longitudinal cognitive

decline were investigated using linear mixed-effects models adjusting

for age, sex, APOE ε4 carrier status, years of education, and Aβ−/+
status in all participants and in the cognitively unimpaired and cogni-

tively impaired subsets. Associations between plasma biomarker levels

at timepoint 1 with subsequent longitudinal Aβ-PET load were inves-

tigated using linear mixed-effects models adjusting for age, sex, APOE

ε4 carrier status, and Aβ−/+ status in all participants and in the cogni-

tively unimpairedandcognitively impaired subsets. Themodels utilized

for the whole sample (all participants) also included cognitive status

as an additional covariate. Cognitive data were available for an aver-

age period of 6.5 years and Aβ-PET data were available for an average
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CHATTERJEE ET AL. 5

period of 4.5 years for participants whose plasma samples were avail-

able at timepoint 1. Plasma biomarkers were natural log transformed

tobetter approximatenormality andvariancehomogeneity as required

for analyses. All analyses and data visualization were carried out using

IBM SPSS (v27) or R (v4.0.4). p < 0.05 was considered as statistically

significant and all statistical tests were two-tailed.

3 RESULTS

3.1 Cohort characteristics

Participant cohort characteristics are presented in Table 1. There was

no significant difference in the frequency of males and females, mean

age, or mean body mass index (BMI) between CU Aβ−, CU Aβ+,
MCI Aβ−, MCI Aβ+, and AD Aβ+ groups; however, the frequency

of the APOE ε4 carriers was significantly higher in the Aβ+ groups

(CU Aβ+, MCI Aβ+, and AD Aβ+) compared with Aβ− groups (CU

Aβ− and MCI Aβ−) as expected. Significant differences in cognitive

performance between groups were observed, wherein lower MMSE

and PACC scores and higher CDR-SOB scores were observed in MCI

(Aβ− and Aβ+) and AD Aβ+ compared with CU (Aβ− and Aβ+) as
expected. Timepoints 2 (Table S1A) and3 (Table S1B) had similar cohort

characteristics.

3.2 Association of AD risk factors, age, sex, and
APOE ε4 carrier status, and BMI with plasma
biomarkers

Although plasma Aβ1-42/Aβ1-40 ratio was not observed to correlate

with age, plasmap-tau181,GFAP, andNfL correlatedwith age in all par-

ticipants, and after stratifying participants based on diagnosis, except

in theADgroup,where only plasmaNfLwas observed to correlatewith

age (Table S2A). PlasmaGFAPwasobserved tobe significantly higher in

females comparedwithmales in all participants and after stratification

by diagnosis, following correction for potential confounding variables,

except in theADgroup (Table S2B). No significant differences in plasma

biomarker levels were observed between APOE ε4 non-carriers and

carriers in all participants and after stratification by diagnosis, follow-

ing correction for potential confounding variables (Table S2C). Lower

BMI, likely to be a consequence of the disease rather than a risk factor,

correlated inversely with p-tau181, GFAP, and NfL (Table S2D).

3.3 Cross-sectional comparison of plasma
biomarkers between groups

3.3.1 Aβ1-42/Aβ1-40 ratio

Plasma Aβ1-42/Aβ1-40 ratio was significantly lower in CU Aβ+, MCI

Aβ+, and AD Aβ+ compared with CU Aβ− (p < 0.0001) and MCI

Aβ− (p < 0.0001), whereas no significant difference was observed

between CU Aβ+, MCI Aβ+, and AD Aβ+ and between CU Aβ− and

MCI Aβ− (Figure 1). Similar observations were found after bias correc-

tion and bootstrappingwith 1000 random samples (Table S3). Absolute

value data of Aβ1-42 and Aβ1-40 at timepoint 1 are presented in

Table S4.

3.3.2 p-tau181

Plasma p-tau181was significantly higher in CUAβ+, MCI Aβ+, and AD
Aβ+ compared with CU Aβ− (p < 0.0001) and MCI Aβ− (p < 0.0001),

whereas no significant differencewas observed betweenCUAβ+, MCI

Aβ+, andADAβ+andbetweenCUAβ−andMCIAβ− (Figure1). Similar

observations were found after bias correction and bootstrapping with

1000 random samples, except that higher p-tau181 was also observed

in ADAβ+ comparedwithMCI Aβ+ (Table S3).

3.3.3 GFAP

Plasma GFAP was significantly higher in CU Aβ+, MCI Aβ+, and AD

Aβ+ compared with CU Aβ− (p < 0.0001) and MCI Aβ− (p < 0.0005),

whereas no significant difference was observed between CU Aβ+ and

MCI Aβ+ and between CU Aβ− and MCI Aβ−; however, plasma GFAP

was observed to be higher inADAβ+ comparedwithCUAβ+ (p<0.01)

and MCI Aβ+ (p < 0.001) (Figure 1). Similar observations were found

after bias correction and bootstrapping with 1000 random samples

(Table S3).

3.3.4 NfL

Plasma NfL was significantly higher in MCI Aβ+ compared with CU

Aβ− (p = 0.014) and MCI Aβ− (p = 0.031) and higher in AD Aβ+ com-

pared with CU Aβ− (p < 0.0001), CU Aβ+ (p < 0.005), MCI Aβ− (p <

0.001), and MCI Aβ+ (p = 0.049) (Figure 1). Similar observations were

found after bias correction and bootstrapping with 1000 random sam-

ples, except that no significant difference was observed in NfL levels

between ADAβ+ andMCI Aβ+ (p= 0.071, Table S3).

Mean differences and confidence intervals of Aβ1-42/Aβ1-40 ratio,
p-tau181, GFAP, and NfL between CU Aβ−/MCI Aβ− and CU Aβ+/
MCI Aβ+/AD Aβ+ are presented in Table S4. These observations were

consistent before and after adjusting for covariates age, sex, APOE ε4
carrier status, Aβ-PET tracer, and site. Figure S1 shows similar findings

at timepoints 2 and 3. Similar observations were noted on adding BMI

as a covariate along with other covariates (data not shown).

3.4 Diagnostic performance of plasma
Aβ1-42/Aβ1-40 ratio, p-tau181, GFAP, and NfL

The diagnostic performance parameters of plasma biomarkers includ-

ing AUCs, specificity, sensitivity, accuracy, negative predictive value,
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6 CHATTERJEE ET AL.

TABLE 1 Participant characteristics at timepoint 1

Timepoint 1 Total Sample CUAβ− CUAβ+ MCI Aβ− MCI Aβ+ ADAβ+ P pa

N 225 81 39 26 33 46 - -

Sex, Female % 50.67 53.09 51.28 46.15 39.39 56.52 0.606 -

Mean age, years

(SD)

74.23 (7.22) 73.74 (5.96) 74.9 (6.96) 71.31 (11.46) 75.61 (5.66) 75.17 (7.20) 0.234 -

Mean bodymass

index (SD)

26.19 (4.54) 26.71 (4.32) 25.29 (4.65) 27.28 (5.05) 25.84 (4.76) 25.69 (4.32) 0.339 -

APOE ε4 carriage,
N (%)

104 (46.22) 21 (25.93) 21 (53.85) 2 (7.69) 24 (72.73) 36 (78.26) <0.0001 -

MeanMMSE (SD) 26.84 (4.15) 29.04 (1.03) 28.92 (1.24) 27.27 (1.89) 27.58 (1.48) 20.41 (4.87) <0.0001 -

Mean CDR-SOB

(SD)

1.43 (2.66) 0.025 (0.11) 0.026 (0.11) 0.519 (0.264) 0.606 (0.325) 6.21 (2.36) <0.0001 -

Mean PACC score

(SD)

−0.844 (1.53) 0.175 (0.65) 0.177 (0.74) −1.105 (0.80) −1.446 (0.53) −3.55 (0.77) <0.0001 -

Aβ PET tracer
PiB/NAV/FLUTE/

FBP, N

148/4/65/8 51/1/28/1 22/0/17/0 20/1/5/0 23/0/8/2 32/2/7/5 0.021 -

Mean Aβ PET
Centiloid (SD)

41.65 (46.65) 1.31 (6.70) 61 (26.85) 0.30 (7.01) 77.63 (30.01) 102.31 (28.55) <0.0001 -

Mean hippocampal

volume, right,

cm3 (SD)

2.79 (0.43) 2.97 (0.31) 2.98 (0.27) 2.91 (0.30) 2.7 (0.33) 2.15 (0.31) <0.0001 -

Mean hippocampal

volume, left, cm3

(SD)

2.72 (0.44) 2.89 (0.31) 2.89 (0.28) 2.84 (0.36) 2.74 (0.30) 2.04 (0.31) <0.0001 -

Mean Aβ1-42/
Aβ1-40 ratio (SD)

0.054 (0.011) 0.058 (0.010) 0.047 (0.008) 0.062 (0.011) 0.050 (0.008) 0.049 (0.007) <0.0001† <0.0001†

Mean p-tau181

pg/mL (SD)

3.01 (1.64) 2.16 (1.14) 3.67 (2.02) 1.87 (0.74) 3.65 (1.39) 4.12 (1.42) <0.0001† <0.0001†

MeanGFAP pg/mL

(SD)

179.60 (85.09) 135.06 (54.67) 205.26 (84.76) 133.07 (72.35) 196.47 (91.22) 250.50 (71.37) <0.0001† <0.0001†

MeanNFL pg/mL

(SD)

25.66 (14.05) 22.46 (11.62) 25.15 (10.56) 20.49 (10.00) 28.56 (17.80) 32.58 (16.66) <0.0001† <0.0001†

Kruskal-Wallis testswere used for continuous variableswith non-parametric distributions and general linearmodelswere used for continuous variableswith

parametric distributions,whereas chi-square testswereused for categorical variables.Data for compositeAIBLPACCscores arepresented for79CUAβ−, 39
CUAβ+, 25MCI Aβ−, 32MCI Aβ+, and 35AD individuals, data for hippocampal volume are presented for 73CUAβ−, 35 CUAβ+, 17MCI Aβ−, 21MCI Aβ+,
and31AD individuals andCentiloid data are presented for 81CUAβ−, 39CUAβ+, 24MCIAβ−, 30MCIAβ+, and40AD individuals basedondata availability.

Aβ−/+ status for participants who did not undergo an Aβ PET scan at timepoint 1 was determined from the next immediate timepoint. CU individuals com-

prised 55 non-subjectivememory complainers (non-SMC; Aβ−= 39, Aβ+= 16) and 65 SMC (Aβ−= 42, Aβ+= 23). Pa are adjusted for age, sex, site, APOE ε4
carriage, andAβPET tracer. p<0.05was considered significant. †Represents plasmabiomarkers natural log transformed tobetter approximate normality and

variance homogeneity. CU: cognitively unimpaired, MCI: mild cognitively impaired, AD: Alzheimer’s disease, MMSE: Mini-Mental State Examination, CDR-

SOB:ClinicalDementia Rating SumofBoxes, PACC score: Preclinical AlzheimerCognitiveComposite score, Aβ: amyloid beta, PiB: 11C-PittsburghCompound

B, NAV: 18F-NAV4694, FLUTE: 18F-Flutemetamol, FBP: 18F-Florbetapir, PET: positron emission tomography, p-tau181: phosphorylated-tau 181, GFAP: glial

fibrillary acidic protein, NfL: neurofilament light chain.

positive predictive value, and Youden’s optimal cut point are presented

in Table S5.

3.4.1 CU Aβ− versus CU Aβ+

The AUCs of Aβ1-42/Aβ1-40 ratio (AUC = 0.836), p-tau181 (AUC =

0.805), and GFAP (AUC = 0.749) were significantly different, but all

had significantly higher AUCs than NfL (AUC = 0.609, p < 0.01) in

distinguishing between the groups (Table S6A, Figure 2).

3.4.2 CU Aβ− versus MCI Aβ+

P-tau181 had a significantly higher AUC (AUC = 0.858) than GFAP

(AUC = 0.716, p = 0.019) and NfL (AUC = 0.641, p < 0.001), but not
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CHATTERJEE ET AL. 7

F IGURE 1 Boxplots comparing plasma Aβ1-42/Aβ1-40 ratio, p-tau181, GFAP, andNfL between CUAβ−, CU Aβ+, MCI Aβ−, MCI Aβ+, and AD
Aβ+ groups at timepoint 1. Plasmameasures were compared between groups using linear models with age, sex, APOE ε4 carrier status, PET tracer,
and site as covariates. Data from 81CUAβ−, 39 CUAβ+, 26MCI Aβ−, 33MCI Aβ+, and 46 ADAβ+ participants were utilized for analyses. The
line segments within each boxplot represent themedian of the data. p-values were obtained from natural log-transformed plasma biomarker data
to better approximate normality and variance homogeneity. p< 0.05was considered statistically significant.

compared with Aβ1-42/Aβ1-40 ratio (AUC = 0.772) in distinguishing

between the groups (Table S6B, Figure 2).

3.4.3 CU Aβ− versus AD Aβ+

P-tau181 (AUC = 0.920) and GFAP (AUC = 0.904) had significantly

higher AUCs than Aβ1-42/Aβ1-40 ratio (AUC = 0.784, p < 0.01) and

NfL (AUC = 0.717, p < 0.0001) in distinguishing between the groups

(Table S6C, Figure 2).

3.4.4 MCI Aβ− versus MCI Aβ+

P-tau181 (AUC = 0.902) had a significantly higher AUC compared

with GFAP (AUC = 0.730, p < 0.01) and NfL (AUC = 0.646, p <

0.0001), but not compared with Aβ1-42/Aβ1-40 ratio (AUC = 0.825)

in distinguishing between the groups (Table S6D, Figure 2).

3.4.5 MCI Aβ− versus AD Aβ+

P-tau181 (AUC = 0.957) had a significantly higher AUC compared

with Aβ1-42/Aβ1-40 ratio (AUC = 0.839, p = 0.036) and NfL (AUC =

0.741, p < 0.0001), but not compared with GFAP (AUC = 0.868) in

distinguishing between the groups (Table S6E, Figure 2).

3.5 Diagnostic performance of plasma
Aβ1-42/Aβ1-40 ratio, p-tau181, GFAP, and NfL along
with AD risk factors

3.5.1 CU Aβ− versus CU Aβ+

On adding the plasma biomarkers to a base model (BM) incorpo-

rating the AD risk factors age, sex, and APOE ε4 allele carrier sta-

tus, Aβ1-42/Aβ1-40 ratio+BM (AUC = 0.859), p-tau181+BM (AUC

= 0.812), and GFAP+BM (AUC = 0.826) had no significant differ-

ences between their AUCs but had significantly higher AUCs com-

pared with the BM (AUC = 0.694, p < 0.01) and NfL+BM (AUC =

0.708, p < 0.01) in distinguishing between the groups (Table S7A,

Figure 2).

3.5.2 CU Aβ− versus MCI Aβ+

Aβ1-42/Aβ1-40 ratio+BM (AUC = 0.884) and p-tau181+BM (AUC =

0.874) had significantly higher AUCs than BM (AUC = 0.809,
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8 CHATTERJEE ET AL.

F IGURE 2 Receiver-operating characteristic (ROC) curves for distinguishing between (A) CUAβ− and CUAβ+, (B) CUAβ− andMCI Aβ+, (C)
CUAβ− and ADAβ+, (D)MCI Aβ− andMCI Aβ+, and (E)MCI Aβ− and ADAβ+ participants at timepoint 1. ROC curves are presented for A, B, C,
D, and E for (i) Aβ1-42/Aβ1-40, p-tau181, GFAP, andNfL, Aβ1-42/Aβ1-40+ p-tau181+GFAP, and Aβ1-42/Aβ1-40+p-tau181+GFAP+NfL and (ii)
basemodel comprising AD risk factors, age, sex, APOE ε4 allele status (BM), BM+Aβ1-42/Aβ1-40, BM+p-tau181, BM+GFAP, BM+NfL,
BM+Aβ1-42/Aβ1-40+p-tau181+GFAP, and BM+Aβ1-42/Aβ1-40+ p-tau181+GFAP+NfL. Data from 81CUAβ−, 39 CUAβ+, 26MCI Aβ−, 33
MCI Aβ+, and 46 ADAβ+ participants were utilized for analyses. AUC: area under the curve; CI: confidence interval.
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CHATTERJEE ET AL. 9

F IGURE 2 Continued

p = 0.023) and NfL+BM (AUC = 0.814, Aβ1-42/Aβ1-40 ratio+BM:

p< 0.01; p-tau181+BM: p= 0.031) but not compared with GFAP+BM

(AUC = 0.861) in distinguishing between the groups (Table S7B,

Figure 2).

3.5.3 CU Aβ− versus AD Aβ+

Aβ1-42/Aβ1-40 ratio+BM (AUC = 0.884), p-tau181+BM (AUC =

0.910), GFAP+BM (AUC = 0.959), and NfL+BM (AUC = 0.866)
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10 CHATTERJEE ET AL.

F IGURE 2 Continued

had significantly higher AUCs than BM (AUC = 0.803, p = 0.018),

and GFAP+BM had a significantly higher AUC than Aβ1-42/Aβ1-40
ratio+BM (p < 0.01) and NfL+BM (p < 0.01) in distinguishing between

the groups (Table S7C, Figure 2).

3.5.4 MCI Aβ− versus MCI Aβ+

Aβ1-42/Aβ1-40 ratio+BM (AUC = 0.952) had a significantly higher

AUC compared with BM (AUC = 0.900, p = 0.048), and p-tau181+BM

(AUC = 0.958) had significantly higher AUCs compared with BM (p =

0.018), GFAP+BM (AUC = 0.911, p = 0.028), and NfL+BM (AUC =

0.904, p = 0.015) in distinguishing between the groups (Table S7D,

Figure 2).

3.5.5 MCI Aβ− versus AD Aβ+

Aβ1-42/Aβ1-40 ratio+BM (AUC = 0.947), p-tau181+BM (AUC =

0.969), and GFAP+BM (AUC = 0.965) had significantly higher AUCs

compared with BM (AUC = 0.895, Aβ1-42/Aβ1-40 ratio+BM: p =

0.032; p-tau181+BM: p < 0.01; GFAP+BM: p = 0.013), but not com-

pared with NfL+BM (AUC = 0.926) in distinguishing between the

groups (Table S7E, Figure 2).

In addition,we assessedwhether combining theBMwith the plasma

biomarkers significantly improved plasma biomarker diagnostic per-

formance. In distinguishing between CU Aβ− and CU Aβ+, we noted

a significantly higher AUC when combining BM with GFAP in a model

compared with GFAP alone (p = 0.049). In distinguishing between CU

Aβ− and MCI Aβ+ groups, CU Aβ− and AD Aβ+ groups, MCI Aβ− and

MCI Aβ+ groups, and MCI Aβ− and AD Aβ+ groups, we noted signif-

icantly higher AUCs when combining BM with Aβ1-42/Aβ1-40 ratio

compared with Aβ1-42/Aβ1-40 ratio alone (CU Aβ− vs MCI Aβ+: p
= 0.019; CU Aβ− vs AD Aβ+: p = 0.011; MCI Aβ− vs MCI Aβ+: p =
0.014; MCI Aβ− vs AD Aβ+: p= 0.017), BMwith GFAP compared with

GFAP alone (CU Aβ− vs MCI Aβ+: p < 0.01; CU Aβ− vs AD Aβ+: p
< 0.01; MCI Aβ− vs MCI Aβ+: p < 0.01; MCI Aβ− vs AD Aβ+: p =
0.028) and BM with NfL compared with NfL alone (p < 0.01). No sig-

nificant difference in diagnostic performance of p-tau181 across the

AD continuum was observed before and after the addition of the BM

(Table S8).

3.6 Diagnostic performance of a panel of plasma
biomarkers comprising Aβ1-42/Aβ1-40 ratio,
p-tau181, GFAP, and NfL

3.6.1 CU Aβ− versus CU Aβ+

Amodel incorporatingAβ1-42/Aβ1-40 ratio, p-tau181, andGFAP (with
and without NfL) had a significantly higher AUC (AUC = 0.898, Aβ1-
42/Aβ1-40 ratio: p = 0.016; p-tau181: p < 0.01; GFAP: p < 0.001; NfL:
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CHATTERJEE ET AL. 11

p< 0.0001) than any of these proteins alone in distinguishing between

the groups (Table S6A, Figure 2).

3.6.2 CU Aβ− versus MCI Aβ+

Amodel incorporatingAβ1-42/Aβ1-40 ratio, p-tau181, andGFAP (with
and without NfL) had a significantly higher AUC (AUC = 0.886) com-

pared with the AUC of Aβ1-42/Aβ1-40 ratio (p < 0.01), GFAP (p

< 0.001), and NfL (p < 0.0001), but not p-tau181 in distinguishing

between the groups (Table S6B, Figure 2).

3.6.3 CU Aβ− versus AD Aβ+

Amodel incorporatingAβ1-42/Aβ1-40 ratio, p-tau181, andGFAP (with
and without NfL) had a significantly higher AUC (AUC = 0.958) com-

pared with the AUC of Aβ1-42/Aβ1-40 ratio (p < 0.0001), GFAP (p <

0.01), andNfL (p<0.0001), but notp-tau181, indistinguishingbetween

the groups (Table S6C, Figure 2).

3.6.4 MCI Aβ− versus MCI Aβ+

Amodel incorporatingAβ1-42/Aβ1-40 ratio, p-tau181, andGFAP (with
and without NfL) had a significantly higher AUC (AUC = 0.941) com-

pared with the AUC of Aβ1-42/Aβ1-40 ratio (p = 0.011), GFAP (p <

0.01), andNfL (p<0.0001), but notp-tau181, indistinguishingbetween

the groups (Table S6D, Figure 2).

MCI Aβ− versus AD Aβ+

Amodel incorporatingAβ1-42/Aβ1-40 ratio, p-tau181, andGFAP (with
and without NfL) had a significantly higher AUC (AUC = 0.967) com-

pared with the AUC of Aβ1-42/Aβ1-40 ratio (p < 0.01), GFAP (p =

0.012), andNfL (p<0.001), but notp-tau181, indistinguishingbetween

the groups (Table S6E, Figure 2).

3.7 Diagnostic performance of a panel of plasma
biomarkers comprising plasma Aβ1-42/Aβ1-40 ratio,
p-tau181, GFAP, and NfL along with AD risk factors

3.7.1 CU Aβ− versus CU Aβ+

A model incorporating Aβ1-42/Aβ1-40 ratio, p-tau181, and GFAP

(with and without NfL) along with BM was observed to have a sig-

nificantly higher AUC (AUC = 0.924) than Aβ1-42/Aβ1-40 ratio+BM

(p = 0.014), p-tau181+BM (p < 0.01), GFAP+BM (p < 0.01), and

NfL+BM (p< 0.0001) in distinguishing between the groups (Table S7A,

Figure 2).

3.7.2 CU Aβ− versus MCI Aβ+

Amodel incorporatingAβ1-42/Aβ1-40 ratio, p-tau181, andGFAP (with
and without NfL) along with BM was observed to have a significantly

higher AUC (AUC= 0.938) than Aβ1-42/Aβ1-40 ratio+BM (p= 0.026),

p-tau181+BM (p < 0.01), GFAP+BM (p < 0.01), and NfL+BM (p <

0.001) in distinguishing between the groups (Table S7B, Figure 2).

3.7.3 CU Aβ− versus AD Aβ+

Amodel incorporatingAβ1-42/Aβ1-40 ratio, p-tau181, andGFAP (with
and without NfL) along with BM was observed to have a significantly

higher AUC (AUC= 0.978) than Aβ1-42/Aβ1-40 ratio+BM (p< 0.001),

p-tau181+BM (p < 0.01), GFAP+BM (p = 0.016), and NfL+BM (p <

0.001) in distinguishing between the groups (Table S7C, Figure 2).

3.7.4 MCI Aβ− versus MCI Aβ+

Amodel incorporatingAβ1-42/Aβ1-40 ratio, p-tau181, andGFAP (with
and without NfL) along with the BM was observed to have a signifi-

cantly higher AUC (AUC= 0.976) than BM (p= 0.018), GFAP+BM (p=

0.027), and NfL+BM (p = 0.016), but not p-tau181 or Aβ1-42/Aβ1-40
ratio, in distinguishing between the groups (Table S7D, Figure 2).

3.7.5 MCI Aβ− versus AD Aβ+

Amodel incorporatingAβ1-42/Aβ1-40 ratio, p-tau181, andGFAP (with
and without NfL) along with BM was observed to have a signifi-

cantly higher AUC (AUC = 0.988) than BM (p < 0.01), Aβ1-42/Aβ1-40
ratio+BM (p = 0.025), NfL+BM (p = 0.013), but not GFAP+BM

and p-tau181+BM, in distinguishing between the groups (Table S7E,

Figure 2).

In addition, whether combining the BM with the plasma biomarker

panel significantly improved the diagnostic performance of the plasma

biomarker panel was assessed. No significant improvement was

observed after combining the BM with the plasma biomarker panel

when compared with the plasma biomarker panel in distinguishing CU

Aβ− versus CU Aβ+, MCI Aβ− versus MCI Aβ+, and MCI Aβ− ver-

sus AD Aβ+ groups. In distinguishing between CU Aβ− and MCI Aβ+,
significantly higher AUCs were noted on combining the BM with the

plasma biomarker panel compared with the plasma biomarker panel

alone (p= 0.043) (Table S9).

3.8 Longitudinal changes in plasma biomarkers in
MCI and AD compared with CU

Plasma Aβ1-42/Aβ1-40 ratio decreased significantly (p = 0.024),

and plasma p-tau181 (p ≤ 0.01) and GFAP (p < 0.01) increased
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12 CHATTERJEE ET AL.

F IGURE 3 Longitudinal changes in plasma biomarkers over 36months between CU,MCI, and AD groups. Estimatedmarginal means of plasma
biomarkers Aβ1-42/Aβ1-40 ratio, p-tau181, GFAP, andNfL for CU (blue), MCI (yellow), and AD (red) participants are presented at three
timepoints, 18months apart. Data for Aβ1-42/Aβ1-40 ratio, GFAP, andNfL are presented in 120 CU, 27MCI, and 29 AD participants and for
p-tau181 are presented in 119 CU, 27MCI, and 28 AD. Error bars represent±1 SE.

TABLE 2 Longitudinal changes in plasma biomarkers over 36months inMCI and AD individuals compared to CU individuals

CU versusMCI CU versus AD

B (SE) p B (SE) a pa B (SE) p B (SE) a pa

Aβ1-42/Aβ1-40 ratio −0.020 (0.009) 0.027 −0.021 (0.009) 0.024 −0.008 (0.009) 0.36 −0.008 (0.009) 0.332

P-tau181 0.041 (0.016) 0.010 0.043 (0.016) 0.008 −0.009 (0.015) 0.544 −0.008 (0.015) 0.596

GFAP 0.059 (0.022) 0.009 0.059 (0.023) 0.009 0.042 (0.021) 0.049 0.043 (0.021) 0.047

NFL −0.009 (0.020) 0.630 −0.009 (0.020) 0.653 0.071 (0.019) 2e-04 0.071 (0.019) 2e-04

Longitudinal changes in plasma proteins were compared between CU and MCI participants and, CU and AD participants, using linear mixed models, before

and after (Pa) adjustment for the covariates age, sex, APOE ε4 carrier status, Aβ−/+ PET-status, and Aβ PET tracer. Data from 120 CU, 27 MCI, and 29 AD

participantswereutilized forAβ1-42/Aβ1-40 ratio,GFAP, andNfLand from119CU,27MCI, and28ADparticipants for p-tau181.CU: cognitively unimpaired,

MCI: mild cognitively impaired, AD: Alzheimer’s disease. Plasma biomarkers were natural log transformed to better approximate normality and variance

homogeneity. p< 0.05was considered significant.

significantly in MCI compared with CU over 36 months before and

after correcting for covariates age, sex, APOE ε4 carrier status, Aβ-/+
status, and tracer (Table 2). In addition, plasma GFAP (p = 0.049) and

NfL (p<0.001) increased significantly inADcomparedwithCUover36

months before and after correcting for covariates (Figure 3, Figure S2,

Table 2).
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CHATTERJEE ET AL. 13

3.9 Association of baseline plasma biomarker
levels with prospective cognitive decline and Aβ-PET
load

Analyses were performed to investigate whether plasma biomarker

levels from a single timepoint were associated with prospective cog-

nitive decline and cerebral Aβ accumulation. In all participants, lower

baseline plasma Aβ1-42/Aβ1-40 ratio was associated with increased

future cognitive decline (MMSE: p = 0.041; CDR-SOB: p = 0.049) and

higher baseline p-tau181 (MMSE: p < 0.0001; CDR-SOB: p < 0.0001;

PACC: p < 0.0001), GFAP (MMSE: p < 0.0001; CDR-SOB: p < 0.0001;

PACC: p < 0.001), and NfL (MMSE: p < 0.0001; CDR-SOB: p < 0.0001;

PACC: p < 0.0001) measures were observed to be associated with

increased future cognitive decline (Table 3). On stratifying participants

based on cognitive status, in cognitively unimpaired participants, base-

line plasma Aβ1-42/Aβ1-40 ratio was not observed to be associated

with future cognitive decline; however, higher baseline plasma p-

tau181 (PACC: p<0.001), GFAP (PACC: p=0.020) andNfL (MMSE: p=

0.019; PACC: p=0.046)measureswereobserved tobe associatedwith

increased future cognitivedecline (Table3). In cognitively impairedpar-

ticipants (MCI and AD), lower baseline plasma Aβ1-42/Aβ1-40 ratio

was associated significantly with prospective decline in CDR-SOB

(p=0.020). Furthermore, higher baseline plasma p-tau181 (MMSE: p<

0.0001; CDR-SOB: p < 0.0001; PACC: p < 0.0001), GFAP (MMSE:

p < 0.001; CDR-SOB: p < 0.0001; PACC: p < 0.01), and NfL (MMSE:

p<0.01; CDR-SOB: p<0.01; PACC: p<0.01)measureswere observed

to be associated with increased future cognitive decline (Table 3). In

addition, lower baseline plasma Aβ1-42/Aβ1-40 ratio (p < 0.001) and

higher p-tau181 (p< 0.0001) andGFAP (p< 0.01) were observed to be

associated with increased future Aβ-PET load in all participants; how-

ever, upon stratification by cognitive impairment status, the preceding

observations remained significant only in cognitively unimpaired par-

ticipants. Relationships between low and high plasma biomarker levels

at baseline (based on the optimal cut point at Youden’s index for com-

parisons between CU Aβ− and AD Aβ+) and the rate of change in

cognition and brain Aβ−PET load are presented in Figure S3.

4 DISCUSSION

In the current study we showed that plasma Aβ1-42/Aβ1-40 ratio was

lower, and p-tau181 and GFAP levels were higher in Aβ+ individu-

als across the AD continuum, and that plasma NfL levels were higher

in cognitively impaired Aβ+ individuals compared with controls. p-

tau181 followed by GFAP showed the highest change in magnitude

in Aβ+ compared with Aβ− individuals along the AD continuum. To

our knowledge this is the first head-to-head study cross-sectionally

investigating plasma Aβ1-42/Aβ1-40 ratio, p-tau181, GFAP, and NfL

along the AD continuum employing Aβ+ defined preclinical AD, pro-

dromal AD, and AD participants in a highly characterized Australian

cohort utilizing an ultrasensitive platform. We also showed that Aβ1-
42/Aβ1-40 ratio, p-tau181, and GFAP had non-significant differences

in their discriminative capabilities for preclinical AD based on AUCs,

and outperformed NfL. In the cognitively impaired stages, we showed

that p-tau181 outperformed NfL and Aβ1-42/Aβ1-40 ratio or GFAP.

Furthermore we showed that combining plasma biomarkers (partic-

ularly Aβ1-42/Aβ1-40 ratio, p-tau181, or GFAP) with the known AD

risk factors, age, sex, and APOE ε4 carrier status, most often sig-

nificantly improved the discriminative performance of the known

AD risk factors between CU Aβ+/MCI Aβ+/AD Aβ+ and Aβ− CU

individuals. On the other hand, we also showed that although the

discriminative performance of Aβ1-42/Aβ1-40 ratio, GFAP, and NfL

improved when the AD risk factors were combined with the plasma

biomarkers, this was not the case for p-tau181. In our longitudinal

analyses, we showed that the plasma Aβ1-42/Aβ1-40 ratio decreased

and p-tau181 increased in MCI participants, GFAP increased in MCI

and AD participants, and NfL increased in AD participants over

36 months compared with controls. We also showed that baseline

plasma Aβ1-42/Aβ1-40 ratio, p-tau181, GFAP, and NfL levels are

associatedwithprospective cognitivedeclineandbaselineplasmaAβ1-
42/Aβ1-40 ratio, p-tau181, and GFAP are associated with prospective

Aβ-PET load.
Our observations of lower plasma Aβ1-42/Aβ1-40 ratio,10,13,29 and

elevated plasma p-tau1816,15,16,29,30 and GFAP12,17,31 in preclinical

AD, prodromal AD, and AD, corroborate findings from earlier studies;

however, in the current study we did not always observe a consis-

tent progressive magnitude decrease in plasma Aβ1-42/Aβ1-40 ratio

or increase in plasma p-tau181 levels and GFAP levels across the AD

continuum. Further validation studies are required to confirmwhether

theseobservations couldbeattributed to thedifferences in sample size

between groups. Our observations of elevated NfL in prodromal AD

and AD but not in Aβ+ defined preclinical AD are also in line with pre-

vious studies.32–34 In addition, abnormalNfL levels have been reported

in other neurological diseases, such as multiple sclerosis,35 Parkinson

disease36,37 and other diseases affecting the central nervous system,38

thus serving as a putative marker of neurological insults or ongoing

neuroaxonal damage but unspecific to AD.

Although head-to-head studies for plasma biomarkers across the

AD continuum are largely missing, one study reported that p-tau181

outperformed Aβ1-42/Aβ1-40 ratio, GFAP, and NfL in differentiating

between AD and CU; however, unlike the current study, these findings

are not from Aβ−/+ status confirmed participants.3 Autopsy studies

demonstrate that diagnosis of AD based on clinical criteria has lim-

ited sensitivity and specificity,39 whereas Aβ-PET and CSF biomarkers

have over 90% sensitivity and specificity.40,41 In the current study,

we observed that there was no significant difference in the discrim-

inative performance of p-tau181 and GFAP between AD Aβ+ and

CU Aβ−, and that both outperformed Aβ1-42/Aβ1-40 ratio and NfL.

Our observations of non-significant differences between the AUCs

of p-tau181 and GFAP in CU Aβ− versus CU Aβ+ are in line with

our previous observations in an independent cohort, wherein plasma

p-tau181 andGFAPhad non-significant differences in their discrimina-

tive capabilities for preclinical AD and both significantly outperformed

plasma NfL.16 Strikingly, in the current study at timepoint 1, plasma

Aβ1-42/Aβ1-40 ratio showed unexpectedly high AUCs in differentiat-

ing between CU Aβ− and CU Aβ+ (AUC = 0.84, 95% CI: 0.77-0.91),
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14 CHATTERJEE ET AL.

TABLE 3 Association of baseline plasma biomarkers with longitudinal cognitive decline and brain Aβ-PET load

Aβ42/40 ratio P-tau181 GFAP NfL

MMSE

All participants

B (SE) 0.911 (0.442) −0.927 (0.177) −0.870 (0.180) −0.884 (0.199)

P 0.041 5.52E-07 3.29E-06 1.66E-05

CU participants

B (SE) 0.094 (0.090) −0.029 (0.042) −0.074 (0.041) −0.111 (0.047)

P 0.297 0.499 0.073 0.019

CI participants

B (SE) 2.124 (1.081) −1.885 (0.373) −1.371 (0.374) −1.340 (0.397)

P 0.054 4.62E-06 5.17E-04 0.001

CDR-SOB

All participants

B (SE) −0.460 (0.232) 0.531 (0.092) 0.530 (0.093) 0.487 (0.103)

P 0.049 3.18E-08 5.07E-08 4.76E-06

CU participants

B (SE) −0.027 (0.035) 0.012(0.016) 0.011 (0.017) 0.028 (0.019)

P 0.441 0.460 0.507 0.131

CI participants

B (SE) −1.209 (0.509) 0.932 (0.172) 0.765 (0.173) 0.608 (0.186)

P 0.020 7.63E-07 3.37E-05 0.002

PACC

All participants

B (SE) 0.069 (0.042) −0.100 (0.018) −0.070 (0.018) −0.090 (0.020)

P 0.102 9.76E-08 2.05E-04 1.35E-05

CU participants

B (SE) 0.034 (0.038) −0.064 (0.017) −0.042 (0.018) −0.041 (0.020)

P 0.374 3.37E-04 0.020 0.046

CI participants

B (SE) 0.213 (0.141) −0.214 (0.048) −0.166 (0.048) −0.156 (0.049)

P 0.139 6.66E-05 0.001 0.003

Aβ-PET

All participants

B (SE) −6.035 (1.555) 2.823 (0.675) 2.075 (0.708) 1.473 (0.786)

P 1.56E-04 4.72E-05 0.003 0.063

CU participants

B (SE) −6.014 (1.521) 2.844 (0.706) 2.215 (0.767) 1.212 (0.866)

P 1.28E-04 9.71E-05 0.005 0.165

CI participants

B (SE) −5.646 (4.302) 2.711 (1.656) 1.619 (1.569) 1.467 (1.670)

P 0.196 0.107 0.307 0.384

Relationships between plasma biomarkers and change in cognition (represented by MMSE, CDR-SOB, and PACC scores) were assessed using linear mixed

effects models adjusting for age, sex, APOE ε4 carrier status, and years of education. Models for all participants were also adjusted for cognitive status. p <
0.05was considered as statistically significant. Plasma biomarkers were natural log transformed to better approximate normality and variance homogeneity.
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CHATTERJEE ET AL. 15

not seen previously using the Simoa platform.10,12,42 Similar analyses

between the same CU Aβ− and CU Aβ+ participants at follow-up visit

timepoint 2 generated an AUC = 0.78 (95% CI: 0.70-0.87) and time-

point 3 generated AUC = 0.79 (95% CI: 0.70-0.87). It could be posited

that this superior performance of plasma Aβ1-42/Aβ1-40 ratio in pre-

clinical AD at timepoint 1 compared to the later timepoints may be

reflective of the nature of the early changes of this biomarker in the

ADpathogenesis trajectory; however, further confirmatory studies are

required.

Combining plasma biomarkers (particularly Aβ1-42/Aβ1-40 ratio,

p-tau181, or GFAP) with the known AD risk factors most often signifi-

cantly improved the discriminative performance of the AD risk factors

betweenCUAβ+/MCIAβ+/ADAβ+ andAβ−CU individuals. However,

combining the AD risk factors with the plasma biomarkers improved

the discriminative performance of Aβ1-42/Aβ1-40 ratio, GFAP, and

NfL but not p-tau181. Similar to our findings, previous studies have

reported improved plasmaAβ1-42/Aβ1-40 ratio or GFAP performance

when combinedwith AD risk factors in differentiating between Aβ−/+
individuals,5,10,43 whereas plasma p-tau181 combined with AD risk

factors did not significantly perform better than p-tau181 alone.6 This

may suggest that p-tau181 levels are largely independent of age, sex,

and APOE ε4 carrier status in distinguishing CUAβ+, MCI Aβ+, and AD
Aβ+ fromAβ−CU individuals.

Furthermore, our observations within the current study suggest

that employing a panel of plasma biomarkers comprising Aβ1-42/Aβ1-
40 ratio, p-tau181, andGFAPmayprovidebetter discriminativeperfor-

mance than individual plasma biomarkers, particularly when combined

with the AD risk factors. In line with our observations, Janelidze and

colleagues reported a significantly higher AUC when combining p-

tau181 with Aβ42/Aβ40 ratio compared with Aβ42/Aβ40 ratio alone

in differentiating betweenAβ− andAβ+ individuals.15 In addition, Ver-

berk and colleagues showed that a panel comprising Aβ1-42/Aβ1-40
ratio, GFAP, age, and APOE ε4 carrier status optimally identified Aβ+
individuals, and also reported no significant improvements with the

addition of NfL,5 similar to our findings with regard to NfL. However,

further studies investigating an optimal panel of biomarkers alongwith

AD risk factors are required.

To date only a handful of studies have investigated longitudinal

changes in the aforementioned plasma biomarkers in clinically clas-

sified MCI and AD. In the current study, we observed a longitudinal

decrease in plasma Aβ1-42/Aβ1-40 ratio and a longitudinal increase

in plasma p-tau181 in MCI participants compared with controls; how-

ever, no significant longitudinal changes were observed in plasma

Aβ1-42/Aβ1-40 ratio and p-tau181 levels in AD participants compared

with controls. These findings are consistent with previous CSF and

plasma familial AD studies reporting that alterations in Aβ1-42/Aβ1-
40 ratios and p-tau181 levels along the disease trajectory ultimately

begin to plateau following the first progressive symptom (e.g., memory,

motor, or behavior) onset.2,44 Furthermore, Rodriguez and colleagues

show that the trajectory of p-tau181 is associated with the duration of

AD status, wherein increases in plasma p-tau181 in AD patients were

observed up to 8 to 4 years prior to death, which later plateaued.45

Given that we do not have data on the duration of AD status for partic-

ipants in the current study, further studies are required to investigate

the trajectory of p-tau181 levels in AD participants from disease onset

to death. A previous study reported significant longitudinal increases

in GFAP in MCI Aβ+ and MCI who progressed to dementia compared

withMCIAβ− and stableMCI, respectively.43 Within the current study,

we show that GFAP longitudinally increased in MCI and AD com-

pared with controls, and although NfL did not significantly increase

longitudinally in MCI, a significant longitudinal increase was observed

in AD compared with controls. These findings suggest a sequence in

the progression of biomarkers reflecting the underlying pathological

process.

In the current study we showed that plasma biomarker levels are

associated with prospective cognitive decline. Our observations of the

association of baseline plasma biomarker levels with prospective cog-

nitive decline are in line with previous studies, wherein lower baseline

plasma Aβ42/40 ratio or Aβ42 levels have been reported to be asso-

ciated with faster cognitive decline46,47 and higher baseline plasma

p-tau181,48,49 GFAP31 and NfL19,33,48,50 levels have been reported

to be associated with faster cognitive decline. Furthermore, observa-

tions from the current study extend results from previous findings,

wherein the majority of the aforementioned studies report associa-

tions in sample sets comprising a mix of CU and CI individuals, and not

independently.

Baseline plasma Aβ1-42/Aβ1-40 ratio, p-tau181, and GFAP were

also observed to be associated with future brain Aβ accumulation, in

line with previous reports. Schindler and colleagues reported a 15-fold

greater risk of conversion to Aβ+ in Aβ− cognitively normal individuals

with plasmaAβ42/Aβ40 ratio<0.1218 comparedwith individualswith

plasma Aβ42/Aβ40 ratio > 0.1218.51In addition, Shen and colleagues

reported that individuals with abnormal baseline plasma p-tau181

levels had a higher risk of progression to pathological brain amyloid

load.52 Furthermore, Pareira and colleagues have reported that plasma

GFAP levels predicted Aβ accumulation before and after adjusting for

age, sex, baseline Aβ status, presence of cognitive impairment, and tau

PET load.31

The strengths of the current study include Aβ+ defined classi-

fication, the availability of serial plasma measurements to assess

longitudinal changes in plasma biomarkers, and the availability of lon-

gitudinal data on cognition and brain Aβ-PET load. It is acknowledged

that this study also has its limitations. Aβ+ defined classification was

not used to assess longitudinal changes in plasma biomarkers as only

a modest Aβ-PET sample size with follow-up timepoints was available;

however, analyses were adjusted for Aβ−/+ status at baseline. Prelim-

inary, longitudinal changes in plasma biomarkers in groups classified

using both clinical and Aβ−/+ status are; however, presented in Table

S10, albeit further validation studies are required. In addition, analyses

could not include tau-PET−/+ status to assess early or late preclinical

AD stages, given that these data were not available for the analyzed

sample set. Furthermore, the measurement of Aβ42/Aβ40 using the

Simoa platform has been reported to perform inferiorly to immuno-

precipitation followed by mass-spectrometry methods or the Elecsys

immunoassay with respect to its predictive performance for Aβ−/+
status.42

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.12724 by E

dith C
ow

an U
niversity, W

iley O
nline L

ibrary on [13/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 CHATTERJEE ET AL.

To conclude, results from the current study suggest that plasma

biomarkers are altered cross-sectionally and longitudinally, sequen-

tially along the AD continuum, and are associated with prospective

cognitive decline and increase in brain Aβ-PET load. These findings

provide further evidence of the diagnostic and prognostic poten-

tial of plasma biomarkers. Findings from the current study have

significance and potential implications for (1) clinical trials (e.g., iden-

tifying preclinical and prodromal AD participants for clinical trials,

and demonstrating superiority of some biomarkers/combinations for

this distinction earlier in the AD continuum, compared to NfL) and

(2) clinical translation (e.g., earlier, and simpler precision diagnosis of

AD). Studies comparing differences in the putative plasma biomark-

ers between AD and other non-AD neurodegenerative diseases and

non-neurodegenerative psychiatric disorders in clinical settings are

required. Further in-depth head-to-head comparisons between the

putative plasma and CSF AD biomarkers are required; however,

Tables S11-S12 and Figure S4 show comparisons and associations

of plasma versus CSF Aβ42 and p-tau181 pilot data. Future valida-

tion studies are required with an emphasis on more ethnically diverse

populations.
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Chapter 8 

Conclusions 
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Alzheimer’s disease is the leading the leading cause of dementia in the elderly accounting for 

more than 50% of all dementia cases. Currently there are no cures for it and the few medical 

treatments approved are aimed at managing symptoms and delaying disease progression. In 

order to be effective, however, timed medical treatments rely on a quick and definitive 

diagnosis. It is known that amyloid deposition in the brain happens decades before the onset 

of clinical symptoms, but the lack of an early diagnosis hampers the possibilities for such 

early treatments. Unfortunately, current techniques are either (a) expansive or (b) invasive 

and cannot be used in community-wide screening. Cerebral PET scans for the detection of 

amyloid deposits in the brain parenchyma are one of the means by which AD is diagnosed, 

but they are expensive and due to the small amount or radiation used, cannot be repeated too 

frequently. On the other hand, biomarker analysis in the cerebrospinal fluid (CSF), relies on 

lumbar punctures, which is an invasive technique that can be performed only by trained 

personnel. The danger associated with such technique may also induce individuals to stay 

away from such procedure. Regardless, the absence of a community-wide screening fails to 

detect the numerous individuals who are in the early stages of the disease or individuals in 

which brain amyloid deposition has already started but clinical symptoms are yet to appear. 

All these problems could be solved by unveiling a cheap and non-invasive set of blood 

biomarkers that can reliably indicate (a) which healthy individuals are more at risk for AD, or 

(b) which individuals are in the early stages of the disease. In both cases, thanks to this quick, 

cheap and non-invasive diagnosis, early therapies could be commenced in a timely fashion to 

either delay the onset of the disease and/or slow its progression. Either way, this would 

improve the quality of life for affected individuals and would delay the placement of affected 

individuals in aged-care facilities, strongly reducing the associated costs for families and for 

government bodies.  
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The current thesis had access to samples from the AIBL cohort and from the KARVIAH 

cohort. For both cohort there was access to brain amyloid data assessed by PET scan at 

several time points and for the AIBL cohort there was also access to regional brain 

volumetric data assessed by MRI and access to cognitive test scores for the AIBL cohort. 

8.1 Conclusions 1 (Part 1) 

The first part focused on the role of HDL in AD with particular emphasis on the role of HDL 

maturation and its associated HDL-protein cargo (which comprises all proteins which are 

associated to HDL and are included/excluded from HDL particles during HDL maturation 

process). To date, altered HDL levels have been associated to AD, albeit with some 

contradictory results, but data assessing the implications of HDL-maturation process and 

HDL-cargo are limited. Such controversies could be in accordance with recent evidence 

indicating that HDL-cargo may play a prominent role in defying HDL beneficial effects, 

therefore suggesting that quality over quantity may be a better indicator of HDL protective 

activity and protective features. 

To determine whether HDL particles undergo an altered maturation process in the disease, we 

have assessed the size of HDL particles (Small, Intermediate and Large) in healthy controls 

(HC), mild cognitive impaired (MCI) and Alzheimer’s patients (AD). Our results indicated 

that with regards to HDL-profile particles during HDL maturation in AD there are lower 

levels of the smaller HDL particles compared with the MCI or controls. Small HDL have 

been associated with HDL protective features such as being protective against atherosclerosis 

and vascular related oxidative stress [890].Our data have also indicated that higher levels of 

small HDL are positively associated with a higher MMSE score in MCI/AD, strongly 

enforcing the notion of a protective role of small HDL in AD.  
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We have subsequently assessed the composition of HDL-cargo (ApoA-I, ApoA-II, ApoC-I, 

ApoC-III, ApoD, ApoE, ApoH, ApoJ and CRP) and HDL-cholesterol in stable healthy 

controls (HC), healthy controls converting to AD within 36 months (HC-Conv) and 

Alzheimer’s patients (AD). Our results indicated that HDL-cargo is altered in AD compared 

to controls displaying increased relative (to ApoA-I) levels of ApoD and reduced relative (to 

ApoA-I) levels of ApoA-II. Additionally, our results also indicated that in AD there is an 

overload of HDL-associated cholesterol, which has already been linked to HDL with reduced 

anti-atherogenic functions. Such cholesterol overload on HDL appears to begin a few years 

before the onset of clinical signs of the disease. These early finding could suggest therefore 

that HDL-associated cholesterol represent an early change in the disease and could be used in 

a wider blood-based biomarker panel. Additionally, in amyloid positive individuals, 

cholesterol overload on HDL (relative to ApoA-I) has also been associated to reduced grey 

matter volume and greater ventricular volume. On the other hand, ApoA-II and ApoJ levels 

(relative to ApoA-I) have been associated to greater grey matter volume and smaller 

ventricular volume. Altogether, these data indicated that HDL subclasses and HDL-cargo 

proteins are altered either before or during AD, and these changes are also associated with 

brain volumetric AD-related parameters, indicating a strong involvement of HDL in the 

disease and the possibility that some of the HDL-related parameters could be used for the 

creation of a broad blood-based biomarker panel for the early diagnosis of the disease. 

8.2 Conclusions 2 (Part 2) 

The second part focused on determining the involvement of specific AD biomarkers (Aβ1-40, 

Aβ1-42, p-tau181, p-tau231, t-tau, GFAP, NFL) in several clinical cohorts. For this purpose, 

a cohort with pre-AD individuals (KARVIAH, comprising controls with and without brain 

amyloidosis) and a cohort with controls, MCI and AD participants (AIBL) were used in these 
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studies. Overall, higher plasma GFAP, p-tau181 and p-tau231 were observed in the pre-

clinical AD group (brain Aβ+ group), just like higher plasma levels of GFAP and p-tau181 

were found in Aβ+ participants (CU, MCI and AD) from the AIBL cohort (p-tau231 was not 

assessed in this study), compared to Aβ- participants. In addition, A decreased Aβ1-42/Aβ1-

40 ratio was also consistently observed in Aβ+ participants, suggesting that these biomarkers 

could potentially be used to discriminate individuals with ongoing brain amyloidosis 

compared to individuals without brain amyloid deposition. In both cohorts, longitudinal 

analysis corroborated data obtained at the initial timepoint, suggesting that these specific 

biomarkers are reliable candidates for the diagnosis of individuals with ongoing brain 

deposition. On the other hand, NFL levels, also increased in AD, appears to be a marker of 

generic neurodegeneration and not necessarily associated with brain amyloidosis, limiting 

their value as potential predictor of AD. However, in the KARVIAH cohort, when analysing 

the AUCs we found non-significant differences for GFAP, p-tau181 and p-tau231 in 

differentiating between cognitively unimpaired Aβ+ and cognitively unimpaired Aβ-. 

Similarly, in the AIBL cohort, Aβ1-42/Aβ1-40 ratio, p-tau181 and GFAP had non-significant 

differences in predicting performances for preclinical AD. However, in both cohorts, the 

addition of known AD risk factors (age, sex and APOE ε4 status) to the original biomarkers 

significantly improved the predictive performance for preclinical AD. However, in the AIBL 

cohort while the predictive performance of Aβ1-42/Aβ1-40 ratio, GFAP and NFL improved 

with the addition of known AD risk factors, this was not the case for p-tau181. Interestingly, 

in the KARVIAH cohort we observed a longitudinal increase of GFAP and p-tau181 

cognitively unimpaired Aβ+ and in the AIBL cohort a longitudinal increase of GFAP 

increased in MCI and AD. In the same cohort we also observed a longitudinal decrease in 

plasma Aβ1-42/Aβ1-40 ratio and a longitudinal increase in plasma p-tau181 in MCI 

participants. Additionally, NFL did not significantly increase longitudinally in MCI, but it 
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showed a significant longitudinal increase in AD. Finally, we also reported that Aβ1-42/Aβ1-

40 ratio, p-tau181, GFAP levels were associated with cognitive decline Aβ PET load. 

These two studies indicate that several plasma biomarkers that are linked to AD are altered 

cross-sectionally and longitudinally and are associated with increased brain Aβ deposition 

and cognitive decline. These findings provide further evidence that a selected set of AD-

related biomarkers may have diagnostic and prognostic potential. However, further studies 

are necessary not only to unveil additional plasma biomarkers for a more specific diagnostic 

panel, but also to determine the relationship between these biomarkers in ethnically different 

populations. 
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Appendix A – Contribution to Chapter 6 

 

To Whom It May Concern,  

I, Steve Pedrini, contributed by assessing the levels of GFAP, t-tau and NFL (along with p-

Tau181 in a small subset of samples) using SIMOA kits and participated in editing the final 

version of the manuscript entitled Diagnostic and prognostic plasma biomarkers for 

preclinical Alzheimer's disease. 

I, Prof. Ralph Martins, as the supervisor and corresponding author of the manuscript, endorse 

that this level of contribution by the Candidate indicated above is appropriate.  
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To Whom It May Concern, 

I, Steve Pedrini, contributed by assessing the levels of GFAP, NFL, Aβ1-40, Aβ1-42 and p-

Tau181 using SIMOA kits and participated in editing the final version of the manuscript 

entitled Plasma biomarkers in preclinical, prodromal and clinical AD: A cross-sectional 

and longitudinal study in the AIBL cohort. 

I, Prof. Ralph Martins, as the supervisor and corresponding author of the manuscript, endorse 

that this level of contribution by the Candidate indicated above is appropriate.  
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