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A B S T R A C T   

Accurate modeling of solar-driven direct contact membrane distillation systems (DCMD) can enhance the 
commercialization of these promising systems. However, the existing dynamic mathematical models for pre
dicting the performance of these systems are complex and computationally expensive. This is due to the inter
mittent nature of solar energy and complex heat/mass transfer of different components of solar-driven DCMD 
systems (solar collectors, MD modules and storage tanks). This study applies a machine learning-based approach 
to model the dynamic nature of a solar-driven DCMD system for the first time. A small-scale rig was designed and 
fabricated to experimentally assess the performance of the system over 20 days. The predictive capabilities of 
two neural network models: multilayer perceptron (MLP) and long short-term memory (LSTM) were then 
comprehensively examined to predict the permeate flux, efficiency and gain-output-ratio (GOR). The results 
showed that both models can efficiently predict the dynamic performance of solar-driven DCMD systems, where 
MLP outperformed the LSTM model overall, especially in the prediction of efficiency. Additionally, it was 
indicated that the accuracy of the models for the prediction of GOR can be significantly improved by increasing 
the size of the dataset.   

1. Introduction 

Access to safe clean water has emerged as a serious challenge during 
the last decade as a result of industrialization, climate change and rapid 
population growth [1]. On the one hand, solar desalination technologies 
can play a key role in addressing water scarcity, as 97% of water sources 
are saline or brackish in nature. On the other hand, water-stressed re
gions often benefit from great solar irradiance, which can be used to 
power desalination systems [2]. Among differing small-scale solar- 
powered desalination technologies, the membrane distillation (MD) 
process has received significant attention over the past few years [3]. 
This mainly stems from the great advantages of the MD process such as, 
its low operational temperature, compact structure and high efficiency 
for highly saline water desalination [4–7]. The MD approach involves a 
combined thermal/membrane desalination process in which the vapor 
pressure difference between the feed and permeate sides results in 

evaporation within the feed flow. Following this, the generated vapor 
transfers through a thin hydrophobic membrane, and condensation oc
curs at the permeate side. In accordance with the condensation method 
on the permeate side, the MD process can be mainly classified into four 
general categories. These categories are namely: direct contact mem
brane distillation (DCMD), air–gap membrane distillation (AGMD), 
vacuum membrane distillation (VMD), and sweep gas membrane 
distillation (SGMD) [8,9]. Heretofore, the performance of solar-driven 
MD systems comprising varied solar systems and MD modules has 
been widely investigated using experimental and theoretical methods. 

Many researchers have sought to experimentally examine the per
formance of solar-driven MD systems mainly due to the complexity 
involved in modelling these systems. This has mostly been due to the 
intermittent nature of solar energy and complex heat/mass transfer in 
different components of solar-driven MD systems, such as solar collec
tors, MD modules and storage tanks. The integration of a heat pipe 
evacuated tube solar collector with the DCMD module has previously 
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Nomenclature 

a Activation function 
A Area (m2) 
AGMD Air-gap membrane distillation 
b Bias term 
C Specific heat of feed water (J/kg.C), Memory cell 
Ć Potential cell sate 
DCMD Direct contact membrane distillation 
FCCD Face-centered composite design 
GOR Gain-output-ratio 
h Evaporation enthalpy (J/kg) 
I Solar intensity (W/m2) 
IQR Interquartile range 
K Number of folds 
LSTM Long short-term memory 
ṁ Mass flow rate (kg/s) 
M Mass flow rate (kg/h) 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
MD Membrane distillation 
MLP Multilayer perceptron 
N Number of samples 
Nf Number of features 
Q Mass flow rate (L/min), Quartile 
R2 Coefficient of determination 
RMSE Root mean square error 
SGMD Sweep gas membrane distillation 
t Timestep 
tw Number of timesteps 
T Temperature (◦C), T’th input 
T0 Feed inlet temperature (◦C) 

T1 Feed outlet temperature (◦C) 
T2 Collector inlet temperature (◦C) 
T3 Collant inlet temperature (◦C) 
T4 Collector outlet temperature (◦C) 
T5 Collant outlet temperature (◦C) 
tanh Hyperbolic tangent activation function 
U Weights 
VMD Vacuum membrane distillation 
w Weights 
W Power (W) 
X Input data 
yi Experimental target value 
ŷi Predicted target value 
y Mean value of the experimental data 
1D One-dimensional 
2D Two-dimensional 

Greek symbols 
η Efficiency 
Γf Forget gate 
Γi Input gate 
Γo Output gate 
σ Logistic activation function 

Subscripts 
f Forget 
fg Latent heat of evaporation of water 
i Input 
max Maximum data 
min Minimum data 
o Output 
p Pressure  

Fig. 1. The fabricated solar-driven DCMD system from different views.  
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been examined by Shafieian and Khiadani [10]. They recommended 
modelling and optimization of the system by considering flow rate 
changes in solar and feed loops for future investigations. Bamasag et al. 
[11] have proposed a novel compact solar-driven DCMD desalination 
system by inserting hollow fiber membranes inside evacuated tube 
collectors. The performance of the proposed system was experimentally 
analyzed and the permeate flux generation shown to vary in the range of 

Fig. 2. Schematic illustration of the experimental setup.  

Table 1 
Characteristics of solar loop’s main components.  

Parameter Value/Type 

Solar collector Number of evacuated tubes 25 
Tube length 1.8 m 
Inner diameter of glass tube 0.047 m 
Outer diameter of glass tube 0.058 m 
Absorptivity 0.97 
Transmittance 0.88 
Emissivity 0.07 
Heat pipe diameter 0.008 m 
Heat pipe working fluid Ethanol 
Heat pipe material Copper  

Coil heat exchanger Heat exchanger material Copper 
Length 34 m 
Heat transfer area 1.45 m2  

Feed water storage tank Feed water storage tank volume 210 L 
Insulation thickness 0.05 m  

Table 2 
The properties of the DCMD module.  

Parameter Value/Type 

Material PVDF 
Module length 0.47 m 
Effective area 0.118 m2 

Inner diameter of hollow fibers 0.8 mm 
Outer diameter of hollow fibers 1.6 mm 
Pore size 0.2 µm 
Porosity 45% 
Hydrostatic pressure 0.25 MPa  

Table 3 
Specifications of the condenser.  

Parameter Value/Type 

Length 310 mm 
Height 210 mm 
Width 900 mm 
Fin material Aluminum 
Tube material Copper 
Tube coil diameter 9.5 mm 
Header 25.4 mm  

Fig. 3. The distribution of mass flow rates using face-centered composite 
design approach. 
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2.2 to 6.5 L/m2.h. Kabeel et al. [12] have experimentally showed that 
using an evaporative cooler in the coolant side of a solar-driven DCMD 
desalination system increased permeate flux by 1.25 times. Moreover, 
Abdelgaied et al. [13] experimentally investigated the application of 
both phase change materials and evaporative cooling in a solar-driven 
DCMD desalination system. The results indicated an approximately 
45% enhancement in the gain-output-ratio (GOR) of a solar-driven 
DCMD system. Hejazi et al. [14] evaluated the performance of the 
solar-driven DCMD system under intermittent working conditions with 
different washing and liquid drainage scenarios. Their results showed 
that daily permeate flux and energy consumption remained insignifi
cantly affected by the different scenarios. 

Accurate modelling of solar-driven MD systems can result in better 
understanding of the performance of these systems, and facilitate im
provements in performance optimization. Despite the vital importance 
of modelling integrated solar-driven MD systems, limited research has 
thusfar addressed the dynamic characteristics of these promising sys
tems [15,16]. In this regard, dynamic models that consider variations of 
operational parameters over time should be applied due to the inter
mittent nature of solar energy [16]. A few investigators have sought to 
apply one-dimensional (1D) or two-dimensional (2D) physical-based 
modelling approaches. These approaches consider unsteady variations 
of operational parameters either along or perpendicular to membrane 
length. Chang et al. [17] have developed a 1D approach on the Aspen 

platform for the dynamic modelling of a solar AGMD system. The 
model’s accuracy in essential parameters such as permeate flux or effi
ciency were not fully compared to experimental results, despite 
comparing the effect of feed flow rate and temperature to experimental 
results. Duong et al. [16] have applied the 1D model for the DCMD 
module, using TRNSYS software to dynamically simulate the perfor
mance of an integrated solar DCMD system. These authors found that, in 
contrast to the stand-alone DCMD module, increasing the feed flow rate 
reduced the performance of direct solar-driven DCMD desalination 
systems. Eleiwi et al. [18] have proposed a 2D mathematical model to 
analyze the unsteady performance of a DCMD module. While the model 
accurately predicted permeate flux, it was developed solely for the 
DCMD module and did not consider the integration of solar energy. The 
performance of a solar-driven DCMD system was examined by devel
oping a 2D dynamic mathematical model [19]. The accuracy of the 
model was compared with experimental permeate fluxes for 150 days. 
The results showed that the model failed to fully capture variations in 
permeate flux over the 150 days of experiments. To simplify dynamic 
modelling approaches, some researchers have applied a lumped- 
parameter method, treating the entire MD module as a single control 
volume [20–22]. In these types of studies the focus to date has been on 
dynamic modelling of the MD module, whilst modelling of the inte
grated solar-driven MD systems has not been considered. Further, the 
dynamic characteristics of essential performance indicators, such as 
permeate flux or efficiency of the MD modules were not fully 
investigated. 

Data-driven methods have received noticeable attention in recent 
years in relation to performance analysis of different solar-driven energy 
systems [23–28]. In particular, artificial neural networks have exhibited 
great capability among data-driven methods, largely due to their great 
ability to capture the non-linear characteristics of these systems [29]. 
The application of data-driven methods for performance analysis of solar 
desalination systems has been the focus of several studies. The results 
reported by Zarei and Behyad [30] have revealed that the multi-layer 
perceptron neural network accurately predicted the optimum design 
parameters of a solar greenhouse desalination system. Further, some 
researchers have applied machine learning models for performance 
prediction of solar still desalination systems [31,32]. Their results 
showed that the long short-term memory (LSTM) method properly 
modelled the dynamic performance of solar still desalination systems. 
This was mainly due to the model’s great capability in learning patterns. 
In another study, Salem et al. [33] have applied different machine 
learning techniques to analyze the performance of a complex solar 
desalination system. The system was comprised of solar still and 
humidification-dehumidification desalination systems. The researchers 

Table 4 
Values of mass flow rates during 20 days of experiments designed by the FCCD.  

Day Point type Qsolar(L/min) Qfeed(L/min) Qcoolant(L/min) 

1 Center 3.5 3.5 5 
2 Axial 3.5 3.5 7 
3 Axial 3.5 5 5 
4 Axial 3.5 3.5 3 
5 Axial 2 3.5 5 
6 Factorial 5 5 3 
7 Factorial 5 2 7 
8 Center 3.5 3.5 5 
9 Factorial 2 5 3 
10 Factorial 5 2 3 
11 Center 3.5 3.5 5 
12 Factorial 2 2 7 
13 Axial 5 3.5 5 
14 Center 3.5 3.5 5 
15 Center 3.5 3.5 5 
16 Axial 3.5 2 5 
17 Factorial 2 5 7 
18 Factorial 5 5 7 
19 Factorial 2 2 3 
20 Center 3.5 3.5 5  

Table 5 
Summary of the experimental dataset for data collected in 20 days.   

Inputs Outputs 

T0 
(◦C) 

T1 
(◦C) 

T2 
(◦C) 

T3 
(◦C) 

T4 
(◦C) 

T5 
(◦C) 

Tambient 

(◦C) 
Solar 
intensity (W/ 
m2) 

Qsolar 

(L/min) 
Qfeed 

(L/ 
min) 

Qcoolant 

(L/min) 
Permeate flux 
(L/m2.h) 

Efficiency 
(%) 

GOR 

Number of 
data 
samples 

160 160 160 160 160 160 160 160 160 160 160 160 160 160 

Mean 44.1 42.1 43.4 32.8 46.5 32.1 22.4 350.7 3.5 3.5 5.0 3.5 33.2 0.58 
Standard 

deviation 
3.7 3.7 3.9 3.8 4.0 3.8 2.1 174.6 1.1 1.1 1.4 1.6 27.3 0.21 

Minimum 31.4 30.0 29.1 23.9 34.7 22.2 16.9 43.9 2.0 2.0 3.0 1.1 5.4 0.13 
First quartile 

(25%) 
41.5 39.7 40.9 30.6 43.9 30.0 20.9 171.0 3.1 3.1 4.5 2.0 9.9 0.39 

Second 
quartile 
(50%) 

44.5 42.7 44.2 33.5 47.0 32.6 22.1 431.4 3.5 3.5 5.0 3.7 22.7 0.61 

Third quartile 
(75%) 

47.0 44.8 46.2 35.3 49.5 35.0 23.7 500.9 3.9 3.9 5.5 4.6 57.2 0.76 

Maximum 50.9 49.1 50.7 40.7 54.8 39.7 27.8 589.9 5.0 5.0 7.0 7.1 99.7 0.93  
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showed that the multi-layer perceptron neural network had great per
formance prediction capability and a reasonable computational cost. 
Porrazzo et al. [34] have employed an artificial neural network to 
adaptively control the feed flow rate of solar-driven membrane distil
lation system, with results showing 17% freshwater productivity. 

Previous investigations have shown that meeting two requirements 
is necessary to achieve precise modelling of solar-driven DCMD systems: 
(1) All components of the solar-driven DCMD system such as solar col
lectors, storage tanks and MD modules should be considered in the 
modelling simultaneously [16]. (2) dynamic models should be applied 
to properly capture the transient performance of the system due to the 
intermittent nature of solar energy [20,22]. When considering these two 
important points in modelling solar-driven DCDM systems, performance 
diagnoses of these systems using existing dynamic mathematical models 
becomes too complex and computationally expensive. This stems from 
solving many heat and mass transfer equations for various system 
components (DCMD module, solar collectors and storage tanks) and the 
time-varying performance of the system. A recent study by authors [35] 
has revealed that machine/deep learning methods, despite their effec
tiveness in analyzing desalination technologies, have not been suffi
ciently applied to performance modelling of solar-driven DCMD 
systems. The literature shows that few studies have applied machine 
learning models to characterize different MD modules [35–38]. How
ever, these studies have not met the two above-mentioned requirements. 
Their focus was solely on modelling the stand-alone MD modules, and 
they have not applied data-driven methods to model the integrated 
solar-driven DCMD system. Furthermore, data-driven approaches have 
been used to model the performance of MD modules under steady-state 
conditions. 

To address these shortcomings, this study aims to apply a novel 
methodology based on machine learning approaches for accurate 
modelling of an integrated solar-driven DCMD desalination system. To 
this end, two time-series neural network models, namely multilayer 
perceptron (MLP) and long short-term memory (LSTM) have been 
employed. To apply this methodology, an experimental set-up was 
designed and fabricated, whereby the performance of the system was 

investigated over 20 days under differing operational and weather 
conditions. The experimental tests were designed based on the face- 
centered composite design (FCCD) approach [39] in order to appropri
ately set different flow rates in the system. Unlike the previous studies in 
terms of application of data-driven methods for modelling of stand-alone 
MD modules, more experimental data was collected for developing the 
data-driven models [36,37].A dataset consisting of 160 experimental 
samples was then collected in which the effect of different parameters 
(temperatures at different points, ambient temperature, solar intensity 
and mass flow rates) on three performance indicators (permeate flux, 
efficiency and GOR) was comprehensively captured. The K-fold cross- 
validation method was used for accurate hyper-parameter tuning. This 
method provides a better estimate of model performance by using all 
available data for both training and validation. This can help avoid 
biases that might be present when using a single validation set, espe
cially in cases where the size of the dataset is relatively small, as seen in 
previous studies on data-driven modelling of stand-alone MD modules 
[35]. The predictive performance of the developed models was then 
comprehensively assessed in terms of various statistical criteria. Further, 
the accuracy of both models was compared by selecting different sample 
sizes of datasets. Overall, the novelty of this study can be summarized as 
follows: 

• Applying a novel methodology based on machine learning ap
proaches for accurate and non-complex dynamic modeling of an 
integrated solar-driven DCMD desalination system for the first time.  

• An FCCD-designed dataset was used to evaluate the solar-driven 
DCMD system over 20 days with varying operational and weather 
conditions. This is in contrast to previous studies that used data- 
driven methods for the analysis of other types of solar desalination 
technologies with limited experimental data [30,32,35,40].  

• Applying the K-fold cross-validation method for accurate hyper- 
parameter tuning and proper evaluation of the developed neural 
networks based on the unseen test dataset. 

Fig. 4. Structure of MLP model.  
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2. Experimental rig and data acquisition 

The photos and schematic diagram, as well as the components of the 
fabricated solar-driven DCMD system, are shown in Fig. 1 and, Fig. 2 
respectively. The system is comprised of three main sections, namely the 
solar loop, feed water loop and coolant water loop. 

Regarding the solar loop, a heat pipe evacuated tube solar collector, 
featuring as an efficient absorber and conductor of solar energy, was 
employed to absorb the solar energy. The absorbed heat was then 
transferred to the evaporator section of the heat pipes using aluminium 
fins inside the evacuated tubes. Via evaporation of ethanol as the 
working fluid of the heat pipes, the vapor moves towards the condenser 
section and transfers heat to the solar working fluid. The heated solar 
working fluid (state T4) then enters a coiled heat exchanger located in 
the feed water storage tank and heats up the saline feed water. The solar 
working fluid (state T2) is then pumped back to the solar collector. 
Table 1 illustrates the characteristics of the main components of the 
solar loop. 

A tubular hollow fiber DCMD module with a total membrane area of 
0.118 m2, sourced from the Memsift company, was used in this study. 
The properties of the DCMD module are listed in Table 2. The hot saline 
feed water is pumped to the lumen side of the DCMD module (state T0) 
in the feed water loop. After undergoing heat and mass transfer inside 

the DCMD module, it returns to the feed storage tank (state T1). In the 
coolant loop, cold water is pumped from the coolant storage tank to the 
shell side of the DCMD module (state T3). After releasing its heat to the 
air-cooled condenser, the water is then pumped back to the coolant tank 
(state T5). Due to the vapor pressure difference between the feed and 
coolant flows in the DCMD module, vaporization occurs inside the 
hollow fiber membranes. As a result, the vapor permeates through the 
hydrophobic membrane and is then condensed in the coolant water 
loop. Lastly, the distilled water is added to the coolant storage tank. The 
characteristics of the air-cooled condenser are shown in Table 3. It is 
worth noting here that tap water was chosen as the coolant water, and 
feed water with a salinity of 3.5% (almost equivalent to seawater 
salinity) was synthesized and used for the tests. A conductivity meter 
(Multi 3410, WTW) was used to monitor the salinity of the feed water. 
Three valves and flowmeters (0 to 0.068 kg/s, Omega) were utilized to 
regulate and monitor the flow rates. For a better understanding of the 
effects of mass flow rates on the performance of the system, T-Class 
thermocouples (-185 to 300 ◦C, TC Measurement & Control Pty Ltd) 
were used to monitor the temperatures at different points of the system 
(T0-T5, Fig. 2). Furthermore, a pyranometer (0 to 2000 W/m2) was used 
to monitor solar radiation during the experimental tests. 

Fig. 5. The layout of the LSTM model.  
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3. Modelling methodology 

The performance of a solar-driven DCMD may be influenced by solar 
working flow rate, feed flow rate and coolant flow rate. To understand 
the impact of these parameters, the face-centered composite design 
(FCCD) was applied to set the number of experimental tests and mass 
flow rates [41]. The application of the FCCD method can reduce the time 
and cost of the data collection process while providing sufficient infor
mation about system characteristics [35]. However, this method may 
not sufficiently capture the entire dynamic range of the system. As a 
result, including more gradual or continuous changes in the mass flow 
rates in the dataset design can help capture a broader range of fre
quencies, including both low and high frequencies. Using FCCD design, 
20 experimental points were designed, categorized into central, axial 
and factorial points (Fig. 3). Table 4 illustrates the values of mass flow 
rates over the different days of experiments as designed by the FCCD. 
After determination of the mass flow rates for each day, experimental 
tests were conducted for 20 days between 9:30 AM and 4:30 PM in April 
and May 2022 under Perth weather conditions. The dynamic perfor
mance of the solar-driven DCMD system was then evaluated using two 
neural networks, namely multilayer perceptron (MLP) and long short- 
term memory (LSTM). Eleven input influential parameters were then 

selected to develop the MLP and LSTM models, including temperatures 
at different points (T0 to T5), ambient temperature, solar intensity and 
mass flow rates (Qsolar, Qfeed, and Qcoolant). Further, permeate flux, ef
ficiency and GOR were considered as three targets of the machine 
learning methods. A summary of the experimental dataset is shown in 
Table 5. Permeate flux was calculated based on the collected freshwater 
in the coolant storage tank per membrane effective area. The efficiency 
of the system was also calculated from [12]: 

η =
(Md*hfg)/3600

AI + Wpumps + Wfan
(1)  

where Md is produced hourly freshwater, hfg refers to latent heat of 
evaporation of water, A is the area of solar collector, I represents solar 
intensity, Wpumps is the sum of power consumed by the three water 
pumps (a total of 201 W) and Wfan refers to the air fan power (35 W). To 
convert hour to second, the conversion factor of 3600 is used. Equation 
(1) represents the ratio of the latent heat of vaporization of the distilled 
water to the total energy input of the system, which includes the solar 
input energy and the electrical energy consumption of the fan and 
pumps [13,42,43]. The objective of this equation is to evaluate the 
effectiveness of active solar desalination systems by maximizing fresh
water productivity while minimizing the total input energy required for 
the system. In fact, this performance indicator includes both thermal and 
electrical input energies. However, the performance of solar-driven 
DCMD systems can also be analysed using specific electrical-based 
performance indicators, such as specific energy consumption, thereby 
considering the distinction between the quality of energy inputs. 

GOR is another key performance indicator of solar-driven desalina
tion systems and is calculated as [10,12]: 

GOR =
(Md*hfg)/3600

ṁfeed.Cp.(T0 − T1)
(2) 

Here, ṁfeed is the mass flow rate of feed water, and Cp represents the 
specific heat of feed water. T0 and T1 also show feed water inlet and 
outlet temperatures, respectively. 

Fig. 6. The development procedure of machine learning models.  

Fig. 7. K-fold cross-validation method.  
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Fig. 8. The variations of influential parameters and three performance indicators over the 20 days of experiments.  
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3.1. Multi-layer perceptron network (MLP) 

Multi-layer perceptron network (MLP) is one of the artificial 

intelligence techniques that has been developed based on imitating the 
human brain. This model has been broadly applied for performance 
diagnoses of various energy systems due to its great ability to analyse 

Fig. 8. (continued). 
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non-linear and complex systems [29,35,44]. As shown in Fig. 4, the MLP 
consists of input, hidden and output layers. This model, without detailed 
information about a system, can determine the relationship between 
inputs and outputs using processing units called neurons. The number of 
neurons in the input and output layers is equal to the number of inputs 
and outputs, respectively. However, the number of neurons in hidden 
layers and the number of hidden layers are unfixed, where MLP models 
can be constructed by stacking more hidden layers with many neurons. 
The design and training of the MLP model are composed of feed-forward 
propagation and backpropagation. In the former, the input data is fed to 
the input layer and after assignment by random initial weights and 
biases is transferred to the hidden layer. The weighted input data and 
biases are summed up inside the neurons of the hidden layer. The acti
vation function is then applied to add non-linearity to the data which is 

used for the next hidden layer. Eventually, the weighted input data and 
bias is transferred into the output layer and by applying a linear acti
vation function prediction occurs. In the backpropagation step, weights 
and biases are determined backwards (from the output layer to the input 
layer) using a gradient descent optimization algorithm [29]. 

3.2 Long short-term memory network (LSTM) 

Long short-term memory network (LSTM) is a modified variant of 
recurrent neural networks. This robust machine learning model solves 
the gradient vanishing problem with recurrent neural networks and 
benefits from capturing long-term dependency in sequential data [45]. 
Fig. 5 depicts the schematic diagram of the developed LSTM model as 
well as the LSTM unit. The LSTM model has the benefit of storing 

Fig. 8. (continued). 
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information throughout the sequential data using a memory cell. 
Moreover, updating the information from the previous timestep (t-1) to 
the current timestep (t) can be controlled by three gates namely forget, 
input and output gates. Each gate holds its weights (W, U) and bias (b), 
and uses a logistic activation function. As the output valve of the logistic 
activation function lies in the range of [0,1], updating the information 
flow can be effectively performed inside the LSTM units. When the 
output value is zero the information is not passed, while the output value 

is 1 the whole information is transferred. Each LSTM unit has three in
puts including the memory cell of the previous timestep (c <t-1>), the 
activation function output of the previous timestep (a <t-1>) and current 
input data (X<t>). Further, each LSTM unit owns two outputs: the 
memory cell of the current timestep (c <t>) and the activation function 
output of the current timestep (a < t > ). The forget gate (Γf) is utilized 
to remove the trivial information from the previous timestep: 

Γf = σ
(
Wf X<t> + Uf a<t− 1> + bf

)
(3) 

Fig. 8. (continued). 
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The input gate (Γi) determines the information which needs to be 

updated wherein potential cell sate (C
́ <t>

) is generated: 

Γi = σ
(
WiX<t> + Uia<t− 1> + bi

)
(4)  

C
́ <t>

= tanh
(
WcX<t> + Uca<t− 1> + bc

)
(5) 

Here σ and tanh represent the logistic and hyperbolic tangent acti
vation functions, respectively. As shown in Fig. 5, the memory cell at 
current timestep (c<t>) is calculated as: 

c<t> = Γf*c<t− 1> +Γi*C
́ <t>

(6) 

Lastly, the useful information in the memory cell of current timestep 
(c < t > ) is used by the output gate (Γo) to calculate the activation 

function output of current timestep (a < t > ): 

Γo = σ
(
WoX<t> + Uoa<t− 1> + bo

)
(7)  

a<t> = Γo*tanh(c<t>) (8)  

3.3. Development of the MLP and LSTM models 

Time-series input data was utilized in this study to develop MLP and 
LSTM models. The models used input data at the current time step (t) 
with lagged input data (t-1, t-2…) to predict each performance indicator 
(permeate flux, efficiency, and GOR). The number of lagged timesteps is 
a hyper-parameter and should be accurately determined in the hyper- 
parameter tuning procedure. To prepare the time-series data for both 
models, a Python code was developed, where a sliding window of tw ×Nf 

Fig. 9. Interquartile range method for outlier detection.  

Fig. 10. Distribution of input parameters and performance indicators for the detection of outliers using the IQR method.  
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extracts the input data for the prediction of each target. The input data 
with a shape of tw × Nf is then fed into the models, where tw and Nf 
represent the number of timesteps and features, respectively. It is worth 
mentioning that the size of tw in the sliding window affects the number 
of predictions. For instance, when tw = 2 and Nf = 11, current time step 
input data and one lagged input data are fed into the model in a shape of 
2 × 11, and totally Datasetsize-1 predictions are made via the developed 
models. To feed the MLP model, the shape of input data should be a 
flatten vector. Therefore, each input sample was reshaped to a vector 
with tw × Nf elements [26]. 

Fig. 6 illustrates the modelling procedure employed in this study. 
The original dataset was split into train and test datasets. Accordingly, 
80% of the data (16 days) was chosen for training and the remaining 
20% (4 days) was allocated for testing the predictive performance of the 
developed models. Moreover, the K-fold cross-validation method (with 
K = 4) was applied to achieve the optimum hyper-parameters and in
crease the generalization capability of the models. As shown in Fig. 7, 
the training dataset was transformed into four different splits. Each 
model was trained using three folds, and the remaining fold (green fold) 
was used to evaluate the performance of the developed models. This 
procedure was repeated four times, and eventually, the average 

performance of the models was used to accurately set their hyper- 
parameters. To apply MLP and LSTM models, scikit-learn and Keras 
modules of Python language were employed, respectively [46,47]. 
Further, an Adam optimizer was used to train the models and minimize 
the loss function of the models (mean square error) [33]. To decrease the 
convergence time and increase the accuracy of the models, min–max 
normalization method was employed whereby input features have been 
scaled into [0,1] range as follows: 

Xscaled =
X − Xmin

Xmax − Xmin
(9) 

Here, Xscaled shows the scaled data. X, Xmin, and Xmax also represent the 
actual data, minimum, and maximum data, respectively. Finally, the 
performance of the developed models was evaluated based on different 
statistical indicators, including mean absolute error (MAE), root mean 
square error (RMSE), mean absolute percentage error (MAPE) and co
efficient of determination (R2) [48]: 

MAE =
1
N

∑N

i=1
|yi-ŷi | (10)  

Fig. 11. Heat map illustration of Pearson’s correlation coefficients.  
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(yi-ŷi)

2

N

√
√
√
√
√

(11)  

MAPE =
1
N

∑N

i=1
|
(ŷi -yi)

yi
| ∗ 100 (12)  

R2 = 1-
∑N

i=1(yi-ŷi )
2

∑N
i=1(yi-y)

2 (13)  

where N shows the number of samples. yi, ŷi, and y also represent the 
actual data, the predicted value, and the mean value of the experimental 
data, respectively. 

4. Results and discussion 

This section examines the variations of input parameters and three 

performance indicators (permeate flux, efficiency and GOR) of the solar- 
driven DCMD system over the 20-day experiment. Pre-processing is also 
applied to determine the outliers and determine the effects of influ
encing parameters on the three performance indicators. The hyper- 
parameter tuning process based on the K-fold cross-validation method 
is then outlined in detail. The ability of the MLP and LSTM machine 
learning models for predicting each indicator is comprehensively 
examined. Eventually, the effect of dataset size on the predictive ability 
of the two developed models is investigated. 

The performance of the solar-driven DCMD system can be affected by 
several varying parameters, including temperatures at different points 
(T0 to T5), weather conditions (ambient temperature and solar in
tensity) and mass flow rates (Qsolar, Qfeed, and Qcoolant). Fig. 8 illustrates 
the variations of these influential parameters along with variations in 
three performance indicators over the 20 days of experiments. Fig. 8(c- 
h) shows that temperatures are highly changing throughout the exper
iments. It can be seen from Fig. 8(c) that the maximum feed inlet tem
perature on the 18th day is 50.85 ◦C, while the maximum feed inlet 
temperature on the 12th day is 44.07 ◦C. This can be attributed to 
variations in weather conditions shown in Fig. 8(a, b) or the effects of 
mass flow rates (Fig. 8(i-k)). As mentioned before, mass flow rates were 
chosen based on the FCCD design, and their variations during the 20 
days of experiments are shown in Fig. 8(i-k). As shown in Fig. 8(l), 
permeate flux significantly changed on different days of experiments. 
The maximum permeate flux on the 18th day was 7.103 L/m2.h, 
whereas this value was only 3.155 L/m2.h on the 16th day. It can be 
inferred from Fig. 8(l-n) that the maximum values of efficiency and GOR 
occur at the final hours of each day. At this time, the permeate flux is still 
significant while solar intensity as the main heat source of the system 
owns low values. Furthermore, Fig. 8(m, n) shows that GOR follows a 
more stochastic behaviour for each day of experiments compared to 
efficiency. The reason is that efficiency is directly dependent on solar 
intensity which almost followed a similar trend over the 20 days of 
experiments (Fig. 8(b)). However, GOR is mainly affected by feed mass 
flow rate (Qfeed) and the temperature difference between the inlet and 
outlet of the membrane module (T0-T3). This leads to more significant 
variations in GOR on each day the of experiment. 

4.1. Pre-processing of experimental data 

Pre-processing of data plays an important role in the development of 
machine learning models. This can lead to better data interpretation and 
the detection of suspected data samples. The first step in the pre- 
processing analysis is the detection of outliers, meaning data samples 
that are largley different from the rest of the data samples. The detection 
and then removing these abnormal data samples can increase the ac
curacy of the machine learning models. The interquartile range (IQR) 
method has been applied in this study to determine the outliers. In this 
process, the variations of each input parameter or performance indicator 
over the 20 days of experiments can be drawn using a boxplot, as shown 
in Fig. 9. Q1 represents the first quartile of the dataset, which shows 25% 
of the data samples are restricted between the Q1 and minimum. The 
median is the second quartile and shows the center point of the dataset. 
Q3 is the third quartile of the dataset, representing the 25% of data 
samples are limited between Q3 and maximum. The IQR is defined by 
subtraction of Q3 from Q1 and the acceptable bound is determined 
based on lower and upper limits, where the lower limit = Q1–1.5 IQR 
and upper limit = Q3 + 1.5 IQR. Each data sample outside of the 
acceptable bound is considered an outlier. 

Fig. 10 illustrates the distribution of inputs and performance in
dicators based on the IQR outlier detection method. It is evident that 
there are only a few outliers for T0, T1, T2, T4, and T5. Since all these 
outliers are below the lower limit, they may be derived from different 
reasons such as cloudy weather in some hours. Although removing these 
few outliers may result in the development of more accurate models, 
they were not removed from the dataset as they may provide valuable 

Fig. 12. The variations of solar intensity with permeate flux, efficiency, and 
GOR for the 2nd day of the experiment. 
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information during an unexpected period. 
The correlation between input parameters and their effects on the 

performance of the solar-driven DCMD system can be investigated using 
Pearson’s correlation analysis [49]. As shown in Fig. 11, mass flow rates 
have much lower effects on the three performance indicators compared 

to temperatures at different points (T0 to T5) and solar intensity. 
Further, it can be inferred from Fig. 11 that temperatures at different 
points are highly correlated with each other. This is because of the 
interaction effects of three closed loops of the system on each other (i.e., 
solar loop, feed loop and coolant loop). Moreover, there is a negative 

Table 6 
Selection of the best architecture of the MLP model.  

Architecture Timestep Number of layers Number of neurons in each layer MAE (L/m2.h) RMSE (L/m2.h) MAPE (%) R2 

Permeate flux 
1 2 1 50  0.192  0.258 8  0.968 
2 3 1 50  0.168  0.24 7.3  0.970 
3 4 1 50  0.172  0.224 7.14  0.976 
4 4 1 100  0.134  0.194 5.608  0.983 
5 4 1 150  0.127  0.169 4.869  0.984 
6 4 1 200  0.122  0.151 5.042  0.987 
7 4 2 150  0.054  0.080 1.874  0.997 
8 4 3 150  0.043  0.044 1.248  0.998  

Efficiency 
1 2 1 50  11.115  13.042 62.04  0.739 
2 3 1 50  10.436  13.249 62.43  0.774 
3 4 1 50  10.616  13.173 61.69  0.749 
4 3 1 100  9.437  11.081 58.87  0.817 
5 3 1 150  9.221  10.343 56.69  0.845 
6 3 1 200  8.565  9.983 53.18  0.858 
7 3 2 200  1.543  2.193 7.387  0.993 
8 3 3 200  0.722  0.962 3.43  0.998  

GOR 
1 2 1 50  0.043  0.053 8.993  0.918 
2 3 1 50  0.040  0.061 7.061  0.926 
3 4 1 50  0.038  0.052 8.204  0.931 
4 4 1 100  0.029  0.043 5.627  0.953 
5 4 1 150  0.026  0.042 5.840  0.962 
6 4 1 200  0.025  0.036 4.439  0.954 
7 4 2 200  0.021  0.029 4.659  0.966 
8 4 3 200  0.021  0.030 3.214  0.969  

Table 7 
Selection of the best architecture of the LSTM model.  

Architecture Timestep Number of layers Number of neurons in each layer MAE (L/m2.h) RMSE (L/m2.h) MAPE (%) R2 

Permeate flux 
1 2 1 50  0.161  0.207  6.381  0.975 
2 3 1 50  0.129  0.177  5.283  0.985 
3 4 1 50  0.117  0.172  4.797  0.983 
4 4 1 100  0.107  0.148  4.411  0.988 
5 4 1 150  0.107  0.134  3.777  0.988 
6 4 1 200  0.093  0.130  4.280  0.992 
7 4 2 200  0.095  0.122  3.173  0.990 
8 4 3 200  0.103  0.145  3.672  0.992  

Efficiency 
1 2 1 50  4.306  6.052  29.09  0.939 
2 3 1 50  4.330  3.924  20.560  0.967 
3 4 1 50  4.150  5.370  16.109  0.949 
4 4 1 100  3.998  4.249  15.85  0.957 
5 4 1 150  3.263  5.394  19.32  0.958 
6 4 1 200  3.280  4.271  15.35  0.976 
7 4 2 200  2.260  3.088  12.01  0.977 
8 4 3 200  2.33  2.53  9.68  0.990  

GOR 
1 2 1 50  0.046  0.059  9.69  0.911 
2 3 1 50  0.036  0.053  7.46  0.915 
3 4 1 50  0.035  0.050  7.06  0.939 
4 4 1 100  0.031  0.043  5.99  0.954 
5 4 1 150  0.028  0.040  5.45  0.947 
6 4 1 200  0.024  0.035  4.75  0.957 
7 4 2 200  0.025  0.040  6.21  0.951 
8 4 3 200  0.032  0.041  4.98  0.942  
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correlation between solar intensity and the three performance criteria. 
The underlying reason is that a higher freshwater productivity has been 
recorded in the system at the late hours of the day when solar intensity is 
close to its lowest values. To further clarify this, the variations of solar 
intensity with three performance indicators of the system for the second 
day of the experiment are shown in Fig. 12. It can be seen that the 
maximum solar intensity happened around 11:30 while the maximum 
permeate flux, efficiency, and GOR were achieved at 14:30, 15:30, and 
15:30, respectively. As the studied system is an indirect solar-driven 
DCDM system [8], the maximum solar intensity values show their ef
fects on the performance of the system after 3–4 h. This is primarily due 
to warming up the water inside the feed storage tank. This can be also 
justified by negative correlations between solar intensity and tempera
tures at different points (T0-T5), as shown in Fig. 11. This shows that 
including lagged input data in machine learning models can improve 
their accuracy and provide valuable information for developing more 
accurate performance predictive models. 

4.2. Hyper-parameter tuning using K-fold cross-validation method 

Accurate hyper-parameter tuning not only can result in better 
training of machine learning models, but can also significantly enhance 
their generalization capability. Hence, the K-fold cross-validation 
method has been applied in this study. To develop MLP and LSTM 
models, three main hyper-parameters, namely timestep, the number of 
hidden layers and the number of neurons in each hidden layer have been 
considered. The performance of the developed models was then evalu
ated on the cross-validation dataset. The number of timesteps, hidden 
layers and neurons has been changed in the (2-3-4), (1-2-3), and (50- 
100-150-200) ranges, respectively. By applying a stepwise search 
method, the optimum value of timestep is initially estimated when 
models have been developed using 1 hidden layer and 50 neurons. Af
terward, the effect of increasing the number of neurons on the 

performance of the models was estimated when timestep was kept at its 
optimum value and models were constructed using 1 hidden layer. 
Finally, deeper models with more hidden layers were investigated when 
timesteps and the number of neurons were kept fixed at their optimum 
values. Table 6 and Table 7 indicate the hyper-parameter tuning process 
of MLP and LSTM models, respectively. It can be inferred that both MLP 
and LSTM models had a better generalization capability by including 
more lagged data (3 or 4). The optimum values of hyper-parameters for 
the prediction permeate flux, efficiency and GOR are summarized in 
Table 8. The predictive performance of each model on the cross- 
validation dataset for the prediction of each performance indicator is 
also shown in Table 9. Both models exhibit great accuracy on cross- 
validation data samples with MAPE < 10% and R2 > 0.95. It can be 
also inferred that MLP outperforms LSTM model on the cross-validation 
dataset. As shown in Table 6 and Table 7, neural networks with fewer 
neurons (i.e., 50 neurons) also demonstrated acceptable predictive 
performance, with most R2 values exceeding 0.9. However, to achieve 
the best performance, more complex models with a higher number of 
neurons were selected as the final models. It is worth noting that despite 
using a higher number of neurons, the models displayed excellent 
generalization capabilities, as confirmed by the results of the cross- 
validation analysis presented in Table 9. 

4.3. Predictive performance analysis 

After training the machine learning models with optimum hyper- 
parameters, the predictive accuracy of both models was evaluated on 
test data samples that were not used in the models during their devel
opment. Table 10 illustrates the performance of the MLP and LSTM 
models on train and test datasets for the prediction of each indicator. 
Higher values of R2 and lower values of errors (MAE, RMSE, and MAPE) 
represent the better performance of the models. The results show that 
MLP has better predictive performance on both training and test datasets 

Table 8 
The best hyper-parameters for MLP and LSTM models.  

Indicator MLP LSTM 

Timestep Number of layers Number of neurons in each layer Timestep Number of layers Number of neurons in each layer 

Permeate flux 4 3 150 4 2 200 
Efficiency 3 3 200 4 3 200 
GOR 4 3 200 4 1 200  

Table 9 
Performance of each model for the prediction of each indicator on the cross-validation dataset.  

Indicator MLP LSTM 

MAE RMSE MAPE R2 MAE RMSE MAPE R2 

Permeate flux  0.043  0.044  1.248  0.998  0.095  0.122  3.173  0.99 
Efficiency  0.722  0.962  3.43  0.998  2.33  2.53  9.68  0.99 
GOR  0.021  0.030  3.214  0.969  0.024  0.035  4.75  0.957  

Table 10 
Performance of the models for the prediction of each target on train and test datasets (values in brackets represent the LSTM model).  

Indicator Train Test 

MAE RMSE MAPE R2 MAE RMSE MAPE R2 

Permeate flux  0.046  0.064  1.652  0.998  0.204  0.261  6.950  0.977  
[0.080]  [0.119]  [3.270]  [0.993]  [0.260]  [0.294]  [8.952]  [0.971]  

Efficiency  0.782  1.180  3.111  0.998  1.803  2.848  5.453  0.990  
[1.005]  [1.420]  [4.305]  [0.997]  [4.991]  [7.298]  [12.968]  [0.937]  

GOR  0.041  0.059  8.849  0.921  0.046  0.062  8.963  0.907  
[0.048]  [0.065]  [11.083]  [0.904]  [0.051]  [0.064]  [9.691]  [0.900]  
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than the LSTM model for the prediction of all three indicators. This 
superiority is highlighted more in the prediction of system efficiency, 
where R2

test and MAPEtest for the MLP model are 0.99 and 5.453% while 
these values are 0.93 and 12.96% for the LSTM model, respectively. 
Furthermore, Table 10 shows that both models have lower predictive 
performance for the prediction of GOR based on the R2

test, compared to 
the prediction of permeate flux and efficiency. 

Fig. 13 depicts the capability of MLP and LSTM models for the per
formance prediction of the solar-driven DCMD system using the test 
dataset. It is apparent that both models almost accurately predict the 
dynamic behaviour of the solar DCMD system. As shown in Fig. 13(a), 
the maximum deviations from the experimental values for both models 
happen at the first hour of operation (9:30 AM). The machine learning 
models use input data from the current timestep (9:30 AM) as well as 
lagged input data from the previous day to predict the system’s per
formance at 9:30 AM. As a result, both MLP and LSTM models tend to 
overpredict at the first hour of operation. This is primarily because there 
is a significant difference in permeate flux between the late hours of the 
previous day and the first hour of the current day (9:30 AM). The better 
predictive performance of the MLP model compared to the LSTM model 
for the prediction of efficiency can be seen in Fig. 13(b). The LSTM 
model tends to underpredict the experimental efficiencies for some days, 
e.g., 17th and 20 th days. Thus, it can be observed from Fig. 13(c) that 
both models exhibit a lower accuracy for the trend prediction of GOR 
compared to the efficiency of the system. This is mainly due to the more 
fluctuating behavior of GOR compared to efficiency. 

To better diagnose the performance of machine learning models for 
the modeling of the solar-driven DCMD system, relative deviations are 
also graphically shown in Fig. 14. As depicted in Fig. 14(a), the MLP 
model outperformed the LSTM model on the training dataset with more 
data samples close to zero deviation. Moreover, the maximum relative 
deviations of both models on the test dataset occur at low permeate 
fluxes (between 1 and 2 L/m2.h), which relates to the first hours of the 
days (see Fig. 13(a)). It can be seen from Fig. 14(b) that the MLP model 
with more test data samples concentrated around zero has much better 
predictions compared to the LSTM for the prediction of efficiency. This 
also justifies the listed results in Table 10. Despite the application of the 
K-fold cross-validation method for accurate hyper-parameter tuning, 
Fig. 14(c) shows that both models have higher values of relative de
viations for the prediction of GOR on both training and test datasets. 
This is expected that increasing the number of data samples may result 
in performance enhancement of the models for more accurate prediction 
of GOR. 

4.4. Influence of dataset size 

The predictivity robustness of the studied models can be significantly 
affected by the size of the dataset. The development of accurate machine 
learning models with small-sized datasets can also considerably lower 
the time and cost associated with the data acquisition process. Hence, 
the effect of dataset size on the performance of the MLP and LSTM 
models for the performance prediction of the solar-driven DCMD system 

Fig. 13. Experimental data versus models’ prediction on test dataset: (a). permeate flux, (b). efficiency, (c). GOR.  
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has been investigated in this study. Fig. 15 compares the accuracy of the 
models trained and tested with different sizes of the dataset. Accord
ingly, 80% of the dataset was used for training and 20% was used for 
testing the performance of the studied models. It can be seen that the 
performance of both models is enhanced by increasing the number of 
data samples. Further, MLP exhibits better performance than the LSTM 
model for different sizes of the dataset. Fig. 15(a, b) demonstrates that 
increasing the number of data samples from 40 to 80 leads to a signifi
cant improvement in the performance of both models for predicting 
permeate flux and efficiency. However, increasing the number of sam
ples from 80 to 160 only results in a slight improvement. In contrast, 
Fig. 15(c) illustrates that the performance of MLP and LSTM models for 
the prediction of GOR indicator improves significantly with increasing 
the number of samples from 40 to 160. It can be inferred that increasing 
the number of samples can improve the predictive performance of the 
studied models in terms of the GOR indicator which followed a more 
stochastic behaviour for each day of experiments. 

5. Conclusions 

In this study, the capability of two neural networks was compre
hensively investigated for dynamic performance modelling of a solar- 
driven DCMD system for the first time. The models were developed 
based on data collected over 20 days from a small-scale solar-driven 
DCMD system that was experimented with three mass flow rates: solar 
working flow rate, feed flow rate and coolant flow rate. These mass flow 
rates were set appropriately based on the faced-centered-composite 
design approach. The effects of different input parameters (ambient 
temperature, solar intensity, feed inlet temperature (T0), feed outlet 
temperature (T1), collector inlet temperature (T2), coolant inlet tem
perature (T3), collector outlet temperature (T4), coolant outlet tem
perature (T5), solar working flow rate (Qsolar), feed flow rate (Qfeed) and 
coolant flow rate (Qcoolant)) on three performance indicators (permeate 
flux, efficiency and GOR) were then captured. The advanced K-fold 
cross-validation approach was applied to properly tune the hyper- 
parameters and the adequacy of the studied models was then 

Fig. 14. Relative deviations of predicted values from experimental data for the prediction of three indicators: (a) permeate flux, (b) efficiency, (c) GOR.  
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examined based on the unseen test dataset. The robustness of the 
developed models for dynamic performance modelling of the solar- 
driven DCMD system was comprehensively compared and the 
following main conclusions were acquired:  

• Analysis of the dataset showed that the highest efficiencies and GORs 
happened at the late hours of each day, where permeate flux 
remained significant whereas solar intensity had low values.  

• Mass flow rates had insignificant effects on the performance of the 
solar-driven DCMD system in comparison with temperatures at 
different points (T0 to T5), and solar intensity.  

• Solar intensity as the main driving force of the system was negatively 
correlated with the three performance indicators. This was mainly 
due to higher freshwater productivity at late hours of the day when 
solar intensity is low. 

• The MLP model outperformed the LSTM model for dynamic model
ling of the solar-driven DCMD system. This superiority was high
lighted in the prediction of efficiency of the system, where R2

test and 
MAPEtest for the MLP model were 0.99 and 5.453% while these 
values reached 0.93 and 12.96% for the LSTM model.  

• Statistical criteria and relative deviation analysis revealed that both 
models had lower predictive performance for the prediction of GOR, 
compared to the prediction of permeate flux and efficiency mainly 
due to its abrupt variations.  

• The generalization capability of both models was enhanced by 
increasing the number of data samples. Moreover, increasing the 
number of data samples significantly improved the accuracy of the 
models for the prediction of GOR. 

This study highlights the significant role of data-driven methods in 
accurately modeling solar-driven DCMD systems. To enhance the 
robustness of these models, it is highly recommended for future studies 
to apply data-driven models with larger datasets that incorporate more 
gradual and continuous variations of manipulated inputs. 
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