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Summary

� The response of Posidonia oceanica meadows to global warming of the Eastern Mediterra-

nean Sea, where the increase in sea surface temperature (SST) is particularly severe, is poorly

investigated.
� Here, we reconstructed the long-term P. oceanica production in 60 meadows along the

Greek Seas over two decades (1997–2018), using lepidochronology. We determined the

effect of warming on production by reconstructing the annual and maximum (i.e. August)

SST, considering the role of other production drivers related to water quality (i.e. Chla,

suspended particulate matter, Secchi depth).
� Grand mean (�SE) production across all sites and the study period was 48� 1.1 mg DW

per shoot yr�1. Production over the last two decades followed a trajectory of decrease, which

was related to the concurrent increase in annual SST and SSTaug. Annual SST> 20°C and

SSTaug> 26.5°C was related to production decline (GAMM, P< 0.05), while the rest of the

tested factors did not help explain the production pattern.
� Our results indicate a persistent and increasing threat for Eastern Mediterranean meadows,

drawing attention to management authorities, highlighting the necessity of reducing local

impacts to enhance the resilience of seagrass meadows to global change threats.

Introduction

The unprecedented rise in sea surface temperature (SST) and the
increasing frequency and intensity of marine heat waves (MHWs)
over the past four decades (Frölicher et al., 2018) pose an immi-
nent threat to biodiversity across the globe (Smale et al., 2019;
Trisos et al., 2020). Seagrasses rank among the marine habitats
most affected by warming (Perry et al., 2019; Garrabou
et al., 2022). Their performance is hampered at multiple levels
(Hendriks et al., 2017; Marı́n-Guirao et al., 2019; Kim et al.,
2020; Nguyen et al., 2021), resulting in shoot mortality and
cover loss (Kendrick et al., 2019; Strydom et al., 2020) with cas-
cading effects on the ecosystem services provided by them (Arias-
Ortiz et al., 2018; Aoki et al., 2020). Understanding the response
of benthic foundation species like seagrass to global warming is
essential for implementing appropriate restoration schemes to
enhance the resilience of our coasts (Unsworth et al., 2019).

The iconic endemic seagrass of the Mediterranean Sea, Posido-
nia oceanica (L.) Delile, is particularly vulnerable to thermal
stress, showing extensive damage (Ontoria et al., 2019a; Pansini

et al., 2021; Stipcich et al., 2022a) or even massive mortality (Dı́-
az-Almela et al., 2009; Marbà & Duarte, 2010). The Mediterra-
nean Sea is warming on average 20% faster than the global ocean
(Lionello & Scarascia, 2018), with a cumulative increase in mean
SST of 1.3°C over the last 40 yr (Pastor et al., 2020), and an
increase of 0.056°C yr�1 in maximum (i.e. summer) surface tem-
perature (Pisano et al., 2020). In addition, over the past decades,
MHWs have become increasingly common, and a fourfold
increase in their intensity is projected by the end of this century
for the basin (Darmaraki et al., 2019). Nevertheless, information
on the regression of P. oceanica due to warming is strongly biased
towards the Western Mediterranean subregion, while very lim-
ited data exists for the Eastern Mediterranean (Bennett
et al., 2022a; Stipcich et al., 2022a), where warming is particu-
larly intense, likely underestimating the magnitude of impact
across the Mediterranean Sea. The increase in SST has been shar-
per in the eastern basin with a rate of 0.048°C yr�1 compared
with 0.036°C yr�1 in the western part (Pisano et al., 2020),
which together with the forecasted intensity and frequency of
MHWs in the former (Soto-Navarro et al., 2020; Garrabou
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et al., 2022) poses relatively higher risks to marine habitats in the
eastern basin. Along the Greek Seas, in particular, increasing SST
trends have been identified ranging from 0.045 to 0.069°C yr�1,
while at the same time, the number and duration of MHWs have
significantly increased during the last years (i.e. 2008–2021;
Androulidakis & Krestenitis, 2022). A deeper understanding of
the impact of warming on P. oceanica meadows extending along
the Greek Seas is crucial, given that their extent represents 71%
of the total extent estimated for the P. oceanica meadows of the
Eastern Mediterranean Sea (Pergent-Martini et al., 2021). How-
ever, the lack of historical baselines of seagrass dynamics in
Greece (Gerakaris et al., 2021) and the scarce and rather localized
information on the potential response of these meadows to
warming (Bennett et al., 2022b; Stipcich et al., 2022a,b) limits
our comprehension on the impact of warming in this region and,
thus, our capacity to design specialized mitigation measures.

Even though the Eastern Mediterranean seagrass populations
are subjected to higher sea temperatures than in the western
basin, occasionally above the upper thermal limit for survival pre-
viously reported for the latter (i.e. 28.9°C; Chefaoui et al., 2017;
Savva et al., 2018), predicting their vulnerability to global warm-
ing can be challenging. Experimental studies suggest intraspecific
variability in thermal tolerance depending on the thermal geogra-
phy of the species, with warm-edge populations showing higher
tolerance to warming (Bennett et al., 2019, 2022b). However, a
recent translocation experiment showed that shoots collected
from the cool (i.e. Catalunya, Spain) and warm (i.e. Cyprus)
edges of the species distribution performed equally well under
common warming scenarios, but both did better than those from
the central (i.e. Mallorca, Spain) edge, implying that species per-
formance under thermal stress does not necessarily reflect the
geographical (i.e. thermal) origin of the species (Bennett
et al., 2022a). Moreover, those studies underpin the difficulty in
predicting the thermal resilience of the species from single popu-
lations. To gain a deeper understanding of P. oceanica response to
warming, it is important to study the other environmental factors
that drive seagrass response, apart from the thermal origin of the
population. In natural environments, local drivers of seagrass
production, such as light and nutrient availability, shape seagrass
traits (Alcoverro et al., 1995), introducing complex relationships
of the environmental regime with warming (Moreno-Marı́n
et al., 2018). Local environmental stressors, like eutrophication
and light deprivation (York et al., 2013; Pansini et al., 2021), can
act synergically to the warming effect (Moreno-Marı́n
et al., 2018), and could render seagrass meadows more vulnerable
to temperature rise (Egea et al., 2018; Ontoria et al., 2019b; Pan-
sini et al., 2021). Thus, the study of multiple populations along
environmental gradients is necessary to disentangle the response
of P. oceanica populations to warming at larger spatial scales.

Furthermore, although information derived from field and/or
laboratory experiments at small temporal scales is crucial for deci-
phering the physiological response of P. oceanica to warming, it
may prove less efficient in providing insights into the long-term
vulnerability of the species. The study of proxies encompassing
seagrass variability at longer temporal scales could be important
in understanding the response to warming. This is possible based

on the analyses of P. oceanica shoots, which offer the opportunity
to reconstruct past changes in production at annual resolution
using the lepidochronology method (Pergent, 1990). Previous
studies showed that rhizome elongation and leaf production
responded to temporal cycles linked to natural variability
(Pergent-Martini et al., 1994; González-Correa et al., 2007; di
Maida et al., 2013), as well as to human impacts (Guidetti, 2001;
Gonzalez- et al., 2008; Manzanera et al., 2014) including MHWs
(Stipcich et al., 2022a).

Here, we studied the long-term variability of P. oceanica pro-
duction in the Eastern Mediterranean Sea (Greek Seas). To do
so, we reconstructed the annual rhizome growth over two decades
(1997–2018) using lepidochronology in 60 meadows encompass-
ing different environmental conditions along the Greek Seas. To
determine the spatiotemporal effect of warming, seagrass produc-
tion was related to satellite time-series data of annual and maxi-
mum (i.e. August) SST, taking into consideration the effects of
local environmental factors related to water quality, namely
nutrients, water transparency and turbidity, across the country.

Materials and Methods

Study area and sampling procedures

The Greek Seas encompass natural and anthropogenic gradients
in environmental conditions that allowed us to study the poten-
tial response of Posidonia oceanica (L.) Delile to warming, taking
into consideration the water quality. The Ionian and South
Aegean Seas are formed by cold modified Atlantic water and
ultraoligotrophic warm Levantine water, while the North Aegean
Sea originates from colder and nutrient-rich water masses enter-
ing from the Black Sea through the Dardanelles Strait. As a
result, there is a clear gradient of SST and primary production
from the North towards the South–East of the country (Fig. 1a–e;
see relative section in the Materials and Methods). At the same
time, the pattern of SST warming but also localized phenomena
of eutrophication are spatially diversified, with stronger warming
in the Ionian and North Aegean Seas (Androulidakis & Kresteni-
tis, 2022), whereas the degree of human pressure is higher close
to major cities (e.g. Athens, Attica) (Pavlidou et al., 2015) and
towards the continent as opposed to insular areas (e.g. Cyclades)
(Gerakaris et al., 2021).

Sixty monospecific P. oceanica meadows were studied covering
the whole species distribution in the Greek Seas (South Aegean,
North Aegean and Ionian Seas) (Panayotidis et al., 2022) and
encompassing both continental and insular (e.g. Cyclades
Islands, Dodecanese Islands, Crete, Ionian Islands and North
Aegean Islands) meadows in diverse environmental regimes (Sup-
porting Information Fig. S1; Fig. 1a–e). Multiple meadows were
sampled inside the Saronikos Gulf to allow the detection of pos-
sible meadow degradation due to the proximity of the Athens
metropolitan area (Attica). The studied meadows extended from
3 to 30 m water depth. The substrate was sand (fine to coarse).
At each sampling site, orthotropic shoots were randomly col-
lected by hand by carefully detaching the vertical rhizome with
the living foliar shoot from the horizontal rhizome to determine
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(a) (b)

(c) (d)

(e)

Chla (mg m–3) SPM (g m–3)

Fig. 1 Heatmaps of mean values (i.e. for the whole period of study (1997–2018)) of annual (a) sea surface temperature (SST, °C), (b) maximum sea surface
temperature (SSTaug, °C), (c) Chla (mgm�3), (d) suspended particulate matter (SPM, gm�3) and (e) Secchi depth (m) along the Greek Seas. Sampling sites
are shown. Posidonia oceanica distribution (from Panayotidis et al., 2022) is indicated in green. Sites corresponding to different regions are represented by
different shapes: triangles, North Aegean; circles, South Aegean; squares, Ionian Sea.
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shoot age. On average, nine orthotropic shoots (ranging from 3
to 16 shoots per site) were randomly collected by hand during
the period 2013–2020.

Environmental regime

The environmental regime, that is annual SST (SST), SST of
August (SSTaug), Chla, suspended particulate matter (SPM) and
Secchi depth, along all the Greek Seas, including our sampling
sites, was reconstructed using daily or monthly (i.e. depending
on their availability) satellite data from Copernicus Marine Data-
base (https://marine.copernicus.eu/). Level-4 (L4) reprocessed
and interpolated daily estimates of foundation SST data, which is
free (or nearly free) of any diurnal cycle (SST MED SST L4 REP
OBSERVATIONS 010 021), were downloaded at 5.5 × 5.5 km
resolution. The daily data of SSTaug were also considered given
that August corresponds to the warmest month of the Mediterra-
nean Sea when major impacts are expected to occur (Marbà
et al., 2015). Level-4 (L4) reprocessed interpolated daily Chla,
and monthly SPM and Secchi depth data were downloaded at
4 × 4 km resolution (OCEANCOLOUR GLO BGC L4 MY
009 104). Annual mean values per site were calculated by aver-
aging the daily data in the case of SST, SSTaug and Chla and by
averaging the monthly data in the case of SPM and Secchi depth.

We acknowledge that satellite-based estimates refer to the top
10 m of water depth (Beggs, 2021). Nevertheless, since the mean
sampling depth across our sites was 12.4 m and the median was
15 m, and only five sites were found at water deeper than 15 m,
we assumed that the satellite estimates were representative of the
environmental profile at the given sampling depth of each site.
Besides, in cases of coastal ecosystems where real-time in situ
observations (e.g. buoys) are limited (https://marine.copernicus.
eu/), the use of satellite-based estimates is a widely used and lar-
gely accepted methodology to relate the dynamics and response
of marine biota, including seagrass meadows, to the environmen-
tal regime (Marbà et al., 2015; Gerakaris et al., 2021; Garrabou
et al., 2022).

For each site, the ‘nearest neighbour’ with available satellite data
was carefully selected in MATLAB v.R2018a software. Satellite data
were retrieved for the 1997–2018 period to match the period
reconstructed for P. oceanica production (to be described later).

Laboratory and numerical procedures

A total of 540 P. oceanica shoots were analysed using the recon-
structive technique of lepidochronology (Pergent, 1990). This
method allows the identification of the different lepidochronolo-
gical years based on the annual cyclic variation of sheath thick-
ness. One lepidochronological year was identified between two
consecutive minima in sheath thickness starting from the rhizome
apex (sampling year). By convention, each lepidochronological
year was assigned one calendar year. The thickness of each sheath
per shoot was measured using a calliper. Shoot age was consid-
ered to equal the maximum age measured for the given shoot.
Following the year assignment, the rhizome of each shoot was cut
into separate segments, each of which corresponded to a different

year. The rhizome segments were dried at 60°C until constant
weight to obtain their dry weight. Rhizome segments correspond-
ing to the last 2 years of each shoot were excluded from the analy-
sis, as the lepidochronological cycles may have not been complete
at the time of sampling (Peirano, 2002). The dataset obtained
covered the period from 1997 to 2018.

Production (mg DW per shoot yr�1) was estimated as the dry
weight of the rhizome segment per shoot and year for each site.
The mean production for each study site was estimated as the
average of production data for the whole reconstructed period for
the given site. The annual mean production was estimated as the
average of production data across all sites for each year. The
grand mean production for our study was estimated as the aver-
age of production data across all sites and the whole reconstructed
period.

Data analysis

One-way analysis of variance (ANOVA) was used to test for sig-
nificant differences in mean production between regions (North
Aegean, South Aegean and Ionian Sea). Normality and homoge-
neity of variance were checked before analysis using the Shapiro–
Wilk test and Levene’s test, respectively. When these assumptions
were not met, data were log10 transformed. If significant differ-
ences occurred (P< 0.05), a Tukey’s post hoc test was used to
identify significant differences among levels. Simple linear regres-
sions were used to assess the temporal trend of SST, SSTaug,
Chla, SPM and Secchi depth over the reconstructed period
(1997–2018).

A generalized additive model (GAM) was used to assess the
temporal trend of annual mean production through the years
1997–2018, using production data and a thin plate regression
spline applied in the covariate ‘Year’. Despite the low number of
measurements in the first 3 yr examined (1997–1999), the corre-
sponding values did not deviate from the rest of the measure-
ments. We tested the sensitivity of the model by excluding those
values, and the statistical power of the model remained. There-
fore, those values were included in the final analysis. Outliers
represented a small percentage (4%) of total measurements that
were within the range of natural variability; thus, they were also
considered in the model.

Generalized additive mixed models (GAMMs) were used to
determine the spatiotemporal effect of warming on seagrass pro-
duction. Production data at each site and year were related to the
annual mean of the thermal (SST, SSTaug) and the other environ-
mental variables (Chla, SPM and Secchi depth) at the given site
and year. This approach allowed the determination of the effect
of warming on seagrass production, taking into consideration the
role of local environmental drivers shaping the variability of pro-
duction across the country. The GAMMs were examined by for-
ward selection (Zuur et al., 2009), starting with the effect of
temperature (SST or SSTaug) and gradually adding the other
environmental variables (i.e. Chla, SPM and Secchi depth). Fol-
lowing exploratory analysis, thin plate regression splines were
added in the covariates SST, SSTaug, Chla, SPM and Secchi
depth. Highly correlated variables (Pearson’s coefficient> 0.7)
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were not included in the same model (i.e. SST–SSTaug, Chla–
Secchi depth). Given the strong relationship of production with
water depth (Tomasello et al., 2016; Madonia et al., 2021) and
the confounding effect of shoot age in analyses of impacts on rhi-
zome production of P. oceanica (Tomasello et al., 2007, 2016),
sampling depth and shoot age were taken into account in the data
analysis to ensure that possible effects of temperature and the rest
of the environmental variables would have been properly assessed
and not masked. Therefore, sampling depth and shoot age were
included in the models, as thin plate regression spline and linear
covariates respectively, and indeed increased the robustness of the
model (Table S1). Intercepts of each shoot were assumed to be
random factors, accounting for the temporal autocorrelation of
the measurements within the shoot. Spatial autocorrelation was
also examined by including ‘Site’ as an additional random factor.
However, its inclusion did not modify the autocorrelation pat-
tern. As a result, the most parsimonious model, consisting of one
random factor, was selected. The degree of smoothness was deter-
mined by the degrees of freedom (df) in each model, and equili-
brium between the total number of df and the total number of
observations was kept, avoiding overfitting the model. The
degrees of freedom were selected by cross-validation. Gamma dis-
tribution with a logarithmic link was used.

All the models had the following form:

Loge Productionð Þ ¼ a þ f SST or SSTaug

� �þ f covariatei...nð Þ
þ f sampling depthð Þ þ shoot age

þ f Shootð Þ þ ετ, ετ ∼ N 0, σ2
� �

where ƒ(covariatein) was a thin plate spline applied to each covari-
ate (Chla, SPM and Secchi depth) and ƒ(Shoot) was the random
intercept term for each shoot.

During the model selection process, variables that were not sig-
nificant (P> 0.05) were excluded from further analysis. Finally,
the best model was selected based on the lower Akaike informa-
tion criterion (AIC; Akaike, 1973). A relative difference in the
AIC (ΔAIC) > 2 units indicated a significant difference between
two models (Burnham & Anderson, 2002). In the case ΔAIC
between two models was equal or lower than 2, the most parsi-
monious model was selected. Model smoothers were fit in the
‘MGCV’ R package (Wood, 2011). All analyses were performed in
R v.4.0.5 (R Core Team, 2021).

Results

The environmental regime (i.e. mean values of annual SST,
SSTaug, Chla, SPM and Secchi depth) for the whole period of
study (1997–2018) along the Greek Seas is shown in Fig. 1(a–e).
The mean values of annual SST, SSTaug, Chla, SPM and Secchi
depth for each sampling site for the whole period of study
(1997–2018) are given in Table S2 and summarized across our
sites in Table 1. Mean (�SD) annual SST was 19.8� 0.7°C,
with differences up to almost 3°C from the sites located in the
northern (18.0–19.5°C) towards those located in the southern
part of the country (20.0–21.2°C; Tables 1, S2). Mean SSTaug

(�SD) was 25.6� 0.8°C, with the lowest values found in
Cyclades Islands (23.9–25.2°C) and the higher ones (> 26.5°C)
towards the continental coasts and some sites of Crete and Dode-
canese Islands (Tables 1, S2). Mean annual (�SD) Chla was
0.19� 0.10mgm�3, with most of the sites having low concen-
trations (ranging from 0.10 to 0.20mgm�3), apart from a few
sites in the northern part of the country and closer to the
continental coasts (0.22–0.68mgm�3; Tables 1, S2). Mean
annual SPM followed a similar pattern to Chla, with a mean
value of 0.53� 0.14 g m�3 and higher values (0.57–1.10 g m�3)
towards the continental sites (Tables 1, S2). Mean annual Secchi
depth (�SD) was generally high with a mean of 23.1� 3.7 m
and 13.0–30.4 m range among sites (Tables 1, S2). SST and
SSTaug along the Greek Seas increased over the period of study,
following a linear warming rate of 0.045 and 0.044°C yr�1,
respectively (Fig. 2a,b). Chla showed a significant linear increase
too (P< 0.05), while SPM and Secchi depth did not show a sig-
nificant change during the reconstructed period (P> 0.05)
(Table S3).

The lepidochronological dating resulted in the analysis of 534
P. oceanica shoots and 4347 rhizome segments. The mean pro-
duction (�SE) differed significantly between the regions
(ANOVA, MS= 0.81, F= 16.61, P< 0.05) due to the higher
mean of the South Aegean meadows (52.0� 1.5 mg DW per
shoot yr�1) than those of the North Aegean (39.2� 2.3 mg DW
per shoot yr�1) and the Ionian (41.9� 2.2 mg DW per shoot
yr�1; Tukey’s post hoc test, P< 0.05; Fig. 3; Table S2). The sig-
nificant differentiation within South Aegean (Tukey’s post hoc
test, P< 0.05) was attributed to the difference between the mean
values of insular meadows of Cyclades Islands (58.2� 3.1 SE mg
DW per shoot yr�1) and continental meadows extending inside
Saronikos Gulf (Attica), although the latter had a relatively high
production (49.0� 1.8 mg DW per shoot yr�1). The other insu-
lar meadows of the region (Dodecanese, Crete) did not differ
from those in the Cyclades or Saronikos Gulf. Overall, the range
of production was similar between regions (19.5� 0.8 to 86.4�
4.5 mg DW per shoot yr�1 at the South Aegean, 21.3� 0.7 to
71.8� 2.8 mg DW per shoot yr�1 at the North Aegean and
18.5� 1.1 to 60.5� 5 mg DW per shoot yr�1 at the Ionian),
suggesting that the observed spatial differences in production
based on the ANOVA results should be attributed to the produc-
tion of a few sites that yielded a higher mean per region. Differ-
ences in production were more pronounced between sites, which

Table 1 Mean (�SD), minimum (Min), maximum (Max) and median
values of annual sea surface temperature (SST, °C), maximum sea surface
temperature (SSTaug, °C), Chla (mgm�3), suspended particulate matter
(SPM, gm�3) and Secchi depth (m) across all sampling sites for the whole
period of study (1997–2018).

Mean (�SD) Min Max Median

SST (°C) 19.8� 0.7 18.0 21.2 19.8
SSTaug (°C) 25.6� 0.8 23.2 27.3 25.7
Chla (mgm�3) 0.19� 0.10 0.10 0.68 0.16
SPM (gm�3) 0.53� 0.14 0.37 1.10 0.49
Secchi depth (m) 23.1� 3.7 13.0 30.4 23.7
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supported production ranging from 18.5� 1.1 mg DW per
shoot yr�1 at Oitylo (Ionian Sea) to 86.4� 4.5 mg DW per
shoot yr�1 at Keros (Cyclades; Fig. 3; Table S2), suggesting that
local conditions drove the differences between sites rather than
geographic discontinuities.

During the period 1997–2018, the annual mean (�SE) pro-
duction across all sites ranged from 33.9� 0.4 mg DW per
shoot yr�1 to 69.0� 0.9 mg DW per shoot yr�1 (Fig. 4). Annual
mean production across all sites followed a declining trend
(GAM model P< 0.05, Fig. 4) with a 51% decline from the year
of highest production (i.e. 1999) to the last investigated one (i.e.
2018). Especially after 2011, annual mean production across all
sites remained consistently below the grand mean production
(i.e. across all sites and the study period) (48� 1.1 mg DW per
shoot yr�1), ranging from 34 to 46 mg DW per shoot yr�1

(Fig. 4).

According to the selected GAMM models, annual SST and
SSTaug had a significant effect on the production pattern
(GAMM, P< 0.05; Table S4), while the effect of Chla, SPM or
Secchi depth did not contribute towards a more robust explana-
tion of that pattern (Table S1). The range of 17–20°C for annual
SST and 24–26.5°C for SSTaug had a positive effect on seagrass
production (Fig. 5a,b). Values of annual SST> 20°C and
SSTaug> 26.5°C had a negative effect on production, leading to
an 8 and 17% decline in production, respectively, compared with
the grand mean of our study.

Discussion

Our analysis showed that P. oceanica production followed a tra-
jectory of decline along the Greek Seas over two decades (1997–
2018), which was mainly related to the increase in the thermal
regime during the study period. The data presented in this study
contribute to bridging the big imbalance in the research effort
regarding the spatial and temporal dynamics of P. oceanica across
the Mediterranean Sea. Most studies so far have focused on the
Western Mediterranean (mostly in Italy) and covered earlier peri-
ods (1960–2010). The grand mean production across all sites
during the reconstructed period (48� 1.1 mg DW per shoot
yr�1) fell within the range previously reported for P. oceanica in
the Mediterranean (20–220 mg DW per shoot yr�1) (Pergent &
Pergent-Martini, 1990; Pergent-Martini et al., 1994; Calvo et al.,
2006, 2021; González-Correa et al., 2007; Montefalcone et al.,
2008; Tomasello et al., 2016; Pansini et al., 2021; Stipcich
et al., 2022a). The range of our estimates is similar to that of the
few studies that reconstructed P. oceanica production over the last
decade (i.e. after 2010, 29–112 mg DW per shoot yr�1; Calvo
et al., 2021; Pansini et al., 2021; Stipcich et al., 2022a). However,
those studies did not explore the temporal trend in production,
which precludes a thorough comparison of P. oceanica dynamics
across the basin, especially during the last decade when warming
has been particularly intense in the region (Androulidakis &
Krestenitis, 2022).

Annual SST surpassed the 20°C in 36% of the measurements,
leading to a decline in mean production of 1.2-fold compared
with the mean production when SST was within the range of
17–20°C. SSTaug temperature between 22 and 24°C resulted in
a small decrease in production and SSTaug temperature above
26.5°C caused a sharp decrease in production. SSTaug higher
than 26.5°C was reached in 21% of the cases in our study area,
especially towards the continental coasts and the Dodecanese
Islands, while regions towards the North Aegean and the Ionian
Seas, which have been characterized as particularly vulnerable to
MHWs (Androulidakis & Krestenitis, 2022), showed SSTaug

values as high as 28.5°C. Our results agree with previous studies
that showed a reduction in P. oceanica production with increasing
temperatures (Pansini et al., 2021; Stipcich et al., 2022a), as well
as in other seagrass species, for example Cymodocea serrulata, Zos-
tera muelleri and Halodule uninervis (Collier et al., 2017). In par-
ticular, the deterioration of P. oceanica growth performance was
reported at > 27°C (Guerrero-Meseguer et al., 2017), whereas
the limit for P. oceanica shoot survival was determined at 28°C

Fig. 2 Time series of (a) daily sea surface temperature (SST, 1 January–31
December) and (b) daily maximum sea surface temperature (SSTaug, 1–31
August) during the reconstructed period (1997–2018) along the Greek
Seas. The blue line represents the de-seasoned SST trend component. The
red line designates a linear fit (at 95% confidence interval). The grey-
shaded area represents the standard deviation from the mean of each daily
measurement based on the total number of available grid points.
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from experimental and empirical estimates (Marbà et al., 2022).
Nevertheless, these estimates derive from the Western Mediterra-
nean and the results obtained in our study are not necessarily
comparable due to intraspecific variation in the thermal limits
depending on local adaptation, plasticity and the thermal origin
of the plants (Bennett et al., 2022b; Marbà et al., 2022). Indeed,
the Eastern Mediterranean populations are living closer to the

warmer edge of their distribution (29°C; Chefaoui et al., 2017)
and are historically subjected to higher temperatures than the
western meadows (Templado, 2014), and thereby they likely dis-
play higher thermal resilience. Therefore, extreme climatic events
(MHWs) close to the identified thresholds, that could be devas-
tating for Western Mediterranean meadows (Dı́az-Almela
et al., 2009; Marbà & Duarte, 2010), encompass temperatures

Fig. 3 Geographical distribution of mean
(i.e. for the whole reconstructed period)
Posidonia oceanica production (mg DW per
shoot yr�1) per site. Points have been jittered
to improve visualization.

Fig. 4 Box plots of the annual mean (i.e.
across all sites) Posidonia oceanica
production (mg DW per shoot yr�1) per year.
The black lines represent the medians, the
boxes encompass the 25 and 75% quantiles,
and the black circles show data points
beyond the whiskers. The black triangles
present the mean values. The black line
represents the temporal trend of production
based on generalized additive model (GAM)
and the red-shaded areas the confidence
intervals. The number of measurements in
each year (N) is given in parenthesis.
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within the already realized thermal distribution in the Eastern
Mediterranean, according to the present study. Nonetheless, our
dataset encompassing longer, and larger scale variability showed
that populations living close to the warm edge of their distribu-
tion are indeed impacted by the increase in annual SST and
SSTaug. This hypothesis is further supported by a previous study
showing a negative relationship between P. oceanica production
and the number and duration of MHWs per year, and a decrease
in phenological traits with increasing summer temperature across
a longitudinal gradient (from Italy to Greece and Cyprus; Stip-
cich et al., 2022a), suggesting that eastern populations can be also
affected by the fast warming at this part of the basin.

High temperature reduces seagrass photosynthetic rates due to
an alteration of the photosynthetic apparatus, mostly the heat-

stress-sensitive PSII (Marı́n-Guirao et al., 2016). The resulting
increase in respiration in relation to photosynthesis can lead to a
negative carbon balance, impeding growth and production in dif-
ferent seagrass species (York et al., 2013; Collier & Waycott, 2014)
including P. oceanica (Olsen et al., 2012; Hendriks et al., 2017;
Pansini et al., 2021). Apart from the direct physiological stress that
high temperatures pose to the meadows, the increase in tempera-
ture can indirectly affect seagrass meadow by altering other factors
that are crucial for their well-functioning, including salinity (Ruı́z
et al., 2009; Borghini et al., 2014), nutrient availability (Mvungi &
Pillay, 2019), anaerobic mineralization (Garcı́a et al., 2012) and
herbivore pressure (Buñuel et al., 2021). Warming can also alter
the relative distribution of the seagrass species inhabiting the Medi-
terranean, including the spread of species more adapted to warm
temperatures (i.e. Cymodocea nodosa and Halophila stipulacea) at
the expense of P. oceanica. Previous studies suggested that C. nodosa
tends to occupy areas where P. oceanica has already regressed (Bou-
douresque et al., 2009), owing to its higher thermal tolerance (>
34°C; Savva et al., 2018) and thereby probability to expand (Che-
faoui et al., 2018). Similarly, the tropical seagrass H. stipulacea is
expanding in the region facilitated by warming (Wesselmann
et al., 2021) and possibly faster than originally thought (Thibaut
et al., 2022). Although the species has not yet shown generalized
signs of competition with P. oceanica (Winters et al., 2020), the
expansion of H. stipulacea at the expense of C. nodosa has been
reported in Tunisia (Sghaier et al., 2014) and the Aegean Sea
(Conte et al., 2023). Therefore, there is an imminent threat of
further expansion and possible replacement of P. oceanicameadows
of the Mediterranean Sea with other seagrass species that do not
necessarily provide ecosystem services of similar magnitude (Cam-
pagne et al., 2015; Mtwana Nordlund et al., 2016).

Despite the increase in Chla during the study period, it did not
contribute to the observed decline of production, neither did SPM
and Secchi depth, suggesting that the water quality at the study sites
was not aggravating for seagrass. The concentration of Chla ranged
generally at low values across our study sites and even the maximum
value recorded at Thasos located at North Aegean (0.68mgm�3)
was well below the > 2.21mgm�3 threshold for eutrophic condi-
tions (Simboura et al., 2005) that could impact seagrass performance
(Connell et al., 2017; Heuvel et al., 2019; Pazzaglia et al., 2020;
Viana et al., 2020). Even the mean production of the meadows of
Saronikos Gulf (49.0 mg DW per shoot yr�1), a region impacted by
industrial and urban sewage (Tsiamis et al., 2013) ranged close to
the grand mean of our study. Similarly, the low SPM range across
our sites, with higher values seldom measured and only near riverine
outputs (e.g. 1.10 gm�3 at Parga located at the Ionian Sea), suggests
that turbid conditions, which affect seagrass performance (Ruiz &
Romero, 2003) and have even exacerbated the effect of warming
elsewhere (Krause-Jensen et al., 2020), were not recorded across our
sampling sites. In addition, the high mean Secchi depth, despite the
high range of values estimated across our study area, suggests suffi-
cient water transparency and hence light availability at our sites.
Indeed, P. oceanica in Greece reaches depths as low as 43m while
the mean lower depth limit is 30m (Gerakaris et al., 2021) as the
ultraoligotrophic crystal clear waters allow higher light penetration.
Yet, in lagoons and enclosed gulfs of the Greek Seas (e.g.

Fig. 5 Partial effect of (a) annual sea surface temperature (SST) and (b)
maximum sea surface temperature (SSTaug) on Posidonia oceanica

production based on generalized additive mixed model (GAMM). The
shaded areas indicate the upper and lower 95% confidence intervals and
dashed horizontal line on zero delimits positive (above zero) or negative
(below zero) effect on production. Values on y-axis represent the partial
residuals of the smoother product.
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Amvrakikos Gulf), Chla and SPM can reach values as high as 6.5
and 10 gm�3, respectively, and Secchi depth as low as 4m (Fig. 1),
but the specific environmental regime and geomorphology at those
areas do not represent suitable habitat for P. oceanica (Panayotidis
et al., 2022) and as a result, the species is not present there (Fig. 1).
Therefore, the environmental stressors that affect water quality and
contribute to P. oceanica degradation on local scales (e.g. nutrient
discharges, Apostolaki et al., 2009) do not constitute cumulative
pressures to the effect of warming on P. oceanica meadows of the
Greek Seas when assessed at larger spatiotemporal scales.

It appears that the factor that has changed significantly along
the Greek Seas, and especially during the last decade, is the sea
temperature (Androulidakis & Krestenitis, 2022), which according
to our study compromised seagrass performance. Nevertheless,
other biotic and abiotic factors acting at local scales not considered
in this study should also be held responsible for the observed pat-
tern in production. For example, water circulation or coastal geo-
morphology varies at small spatial scales and can drive differences
in the availability of particles and nutrients (Gerakaris et al., 2021).
Intrinsic factors such as genetic background could also play a sig-
nificant role in shaping seagrass production, and its response and
resilience to warming. Available data from Z. marina suggest that
seagrass vulnerability to thermal stress may depend on genetic
diversity (Ehlers et al., 2008; DuBois et al., 2021) and could vary
within the geographical distribution of the species (Jueterbock
et al., 2016). Our knowledge of the molecular capacity of P. ocea-
nica to adapt to heat stress is limited (Marı́n-Guirao et al., 2016;
Ruiz et al., 2018; Traboni et al., 2018) and derives from Western
Mediterranean meadows (Marı́n-Guirao et al., 2016; Traboni
et al., 2018). Early data show that there is a strong genetic separa-
tion between Western and Eastern Mediterranean P. oceanica mea-
dows (Procaccini et al., 2002), with some private alleles found only
in the eastern part (Chefaoui et al., 2017), suggesting that Eastern
Mediterranean meadows hold unique diversity which might be
relevant for their thermal response. Further information regarding
the resilience and adaptive capacity of Eastern Mediterranean mea-
dows is thereof needed.

It is important to note here that mean production in most of
the sites situated in the Cyclades Islands exceeded the grand mean
of the study. This could be explained by their location away from
intense industrial or urban development (Giakoumi et al., 2011),
the cyclonic gyre current formed at the Cyclades plateau (Olson
et al., 2007) and the prevailing strong north-west Etesian winds
(Anagnostopoulou et al., 2014) that keep the mean annual SST
(19.6� 0.6°C) and SSTaug (25.5� 0.6°C) relatively cold which
based on our study are within the optimal range for seagrass pro-
duction (17 to 20°C for SST and 25 to 26°C for SSTaug).
These results unveil the relevance of the meadows extending in
this region as hot spots for conservation and render their protec-
tion imperative.

Our study underlies the necessity for management measures to
confront the threat rapid warming poses to P. oceanica produc-
tion in the Eastern Mediterranean. The in-depth knowledge of
the response of Eastern Mediterranean ecosystems to global
change is of vital importance to ensure well-established manage-
ment and conservation plans, especially during the current

consensus on ocean restoration. The use of warning indicators,
such as the trend in production presented here, can draw the
attention of management authorities to act before the regression
becomes irreversible. The information on seagrass functional
traits (e.g. production) in combination with future projections of
seagrass performance under different climate scenarios and priori-
tization of conservation actions based on specific seagrass traits
(e.g. heat resilient genotypes) could be effective tools towards the
sustainable management of the meadows (Serrano et al., 2021).
Management efforts should include local-scale planning account-
ing for the dynamic nature of the meadows and be multidisci-
plinary, bringing together the scientific community with local
authorities and stakeholders and focusing primarily on preven-
tion before mitigation (Unsworth et al., 2019).
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Bennett S, Duarte CM, Marbà N, Wernberg T. 2019. Integrating within-species

variation in thermal physiology into climate change ecology. Philosophical
Transactions of the Royal Society B: Biological Sciences 374: 20180550.
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