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Abstract: Photocatalysis have attracted great attention due to their useful applications for sustainable
hydrogen evolution and pollutants degradation. Transition metal dichalcogenides (TMDs) such as
MoS2 and WS2 have exhibited great potential as cocatalysts to increase the photo-activity of some
semiconductors. By combination with graphene (GR), enhanced cocatalysts of TMD/GR hybrids
could be synthesized. GR here can act as a conductive electron channel for the transport of the
photogenerated electrons, while the TMDs nanosheets in the hybrids can collect electrons and act as
active sites for photocatalytic reactions. This mini review will focus on the application of TMD/GR
hybrids as cocatalysts for semiconductors in photocatalytic reactions, by which we hope to provide
enriched information of TMD/GR as a platform to develop more efficient photocatalysts for solar
energy utilization.

Keywords: transition metal dichalcogenides (TMDs); graphene; photocatalytic; hydrogen evolution;
pollutants degradation

1. Introduction

Since the discovery of the photocatalytic splitting of water on TiO2 electrodes by Fujishima and
Honda in 1972 [1], photocatalysis has attracted great attention for eliminating hazardous pollutants
and generating sustainable energy [2]. Semiconductors such as TiO2, ZnO, CdS, etc. can act as
photocatalysts for the utilization of solar energy [3]. They are however limited in real application by
the rapid electron–hole recombination [4–6]. Noble metal cocatalysts are usually loaded to enhance
the activity of the semiconductor photocatalysts [7]. However, these metals are rare and expensive to
apply [8]. The development of highly active and low cost cocatalysts remains a great challenge in the
field of photocatalysis.

Transition metal dichalcogenides (TMDs) such as MoS2 and WS2 have exhibited excellent
activities as cocatalysts for the modification of semiconductors [8,9]. The properties of TMDs
can be tailored according to their crystalline structure and the number and stacking sequence
of their nanosheets [10–14]. By loading TMDs cocatalysts, semiconductor–semiconductor or
metal–semiconductor junctions will form, and more interfaces could be created [15,16]. Charge
separation and electron transport can therefore be enhanced, leading to the activity improvement [15].
Furthermore, many kinds of TMDs with different phases were reported to be active for
the electrochemical hydrogen evolution reaction (HER), which stems from their exposed and
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under-coordinated edge sites [17–19]. Therefore, loading the TMDs as cocatalysts for semiconductors
could also lower the activation energy and overpotential for photocatalytic H2 evolution [8]. On the
other hand, TMDs have special 2D layered structure, and can be used as effective supports for anchor
of semiconductor nanoparticles, which could reduce the mobility, provide more active sites, and avoid
coalescence and agglomeration of the semiconductors [20–22]. Based on the above analysis, TMDs
have shown great potential as substitute of noble metal cocatalysts for the synthesis of composite
photocatalysts with high activity [8].

Graphene (GR) consists of a single layer and sp2-hybridized carbon lattice with excellent electrical
(200,000 cm2·V−1·s−1), thermal, and mechanical properties, and is a novel material that has emerged as
a rapidly rising star in the field of material science [23]. The photocatalytic activity of semiconductors
can be greatly increased by loading GR as cocatalyst, mainly owing to the effective separation of the
electron–hole pairs [24,25].

By combining GR with TMDs, new hybrid cocatalysts could be synthesized with 2D layered
structures. GR here can transport the photogenerated electrons rapidly, and the TMDs in the hybrids
can accept electrons and act as active sites for H2 evolution or radicals generation. This mini review
will focus on the synthesis methods of TMD/GR-based photocatalysts and their applications for
photocatalytic H2 evolution and organic pollutants degradation. Based on this review, we hope to
offer enriched information of TMD/GR as a platform to fabricate more efficient photocatalysts for
solar energy utilization.

2. TMD/GR-Based Composites for Photocatalytic H2 Evolution

TiO2 is the most frequently used semiconductor for photocatalytic H2 evolution, which can
only absorb and utilize UV light due to its large band gap (3.2 eV) [26]. Xiang et al. synthesized
ternary composites consisting of TiO2 nanoparticles grown on the MoS2/GR hybrid as enhanced
photocatalysts for H2 evolution (Figure 1) [25]. The TiO2-MoS2/GR composites were prepared using
a two-step hydrothermal method. As shown in Figure 1, the TiO2 nanoparticles were supported on
the 2D MoS2/GR hybrid uniformly with intimate contact. The electrons can therefore transfer rapidly
from TiO2 to the MoS2/GR cocatalyst, and the charge recombination can therefore be suppressed.
The activity of the ternary composites can be tuned by adjusting the GR percentage of MoS2/GR
cocatalysts and the percentage of the MoS2/GR hybrid for the ternary photocatalysts. The optimized
TiO2-MoS2/GR composite could obtain a high H2 evolution rate of 165.3 µmol·h−1 and a quantum
efficiency of 9.7% at 365 nm.
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Figure 1. Morphology characterization of the TiO2-MoS2/graphene (GR) composite. (a,b) Transmission
electron microscopy (TEM) and (c,d) high-resolution TEM (HRTEM) images of the TiO2-MoS2/GR
composite (reprinted from [25] with permission, Copyright American Chemical Society, 2012).
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CdS has a narrow bandgap of 2.3 eV, which is effective for capturing the visible light [36].
Chang et al. used nanosized GR as support for the growth of MoS2; 3D hierarchical CdS-MoS2/GR
composites with diameters of 100–300 nm were then synthesized with the help of polyvinylpyrrolidone
(PVP) (Figure 2) [27]. As shown in Figure 2e, the MoS2 sheets on nanosized GR have many defect sites
and disordered structures due to the low synthesis temperature, CdS nanoparticles can then firmly
anchor on these defects and vacancies (Figure 2g–j). After optimizing each component proportion, the
highest H2 evolution rate could be as large as 1.8 mmol/h with an apparent quantum efficiency (AQE)
of 28.1% at 420 nm, which was even higher than that of Pt/CdS. They thought that the activities of S
atoms in the MoS2 molecules were different with respect to their different coordination (Figure 3a).
Unsaturated S atoms are active for H+ adsorption and reduction (Figure 3b), while the saturated
S atoms on the basal plane are inert. The nanosized few-layer MoS2 supported on GR has more
exposed edges and unsaturated active S atoms, which is therefore a promising cocatalyst for the
activity enhancement of CdS.
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Figure 2. (a) Schematic illustration of growth mechanism of MoS2/GR-CdS composites; TEM images of
(b) graphene oxide (GO) and (c) nanosized graphene (GR); (d) Scanning electron microscopy (SEM) and
(e) TEM images of as-prepared MoS2/GR composite; the inset of (e) is the HRTEM image of MoS2/GR
composite; (f and g) SEM images of CdS-MoS2/GR composites; (h) TEM and (i and j) HRTEM images
of the CdS-MoS2/GR composite (reprinted from [27] with permission, Copyright American Chemical
Society, 2014).
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Figure 3. (a) Schematic illustration of the microstructure of MoS2 and (b) its cocatalytic mechanism
of H2 generation in lactic acid solution (reprinted from [27] with permission, Copyright American
Chemical Society, 2014).
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Xiang et al. synthesized CdS-WS2/GR ternary composites for photocatalytic H2 evolution [32].
The optimized WS2/GR content in the ternary CdS-WS2/GR composites was determined to be
4.2 wt %. Using 0.35 M Na2S/0.25 M Na2SO3 as sacrificial agent, a satisfactory H2 evolution rate
of 1.842 mmol·h−1·g−1 could be achieved with an apparent quantum efficiency of 21.2% at 420 nm.
The transient photocurrent response was also enhanced by loading the WS2/GR cocatalyst, which
was promising evidence for the improved charge transport (Figure 4). By loading WS2/GR cocatalyst,
more active sites will be introduced, and charge separation and interfacial charge transfer could be
enhanced, thus leading to the greatly increased photo-activity.
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Figure 5. Schematic illustration of (a) the charge transfer in TiO2-MoS2/GR composites for
photocatalytic H2 evolution; and (b) the potential and band positions in the TiO2/MoS2/graphene
system (reprinted from [25] with permission, Copyright American Chemical Society, 2012);
(c) Graphene-supported CdS and MoS2 for photocatalytic hydrogen evolution; (d) The band positions
for the CdS–graphene–MoS2 system (reprinted from [28] with permission, Copyright Royal Society of
Chemistry, 2014). (SHE: Standard hydrogen electrode; NHE: Normal hydrogen electrode).
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During the photocatalytic H2 evolution process, the metal oxide can absorb a photon to create an
electron–hole pair with irradiation (Figure 5a,c). Both of the graphene/ graphene•− redox potential
and conduction band (CB) of quantum-sized MoS2 are slightly lower than the CB of anatase TiO2
or CdS (Figure 4b,d). Part of the excited electrons can then directly transfer to active sites of MoS2,
and another part transfer to active sites of MoS2 via graphene conducting channel. Graphene here
can act as a “highway” for the rapid transport of photo-generated electrons, while MoS2 nanosheets
can accept electrons and act as active sites for H2 evolution. Therefore, using MoS2/GR hybrid as
cocatalyst, suppression of charge recombination, improvement of interfacial charge transfer, and an
increase in the number of active sites could be achieved, thus leading to the enhanced photo-activity.

It has been reported that sub-10 nm rutile TiO2 with 1 wt % Pt doping exhibited state-of-the-art
activity among TiO2-based composites for photocatalytic water splitting. The hydrogen evolution
rate could be achieved to 932 mmol·h−1·g−1 under visible light (>400 nm) and 1954 mmol·h−1·g−1

under simulated solar light [37]. By loading 0.30 wt % of Pt and 0.13 wt % of PdS as cocatalysts on
CdS, another CdS-based state-of-the-art material could be synthesized with a quantum efficiency (QE)
up to 93% and a hydrogen evolution rate of 8.77 mmol·h−1 [38]. Compared to these state-of-the-art
materials, the activities of TMD/GR modified semiconductors are relatively weak, with lower H2
evolution rates and QEs. Although the TMD/GR cocatalysts are more cost effective, deep studies are
still needed to obtain higher efficiencies for real application.

3. TMD/GR-Based Photocatalysts for Pollutants Degradation

Photocatalysis is also an attractive technology for the degradation of pollutants in water using
solar energy [39]. Han et al. used a hydrothermal method to combine the exfoliated MoS2, GR, and TiO2
P25 together [40]. The obtained composite was a novel graphene-based three-dimensional (3D) aerogel
embedded with TiO2 particles and MoS2 nanosheets (Figure 6). Porous structure could be observed
with pore sizes of about several micrometers (Figure 6b). The Nyquist plots of the samples were also
tested, and the final 3D GR–MoS2–TiO2 composite had the smallest cure radius (Figure 7), indicating
that the addition of 3D graphene aerogel can decrease the solid state interface layer resistance and the
charge transfer resistance. During the application test, the final composite had better adsorption ability
for methyl orange (MO) due to the maximization of accessible sites of the 3D interconnected networks
(Figure 8a). The 3D photocatalyst was proved to be very effective for the photocatalytic degradation of
MO, and nearly no MO was left after 15 min irradiation (Figure 8b).
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Figure 6. (a,b) SEM images of the as-prepared MoS2/P25/GR-aerogel; the inset image is a digital
photo of the free-standing MoS2/P25/GR-aerogel. (c,d) TEM images and energy-dispersive X-ray
spectroscopy (EDS) (insert) pattern of the as-prepared MoS2/P25/GR-aerogel (reprinted from [40] with
permission, Copyright Elsevier, 2014).
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Figure 8. (a) Bar plot showing the remaining methyl orange (MO) in solution after reaching
the adsorption equilibrium in the dark over MoS2/P25/GR-aerogel, GR/P25/MoS2-composite,
P25/GR, MoS2/P25, MoS2/GR, and P25; (b) photo-degradation of MO by MoS2/P25/GR-aerogel,
GR/P25/MoS2-composite, P25/GR, MoS2/P25, MoS2/GR, and P25 with a reaction time of 30 min
under UV irradiation (reprinted from [40] with permission, Copyright Elsevier, 2014).

Gao et al. fabricated a TiO2-MoS2/GR composite under atmospheric pressure using a simple
one-pot solvothermal method [34]. Na2MoO4 and thiocarbamide were used as precursors for MoS2,
and mixed solvent of (dimethylacetamide (DMAc)/deionized (DI) H2O) was used as reaction media.
Under the above conditions, MoS2 quantum dots (QDs) with (100) face exposed could be generated on
the surface of TiO2 and GR (Figure 9). Attributed to the small diameter of the MoS2 QDs, more active
edge could be created, thus leading to the enhanced photocatalytic activity.

Peng et al. synthesized Ag3PO4-MoS2/GR via a simple two-step hydrothermal process [33].
The composite was found to be an effective catalyst for the photo-decomposition of 2,4-dichlorophenol
(DCP) under simulated solar light and visible light (λ > 420 nm). They described the major reaction
steps involved in this photocatalytic process as follows:

Ag3PO4 + hv→ Ag3PO4 (e− + h+) (1)

Ag3PO4 (e−) + MoS2/GR→ Ag3PO4 + MoS2/GR (e−) (2)

MoS2/GR (e−) + O2 →MoS2/GR + O2
− (3)
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Ag3PO4 (h+) + DCP→ CO2 + H2O + other products (4)

Ag3PO4 (h+) + OH− → Ag3PO4 + ·OH (5)

·OH + DCP→ CO2 + H2O + other products (6)

As shown in the mechanism, electrons and holes could be separated with irradiation (1).
The holes could oxidize the DCP molecules adsorbed on the catalyst surface directly (4). They could
also react with water (or hydroxyl) to form hydroxyl free radicals (·OH), which are strong oxidants for
DCP decomposition (5). The MoS2/GR cocatalyst here could act as electron collectors to facilitate the
interfacial electron transfer and charge separation. In addition, the MoS2/GR cocatalyst could also
provide more active sites and allow for the activation of dissolved O2 for organic degradation [33].Nanomaterials 2017, 7, 62 8 of 10 
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Figure 9. TEM and HRTEM images of the sample (a,b) TiO2-MoS2/GR and (c,d) MoS2–GR (reprinted
from [34] with permission, Copyright Royal Society of Chemistry, 2015). QD: quantum dot.

Using CoS2/GR as cocatalyst, Zhu et al. supported TiO2 nanoparticles on its surface using a
facile sonochemical and hydrothermal method [35]. Their photo-activity was then evaluated for
the degradation of methylene blue (MB) and Texbrite BA-L (TBA) under visible light. Enhanced
activity was obtained due to the synergetic effect between TiO2 and the CoS2/GR cocatalyst.
The recent progress of TMD/GR based photocatalysts for H2 evolution and pollutants degradation are
summarized and shown in Table 1 for a easier perusal.
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Table 1. Summary of transition metal dichalcogenides (TMD)/GR based photocatalysts and their applications.

Catalyst Synthesis Method Application Light Source Activity Morphology Ref.

TiO2-MoS2/GR Two-step hydrothermal H2 generation
in 25% (v/v) ethanol/water

350 W Xe arc lamp
20 mW/cm−2

λ = 365 nm

165.3 µmol·h−1

a QE: 9.7%
at 365 nm

Particles/sheets [25]

CdS-MoS2/GR Hydrothermal H2 generation in 20 vol %
lactic solution 300 W Xe lamp (λ > 420 nm)

1.8 mmol/h
QE: 28.1%
at 420 nm

Particles/sheets [27]

CdS-MoS2/GR Sonication assisted
post loading

H2 generation in 10 vol %
lactic acid 500 W UV-vis lamp 3.067 mL·h−1 Particles/sheets [28]

CdS-MoS2/GR In-situ
photo deposition

H2 generation in 10 vol %
lactic acid

350 W Xe lamp
λ ≥ 420 nm
34 mW/cm2

99 µmol·h−1

QE: 9.8%
at 420 nm

Particles/sheets [29]

ZnS-MoS2/GR One-pot hydrothermal H2 generation in 0.005 M
Na2S and 0.005 M Na2SO3

300 W Xe lamp
125 mW/cm2 2258 µmol·h−1·g−1 Particles/sheets [30]

CdS-MoS2/GR Two-step solvothermal H2 generation in 10 vol %
lactic acid

350 W xenon arc lamp
(λ ≥ 420 nm)

621.3 µmol·h−1

54.4%
at 420 nm

Nanorods /sheets [31]

CdS-WS2/GR Solvothermal H2 generation in 0.35 M
Na2S and 0.25 M Na2SO3

500 W Xeno arc Lamp
λ > 420 nm

1842 µmol·h−1·g−1

21.2% at 420 nm
Nanosheets/nanorods [32]

Ag3PO4-MoS2/GR Hydrothermal-deposition 2,4-Dichlorophenol
degradation 20 mg·L−1

500 W xenon lamp
(λ > 420 nm)

b DP of >99% in 20 min
25 times higher than N-TiO2

Sub-microcrystal/sheets [33]

TiO2-MoS2/GR One-pot solvothermal RhB degradation 10 mg·L−1 150 W Xe lamp DP of 80% in 80 min
3.9 times higher than TiO2 P25 Sheets/Particles [34]

TiO2-CoS2/GR Sonochemical and
hydrothermal method

MB degradation
2.0 × 10−5 mol/L

8 W, halogen lamp
400–790 nm. DP of >90% in 90 min Sheets/Particles [35]

a QE: Quantum efficiency; b DP: Degradation percentage.
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4. Conclusions and Perspective

This mini review focused on the recent developments of the TMD/GR-based composites,
including the synthesis methods, the application in photocatalytic H2 evolution, and the application for
organic pollutants degradation. By combination with GR, the TMD/GR hybrids were more effective as
cocatalysts for the modification of semiconductors. GR here can act as a conductive electron transport
“highway” for the transport of the photogenerated electrons, and the TMDs nanosheets in the hybrids
can accept electrons and act as active sites for photocatalytic reactions. Although deep research is still
needed for real application, TMD/GR cocatalysts have shown great potential as a platform to fabricate
more efficient photocatalysts for solar energy utilization.
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