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Abstract: 
Web caching is intended to reduce network traffic, server 

load and user-perceived retrieval latency. Web pre-fetching, 
which can be considered as “active” caching, builds on regular 
web caching, minimizing further a web user’s access delay. To 
be effective, however, the pre-fetching techniques must be able 
to predict subsequent web access with minimum compu- 
tational overheads. This paper presents a similarity-based 
mechanism to support similarity-aware web document 
pre-fetching between proxy caches and browsing clients. We 
first define a set of measures to assess similarities between web 
documents, and then propose a multi-cache architecture to 
cache web documents based on those similarities. A predictor 
is developed to support the similarity-aware document 
pre-fetching algorithm. Preliminary experiments have shown 
that our predictor offers superior performance when 
compared with some existing prediction algorithms. 

Keywords: 
Similarity; web caching; document pre-fetching 

1. Introduction 

Restrictions inherent in the differences of bandwidth 
between remote and local access to web content impose 
additional costs when accessing remotely hosted web 
resources [1].  Content caching, in its various forms, is 
seen as a set of techniques based upon historical analysis 
and/or projection, to alleviate the effects of server 
bottlenecks and the vagaries of network traffic volume, 
thereby reducing latency experienced by a server, user or by 
client programs.  Traditional caching, at its basic level, 
locally stores recently requested pages so they do not have 
to be retrieved subsequently every time each is accessed.  
In brief, recently requested pages or files are held, or 
cached, on a local, or less remote, server in anticipation that 
they will be accessed again by clients.  Such caching does 
much to reduce repeat network traffic.  Clearly, though, 
newly requested documents will never be contained in such 
a cache.  Pre-fetching is an active technique that attempts 

to guess those documents that are likely to be requested 
when a page leading to them is accessed – success of this 
technique is measured as a “hit-ratio”.  However, in such 
guessing, there is a need for an effective balance to be 
achieved between user comfort and computational 
overheads – the extremes are: too little effort applied, 
resulting in too many on-demand-fetches, while too much 
effort results in too many pre-fetches.  The consequence of 
either is that of slower response to a user. 

Previous work by Xiao [2] in developing pre-fetching 
predictions between caching proxies and browsing clients 
was based on measures of similarity between web users 
established that pre-fetching is capable of increasing the 
hit-ratio.  Xiao’s work further established that organisation 
of the cache affects opportunities for successful 
pre-fetching.  In this position paper we describe a means 
of similarity based content management to improve the 
relative performance of pre-fetching techniques based upon 
document similarity detection. 

Pre-fetch caching in the context of this study will be 
based upon similarity detection and involve four phases. 
Similarities will be sought from previously cached 
documents employing several concurrently applied, but 
differing, algorithms to detect equivalences of, e.g. 
broad-content or keywords, images and picture-titles and 
links contained within pages under scrutiny.  Similarities 
between web-pages, having been detected, will then be 
ranked for candidature to be fetched in anticipation of a 
user’s intentions.  Following the ranking exercise, content 
settings may be realized for sub-caches and pre-fetching 
may then proceed. 

The rest of the paper is organized as follows.  Section 
2 defines the similarity measures. In Section 3, we propose 
a similarity based web cache architecture. Section 4 
presents the similarity-aware web document pre-fetching 
algorithm, and Section 5 concludes the paper. 

0-7803-9091-1/05/$20.00 ©2005 IEEE 
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2. Similarity measurement and detection 

The exercise of measuring similarities among 
documents follows two main streams: one uses a single 
relationship between documents1 or data objects while the 
other uses multiple relationships. Early research used a 
single relationship to measure the similarity of data objects. 
In the original vector space model (VSM) [3], “terms” (e.g. 
key words or stems) were used to characterize queries and 
documents, yielding a document-term relationship matrix to 
compute similarities among terms and documents by taking 
the inner product of the two corresponding row or column 
vectors.  Dice, Jaccard and Cosine [4] used such 
document-term relationships to measure the similarity of 
documents for retrieval and clustering purposes.  
Deerwester and Dumais [5, 6] saw that a document might 
not be well represented by its contained keywords and 
developed a Latent Semantic Index (LSI).  In this, they 
apply a singular vector decomposition (SVD) method to 
map the document-term matrix into some lower 
dimensional matrix where each dimension associates with a 
hidden “concept”, where any similarity of text objects 
(documents and queries) is measured by relationships to 
those “concepts” rather than the keywords they contained.  

With the advent of Word Wide Web, relationships with 
document objects, e.g. their hyperlink relationships, were 
used to derive similarity; a mechanism employed by both 
Dean [7] and Kleinberg [8] to discover similar web pages. 
Further, Larson [9] and Pitknow [10] applied co-citation to 
a hyperlink structure to measure any similarity of two web 
pages. Xiao [2] employed user-document access 
relationships to cluster users of similar interests.  Flesca 
[11] proposed a method to measure the similarity of two 
documents that represents the current and the previous 
version of monitored pages for effective web change 
detection.   

The approaches introduced above all relied upon a 
single relationship to measure any similarity of data objects. 
However, such approaches may run into serious problems 
when applications require accurate similarity e.g. where 
multiple types of data objects and relationships must be 
handled in an integrated manner.  Accordingly, in the 
extended VSM [12], feature vectors of data objects were 
augmented by adding attributes from objects of other 
related spaces. Similarity computation is then obtained 
from calculation on these enhanced feature vectors. The 
extended feature vectors were used for document search [13] 
or clustering purposes [14]. Racchio [15] and Ide [16] 

expanded the query vector using those frequently-used 
terms appearing in the foremost documents retrieved by a 
query to improve search effectiveness. Similarly, Brauen 
[17] modified document vectors by related query terms.  

                                                           
1 In this paper, a document refers to a text document or a 
web page that may contain text, images and/or pictures. 

Recently, it has been tried to calculate the similarity of 
two data objects based upon any similarity of their related 
data objects.  Raghavan and Sever [18] tried to measure 
the similarity of two queries by correspondences found in 
their respective search lists. Beeferman and Berger [19] 
clustered queries using the similarity of both their selected 
web pages and cluster web pages based upon similarities of 
the queries that lead to the selection of those web pages. 
Both [20] and [21] calculated the query similarity based on 
both the query contents similarity and the similarity of the 
documents that were retrieved by the queries.  

In this paper we define similarity measures of web 
documents for effective web document caching and 
pre-fetching. To pre-fetch documents that are of similar 
topic to the document a user is currently viewing, we need 
to derive the similarity of contents of web documents, 
ignoring any structural elements, e.g. HTML formatting. 
For efficacy of on-line pre-fetching, we propose different 
levels of similarity measures to capture levels of similarity 
between web documents. Consider a search of scientific 
papers over the web. A keyword based search usually 
returns a list of documents containing some or all of the 
given keywords. The matched keywords in the returned 
documents may appear in the title, keywords section, or 
other parts. Title/author-based searches follow similar 
principles. However, when a user is viewing a document 
and wishes to search for documents of similar topic, then 
the matching strategy may be quite different because the 
words to be matched may be related rather than explicitly 
stated.  In our study, similarities between text documents 
are measured based on topics, page titles, keywords or page 
contents or combinations thereof.  Compared with a 
keyword-based similarity measure, a content-based 
similarity is complicated by the need for special techniques, 
e.g., from the area of information retrieval [22]. However, 
any computation of similarity still needs to be completed 
within a reasonable time limit. 

2.1. Document Model 

To calculate similarities among web documents, we 
use a model based on the document model representation in 
[11], wherein structured web documents are represented as 
unordered labeled trees. That is, we consider containment 
rather than order of appearance of words within a document.  
However, our model differs from that in [11] in two ways: 
first, we don’t consider the HTML formatting elements and, 
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second, we consider a document’s structure to be based on 
sectional elements, e.g. Abstract and subsections, while 
their work specifies texts in terms of pairs of start and end 
tags, e.g., <table> … </table>, <ul. … </ul>.  

In the resultant tree, each non-leaf node corresponds to 
a subsection of the document (e.g. characterizing the title of 
the subsection), except that the root-node might also 
contain a set of keywords, a list of authors, a string for title, 
or/and a set of words comprising the abstract. Each leaf 
node corresponds to the text of that (sub)section.  Notably, 
such a structure allows us to determine sectional similarities 
between particular elements such as titles; between the 
various contents, and, implicitly, between the structures of 
compared documents.  In brief, then, a document tree is an 
unordered tree wherein each node is characterized by an 
associated set of type-value pairs.  

Given a document tree T, of root r, with a node nr we 
may represent a sub-tree of T rooted at nr as T(nr). We 
define a set of functions, each characterizing some element, 
on the document tree: keyword(r), title(r), authors(r), 
abstract(r) and text(r). For a document tree rooted at r, 
keyword(r) = {s | s is a keyword contained in the keyword 
section of r}. The title(r), authors(r) and abstract(r) can be 
defined similarly. If n1, n2, . . . , nk are child nodes of r, then 

text(r)=  



 ∈∪∪ = )}(|{)( 1 i

k
i ntextssrtitle

 {s |s is a word in leaf(T(r))}    if r is a leaf node of T
 

Essentially text(r) is a set of words contained in the 
various strings associated with nodes of the (sub-)tree 
rooted at r. Note that text(r) is defined recursively.   

Our similarity calculation algorithm works on this tree 
structure by exploiting the information contained in 
individual nodes and the whole tree. Observe that each 
node keeps track of its level in the tree, its content and the 
content of its child nodes.    

2.2.  Levels of Document Similarity Measures 

Levels of document similarity measures are defined by 
making use of the text extracted from elements of document 
(sub-)trees. To compute the similarities efficiently, the 
measures must be normalized, allowing the comparison of 
pairs of documents and the selection of different levels of 
elements/components. Given two document trees T1 and T2, 
and two nodes r1 ∈T1 and r2 ∈ T2, we define  

 intersect (w(r1), w(r2)) = |)()(|
|)()(

21

21

rwrw
rwrw

∪
∩|        (1) 

where w(r) is a set of strings associated with nodes of the 
(sub-)tree rooted at r. The function intersect(w(r1),w(r2)) 
returns the percentage of the number of common words 

divided by the number of all words that appear in both w(r1) 
and w(r2). Clearly, intersect(w(r1),w(r2)) ≤1, while equality 
exists when w(r1) = w(r2). 

For two document trees rooted at r1 and r2, 
respectively, similarities of keyword, title and abstract may 
be defined by the formulae (2) through (4): 
  SIMKB(r1, r2) = intersect(keyword(r1), keyword(r2))   (2) 
  SIMTB(r1, r2) = intersect(title(r1), title(r2))          (3) 
  SIMAB(r1, r2) = intersect(abstract(r1), abstract(r2))   (4) 

while the content-based similarity is defined as 
  SIMCB(r1, r2) = intersect(w(r1), w(r2))             (5) 

Where w(ri) = text(ri) ∪ keywords(ri) ∪ abstract(ri), 1≤i≤ 2. 
Generally, the higher a word occurrence in a document, 

the closer that word relates to the theme of the document 
and this may be used as a measure of similarity. Let 
weightr(s) be the number of appearances of the word s in 
document represented by r, then the intersect function can 
be defined as 
   intersectwt (w(r1), w(r2)) = 

 
∑
∑

∪∈

∩∈

+
)()(

)()(

21 21

221 1

|)()(|
2
1

)}(),(min{

rwrws rr

rrwrws r

sweightsweight

sweightsweight
   (6) 

Based on this function, the weighted similarity 
measures SIMKB( ), SIMTB( ), SIMAB( ) and SIMCB( ) can all 
be defined by replacing intersect( ) with intersectwt( ) 
defined in (2) to (5) above.  

if r is a non-leaf node,
with children n1, …, nk 

2.3.  Data pre-processing 

To calculate similarities among documents, a text filter 
was developed to extract meaningful words from related 
sections of a document, and count them per section.  The 
method is described briefly below:  

In the text filter, raw text is first parsed into gene- 
ralized words, called tokens. Tokens include meaningful 
strings, abbreviations, punctuation and other specialized 
symbols that have been derived from the structure found in 
the document’s sections. For example, while typical words 
such as “web” and “page” are taken as tokens, the 
punctuation mark “$” and the URL “www.ecu.edu.au” are 
also tokens. However, digits and others insignificant words, 
e.g. pronouns and prepositions, are not treated as tokens. 

For each section, the text filter produces a list of (token, 
c(token)) pairs, where c(token) is the count of that token 
within the section – in effect, a bag-of-words basis for our 
representation. Note that for brevity of the token list and 
subsequent comparison, each word is reduced to its stem 
(e.g., server and service into serve). While the unordered 
bag-of-words model will not suffice for linguistic analysis, 
we assume it captures most of the information needed for 
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calculating similarities using formula (2) ~ (5).  

3. Similarity-aware Web Content Management 

The basic idea of web-caching is to reduce network 
traffic load and reduce retrieval latency by holding recent 
requested documents at the proxy caches so that they do not 
have to be fully retrieved upon identical request.  

Document similarity information is fundamental to 
effective caching and pre-fetching, yet it has never been 
incorporated directly in cache replacement algorithms. 
Rather, other properties of the request stream (e.g., 
document size and access frequency etc.), being easier to 
capture on-line, are used to infer similarity, and hence 
driven cache replacement policies. In this section, we 
propose a similarity-based multi-cache web content 
management scheme and on-line algorithm to capture and 
maintain an apposite similarity profile of documents 
requested through a caching proxy and describe a novel 
cache replacement policy using such information to support 
the similarity-aware pre-fetching. 

3.1. The caching architecture 

We now present a similarity-based multi-cache web 
content management scheme. There are four major 
components: central router, similarity profiles, sub-caches 
(SP), and document allocator. Of these, the central router is 
pivotal in controlling and coordinating the other 
components. 

Before configuring the multi-cache web content 
management scheme, we first cluster documents in cache 
based on the similarity measures introduced in (2)~(6), and 
determine the number of themes, N, of the documents. For 
each theme/cluster, a number of stems relating to it were 
chosen (e.g., by looking at all stems produced by the text 
filter when SP vectors were computed). Then the cache is 
divided into N+1 sub-caches. Each of the first N sub-caches 
stores documents of one particular theme, and the last 
sub-cache stores other documents not belonging to any of 
the N themes. In this way, we ensure that similarities among 
documents in any sub-cache are relatively higher, while 
relegating those among documents across sub-caches. 

3.1.1.  Similarity Profiles  

The SP comprises N two-dimensional arrays Ai(*, *), 
i=1, 2, …, N, of which each corresponds to one of the first 
N sub-caches. For each document j in sub-cache i, SP 
counts the number of occurrences of the stems that relate to 
the theme of the sub-cache, storing the numbers in vector 

Ai(j,*). This information is useful when performing 
similarity-aware pre-fetching from the sub-cache to a client. 
For each theme, we limit the number of stems to be 100.   

3.1.2.  Sub-caches 

A sub-cache is an independent cache that has its own 
cache space, contents and replacement policy. Since 
documents in a same sub-cache are usually of similar theme, 
simpler replacement policies, e.g. LRU, LFU and FIFO, 
may be applied.  

3.1.3.  Sub-cache document allocator  

The sub-cache allocator assesses comprehensively a 
candidate set of evictions selected by sub-caches, with 
possible results of: re-caching, eviction or probation. Of 
these, re-caching and eviction are instantaneous, while a 
probation document will be held by the allocator in its own 
space pending a final decision.  

3.2. Algorithm Framework of Similarity-aware 
Content Management (SACM)  

A request for a document d invokes the SACM 
algorithm as follows: an instance of d is sought in an 
in-cache index; if d is already cached (cache hit) and still 
fresh its containing sub-cache is noted whereupon d will be 
returned to the requesting client. If the instance of d is not 
fresh, then re-cache from an origin server, updating related 
parameters such as SP vectors. For a cache miss, the request 
for d will be forwarded to the origin server and a resultant 
downloaded document dnew, is returned to the client. Based 
on the content of dnew, a SP vector will be calculated to 
determine a sub-cache id in which dnew is to be cached. 
Where there is insufficient space for dnew, then sub cache id 
makes room according to its eviction (e.g. LRU, LFU) 
and/or space sharing policies. The document allocator of id 
will then assess and purge any eviction candidates.  

The central router mediates between cooperating 
sub-caches. Although a document may be cached 
“conceptually” in several sub-caches in terms of sub-cache 
document allocator evaluation, only one actual copy will be 
maintained. 

4. Similarity-aware document pre-fetching 

In this section, we focus on any pre-fetching between 
caching proxies and browsing clients in idle periods of their 
network links when a current web document is read by a 
user. If the proxy can predict those cached documents a user 
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might access, the idle periods may be used to push them to 
the user, or to have the browser/client pull them. Since the 
proxy only initiates pre-fetches for documents in its caches, 
there is no extra internet traffic increase. 

We propose two similarity-based algorithms to guide 
pre-fetching from proxy caches to clients. The first one is a 
pure similarity-based pre-fetcher which considers only 
those documents whose similarities with the current 
viewing document surpass a certain threshold. The second 
algorithm (i.e., similarity-aware pre-fetching) combines the 
prediction by partial matching (PPM) method [1] and the 
pure similarity-based pre-fetching strategies.  

4.1. Similarity-based pre-fetching predictor 

The similarity-based pre-fetching predictor evaluates 
the next k documents in the cache based on document 
similarities. 

With the support of the similarity-aware web cache 
architecture, our similarity-based document pre-fetching 
predictor works based on a very simple rule. Suppose a 
client is viewing a document, say p (at this time, a copy of p 
must be cached in a certain sub-cache, say i, or being held 
by the allocator). Then the pre-fetching predictor will 
calculate the similarities between p and those documents in 
sub-cache i by referencing the similarity information in ith 
SP. No documents in other sub-caches are considered 
because of their low similarities with p. Then the predictor 
simply chooses k documents whose similarities with p are 
among the top k highest ones. These k documents, together 
with those cached pages to which hyperlinks exist from p, 
will be returned to the pre-fetcher for the possibility of 
pre-fetching. 

4.2. Similarity-aware pre-fetching predictor 

The PPM developed in [1] essentially predicts the next 
l requests on the past m accesses of a user, limiting 
candidates by an access probability threshold t. The 
performance metrics of the algorithm depend on the (m, l, t) 
configurations. However, the algorithm uses patterns 
observed from all users’ references to predict a particular 
user’s behavior. Referencing too many contexts makes the 
prediction inaccurate, inefficient and unwieldy.  

Our previous work [2] extended the PPM algorithm by 
referencing only those access patterns from a small group 
of other users exhibiting high similarities in their past 
access patterns to predict a current user’s next access. The 
number of times the algorithm can make prediction is 
reduced because of the smaller sample size, but the hit ratio 
of the pre-fetching increases because more related access 

patterns are referenced. We call the method 
pattern-similarity based PPM (or psPPM). 

To be more similarity-aware, we now modify PPM 
and psPPM by replacing the access threshold t with s, 
where s is the similarity threshold between the document to 
be pre-fetched and the document the client is viewing. Thus 
the new algorithm has the following parameters: 
• r: the number of users whose access patterns are 

referenced to predict future accesses of the current user.  
• m: the number of past accesses that are used to predict 

future ones. We call m the prefix depth. 
• l: the number of steps that the algorithm tries to predict 

into the future. 
• s: the similarity threshold used to weed out candidate 

document. Only those documents whose similarity with 
the viewing document is greater than s, where 0 ≤ s ≤ 1, 
is considered for pre-fetching.  

Suppose a user u is viewing a document d. A set of r 
users whose access patterns showed relatively high 
similarities with u is evaluated and ordered in descending 
order. For l>1, not only the immediate next request, but the 
next few requests after an URL are also considered for 
potential pre-fetching. For example, if l=2, the algorithm 
predicts both the immediate next and its successor for the 
user. If m>1, more contexts of the r users’ past accesses are 
referenced for the purpose of improving the accuracy of the 
prediction. 

The predictor maintains a data structure that tracks the 
sequence of URLs for every user. For prediction, the past 
reference, the past two references, and up to the past m 
references are matched against the collection of succession 
to the users’ past access patterns to produce a list of URLs 
for the next l steps. If a longer match sequence can be found 
from the other r users’ patterns, the next URL to the longest 
match is also taken as a potential document to be accessed 
next by the user. The outcome of each prediction is a list of 
candidate documents, ordered by their similarities with d. 
For those candidate documents with the same similarity 
value, the URL matched with longer prefix is put first in the 
list.  

We conducted two series of preliminary simulations. 
The first series of simulations is to demonstrate the 
capability of our similarity measures for document 
comparison to determine the document themes (or clusters). 
Using the obtained similarity information, our second series 
of simulations demonstrates the improvement in prediction 
accuracy (and thus hit rate) of the pre-fetching between 
caching proxies and browsing users using our similarity- 
based/aware predictors. The preliminary results indicate 
that our predictor is capable of practical prediction for web 
document pre-fetching in the sense and an improvement of 
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the order of 10% over traditional PPM. We intend to 
perform more extensive simulations on real Web log data, 
of which the results will be published in future. 

5. Conclusions 

We proposed a similarity-aware web content 
management scheme, presented its underlying algorithms 
and developed a similarity-aware predictor for web 
document pre-fetching between proxy caches and browsing 
clients. Simulations indicate that our predictor is capable of 
practical prediction for web document pre-fetching in the 
sense that it may predict more accurately and rapidly than 
the traditional PPM does by only referencing to a reduced 
set of users’ past access patterns.  
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