
Edith Cowan University Edith Cowan University

Research Online Research Online

Research outputs pre 2011

2005

Similarity-aware Web Content Management and Document Pre-Similarity-aware Web Content Management and Document Pre-

fetching fetching

Jitian Xiao
Edith Cowan University

Michael Collins
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

10.1109/ICMLC.2005.1527329
This is an Author's Accepted Manuscript of: Xiao, J. , & Collins, M. (2005). Similarity-aware Web Content
Management and Document Pre-fetching. Proceedings of International Conference on Machine Learning and
Cybernetics. (pp. 2307-2312). Guangzhou, China. IEEE Press. Available here
© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/2822

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F2822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F2822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/ICMLC.2005.1527329
http://dx.doi.org/10.1109/ICMLC.2005.1527329

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

SIMILARITY-AWARE WEB CONTENT MANAGEMENT AND
DOCUMENT PRE-FETCHING

JI-TIAN XIAO, MICHAEL COLLINS

School of Computer and Information Science, Edith Cowan University, 2 Bradford Street, Mount Lawley, WA 6050,
Australia

E-MAIL: {j.xiao, m.collins}@ecu.edu.au

Abstract:
Web caching is intended to reduce network traffic, server

load and user-perceived retrieval latency. Web pre-fetching,
which can be considered as “active” caching, builds on regular
web caching, minimizing further a web user’s access delay. To
be effective, however, the pre-fetching techniques must be able
to predict subsequent web access with minimum compu-
tational overheads. This paper presents a similarity-based
mechanism to support similarity-aware web document
pre-fetching between proxy caches and browsing clients. We
first define a set of measures to assess similarities between web
documents, and then propose a multi-cache architecture to
cache web documents based on those similarities. A predictor
is developed to support the similarity-aware document
pre-fetching algorithm. Preliminary experiments have shown
that our predictor offers superior performance when
compared with some existing prediction algorithms.

Keywords:
Similarity; web caching; document pre-fetching

1. Introduction

Restrictions inherent in the differences of bandwidth
between remote and local access to web content impose
additional costs when accessing remotely hosted web
resources [1]. Content caching, in its various forms, is
seen as a set of techniques based upon historical analysis
and/or projection, to alleviate the effects of server
bottlenecks and the vagaries of network traffic volume,
thereby reducing latency experienced by a server, user or by
client programs. Traditional caching, at its basic level,
locally stores recently requested pages so they do not have
to be retrieved subsequently every time each is accessed.
In brief, recently requested pages or files are held, or
cached, on a local, or less remote, server in anticipation that
they will be accessed again by clients. Such caching does
much to reduce repeat network traffic. Clearly, though,
newly requested documents will never be contained in such
a cache. Pre-fetching is an active technique that attempts

to guess those documents that are likely to be requested
when a page leading to them is accessed – success of this
technique is measured as a “hit-ratio”. However, in such
guessing, there is a need for an effective balance to be
achieved between user comfort and computational
overheads – the extremes are: too little effort applied,
resulting in too many on-demand-fetches, while too much
effort results in too many pre-fetches. The consequence of
either is that of slower response to a user.

Previous work by Xiao [2] in developing pre-fetching
predictions between caching proxies and browsing clients
was based on measures of similarity between web users
established that pre-fetching is capable of increasing the
hit-ratio. Xiao’s work further established that organisation
of the cache affects opportunities for successful
pre-fetching. In this position paper we describe a means
of similarity based content management to improve the
relative performance of pre-fetching techniques based upon
document similarity detection.

Pre-fetch caching in the context of this study will be
based upon similarity detection and involve four phases.
Similarities will be sought from previously cached
documents employing several concurrently applied, but
differing, algorithms to detect equivalences of, e.g.
broad-content or keywords, images and picture-titles and
links contained within pages under scrutiny. Similarities
between web-pages, having been detected, will then be
ranked for candidature to be fetched in anticipation of a
user’s intentions. Following the ranking exercise, content
settings may be realized for sub-caches and pre-fetching
may then proceed.

The rest of the paper is organized as follows. Section
2 defines the similarity measures. In Section 3, we propose
a similarity based web cache architecture. Section 4
presents the similarity-aware web document pre-fetching
algorithm, and Section 5 concludes the paper.

0-7803-9091-1/05/$20.00 ©2005 IEEE
2307

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

2. Similarity measurement and detection

The exercise of measuring similarities among
documents follows two main streams: one uses a single
relationship between documents1 or data objects while the
other uses multiple relationships. Early research used a
single relationship to measure the similarity of data objects.
In the original vector space model (VSM) [3], “terms” (e.g.
key words or stems) were used to characterize queries and
documents, yielding a document-term relationship matrix to
compute similarities among terms and documents by taking
the inner product of the two corresponding row or column
vectors. Dice, Jaccard and Cosine [4] used such
document-term relationships to measure the similarity of
documents for retrieval and clustering purposes.
Deerwester and Dumais [5, 6] saw that a document might
not be well represented by its contained keywords and
developed a Latent Semantic Index (LSI). In this, they
apply a singular vector decomposition (SVD) method to
map the document-term matrix into some lower
dimensional matrix where each dimension associates with a
hidden “concept”, where any similarity of text objects
(documents and queries) is measured by relationships to
those “concepts” rather than the keywords they contained.

With the advent of Word Wide Web, relationships with
document objects, e.g. their hyperlink relationships, were
used to derive similarity; a mechanism employed by both
Dean [7] and Kleinberg [8] to discover similar web pages.
Further, Larson [9] and Pitknow [10] applied co-citation to
a hyperlink structure to measure any similarity of two web
pages. Xiao [2] employed user-document access
relationships to cluster users of similar interests. Flesca
[11] proposed a method to measure the similarity of two
documents that represents the current and the previous
version of monitored pages for effective web change
detection.

The approaches introduced above all relied upon a
single relationship to measure any similarity of data objects.
However, such approaches may run into serious problems
when applications require accurate similarity e.g. where
multiple types of data objects and relationships must be
handled in an integrated manner. Accordingly, in the
extended VSM [12], feature vectors of data objects were
augmented by adding attributes from objects of other
related spaces. Similarity computation is then obtained
from calculation on these enhanced feature vectors. The
extended feature vectors were used for document search [13]
or clustering purposes [14]. Racchio [15] and Ide [16]

expanded the query vector using those frequently-used
terms appearing in the foremost documents retrieved by a
query to improve search effectiveness. Similarly, Brauen
[17] modified document vectors by related query terms.

1 In this paper, a document refers to a text document or a
web page that may contain text, images and/or pictures.

Recently, it has been tried to calculate the similarity of
two data objects based upon any similarity of their related
data objects. Raghavan and Sever [18] tried to measure
the similarity of two queries by correspondences found in
their respective search lists. Beeferman and Berger [19]
clustered queries using the similarity of both their selected
web pages and cluster web pages based upon similarities of
the queries that lead to the selection of those web pages.
Both [20] and [21] calculated the query similarity based on
both the query contents similarity and the similarity of the
documents that were retrieved by the queries.

In this paper we define similarity measures of web
documents for effective web document caching and
pre-fetching. To pre-fetch documents that are of similar
topic to the document a user is currently viewing, we need
to derive the similarity of contents of web documents,
ignoring any structural elements, e.g. HTML formatting.
For efficacy of on-line pre-fetching, we propose different
levels of similarity measures to capture levels of similarity
between web documents. Consider a search of scientific
papers over the web. A keyword based search usually
returns a list of documents containing some or all of the
given keywords. The matched keywords in the returned
documents may appear in the title, keywords section, or
other parts. Title/author-based searches follow similar
principles. However, when a user is viewing a document
and wishes to search for documents of similar topic, then
the matching strategy may be quite different because the
words to be matched may be related rather than explicitly
stated. In our study, similarities between text documents
are measured based on topics, page titles, keywords or page
contents or combinations thereof. Compared with a
keyword-based similarity measure, a content-based
similarity is complicated by the need for special techniques,
e.g., from the area of information retrieval [22]. However,
any computation of similarity still needs to be completed
within a reasonable time limit.

2.1. Document Model

To calculate similarities among web documents, we
use a model based on the document model representation in
[11], wherein structured web documents are represented as
unordered labeled trees. That is, we consider containment
rather than order of appearance of words within a document.
However, our model differs from that in [11] in two ways:
first, we don’t consider the HTML formatting elements and,

2308

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

second, we consider a document’s structure to be based on
sectional elements, e.g. Abstract and subsections, while
their work specifies texts in terms of pairs of start and end
tags, e.g., <table> … </table>, <ul. … .

In the resultant tree, each non-leaf node corresponds to
a subsection of the document (e.g. characterizing the title of
the subsection), except that the root-node might also
contain a set of keywords, a list of authors, a string for title,
or/and a set of words comprising the abstract. Each leaf
node corresponds to the text of that (sub)section. Notably,
such a structure allows us to determine sectional similarities
between particular elements such as titles; between the
various contents, and, implicitly, between the structures of
compared documents. In brief, then, a document tree is an
unordered tree wherein each node is characterized by an
associated set of type-value pairs.

Given a document tree T, of root r, with a node nr we
may represent a sub-tree of T rooted at nr as T(nr). We
define a set of functions, each characterizing some element,
on the document tree: keyword(r), title(r), authors(r),
abstract(r) and text(r). For a document tree rooted at r,
keyword(r) = {s | s is a keyword contained in the keyword
section of r}. The title(r), authors(r) and abstract(r) can be
defined similarly. If n1, n2, . . . , nk are child nodes of r, then

text(r)=

 ∈∪∪ =)}(|{)(1 i

k
i ntextssrtitle

 {s |s is a word in leaf(T(r))} if r is a leaf node of T

Essentially text(r) is a set of words contained in the
various strings associated with nodes of the (sub-)tree
rooted at r. Note that text(r) is defined recursively.

Our similarity calculation algorithm works on this tree
structure by exploiting the information contained in
individual nodes and the whole tree. Observe that each
node keeps track of its level in the tree, its content and the
content of its child nodes.

2.2. Levels of Document Similarity Measures

Levels of document similarity measures are defined by
making use of the text extracted from elements of document
(sub-)trees. To compute the similarities efficiently, the
measures must be normalized, allowing the comparison of
pairs of documents and the selection of different levels of
elements/components. Given two document trees T1 and T2,
and two nodes r1 ∈T1 and r2 ∈ T2, we define

 intersect (w(r1), w(r2)) = |)()(|
|)()(

21

21

rwrw
rwrw

∪
∩| (1)

where w(r) is a set of strings associated with nodes of the
(sub-)tree rooted at r. The function intersect(w(r1),w(r2))
returns the percentage of the number of common words

divided by the number of all words that appear in both w(r1)
and w(r2). Clearly, intersect(w(r1),w(r2)) ≤1, while equality
exists when w(r1) = w(r2).

For two document trees rooted at r1 and r2,
respectively, similarities of keyword, title and abstract may
be defined by the formulae (2) through (4):
 SIMKB(r1, r2) = intersect(keyword(r1), keyword(r2)) (2)
 SIMTB(r1, r2) = intersect(title(r1), title(r2)) (3)
 SIMAB(r1, r2) = intersect(abstract(r1), abstract(r2)) (4)

while the content-based similarity is defined as
 SIMCB(r1, r2) = intersect(w(r1), w(r2)) (5)

Where w(ri) = text(ri) ∪ keywords(ri) ∪ abstract(ri), 1≤i≤ 2.
Generally, the higher a word occurrence in a document,

the closer that word relates to the theme of the document
and this may be used as a measure of similarity. Let
weightr(s) be the number of appearances of the word s in
document represented by r, then the intersect function can
be defined as
 intersectwt (w(r1), w(r2)) =

∑
∑

∪∈

∩∈

+
)()(

)()(

21 21

221 1

|)()(|
2
1

)}(),(min{

rwrws rr

rrwrws r

sweightsweight

sweightsweight
 (6)

Based on this function, the weighted similarity
measures SIMKB(), SIMTB(), SIMAB() and SIMCB() can all
be defined by replacing intersect() with intersectwt()
defined in (2) to (5) above.

if r is a non-leaf node,
with children n1, …, nk

2.3. Data pre-processing

To calculate similarities among documents, a text filter
was developed to extract meaningful words from related
sections of a document, and count them per section. The
method is described briefly below:

In the text filter, raw text is first parsed into gene-
ralized words, called tokens. Tokens include meaningful
strings, abbreviations, punctuation and other specialized
symbols that have been derived from the structure found in
the document’s sections. For example, while typical words
such as “web” and “page” are taken as tokens, the
punctuation mark “$” and the URL “www.ecu.edu.au” are
also tokens. However, digits and others insignificant words,
e.g. pronouns and prepositions, are not treated as tokens.

For each section, the text filter produces a list of (token,
c(token)) pairs, where c(token) is the count of that token
within the section – in effect, a bag-of-words basis for our
representation. Note that for brevity of the token list and
subsequent comparison, each word is reduced to its stem
(e.g., server and service into serve). While the unordered
bag-of-words model will not suffice for linguistic analysis,
we assume it captures most of the information needed for

2309

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

calculating similarities using formula (2) ~ (5).

3. Similarity-aware Web Content Management

The basic idea of web-caching is to reduce network
traffic load and reduce retrieval latency by holding recent
requested documents at the proxy caches so that they do not
have to be fully retrieved upon identical request.

Document similarity information is fundamental to
effective caching and pre-fetching, yet it has never been
incorporated directly in cache replacement algorithms.
Rather, other properties of the request stream (e.g.,
document size and access frequency etc.), being easier to
capture on-line, are used to infer similarity, and hence
driven cache replacement policies. In this section, we
propose a similarity-based multi-cache web content
management scheme and on-line algorithm to capture and
maintain an apposite similarity profile of documents
requested through a caching proxy and describe a novel
cache replacement policy using such information to support
the similarity-aware pre-fetching.

3.1. The caching architecture

We now present a similarity-based multi-cache web
content management scheme. There are four major
components: central router, similarity profiles, sub-caches
(SP), and document allocator. Of these, the central router is
pivotal in controlling and coordinating the other
components.

Before configuring the multi-cache web content
management scheme, we first cluster documents in cache
based on the similarity measures introduced in (2)~(6), and
determine the number of themes, N, of the documents. For
each theme/cluster, a number of stems relating to it were
chosen (e.g., by looking at all stems produced by the text
filter when SP vectors were computed). Then the cache is
divided into N+1 sub-caches. Each of the first N sub-caches
stores documents of one particular theme, and the last
sub-cache stores other documents not belonging to any of
the N themes. In this way, we ensure that similarities among
documents in any sub-cache are relatively higher, while
relegating those among documents across sub-caches.

3.1.1. Similarity Profiles

The SP comprises N two-dimensional arrays Ai(*, *),
i=1, 2, …, N, of which each corresponds to one of the first
N sub-caches. For each document j in sub-cache i, SP
counts the number of occurrences of the stems that relate to
the theme of the sub-cache, storing the numbers in vector

Ai(j,*). This information is useful when performing
similarity-aware pre-fetching from the sub-cache to a client.
For each theme, we limit the number of stems to be 100.

3.1.2. Sub-caches

A sub-cache is an independent cache that has its own
cache space, contents and replacement policy. Since
documents in a same sub-cache are usually of similar theme,
simpler replacement policies, e.g. LRU, LFU and FIFO,
may be applied.

3.1.3. Sub-cache document allocator

The sub-cache allocator assesses comprehensively a
candidate set of evictions selected by sub-caches, with
possible results of: re-caching, eviction or probation. Of
these, re-caching and eviction are instantaneous, while a
probation document will be held by the allocator in its own
space pending a final decision.

3.2. Algorithm Framework of Similarity-aware
Content Management (SACM)

A request for a document d invokes the SACM
algorithm as follows: an instance of d is sought in an
in-cache index; if d is already cached (cache hit) and still
fresh its containing sub-cache is noted whereupon d will be
returned to the requesting client. If the instance of d is not
fresh, then re-cache from an origin server, updating related
parameters such as SP vectors. For a cache miss, the request
for d will be forwarded to the origin server and a resultant
downloaded document dnew, is returned to the client. Based
on the content of dnew, a SP vector will be calculated to
determine a sub-cache id in which dnew is to be cached.
Where there is insufficient space for dnew, then sub cache id
makes room according to its eviction (e.g. LRU, LFU)
and/or space sharing policies. The document allocator of id
will then assess and purge any eviction candidates.

The central router mediates between cooperating
sub-caches. Although a document may be cached
“conceptually” in several sub-caches in terms of sub-cache
document allocator evaluation, only one actual copy will be
maintained.

4. Similarity-aware document pre-fetching

In this section, we focus on any pre-fetching between
caching proxies and browsing clients in idle periods of their
network links when a current web document is read by a
user. If the proxy can predict those cached documents a user

2310

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

might access, the idle periods may be used to push them to
the user, or to have the browser/client pull them. Since the
proxy only initiates pre-fetches for documents in its caches,
there is no extra internet traffic increase.

We propose two similarity-based algorithms to guide
pre-fetching from proxy caches to clients. The first one is a
pure similarity-based pre-fetcher which considers only
those documents whose similarities with the current
viewing document surpass a certain threshold. The second
algorithm (i.e., similarity-aware pre-fetching) combines the
prediction by partial matching (PPM) method [1] and the
pure similarity-based pre-fetching strategies.

4.1. Similarity-based pre-fetching predictor

The similarity-based pre-fetching predictor evaluates
the next k documents in the cache based on document
similarities.

With the support of the similarity-aware web cache
architecture, our similarity-based document pre-fetching
predictor works based on a very simple rule. Suppose a
client is viewing a document, say p (at this time, a copy of p
must be cached in a certain sub-cache, say i, or being held
by the allocator). Then the pre-fetching predictor will
calculate the similarities between p and those documents in
sub-cache i by referencing the similarity information in ith
SP. No documents in other sub-caches are considered
because of their low similarities with p. Then the predictor
simply chooses k documents whose similarities with p are
among the top k highest ones. These k documents, together
with those cached pages to which hyperlinks exist from p,
will be returned to the pre-fetcher for the possibility of
pre-fetching.

4.2. Similarity-aware pre-fetching predictor

The PPM developed in [1] essentially predicts the next
l requests on the past m accesses of a user, limiting
candidates by an access probability threshold t. The
performance metrics of the algorithm depend on the (m, l, t)
configurations. However, the algorithm uses patterns
observed from all users’ references to predict a particular
user’s behavior. Referencing too many contexts makes the
prediction inaccurate, inefficient and unwieldy.

Our previous work [2] extended the PPM algorithm by
referencing only those access patterns from a small group
of other users exhibiting high similarities in their past
access patterns to predict a current user’s next access. The
number of times the algorithm can make prediction is
reduced because of the smaller sample size, but the hit ratio
of the pre-fetching increases because more related access

patterns are referenced. We call the method
pattern-similarity based PPM (or psPPM).

To be more similarity-aware, we now modify PPM
and psPPM by replacing the access threshold t with s,
where s is the similarity threshold between the document to
be pre-fetched and the document the client is viewing. Thus
the new algorithm has the following parameters:
• r: the number of users whose access patterns are

referenced to predict future accesses of the current user.
• m: the number of past accesses that are used to predict

future ones. We call m the prefix depth.
• l: the number of steps that the algorithm tries to predict

into the future.
• s: the similarity threshold used to weed out candidate

document. Only those documents whose similarity with
the viewing document is greater than s, where 0 ≤ s ≤ 1,
is considered for pre-fetching.

Suppose a user u is viewing a document d. A set of r
users whose access patterns showed relatively high
similarities with u is evaluated and ordered in descending
order. For l>1, not only the immediate next request, but the
next few requests after an URL are also considered for
potential pre-fetching. For example, if l=2, the algorithm
predicts both the immediate next and its successor for the
user. If m>1, more contexts of the r users’ past accesses are
referenced for the purpose of improving the accuracy of the
prediction.

The predictor maintains a data structure that tracks the
sequence of URLs for every user. For prediction, the past
reference, the past two references, and up to the past m
references are matched against the collection of succession
to the users’ past access patterns to produce a list of URLs
for the next l steps. If a longer match sequence can be found
from the other r users’ patterns, the next URL to the longest
match is also taken as a potential document to be accessed
next by the user. The outcome of each prediction is a list of
candidate documents, ordered by their similarities with d.
For those candidate documents with the same similarity
value, the URL matched with longer prefix is put first in the
list.

We conducted two series of preliminary simulations.
The first series of simulations is to demonstrate the
capability of our similarity measures for document
comparison to determine the document themes (or clusters).
Using the obtained similarity information, our second series
of simulations demonstrates the improvement in prediction
accuracy (and thus hit rate) of the pre-fetching between
caching proxies and browsing users using our similarity-
based/aware predictors. The preliminary results indicate
that our predictor is capable of practical prediction for web
document pre-fetching in the sense and an improvement of

2311

Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005

the order of 10% over traditional PPM. We intend to
perform more extensive simulations on real Web log data,
of which the results will be published in future.

5. Conclusions

We proposed a similarity-aware web content
management scheme, presented its underlying algorithms
and developed a similarity-aware predictor for web
document pre-fetching between proxy caches and browsing
clients. Simulations indicate that our predictor is capable of
practical prediction for web document pre-fetching in the
sense that it may predict more accurately and rapidly than
the traditional PPM does by only referencing to a reduced
set of users’ past access patterns.

References

[1] L. Fan, P. Cao, W. Lin and Q. Jacobson, Web
Prefetching between Low-Bandwidth Client and
Proxies: Potential and Performance, SIGMETRICS'99,
1999.

[2] Xiao, J., Zhang, Y., Jia, X., and T. Li. Measuring
Similarity of Interests for Clustering Web-Users.
Proceedings of the 12th Australian Database
Conference 2001 (ADC'2001). Gold Coast, Australia,
107-114, 2001.

[3] Salton. G., Automatic Information Organization and
Retrieval. McGraw-Hill, 1968.

[4] Rasmussen, E., Clustering algorithms. Information
Retrieval: Data Structure and Algorithms. Prentice
Hall, 419-442, 1992.

[5] Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas,
G.W., and Harshman., R.A., Indexing by Latent
Semantics Analysis, Journal of the Society for
Information Science, 41(6), 391-407.

[6] Dumais, S.T., Furnas, G.W., Landauer, T.K., and
Deerwester, S., Using Latent Semantic Analysis to
Improve Information Retrieval, Proceedings of the
CHI’88: Conference on Human Factors in Computing
Systems, New York, ACM, 281-285.

[7] Dean, J., and Henzinger, M.R., finding Related Pages
in the World-Wide Web. Proceedings of the 8th
International Conference on World Wide Web, 1999.

[8] Kleinberg, J.M., Authoritative Sources in a
Hyperlinked Environment, J. of the ACM (JACM),
46(5). 604-632.

[9] Larson, R.R., Bibliometrics of the World-Wide Web:
An Exploratory Analysis of the Intellectual Structure

of Cyberspace. Proceedings of the Annual Meeting of
the American Society for Information Science,
Baltimore, Maryland, 1996.

[10] Pitkow, J. and Pirolli, P., Life, Death, and Lawfulness
on the Electronic Frontier. Proceedings of the
Conference on Human Factors in Computing Systems,
Atlanda, Georgia, 1997.

[11] Flesca, S. and Masciari, E. Efficient and Effective
Web Change Detection, Data & Knowledge
Engineering, Elsevier, 2003.

[12] Fox, E., Extending the Boolean and Vector Space
Models on Information Retrieval with P-Norm
Queries and Multiple Concepts Types. Cornell
University Dissertation.

[13] Shaw, J.A., and Fox E.A., Combination of Multiple
Searches. Proceedings of the 3rd Text Retrieval
Conference (TREC-3), 1994, 105.

[14] Chakrabarti, S., Dom, B.E., Kumar, S.R, Raghavan, P.,
Rajagopalan, S., Tomkins, A., Gibson, D. and
Kleinberg, J.M., Mining the Web’s Link Structure,
IEEE Computer, 32 (8). 60-67.

[15] Rocchio, J.J. and McGill, M.J., Relevance Feedback in
Information Retrieval. Prentice-Hall Inc., Englewood
Cliff, NJ, 1997.

[16] Ide, E., New Experiments in Relevance Feedback,
Prentice-Hall, 1971.

[17] Brauen, T., Document Vector Modification,
Prentice-Hall Inc., Englewood Cliff, New Jersey,
1971.

[18] Popescul, A., Flake, G., Lawrence, S., Ungar, L.H.,
and Gile, C.L., Clustering and Identifying Temporal
Trends in Document Database. Proceedings of the
IEEE advances in Digital Libraries, Washington,2000.

[19] Beefermand, D., Berger, A., Agglomerative clustering
of a search engine query log. Proceedings of the sixth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Boston, MA,
407-415, 2000.

[20] Wen, J.R., Nie, J.Y., and Zhang, H.J., Querying
Clustering Using User Logs., ACM Transactions on
Information Systems (TOIS), 20(1), 59-81, 2002.

[21] Su, Z., Yang, Q, Zhang, H.J., Xu, X., and Hu, Y.,
Correlation–Based Document Clustering Using Web
Logs. Proceedings of the 34th Hawaii International
Conference on System Science, Hawaii, USA, 2001.

[22] Su, Z., Yang, Q, Zhang, H.J., Xu, X., and Hu, Y.,
Correlation–Based Document Clustering Using Web
Logs. Proceedings of the 34th Hawaii International
Conference on System Science, Hawaii, USA, 2001.

2312

	Similarity-aware Web Content Management and Document Pre-fetching
	USE BP-NETWORK TO CONSTRUCT COMPOSITE ATTRIBUTE

