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ABSTRACT
The high cost of laser powder bed fusion (LPBF) fabricated high-strength Sc containing aluminium
alloy hinders its applications. To reduce the cost, we reported a LPBF fabricated strong and ductile
Al–Mn–Mg–Sc–Zr alloy using large layer thicknesses to improve the fabrication efficiency on coarse
powder particles. A high relative density exceeding 99.2% was achieved at layer thicknesses up to
120 μm. In post-process heat-treated specimens, the yield strength only had a slight 6% decrease
from layer thickness of 30 to 120 μm; such a decrease in strength was attributed to the larger grain
size resulted from the adopted larger layer thickness. The fabricated sample at layer thickness of
120 μm still exhibited high tensile yield strength of 472 MPa and fracture strain of ∼10%. This
work showed a successful application of improving the LPBF fabrication efficiency of high-
strength Al–Mn–Mg–Sc–Zr alloy using large layer thickness in LPBF process.
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1. Introduction

The emerging additive manufacturing (AM) technique is
known for advantages of high geometric manufacturing
freedom and high levels of product customisation [1–4].
As an AM technology, laser powder bed fusion (LPBF)
uses a high-energy laser beam to selectively melt metallic
powder layers successively in a protective atmosphere
until the whole component is completely built [5]. The
LPBF fabricated aluminium alloys combine excellent
properties of high specific strength, good corrosion resist-
ance, and outstanding processability, which have been
extensively used in a wide range of industrial sectors
[6–9]. However, the majority of widely employed LPBF
fabricated aluminium alloys, i.e. AlSi7Mg, AlSi10Mg and
AlSi12, exhibit low strength with ultimate tensile strength
(UTS) of <400 MPa, which limits their industrial appli-
cations. In contrast, LPBF fabricated high-strength 2xxx
[10], 5xxx [11], 6xxx [12] and 7xxx [13] series aluminium
alloys are susceptible to hot cracks during the fast solidifi-
cation in the process of LPBF, and these high-strength

aluminium alloys are not suitable for fabrication by
LPBF. Therefore, developing fabricable crack-free high-
strength aluminium alloys for LPBF process has attracted
extensive attention in recent years [14–22].

For LPBF fabricated high-strength aluminium alloys,
Wang et al. [23] reported a LPBF fabricated and post
heat treated Al–Cu–Mg–Si alloy with an UTS of 455
MPa. In addition, another work on Zr-modified high-
strength Al–Cu–Mg alloy showed crack-free microstruc-
ture after LPBF manufacturing and a high UTS of 424
MPa [24]. Although these LPBF fabricated crack-free alu-
minium alloys do exhibit good mechanical properties,
their work-hardening behaviours are not satisfactory.
In contrast, the recently developed high-strength Al–
Mn–Mg–Sc–Zr alloy (with supersaturated Mn and Sc, Zr
additions) has showed its LPBF printability (crack-free),
a UTS of 560 MPa (the highest one in literature), and
an exceptional work-hardening behaviour [25,26]. The
high strength was achieved by a simple post-heat-treat-
ment at 300°C for 5 h. Such a heat treatment resulted in
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a matrix supersaturated in Mn and the formation of nano
Al3Sc particles, which contributed to solid solution
strengthening, grain refinement strengthening, and pre-
cipitation strengthening [5, 27–30].

However, the cost of LPBF fabricated high-strength Al–
Mn–Mg–Sc–Zr alloy is high due to the expensive Sc
addition and the low layer-by-layer forming efficiency cor-
responding to the small layer thickness at 30 μm[7, 31–34].
In addition, the cost of powder particles depends on the
size, and fine particles are much more expensive than
the coarse counterparts in additive manufacturing appli-
cations [35–37]. The high cost hinders the applications of
LPBF fabricated high-strength aluminium alloys.

Therefore, the current work aimed to employ a large
LPBF layer thickness on coarse high-strength Al–Mn–
Mg–Sc–Zr alloy powder particles to increase the pro-
ductivity and to reduce the fabrication cost. Systematic
processing optimisation was conducted in different layer
thicknesses of 30, 60, 90, and 120 μm, and the processing
windows were obtained in these layer thicknesses. In
addition, the specimen quality, microstructure, andmech-
anical properties were carefully investigated. A strong and
ductile high strength aluminium alloy was achieved in the
120 μm layer thickness condition with yield strength (YS)
of 472 MPa and the fracture strain of ∼10%.

2. Materials and methods

2.1. Materials and LPBF fabrication

The pre-alloyed Al–Mn–Mg–Sc–Zr powder with a
nominal composition listed in Table 1 was prepared by

Hunan Dongfang scandium Industry Co., Ltd., using
gas atomisation. Figure 1 shows the powder particle
morphology and its size distribution. These powder par-
ticles were generally spherical, and the particle size dis-
tribution was from ∼ 6 to ∼100 μmwith D10, D50 and D90

at 15.7, 31.7 and 69.2 μm, respectively.
The LPBF fabrication was carried out using an Ampro

SP260 LPBF machine equipped with a 500 W fibre laser
witha spot sizeof70 μminaprotectiveargonatmosphere.
Specimens were built on a preheated substrate at 100°C
using various laser powers and scan speeds, which were
in the range of 200–450 W and 800–2000 mm/s, respect-
ively. For all specimens, a strip scan strategy with a scan-
ning rotation of 67° between the consecutive layers was
used, and the hatch distance was 140 μm. The LPBF fabri-
cation was performed at different layer thicknesses of 30,
60, 90, and 120 μm. These samples were post-process
heat treated in a muffle furnace in air at 300°C for 5 h for
microstructure characterisations and tensile tests.

2.2. Microstructural characterisations and tensile
tests

The samples for microstructural and hardness characteris-
ations were ground to a 5000-grit finish using SiC papers,
which were then polished using a suspension of 50 nm
SiO2 Nano-MAX. The specimen quality was examined by
an optical microscope (OM, DT2000, Beijing Xinliyang
Technology & Development Co. Ltd.). A DH-200M
density instrument was used to measure the relative
density of the as-built samples according to the Archi-
medes principle. In addition, samples were etched by a
Keller’s reagent (which was composed of 2.5 mL HNO3,
1.5 mL HCl, 1 mL HF and 95 mL deionised water) to
reveal the melt pool morphology. To further validify the
relative density results, two extreme conditions fabricated
at 30 and 120 μm layer thicknesseswere examined using a

Table 1. Chemical composition (wt. %) of Al–Mn–Mg–Sc–Zr
powder particle used in this work.
Material Al Mn Mg Sc Zr Si Fe

Al–Mn–Mg–Sc–Zr Bal. 3.04 1.60 0.78 0.22 0.06 0.06

Figure 1. (a) Secondary electron (SE) SEM image showing the powder particle morphology and (b) the particle size distribution of the
pre-alloyed Al–Mn–Mg–Sc–Zr powder.
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micro-CT (μ-CT) system (FF85, Comet Yxlon Ltd.,) with a
tube voltage of 180 kV, a current of 130 µA, a focus size
of 4 μm, a voxel size of ∼5.6 µm and a filter of 1 mm.

A field emission scanning electron microscope (SEM,
JSM-7200F, Japan JEOL, Ltd., Japan) was used to observe
the morphology of powder particles and post heat
treated specimen microstructure. A Zeiss Gemini 300 SEM
equipped with a backscatter electron (BSE) detector and
an electron backscatter diffraction (EBSD, EDAX Velocity
Super) system was used to characterise the microstructure
and determine the grain orientations. For transmission elec-
tronmicroscopy (TEM) and scanning TEM (STEM) character-
isation, specimens with a 3 mm in diameter were
mechanically ground to 150 μm thick and then ion milled
using a Gatan 691 ion polishing system at an angle of 5°
and a voltage of 3.6 keV. TEM (FEI Tecnai F30) experiments
were then applied to determine the nanoscale microstruc-
ture of the post-heat-treated samples to obtain bright field
(BF) images, high angle annular dark field (HAADF) images,
and energy dispersive X-ray spectra (EDS) maps.

As this work employed strategies of using large layer
thickness to improve the LPBF productivity, only verti-
cally built specimens with the loading direction parallel
to the LPBF build direction were included in the tensile
test to examine the inter-layer bond. For the room temp-
erature tensile test, M10 cylindrical specimens with a
gauge diameter of 6 mm and a gauge length of
24 mm were used according to the ASTM E8 standard.
Tensile tests were carried out on a GNT-50 machine
equipped with a 10 mm extensometer at a constant
crosshead moving speed of 1 mm/min. For each layer

thickness condition, three tensile replicates were separ-
ately tested. After tensile tests, fractographic examin-
ations were conducted on a JSM-7200F SEM.

3. Results

3.1. Specimen density and defects at different
LPBF layer thicknesses

Figure 2 shows the representative OM images of the as-
built samples at different LPBF layer thicknesses. At all
layer thickness adopted in this work, excessive fusion
(highlighted by yellow dashed lines) with some keyholes
defects was observed in processing conditions of high
laser powers and low scan speeds, and irregular lack-
of-fusion defects (highlighted by green dashed lines)
occurred when low laser powers and high scan speeds
were applied. Between the excessive and insufficient
fusions, optimised processing windows (highlighted by
red dashed lines) without apparent defects were
obtained in all layer thickness conditions. With increased
layer thickness, the processing window became nar-
rower. The optimised laser power range was increased
from 270–370 W at 30 μm layer thickness to 400–450
W at 120 μm layer thickness. This is attributed to that
an increased laser power was required to melt a larger
volume of powder resulted from an enhanced layer
thickness. Table 2 lists three processing parameter sets
with the highest relative density for different LPBF
layer thicknesses. For energy density of specimens

Figure 2. Representative optical micrographs of Al–Mn–Mg–Sc–Zr samples fabricated at different LPBF layer thickness of: (a) 30 μm,
(b) 60 μm, (c) 90 μm, and (d) 120 μm.
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listed in Table 2, the overall trend of volumetric energy
density decreased with enhanced layer thickness.

For different LPBF layer thicknesses, the samples with
the highest relative density were used for subsequent
microstructure characterisation and mechanical tests.
Hereafter, the 30 μm specimen refers to 350 W and
1200 mm/s, the 60 μm specimen is 370 W and 1200 mm/
s, the 90 μm specimen corresponds to 400 W and
1200 mm/s, and the 120 μm specimen is built at 400 W

and 1100 mm/s. To further validate the relative density
measured by the Archimedes method, two specimens in
the extreme layer thickness values of 30 and 120 μm
were characterised by μ-CT analysis. Figure 3 shows the
reconstructed 3D visualisations and vertical cross-sections
of the μ-CT results. No cracks and irregular defects were
observed in both specimens. More specifically, there
were no apparent pores in the specimen built at layer
thickness of 30 μm (99.8% relative density), while some
pores were observed in the specimen built at layer thick-
ness of 120 μm (99.2% relative density). These defects in
the 120 μm specimen were related to the increased laser
power and associated keyhole and gas pore formation.
The relative density measured by μ-CT is consistent with
the Archimedes measurement for these two specimens.

3.2. Melt pool characteristics

Figure 4 illustrates themelt pool morphology of specimens
built at different layer thickness. In the 30 μm specimen,
there were only a few defects with dark contrast. The
amount and size of defects increased with the layer thick-
ness adopted for the LPBF process. This result is consistent
with the above μ-CT results (Figure 3). In addition, melt
pools became wider and deeper at larger layer thickness.

Table 2. The three processing parameter sets with the highest
relative density measured by the Archimedes principle for Al–
Mn–Mg–Sc–Zr samples fabricated at different LPBF layer
thickness.
Layer
thickness
(μm)

Laser
power
(W)

Scanning
speed (mm/

s)

Volumetric
energy density

(J/mm3)
Relative

density (%)

30 350 1200 64.9 99.8 ± 0.1
350 1400 59.5 99.5 ± 0.2
300 1200 59.5 99.1 ± 0.2

60 370 1200 36.7 99.7 ± 0.1
350 1200 34.7 99.4 ± 0.3
300 1000 35.7 99.2 ± 0.4

90 400 1200 26.4 99.5 ± 0.3
400 1100 28.8 99.1 ± 0.3
400 1300 24.4 98.9 ± 0.5

120 400 1100 21.6 99.3 ± 0.3
450 1400 19.1 98.9 ± 0.5
400 1200 19.8 98.6 ± 0.3

Figure 3. Defects in LPBF fabricated samples (10 mm × 10 mm × 10 mm) in 3D visualisation (a and c) and observed along a vertical
projection (b and d) revealing the pore morphology and distribution reconstructed from the μ-CT images of (a–b) 30 μm (350 W, 1200
mm/s) and (c–d) 120 μm (400 W, 1100 mm/s) specimens. The voxel size was approximately at 5.6 µm.
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After analysing 10 OM images at each thickness condition,
the melt pool width, depth, and depth to width ratio are
summarised in Figure 5. The width of the melt pool at
30, 60, 90, and 120 µm layer thickness was 170, 205, 234,
and 212 µm, respectively. The depth of melt pool was
51, 89, 95, and 105 µm for 30, 60, 90, and 120 µm layer
thickness, respectively. In addition, the depth-to-width
ratio was 0.3 0.5, 0.4 and 0.6 for 30, 60, 90, and 120 µm
layer thickness, respectively.

3.3. Microstructure analysis

Figure 6 shows themicrostructure of post-heat-treated Al–
Mn–Mg–Sc–Zr alloys built at different LPBF layer thickness.
All the four specimens exhibited a heterogeneous

microstructure composed of small equiaxed grains (EG) at
the melt pool boundary and large columnar grains (CG)
within themelt pool. Such a heterogeneousmicrostructure
was widely reported in LPBF fabricated alloys [38]. EBSD
experiments were conducted to obtain grain orientation
maps of these specimens. To show the heterogeneous
columnar and equiaxed grains, grain orientation maps
were collected on the vertical cross-sections, as shown in
Figure 7. The EBSDobservedheterogeneousmicrostructure
was similar to the SEM images in Figure 6. There were some
black-coloured regions atmelt pool boundaries in the grain
orientation maps, which were fine grains under the EBSD
resolution. With an enhanced layer thickness, the grains
seemed to become coarser. In addition, the area fractions
of EGandCGregionsvariedatdifferent LPBF layer thickness.

Figure 4. The morphology of melt pool in Al–Mn–Mg–Sc–Zr alloy specimens built at different LPBF layer thickness of: (a) 30 μm, (b)
60 μm, (c) 90 μm, and (d) 120 μm.
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The fraction of EG increased and the fraction of CG
decreased with the layer thickness. As shown in Table 3,
the fractions of EG and CG in 30, 60, 90 and 120 μm speci-
mens were 20.1%, 22.4%, 28.3% and 29.4%, respectively
and 79.9%, 77.6%, 71.3% and 70.6%, respectively.

To revel the intergranular and intragranular structures,
the STEM EDS mapping was used to analyse large sized
precipitates. As shown in Figure 8(a)–(h), there were
Mn-enriched and Sc-enriched precipitates in the EG
region. The Sc-rich particles showed a cube-shape mor-
phology with a fuzzy contrast and the (Mn, Fe)-rich par-
ticles had a bright contrast. In addition, Mg2Si
precipitates with a dark contrast were observed in the
STEM image. These three types of precipitates were also
previously reported in literature [19, 26]. According to
previous studies, the Mn and Fe enriched precipitates
should be Al6(Mn, Fe), and the Sc enriched precipitates
should be the primaryAl3X ((Al3Sc and/or Al3(Sc, Zr))) [28].

In a previous study, Vlach et al. [39] found that the for-
mation Al6(Mn, Fe) had no significant effect on the hard-
ness of aging treatedAl–Si-Mg–Mnalloywith additions of
Sc and Zr. In addition, the grain size of EGs and CGs
increased with layer thickness (Figure S1 in the sup-
plemental material), and their grain sizes are summarised
in Table 3. Such a difference in microstructure at various
layer thickness should be related to the different
thermal history associated with the changed layer thick-
ness, which will be discussed in Section 4.3.

Figure 5. The melt pool width, depth, and depth to width ratio
of the LPBF fabricated Al–Mn–Mg–Sc–Zr specimens built at
different LPBF layer thickness.

Figure 6. The backscattered electron (BSE) SEM microstructure of post-heat-treated Al–Mn–Mg–Sc–Zr alloys built at different LPBF
layer thickness of: (a) 30 μm, (b) 60 μm, (c) 90 μm, and (d) 120 μm. These BSE images were collected on vertical cross-sections which
was parallel to the LPBF build direction (Z).
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High-resolution TEM (HRTEM) was then used to investi-
gate the nano-scale microstructures. Figure 9 shows that a
high density of nano precipitates with a diameter below
4 nm in all layer thickness conditions after the post-
process heat treatment. According to the fast Fourier trans-
formation (FFT) pseudo-diffractions, these nanoprecipitates
were secondary Al3Sc with a L12 crystal structure [40]. In
addition, there was no evident difference in the amount
and size of secondary Al3Sc for different layer thicknesses.

3.4. Mechanical properties

Figure 10(a) shows the representative engineering
stress–strain curves of the post-heat-treated Al–Mn–
Mg–Sc–Zr alloy built at different LPBF layer thickness,

and their mechanical properties are summarised in
Table 4. With increased layer thickness, the post-heat-
treated specimens possessed a slightly decreased YS.
The samples of 30, 60, 90, and 120 μm exhibited YS of
502 ± 4 MPa, 491 ± 8 MPa, 484 ± 5 MPa and 472 ± 4
MPa, respectively. The decrement in YS was only 6%
between the 30 and 120 μm specimens. This decreasing
trend with layer thickness was similar in UTS. The fracture
strain (εf) was the highest at 13.1% ± 2.7% in the 30 μm
specimen, and it reduced to ∼10–11% at the larger
layer thickness. This is probably attributed to the increase
in defect level and size (Figure 3) at higher layer thickness.
Figure 10(b)–(e) shows the tensile fractured surface of 30
and 120 μm specimens. In both specimens, there were
intergranular fractured region and dimpled regions,

Figure 7. Grain orientation maps show the heterogeneous microstructures of post-heat-treated specimens built at different LPBF
layer thickness of: (a) 30 μm, (b) 60 μm, (c) 90 μm, and (d) 120 μm. These maps were collected on vertical cross-sections which
was parallel to the LPBF build direction (Z).

Table 3. The size and volume fraction of equiaxed grains (EGs), columnar grains (CGs), and secondary Al3Sc precipitates.
Layer thickness EG size (μm) EG fraction (%) CG size (μm) CG fraction (%) Secondary Al3Sc size (nm)

30 μm 0.9 ± 0.2 20.1 ± 1.0 1.5 ± 0.2 79.9 ± 1.0 2.7 ± 0.5
60 μm 1.2 ± 0.3 22.4 ± 0.4 1.8 ± 0.4 77.6 ± 0.4 2.6 ± 0.6
90 μm 1.6 ± 0.2 28.3 ± 0.7 2.3 ± 0.6 71.3 ± 0.7 2.5 ± 0.7
120 μm 2.1 ± 0.4 29.4 ± 0.4 4.2 ± 1.1 70.6 ± 0.4 2.6 ± 0.5

Notes: The results were measured based on SEM-BSE images in Figure 6 and HRTEM images in Figure 9. The volume fraction of EGs and CGs was determined by
using an Image Pro software on SEM-BSE images.
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which were correlated to the columnar grains and
equiaxed grains, respectively. In addition, defects of
micropores and associated microcracks were observed
on the fracture surface of specimens built at large layer
thickness, as shown in Figure 10(e).

4. Discussion

4.1. Optimal LPBF processing window

In this work, optimal processing windows at different
layer thickness were determined for LPBF fabricated
Al–Mn–Mg–Sc–Zr alloy. The relative density of the opti-
mised samples was higher than 99% in all layer thickness

conditions according to the image analyses in Table 2
and μ-CT results in Figure 3. The μ-CT results showed
that the relative density decreased from 99.8% in the
30 μm specimen to 99.2% in the 120 μm specimen. For
all layer thickness conditions, keyhole defects were
observed at high laser powers and low scan speeds as
a result of high energy input and associated liquid over-
heating and evaporation. In contrast, irregular lack-of-
fusion defects appeared at low laser powers and high
scan speeds due to insufficient energy input. These
observations are consistent with previous studies on
LPBF of different types of alloys [41–44].

With an enhanced layer thickness, the ranges of laser
power and scan speed for processing window were

Figure 8. HAADF STEM images and EDS element maps of the post-process heat treated Al–Mn–Mg–Sc–Zr specimen built at a 30 µm
layer thickness in: (a)-(h) an equiaxed grain (EG) region, and (i)-(p) a columnar grain (CG) region.
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significantly narrowed. This indicates that it is more
difficult to obtain an optimal process parameter set at
large layer thickness. At a higher layer thickness, it gener-
ally required a higher laser power to melt a thicker layer
(therefore higher volume) of metallic powder [45]. As
shown in Figure 2, the laser power range of processing
window increased from 270–370 W for 30 μm to 400–
450 W for 120 μm. It is known that high laser powers can
effectively increase the maximum temperature within
the molten pool [42, 46, 47], and a high peak molten
pool temperature induces intensive Marangoni flow and
causes the Plateau-Rayleigh instability and balling in turn
[46, 48]. Therefore, the processing window range
became smaller at a higher layer thickness. In addition,
the optimised scan speeds were in the range from 1100
mm/s to 1200 mm/s for the four parameter sets with the
highest relative density as highlighted in Table 2.
Considering the increased laser powers with the layer
thickness, similar scan speeds led to deeper and wider
molten pools with a higher depth-to-width ratio at
higher layer thickness as shown in Figures 4 and 5.

4.2. LPBF fabrication efficiency

As this work adopted an enhanced layer thickness to
improve the LPBF fabrication efficiency, it is necessary

to evaluate the build rates of different layer thickness.
By considering the scan speeds, hatch distance, and
layer thickness, the volumetric fabrication rate can be
estimated. Figure 11 (a) shows the volumetric build
rate in this work and some other LPBF fabricated alu-
minium alloys. For the specimens with the highest rela-
tive density fabricated at the four different layer
thickness as listed in Table 2, the build rate increased
with the layer thickness, as depicted by the black data-
points. To be more specifically, the build rates of 30,
60, 90 and 120 μm specimens were 5.04 mm3/s,
10.08 mm3/s, 15.12 mm3/s and 18.48 mm3/s, respect-
ively. Compared with other LPBF fabricated aluminium
alloys [23, 49–56], it is apparent that the layer thickness
can effectively improve the build rate, and the fabrica-
tion rates (10-19 mm3/s) of specimens built with a
large layer thickness (>50 μm) in this work are much
higher than the fabrication rates (≤ ∼8 mm3/s)
reported in previous studies. It is worth mentioning
that Figure 6 had not considered the time of powder
re-coating, because the powder re-coating process
can be different on different LPBF machines due to
the differences in re-coater moving speed, re-coater
travelling distance, and re-coating strategy [57]. As a
large layer thickness can effectively reduce the
powder re-coating frequency and the associated time,

Figure 9. HRTEM images of post-heat-treated Al–Mn–Mg–Sc–Zr alloy samples. The right insets show the [001] fast Fourier transform-
ation (FFTs) from the secondary Al3Sc nanoparticles and α-Al matrix for specimens built at different LPBF layer thickness of: (a) 30 μm,
(b) 60 μm, (c) 90 μm, (d) 120 μm.
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the enhanced magnitude in LPBF fabrication rate of
the high layer thickness conditions should be even
much higher than the estimated values as shown in
Figure 11(a).

4.3. Effect of layer thickness on microstructure
characteristics

As LPBF is a point-by-point, line-by-line, and layer-by-
layer manufacturing process, the morphology and size
of melt pool is directly related to the LPBF fabricating
parameters [4, 8, 9]. To be more specific, it is known
that the laser-matter interactions and heat transfer are
complex during the LPBF fabrication process. The micro-
structural characteristics of Al–Mn–Mg–Sc–Zr alloy are
significantly influenced by the cooling rate [6, 58, 59]
correlated the cooling rate and melt pool characteristics
using the following equation:

DT
Dt

= alPlaserV1/2

d2(2krcd)1/2
(1)

where ΔT/Δt refers to the cooling rate, αλ is the absorp-
tivity at the laser wave length at 0.15 [26], k is the
thermal conductivity at 197 W/(m K), ρ is the density
at 2.86 g/cm3, and c is the specific heat at 0.89 J/(g K)
(k, ρ, and c in this work were calculated using the
JMatpro software). In the LPBF process, Plaser is the

laser power, V is the scan velocity, and d is the depth
of the molten pool. According to the melt pool charac-
teristics in Figure 5, the cooling rates at different layer
thicknesses were calculated at 9.8 × 107, 2.6 × 107,
2.3 × 107, and 1.7 × 107 K/s for the 30 µm, 60 µm, 90
µm, and 120 µm specimens, respectively. The estimated
cooling rate decreases with the layer thickness, which
leads to increased EG and CG size as shown in Table 3.

4.4. The microstructure and property correlation

Figure 11(b) compares the yield strength of post-heat-
treated Al–Mn–Mg–Sc–Zr alloys in this work with other
LPBF fabricated aluminium alloys with post-process
heat treatment in literature [23, 26, 34, 55, 60–68]. In
general, the reported LPBF fabricated aluminium alloys
were prepared at a layer thickness below 60 μm. In con-
trast, this work showed that high-strength aluminium
alloys can be successfully fabricated at large layer thick-
ness by appropriate LPBF processing parameters. In this
work, the samples built at layer thickness of 30, 60, 90,
and 120 μm achieved yield strength of 502 ± 4 MPa,
491 ± 8 MPa, 484 ± 5 MPa, and 472 ± 4 MPa after an
aging treatment for 5 h at 300 (°C). There was a slight
decrease of 6% in yield strength from 30 to 120 μm
specimens. The reasons for yield strength decrement
were analysed from the following aspects.

4.4.1. The influence of porosity
With an enhanced layer thickness, the porosity level
slightly increased from 0.2% at 30 μm to 0.8% at
120 μm layer thickness according to Table 2 and
Figure 3. It was reported that a small volume of pores
(<1%) did not have an apparent effect on yield strength
[69]. Considering the μ-CT results showing these pores

Figure 10. (a) The representative engineering tensile stress-strain curves of post-heat-treated Al–Mn-Sc alloys built at different layer
thickness, and the tensile fractured surface of: (b)-(c) 30 μm specimen, and (d)-(e) 120 μm specimen.

Table 4. Tensile properties the LPBF post-heat-treated Al–Mn–
Mg–Sc–Zr alloys built at different LPBF layer thickness.
Layer thickness YS (MPa) UTS (MPa) εf (%)

30 μm 502 ± 4 527 ± 4 13.1 ± 2.7
60 μm 491 ± 8 513 ± 2 10.7 ± 0.8
90 μm 484 ± 5 502 ± 4 10.3 ± 1.0
120 μm 472 ± 4 495 ± 2 9.8 ± 0.3

Note: Errors are the standard deviations. YS: yield strength; UTS: ultimate
tensile strength; εf: fracture strain.
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were non-irregular defects with a low stress concen-
tration, 0.8% pores in the 120 μm sample would have
a negligible influence on the yield strength. However,
such a small fraction of pores could influence the duct-
ility [70]. As shown in Figure 10(e), cracks formed
around the micropores, which then deteriorated the
ductility. Therefore, the fracture strain decreased from
30 to 120 μm layer thickness due to the increased
volume fraction of pores.

4.4.2. Precipitation hardening
After the post-process heat treatment, the size of both
precipitates were large (Al3X > 70 nm and Al6(Mn, Fe) >
35 nm). Therefore, in this work, the contribution to the
precipitation hardening should be mainly from the sec-
ondary Al3Sc nanoprecipitates with size at below 4 nm
[26, 55, 71]. The precipitation of secondary Al3Sc precipi-
tates (Figure 9) caused by post-heat-treatment is known
to have a significant impact on the LPBF fabricated Al–
Mn–Mg–Sc–Zr alloy [72]. For precipitates with grain size
below 8 nm, they are sheared by dislocations rather
than bypassed through Orowan dislocation looping
mechanism [73–75]. Considering that the 30, 60, 90, and
120 μm specimens contained secondary Al3Sc precipi-
tates with average diameters below 4 nm, the precipi-
tation hardening effect can be evaluated as [76]:

s ppt = 0.0055M(DG)

3
2

2fv
G

( )1
2 r

b

( ) 3
2
m− 1

( )
(2)

where M = 3.06 is the mean matrix orientation factor for
aluminium, G = 25.4 GPa is the shear modulus of Al, r is
the average precipitates radius as shown in Table 3, b =
0.286 nm is the matrix Burgers vector, ΔG = 42.6 GPa is

the shear modulus difference between the Al matrix
and secondary Al3Sc precipitates, m is a constant at 0.85
[75] and fv is the volume fraction of precipitates (1.22
Vol.%, 1.19 Vol.%, 1.16 Vol.% and 1.18 Vol.% for 30, 60,
90 and 120 μm, respectively). As the radius and volume
fraction of secondary Al3Sc precipitates were similar at
different layer thickness, the σppt were calculated to be
222 MPa, 220 MPa, 218 MPa, and 220 MPa for 30, 60, 90
and 120 μm, respectively. Therefore, the contribution of
σppt to the yield strength difference at various layer thick-
ness is negligible.

4.4.3. Solid solution strengthening
In general, the amount of Sc and Zr remaining in solid
solution presumably has a negligible contribution to
the solid solution strengthening in LPBF fabricated Al–
Mn–Mg–Sc–Zr alloys [77]. With the help of the ultrafast
cooling rate in the LPBF process, an unconventionally
high amount of Mn and Mg was placed into solid sol-
ution [26]. The substantially different atomic size and
shear modulus of Mn and Mg atoms compared to the
surrounding Al atoms in the matrix can generate loca-
lised strain fields that interact with and hinder dislo-
cations from moving freely through the lattice, thereby
increase the yield strength of the material [78]. As a
result, only Mn and Mg are considered in the contri-
bution of solid solution strengthening. The yield
strength increases owing to the solid solution can be
estimated using the equation [78]

sss =
∑

AiC
Bi
i (3)

where Ci is the concentration of the solute in atomic per-
centage (Mn and Mg, as shown in Figure 12), Ai is a
strengthening coefficient, and Bi is a concentration

Figure 11. (a) Volumetric build rate of the Al–Mn-Mg-Sc-Zr alloy fabricated in this work compared with other LPBF fabricated alu-
minium alloys [23, 49–56]; (b) comparison of the yield strength of post-heat-treated Al–Mn-Mg-Sc-Zr alloy built at different layer thick-
ness with other LPBF fabricated aluminium alloys [14,17, 25,46,49–57].
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exponent. Both Ai and Bi depend on the solute species,
and were estimated in Ref. [79]. Based on Equation (3)
and atomic concentrations in Figure 12, the solid sol-
ution strengthening contributions from Mn and Mg are
116, 115, 112 and 116 MPa for 30, 60, 90, and 120 μm,
respectively.

4.4.4. Grain boundary strengthening
With an enhanced layer thickness, the grain size of EGs
and CGs increased as shown in Table 3. As volume frac-
tions of EGs and CGs changed at different layer thick-
ness, their strengthening effect can be estimated by
using a modified linear rule of mixture of Hall-Petch
equation [26]:

sgb = s0 + kfegd
−1/2
eg + kfcgd

−1/2
cg (4)

where σ0 is the friction stress of the lattice to dislocation
motion (20 MPa for aluminium), k is the Hall-Petch coeffi-
cient (0.17 MPa m½ for aluminium), deg and feg are the
average grain size and fraction of equiaxed grains, dcg
and fcg are the average grain size and fraction of colum-
nar grains in Table 3. The calculated σgb are 167, 152, 130
and 110 MPa for 30, 60, 90, and 120 μm specimens,
respectively.

The interactions among distinctive strengthening
mechanisms are typically very complicated and diverse
superposition laws were proposed in this work. It was
previously reported that dislocations in high-strength
Al–Mn–Mg–Sc–Zr alloys are very limited [77] and the
mechanism of dislocation enhancement is not included
here. Therefore, considering the precipitation hardening,

solid solution strengthening and grain boundary
strengthening, the estimated yield strength can be
determined at:

s0.2−estimate = s ppt + sss + sgb (5)

the estimated yield strengths (Table 5) are 505, 487, 467,
446 MPa MPa for Al–Mn–Mg–Sc–Zr alloy 30, 60, 90, and
120 μm, respectively. The slight decreasing trend in yield
strength estimation well agreed with the tensile test
results. The contributions from precipitation hardening
and solid solution strengthening are similar at different
layer thickness. The dominion contribution to the yield
strength decrement is the decreased grain boundary
strengthening due to larger grain size at higher layer
thickness. Therefore, grain boundary strengthening
should be the main cause of the overall difference in
yield strength at different layer thicknesses.

In addition, the decreased elongation was mainly
related to the increased porosity level at high layer thick-
ness. Nevertheless, a strong (YS of 472 MPa) and ductile (εf
of 9.8%) LPBF fabricated Al–Mn–Mg–Sc–Zr alloy has been
achieved at an extremely large layer thickness of 120 μm.
This work provides an effective route to produce strong
and ductile Al–Mn–Mg–Sc–Zr alloy using fabrication-
rate enhanced laser powder bed fusion.

5. Conclusions

The processing optimisation were systematically investi-
gated in LPBF fabricated Al–Mn–Mg–Sc–Zr alloy built at
various layer thickness, i.e. 30, 60, 90, and 120 μm. The
microstructure and mechanical properties were investi-
gated in the LPBF optimised and heat-treated specimens.
The following conclusions can be drawn for this work.

(1) High relative density (≥ 99.2%) was achieved in all
layer thickness conditions. The specimen built at
120 μm layer thickness possessed a 99.2% relative
density. Small fraction of defects was generally ran-
domly distributed in the specimen.

(2) The LPBF fabricated and post-heat-treated Al–Mn–
Mg–Sc–Zr alloy had a typical bimodal equiaxed-
columnar microstructure. The size of equiaxed
grains and columnar grains slightly increased with

Figure 12. EDS element spectra for α-Al matrix (EDS collection
locations were highlighted by the yellow boxes from Figure 9) in
the post-heat-treated Al–Mn–Mg–Sc–Zr specimens built at
different layer thickness. The atomic concentration of Mn and
Mg were estimated from Mn-K and Mg-K peaks.

Table 5. Calculated strength contribution from different
strengthening mechanisms at different LPBF layer thicknesses
comparing with the experimental tensile yield strength.
Layer thicknesses 30 μm 60 μm 90 μm 120 μm

σppt 222 220 218 220
σss 116 115 112 116
σgb 167 152 137 110
σ0.2-estimated 505 487 467 446
σ0.2-experimental 502 491 484 472
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the layer thickness, which was attributed to the
reduced cooling rate at high layer thicknesses.

(3) In the post-heat-treated specimens, the yield
strength decreased by 6% from 30 μm (502 MPa)
to 120 μm (472 MPa). This decrement was mainly
attributed to the increased grain size at high layer
thicknesses rather than the porosity, solid solution
strengthening and precipitation hardening. The
reduced fraction strain was caused by the slightly
higher porosity levels at high layer thickness.

(4) This work provides an effective way to produce strong
(yield strength at 472 MPa) and ductile (elongation at
9.8%) Al–Mn–Mg–Sc–Zr alloy using fabrication-rate
enhanced LPBF at a 120 μm layer thickness.
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