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ABSTRACT This paper presents a memory-based adaptive sliding mode load frequency control (LFC)
strategy aimed at minimizing the impacts of exogenous power disturbances and parameter uncertainties on
frequency deviations in interconnected power systems with energy storage. First, the dynamic model of the
system is constructed by considering the participation of the energy storage system (ESS) in the conventional
decentralized LFC model of a multiarea power system. A disturbance observer (DOB) is proposed to
generate an online approximation of the lumped disturbance. In order to enhance the transient performance
of the system and effectively mitigate the adverse effects of power fluctuations on grid frequency, a novel
memory-based sliding surface is developed. This sliding surface incorporates the estimation of the lumped
disturbance, as well as the past and present information of the state variables. The conservative assumption
about the lumped disturbance is eased by considering the unknown upper bound of the disturbance and its
first derivative. Based on the output of the proposed DOB, an adaptive continuous sliding mode controller
with prescribed H∞ performance index is introduced. This controller ensures that the sliding surface is
reachable and guarantees asymptotic stability of the closed-loop system. The controller design utilizes strict
linear matrix inequalities (LMIs) to achieve these objectives. Finally, the applicability and efficacy of the
proposed scheme are verified through comparative simulation cases.

INDEX TERMS Disturbance estimation error, disturbance observer, energy storage system, memory-based
sliding mode load frequency control, robustness.

I. INTRODUCTION
LOAD frequency control (LFC) is an integral part of
automatic generation control as it aims to maintain frequency
fluctuations within an acceptable range [1]. It is evident
that continuous frequency deviations in power systems can
result in transmission line overloads, malfunctioning of
power system protection equipment and severe damage to
frequency-sensitive devices [2]. However, in recent years,
the introduction of intermittent renewable generators, such
as solar and wind power, along with complex load patterns,
unknown system dynamics and variations in system parame-
ters, has introduced additional uncertainties to power systems
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[3]. Consequently, the performance of existing conventional
PI-based frequency controllers in thermal generation units
has been inadequate in meeting grid requirements [4].
For these reasons, the suitability of fast-response ancillary
frequency regulation services has recently been explored
for the LFC problem to ensure the reliable operation of
power system. For example, the deployment of energy
storage system (ESS) such as battery energy storage system
and superconducting magnetic storage system, has recently
been under investigation as a means to address the LFC
problem [5]. Nevertheless, the widespread utilization of these
storage devices is not practical due to design complexities,
coupled with high costs associated with installation and
maintenance [6]. Other alternative approaches, such as
distributed control load and pumped storage power plants,
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TABLE 1. List of Symbols.

have also been introduced. However, the effectiveness of
these approaches is influenced by power system uncertainties
[7]. Hence, it is crucial to employ more efficient and practical
control strategies within existing structures to ensure that
frequency deviations in interconnected power systems are
maintained within specified limits. To tackle power system
uncertainties associated with the LFC problem, enhanced
control schemes have been introduced, such as evolutionary
and meta-heuristic based PI controllers [8], model predictive
control [9], adaptive control [10], fuzzy control [11], artificial
neural network control [12], optimal control [13],H∞ control
[14], [15], sliding mode control (SMC) [16], [17], active
disturbance rejection controller [18] and event-triggered
load frequency control [19], [20]. Additional comparative
discussions regarding the effectiveness of various frequency
control methods can be found in [21], [22].
Among these control techniques, the SMC scheme has gar-

nered significant attention in various industrial applications
[23], [24], particularly in power system frequency control.
This is due to its robustness in handling unmodeled system
dynamics, parameter variations and disturbance attenuation
[25], [26], [27]. In recent years, the LFC problem in inter-
linked power grids has encountered additional challenges
due to disturbances arising from complex load patterns and
renewable resources like wind power. These challenges have
led to difficulties where the governor of generation units
fails to adequately respond to frequency deviations [28],
[29]. Accordingly, these disturbances fall under the category
of mismatched disturbances, which are introduced into the
system through a different channel than the control input.
As a result, they can impact the inherent robustness of
traditional sliding mode controllers. To tackle the issue of

mismatched disturbances, integral-based SMC schemes have
been introduced. These schemes aim to preserve the complete
robustness properties of traditional SMC against mismatched
external disturbances [30], [31]. The authors of [32], [33],
[34] investigated the LFC problem in power systems with
both load disturbances and system parameter variations,
considering lumping together all mismatched and matched
disturbances tomaintain the robustness property of traditional
SMC. However, these approaches were constrained by
assumptions made regarding the rank of the disturbance
matrix. In addition, none of these works incorporated an
optimal method to determine the sliding mode controller
gains, which are essential for ensuring the asymptotic
stability of the state variables within a finite time. Moreover,
it is well-known that the performance of the control system
can be affected by integral action, often leading to large
overshoot and long settling time. Additionally, the utilization
of a discontinuous term in the integral-based sliding surface
in the proposed controllers has been shown to lead to
a degradation in the performance of the sliding surface.
This degradation was primarily due to the high-frequency
chattering behavior exhibited by the sliding surface function.
To address this chattering problem, some researchers have
incorporated a disturbance observer (DOB) in the design of
SMC, as described in [35], [36]. However, these methods
have been limited to systems with matched disturbances. The
DOB-SMC approaches proposed in [37], [38] demonstrated
favorable performance against mismatched external distur-
bances. Nevertheless, these controllers were designed under
the restrictive assumption of known disturbance boundaries,
whereby the controller gains were selected conservatively
and without utilizing any optimal algorithm. A thorough
examination of DOB controllers can be found in [39]. In [28],
the authors have proposed an adaptive higher order terminal
sliding mode LFC method. In their work, an adaptive control
law was employed to approximate the upper bound of
external disturbances. In [40], an intelligence-based terminal
sliding mode approach with ESS integration for the LFC
problem was proposed. However, the applicability of the
proposed scheme was not tested for power systems experi-
encing mismatched disturbances from intermittent renewable
generators. Similarly, the adaptive method described in [41]
did not investigate the influence of external disturbances
originating from renewable energy resources. In contrast,
the fuzzy-SMC method presented in [7] focused on the
LFC problem in power systems that incorporate both wind
power and ESS. The frequency controller gains were tuned
using an imperialistic competitive algorithm, whereby a
seamless approximation function was proposed to mitigate
the chattering problem commonly associated with sliding
mode control. In [42] a higher-order SMC method was
constructed based on a super-twisting algorithm combined
with a disturbance observer. The gains of the controller
were determined using a linear quadratic regulator scheme,
providing robustness against system uncertainties. However,
the effectiveness of this approach was constrained to the
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tracking of step load disturbances exclusively. The approach
in [43] introduced a sliding mode controller for the LFC
problem with extensive integration of electric vehicles.
In this scheme, the disturbance boundaries were assumed
to be known values, and a chattering-free sliding surface
was proposed. The controller gains were determined using
particle swarm optimization. However, it is worth noting here
that the robustness of the controller was not evaluated against
the adverse effects of renewable energy power disturbances.
The authors of [44] introduced a fractional-order integral
sliding mode based on an extended disturbance observer.
The impacts of energy storage system and wind power
generation on power system frequency deviation were
studied. The superiority of the proposed approach in terms
of control performance was demonstrated when compared to
conventional integer-order controllers.

Based on the preceding discussion, it appears that the H∞

performance criteria have not been addressed explicitly in the
SMC controller design to minimize the impact of external
disturbance on controlled output (frequency deviations).
Furthermore, it is important to note that, to the best of our
knowledge, the transient performance of the proposed sliding
mode controllers has not been directly addressed in a wide
range of industrial applications, including the LFC problem
in interlinked power grids. In this paper, a novel memory-
based adaptive sliding mode frequency controller is proposed
to address the LFC problem in multi-area interconnected
power systems, in collaboration with an ESS acting as an
auxiliary frequency regulation device. Motivated from the
above discussion, the main contributions of this work are
summarized as follows:

• A disturbance observer is proposed to estimate the
disturbances caused by power fluctuations, load changes
and variations in system parameters. The output of the
disturbance observer is then integrated into the sliding
surface design to mitigate the chattering problem, and
to compensate for the impact of the aforementioned
disturbances on frequency deviations.

• The introduction of a memory-based sliding surface,
which incorporates past information of state variables,
improves the transient performance of the control
system compared to other methods [45]. Furthermore,
an additional enhancement in the frequency deviation
response is accomplished by utilizing an ancillary
energy storage system for frequency regulation.

• A continuous control law is developed to guarantee the
global stability of the closed-loop system and to alleviate
the chattering problem for practical implementations.

• Unlike conventional approaches [46], [47], an adaptive
law is derived in the controller without requiring
predetermined values of the upper limit of the lumped
disturbance boundary.

• To minimize the impact of both matched and mis-
matched disturbances on frequency deviations, the con-
troller design introduces a guaranteed H∞ performance
using strict LMIs.

The subsequent sections of this paper are structured
as follows. Section II provides the descriptions of the
system dynamic model. Section III presents the design of
the Disturbance Observer (DOB) and the synthesis of the
proposed adaptive sliding mode load frequency controller.
Simulation results are illustrated in Section IV. Finally,
Section V concludes the paper and explores the potential for
future work.

II. DESCRIPTION OF THE SYSTEM MODEL
While a multiarea interconnected power system is inherently
nonlinear, the linearized model is commonly used for
LFC studies. This is mainly due to the assumption that
slow variations in loads and generation resources occur
under normal operational conditions [1], [3]. Based on the
conventional decentralized LFC model described in [42],
[48], the block diagram representing the ith area of a
multiarea power system is depicted in Fig. 1. Therefore,
the effectiveness of the LFC strategy primarily relies on
the accuracy of the system model, which considers power
perturbations. The various system components are modeled
as follows.

A. MODELING WIND POWER FLUCTUATIONS
In this study, the fluctuations in wind turbine output power
1PWT (t) are considered as renewable power disturbances
that do not contribute to frequency regulation. The output
mechanical power of the wind turbine can be determined
using the following expression [49], [50]:

PWTi =
1
2
ρwiAwriCwpi

(
λwi , βwi

)
VWi

3 (1)

Cwpi =
(
0.44 − .0167βwi

)
sin

(
π
(
λwi − 3

)
15 − 0.3βwi

)
− 0.0184

(
λwi − 3

)
βwi (2)

where λwi =
Rbladeωblade

VWi
, ρw, Awr , Cwp, λw, βw, VWi , Rblade

and ωblade are the air density
(
kg/m3

)
, the effective area of the

blades
(
m2
)
, power coefficient, tip speed ratio, blade pitch

angel, wind speed (m/s) blade radius and the blade rotational
speed, respectively.

B. MODELING ENERGY STORAGE SYSTEM
The ESS serves as a fast-response auxiliary frequency regu-
lation device, enhancing the dynamic response of the power
system to frequency deviations and alleviating transient stress
on traditional thermal power plants [49]. As the ESS requires
time to control its charge and discharge, a first-order lag
model is employed to study the LFC problem in hybrid power
systems [50]. The first-order lag model is represented by the
following equation:

GESS (s) =
KBi

1 + sTBi
(3)
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FIGURE 1. Power system LFC structure for the i th area of multi-area power system.

The variable gain KBi in the system is influenced by the state
of charge (SOC) of the energy storage device. Further details
for optimal calculation of KBi can be found in [41].

C. MODELING MULTIAREA POWER SYSTEM
As mentioned in the introduction section, the primary
objective of the LFC system is to ensure a suitable response
from the generator side to power disturbances originating
from load variations, tie-line fluctuations and intermittent
renewable sources. Thus, the total external disturbance for
the ith area can be defined asWi(t) = 1PWTi (t)− 1PLi (t)−
1Ti(t) [42], [48].
Assumption 1: The total external perturbation Wi(t) is

bounded, satisfying ∥Wi (t)∥ ≤ ϵi, where ϵi represents a
positive constant.
In view of the above definition, the state space equations of
the system dynamics for the ith area of the interconnected
power system shown in Fig. 1 are described as follows:

1ḟi (t) = −
1

TPi (t)
1fi(t) +

KPi
TPi (t)

1PBi (t)

+
KPi
TPi (t)

1MGi (t) −
KPi
TPi (t)

Wi(t) (4)

1ṖBi (t) = −
1

TBi (t)
1PBi (t) +

KBi
TBi (t)

δiui (t) (5)

1ṀGi (t) = −
1

TTi (t)
1MGi (t) +

1
TTi (t)

1XGi (t) (6)

1ẊGi (t) = −
1

TGi (t)
1XGi (t) −

1
RiTGi (t)

1fi (t)

+
1

TGi (t)
αiui (t) (7)

yi(t) = 1fi(t) (8)

(4)–(8) can be described by the following matrix form:

ẋi(t) = Ai(t)xi(t) + Bi(t)ui(t) + Fi(t)Wi(t)

yi(t) = Cixi(t) (9)

In the provided equation, Ai(t), Bi(t), Fi(t) and Ci represent
real system matrices with appropriate dimensions. The state
vector is given by xi(t) = [1fi(t) 1PBi (t) 1MGi (t)
1XGi (t)

]T , where xi(t)∈ Rn(t). The control input is denoted
as ui(t)∈ R. Wi(t) represents the total external disturbance,
and yi(t) corresponds to the controlled output (frequency
deviation).

Ai (t) =


−

1
TPi (t)

KPi
TPi (t)

KPi
TPi (t)

0

0 −
1

TBi (t)
0 0

0 0 −
1

TTi (t)
1

TTi (t)

−
1

RiTGi (t)
0 0 −

1
TGi (t)


Bi (t) =

[
0

δiKBi
TBi (t)

0 αi
TGi (t)

]T
Fi (t) =

[
−

KPi
TPi (t)

0 0 0
]T

Ci =
[
1 0 0 0

]
Considering the uncertainties in power system parameters,

the system state space form (9) can be represented in a
nominal and bounded uncertainty form as follows:

ẋi(t) = (Ai + 1Ai(t)) xi (t) + (Bi + 1Bi(t))ui(t)

+ (Fi + 1Fi(t))Wi(t) (10)
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As both the total external disturbance Wi(t) and system
uncertainties are bounded, we can infer from the (10) that

ẋi(t) = Aixi(t) + Biui(t) + fi(t) (11)

where fi(t) is defined as the lumped disturbance, given by

fi(t) = 1Ai(t)xi(t) + 1Bi(t)ui(t) + (Fi + 1Fi(t))Wi(t)

(12)

Assumption 2: The lumped disturbance fi(t) and its first
derivative ḟi (t) satisfy ∥fi (t)∥ ≤ θ1i and

∥∥ḟi (t)∥∥ ≤ θ2i, where
θ1i and θ2i are positive constants.

III. DESIGN OF THE PROPOSED SLIDING MODE LFC
SCHEME
This section illustrates the design of the memory-based
sliding mode controller via a DOB for the LFC problem. The
structure of the intended controller is given in Fig. 2.

A. DISTURBANCE OBSERVER DESIGN
The disturbance observer is proposed as follows:

żi(t) = −Li (zi(t) + Lixi(t)) − Li (Aixi(t) + Biui(t))

f̂i(t) = zi(t) + Lixi(t) (13)

where zi denotes the state space vector of the observer, d̂i(t) is
the lumped disturbance estimation in (11) and Li is a positive
definite matrix. The lumped disturbance estimation error is
defined as edi (t) = f̂i(t) − fi(t). The boundedness of edi (t) is
proved with the aid of following lemmas.
Lemma 1 ( [59]): Consider the following system

η̇ = fl(η, u) (14)

where fl(η, u) is locally Lipschitz; u is bounded and exhibits
piecewise continuity. If the unforced form of (14) possesses a
globally exponentially stable equilibrium point at the origin,
then the system (14) exhibits input-to-state stability (ISS).
Lemma 2: For a given disturbance observer (13), the

disturbance estimation error edi (t) = f̂i(t) − fi(t) satisfies∥∥edi (t)∥∥ ≤ ni, where ni is a positive constant.
Proof: Combining (11) into (13), we obtain

ėdi (t) = (żi(t) + Liẋi(t)) − ḟi(t)

= −Li
(
f̂i(t) − fi(t)

)
− ḟi(t)

= −Liedi (t) − ḟi(t) (15)

Since Li is an arbitrary positive definite matrix, then the
unforced form of system (15) with ḟi(t) = 0 has a globally
exponentially stable equilibrium point at the origin. By taking
Assumption 2, ḟi(t) is considered as a bounded signal, and
recalling Lemma 1, the system (15) becomes ISS, meaning
that the disturbance estimation error edi (t) tends to zero. This
completes the proof.
Further details to determine the scalar ni can be found in [60],
which can be determined as

ni = ciθ1i − ciθ2i
2

nmax (Li)
. (16)

B. THE SYNTHESIS OF THE MEMORY-BASED ADAPTIVE
SMC
In this subsection, we design a memory-based SMC scheme
that: ensures the global stability of the system dynamics
in (11); minimizes the impact of the lumped disturbance
fi(t) on the controlled output; and improves the transient
performance of the controller. To meet these requirements,
we construct a controller with H∞ performance based on the
following criteria:

1) The system dynamics in (11) with fi(t) = 0 are globally
asymptotically stable.

2) For a given positive scalar γi, fi (t) ̸= 0 and fi (t) ∈

L2 [0, +∞), the following inequality holds under zero
initial condition∫

∞

0
∥yi(t)∥2dt ⩽ γi

2
∫

∞

0
∥fi(t)∥2dt (17)

We consider the following memory-based sliding surface:

si(t) = Hi(xi(t) − xi(0)

−

∫ t

0
(Aixi(ν) + Biusi (ν) + f̂i(ν))dν) (18)

where Hi∈ Rm×n is the disturbance attenuation gain to be
selected in a way that HiBi becomes a non-singular matrix,
usi (t) = Kixi (t) − Kτixi (t − τi) − H i f̂i (t), in which Ki and
Kτi are the controller gains, and τi is the memory parameter.
Remark 1: The practical advantage of the sliding sur-

face (18) compared to conventional integral sliding surfaces
[31] is its utilization of the estimated lumped disturbance f̂i(t).
This allows for active minimization of the effects of power
disturbances arising from load variations and wind power
fluctuations on the frequency deviations.
Remark 2: Compared to the conventional integral sliding

surfaces in [37], [43], the proposed memory-based sliding
surface (18) incorporates a memory parameter to retain
and utilize delayed information of the state variables. Thus,
usi in (18) can be rewritten as usi (t) = K̄ixi (t) −

K̄τi
xi(t)−xi(t−τi)

τi
− H i f̂i (t), where K̄i = Ki + τiKτi and

K̄τi = τiKτi . Noticing that ẋi (t) ≈
xi(t)−xi(t−τi)

τi
, it is

observed that the memory-based sliding surface (18) includes
the derivative control term. Based on the PID control
theory, the inclusion of a derivative control action can
enhance the transient performance of the control system.
Therefore, by incorporating a memory-based SMC scheme,
it is expected to achieve superior transient performance. This
will be validated through the simulation results.

The next theorem shows that the reachability of sliding
mode dynamics in (18) onto the sliding surface will be
guaranteed.
Theorem 1: Let us consider the sliding surface si(t)

in (18), assuming that θ1i, θ2i, Ki and Kτi are known
parameters. The sliding mode dynamics will reach into a
region around the sliding surface in finite time by designing
the control laws as follows:

ui(t) = usi (t) + Hiuri (t)
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FIGURE 2. Control diagram of the proposed memory-based sliding mode controller with disturbance observer.

uri (t) = − (mi + ni) sat
(
HT
i si(t)

)
, mi > 0 (19)

where usi and ni were defined in (18) and (16), and

sat(HT
i si(t)) =


HT
i si(t)

δi
,

∥∥∥HT
i si(t)

∥∥∥ < δi

HT
i si(t)∥∥HT
i si(t)

∥∥ ,

∥∥∥HT
i si(t)

∥∥∥ ≥ δi

Proof: Let’s select the Lyapunov candidate function
Vi(t) =

1
2 s
T
i (t)(HiBi)

−1si(t). Taking the derivative of Vi(t)
along with time yields

V̇i(t) = sTi (t)(HiBi)
−1ṡi(t)

= sTi (t)(HiBi)
−1
(
Hi
(
ẋi(t) − Aixi(t) − Biusi (t) − f̂i(t)

))
= sTi (t)(HiBi)

−1
(
Hi
(
Bi
(
ui(t) − usi (t)

)
+ fi(t) − f̂i(t)

))
= sTi (t)

(
ui(t) −usi (t)

)
+sTi (t)(HiBi)

−1Hi
(
fi (t) − f̂i(t)

)
(20)

Let Hi = B†i , then (HiBi)−1 becomes an identity matrix.
Substituting the control law in (19) into (20), V̇i(t) can be
rewritten as

V̇i(t) = sTi (t)Hiuri (t) + sTi (t)Hi
(
fi(t) − f̂i(t)

)
= sTi (t)Hi

(
uri (t) − edi (t)

)
= sTi (t)Hi

(
− (mi + ni) sat

(
HT
i si(t)

)
− edi (t)

)
(21)

If
∥∥HT

i si(t)
∥∥ ≥ δi, it can be verified from (21)that

V̇i(t) = − (mi + ni)
∥∥∥HT

i si(t)
∥∥∥− sTi (t)Hiedi (t)

≤ −mi
∥∥∥HT

i si(t)
∥∥∥ (22)

If
∥∥HT

i si(t)
∥∥ < δi, it is be obtained from (21) that

V̇i(t) ≤ − (mi + ni)

∥∥HT
i si(t)

∥∥2
δi

+

∥∥∥HT
i si(t)

∥∥∥ ni
= −mi

∥∥HT
i si(t)

∥∥2
δi

+
ni
δi

(∥∥∥HT
i si(t)

∥∥∥ δi

−

∥∥∥HT
i si(t)

∥∥∥2) (23)

Based on (22) and (23), there exists a scalar mi such that
V̇i (t) ⩽ 0, which means that the state trajectories can be kept
on the sliding region via the proposed controller. Hence, the
proof is completed.
Corollary 1: Suppose that θ1i and θ2i are unknown scalars.

The sliding mode dynamics will reach into a region around
the sliding surface (18) in finite time by proposing the
following adaptive control law:

ui(t) = usi (t) + Hiuri (t)

uri (t) = −
(
mi + n̂i

)
sat

(
HT
i si (t)

)
,mi > 0. (24)

where n̂i is the adaptive law, which is designed as

˙̂ni = κi

∥∥∥HT
i si(t)

∥∥∥ , κi > 0. (25)

Proof: By defining ñi (t) = ni (t) − n̂i (t)
and considering the Lyapunov function as V (t) =

1
2

(
siT (t) si (t) +

1
κi
ñ2i (t)

)
, we can readily obtain

V̇ (t) = sTi (t)ṡi (t) −
1
κi
ñi (t) ˙̂ni

= sTi (t)
(
−Hi

(
mi + n̂i (t)

)
sat

(
HT
i si (t)

)
− Hiedi (t)

)
− ñi (t)

∥∥∥HiT si (t)∥∥∥ (26)
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By applying straightforward calculations, it is obtained
from (26) that

V̇ (t) ≤ −
(
mi + n̂i

)
sTi (t)Hisat

(
HT
i si
)

+

∥∥∥HT
i si (t)

∥∥∥ ∥n̂i∥ (27)

The remaining steps of the proof follows from (21)–(23),
which are omitted here for the sake of brevity. Therefore, the
proof is now complete.
Thus, the reachability of the system trajectories into a region
around the sliding surface is satisfied.
Remark 3: The controllers (19) and (24) are designed

based on the utilization of the continuous function
sat

(
HiT si (t)

)
with a guaranteed reachability condition. This

approach effectively mitigates the chattering problem that
often arises in practical implementations.
Remark 4: It is noted that current SMC approaches, such

as those mentioned in [37], [45], are typically designed
based on known upper bounds of disturbances. However,
determining these bounds in practical applications can be
challenging. In order to address this issue, in Corollary 1, the
sliding mode controller is constructed in an adaptive manner
without requiring prior knowledge of the upper bound of the
estimated lumped disturbance and its first derivative. This
demonstrates the applicability of the proposed controller for
FC problems, even in situations where accurate knowledge of
disturbance bounds is not readily available.

Next, the unknown parameters of the sliding surface,
namely the controller gains Ki and Kτi , can be determined
using an equivalent control law. By considering (18),
it follows that

ṡi(t) = Hi
(
ẋi(t) − Aixi(t) − f̂i(t)

)
= Hi

(
Biui(t) − Biusi (t) + fi(t) − f̂i(t)

)
= ui(t) + Kixi(t) − Kτixi(t − τi) + Hifi(t) (28)

Let ṡi (t) = 0, we then derive the equivalent control law as
follows:

ueqi (t) = −Kixi(t) − Kτixi(t − τi) − Hifi(t) (29)

Substituting (29) into (11), the sliding mode dynamics can be
given as

ẋi(t) = (Ai − BiKi) xi(t) − BiKτixi(t − τi) + Bdi fi(t)

yi(t) = Cixi(t) (30)

where Bdi = In − BiHi.
In the following analysis, it is assumed that Kτi in (30) is

a known parameter. Then, an LMI-based condition can be
used to determine the unknown parameter Ki such that H∞

performance requirement, as described in (17), is satisfied.
To begin, we define Adi = −BiKτi and Āi = Ai − BiKi.

Then, (30) can be rewritten as

ẋi(t) = Āixi(t) + Adixi(t − τi) + Bdi fi(t)

yi(t) = Cixi(t) (31)

Next, the following lemma is utilized for developing the
subsequent theorem.
Lemma 3 ( [51]): Consider X and Y as real constant

matrices of appropriate dimensions. Then

XTY + Y TX ≤ εXTX +
1
ε
Y TY (32)

holds for any ε > 0.
Theorem 2: Let γ i be a given positive scalar. The sliding

mode dynamics in (30) is globally asymptotically stable
and meets the H∞ performance requirement, if there exist
symmetric, positive-definite matrices Xi, Q1i, Q2i and Q3i
such that the following inequality holds

2di =


2di11

Bdi XiCiT Ai

∗ 2di22
0 0

∗ ∗ −I 0
∗ ∗ ∗ −Qi

 < 0 (33)

where

2di11
1
= He

((
Āi + Adi

)
Xi
)
+ τiAdiQ1iATdi + τiAdiQ2iATdi ,

Ai
1
=
[
XiĀTi XiATdi Adi

]
,

2di22
1
= −γi

2I + τiBTdiQ3Bdi ,

Qi
1
= diag

[
1
τi
Q1i,

1
τi
Q2i,

1
τi
Q3i

]
.

Proof: Consider xi (t − τi) = xi (t) −
∫ t
t−τi

ẋi (s) ds.
Substituting (33) into the above formula yields

xi (t − τi) = xi (t) − Adi

∫ t

t−τi

(
Āixi (s)

+Adixi (s− τi) + Bdi fi (s)
)
ds (34)

We consider the following Lyapunov-Krasovskii Func-
tional candidate:

V (xi(t)) = V0 (xi (t)) + V1 (xi (t)) (35)

where

V0 (xi (t)) = xiT (t)Pixi (t)

V1 (xi(t)) =

∫ 0

−τi

∫ t

t+θ

xiT (s)ĀTi Q
−1
1i Āixi (s) dsdθ

+

∫ 0

−τi

∫ t

t−τi+θ

xiT (s)ATdiQ
−1
2i Adixi (s) dsdθ

+

∫ 0

−τi

∫ t

t+θ

diT (s)BTdiQ3iBdi fi (s) dsdθ (36)

Differentiating (36) with respect to time along the trajectories
of (34), yields

V̇0 (xi(t))

= xiT (t)
(
Pi
(
Āi + Adi

)
+
(
Āi + Adi

)TPi) xi (t)
− 2xiT (t)PiAdi

(
Āi

∫ t

t−τi

xi (s) ds+ Adi

∫ t

t−τi

xi (s− τi) ds
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+Bdi

∫ t

t−τi

fi (s) ds
)

+ 2xiT (t)PiBdi fi (t) (37)

Applying Lemma 2, we can obtain the following expres-
sions, respectively:

− 2xiT (t)PiAdi Āi

∫ t

t−τi

xi (s) ds

≤ τixiT (t)PiAdiQ1iATdiPixi (t)

+

∫ t

t−τi

xiT (s)ĀTi Q
−1
1i Āixi (s) ds (38)

− 2xiT (t)PiAdi Āi

∫ t

t−τi

xi (s− τi) ds

≤ τixiT (t)PiAdiQ2iATdiPixi (t)

+

∫ t

t−τi

xiT (s− τi)ATdiQ
−1
2i Adixi (s− τi) ds (39)

− 2xiT (t)PiAdiBi

∫ t

t−τi

fi (s) ds

≤ τiixi
T (t)PiAdiQ

−1
3i A

T
diPixi (t)

+

∫ t

t−τi

fiT (s)BTdiQ3iBdi fi (s) ds. (40)

Moreover, we have

V̇1 (xi(t)) = τixiT (t) ĀTi Q
−1
1i Āixi (t)

−

∫ t

t−τi

xiT (s)ĀTi Q
−1
1i Āixi (s) ds

+ τixiT (t)ATdiQ
−1
2i Adixi (t)

−

∫ t

t−τi

xiT (s− τi)ATdiQ
−1
2i Adixi (s− τi) ds

+ τidiT (t)BTdiQ3iBdi fi (t)

−

∫ t

t−τi

fiT (s)BTdiQ3iBdi fi (s) ds (41)

Combining (38)–(41) gives

V̇ (xi(t)) ≤ xiT (t)
(
Pi
(
Āi + Adi

)
+
(
Āi + Adi

)TPi) xi (t)
+ τixiT (t)

(
PiAdiQ1iATdiPi + ĀTi Q

−1
1i Āi

)
xi (t)

+ τixiT (t)
(
PiAdiQ2iATdiPi + ATdiQ

−1
2i Adi

)
xi (t)

+ τixiT (t)PiAdiQ
−1
3i A

T
diPixi (t)

+ 2xiT (t)PiBdi fi (t)

+ τifiT (t)BTdiQ3iBdi fi (t) (42)

The above inequality can be written in equivalent matrix
form as:

V̇ (xi(t))

≤
[
xiT (t) fiT (t)

] [Mi PiBdi
∗ Ti

] [
xi (t)
fi (t)

]
(43)

where

Mi
1
= Pi

(
Āi + Adi

)
+
(
Āi + Adi

)TPi

+ τi

(
PiAdiQ1iATdiPi + ĀTi Q

−1
1i Āi

)
+ τi

(
PiAdiQ2iATdiPi + ATdiQ

−1
2i Adi

)
+ τi

(
PiAdiQ

−1
3i A

T
diPi

)
,

Ti
1
= τiBTdiQ3iBdi .

By examining (33), it is verified that2di11 Bdi Ai
∗ Ti 0
∗ ∗ Qi

 < 0 (44)

Applying the Schur complement to (44) results in:[
Wi Bdi
∗ Ti

]
< 0 (45)

where

Wi
1
=
(
Āi + Adi

)
Xi + Xi

(
Āi + Adi

)T
+ τi

(
AdiQ1iATdi + XiĀTi Q

−1
1i ĀiXi

)
+ τi

(
AdiQ2iATdi + XiATdiQ

−1
2i AdiXi

)
+ τi

(
AdiQ

−1
3i A

T
di

)
Then, pre-and post-multiplying (45) by diag

(
Xi−1, I

)
and

defining Pi = Xi−1 gives[
Mi PiBdi
∗ Ti

]
< 0 (46)

From (46), it is clear that V̇ (xi(t)) < 0, which proves that
the system (31) is internally stable. In the next step, we define
the following performance function:

JTi =

∫ T

0

(
yiT (t) yi (t) − γi

2fiT (t) fi (t)
)
dt (47)

Noticing that

JTi =

∫ T

0

(
yiT (t) yi (t) − γi

2fiT (t) fi (t) + V̇ (xi(t))
)
dt

−

∫ T

0
V̇ (xi(t)) dt

=

∫ T

0

(
yiT (t) yi (t) − γi

2fiT (t) fi (t) + V̇ (xi(t))
)
dt

−V (xi (T ))

≤

∫ T

0

(
yiT (t) yi (t) − γi

2fiT (t) fi (t) + V̇ (xi(t))
)
dt

(48)

In view of (43), we obtain

yiT (t) yi (t) − γi
2fiT (t) fi (t) + V̇ (xi(t))

≤

[
xiT (t) fiT (t)

]
2̃i

[
xi (t)
fi (t)

]
(49)

2̃i =

[
2̃i11 PiBdi
∗ 2̃i22

]
(50)
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TABLE 2. Nominal quantities of the three-area power system [41], [46].

where

2̃i11
1
= Pi

(
Āi + Adi

)
+
(
Āi + Adi

)TPi
+ τiPiAdiQ1iATdiPi + τiĀTi Q

−1
1i Āi

+ τiPiAdiQ2iATdiPi + τiATdiQ
−1
2i Adi

+ τiPiAdiQ
−1
3i A

T
diPi + CT

i Ci,

2̃i22
1
= −γi

2I + Ti.

Let Xi = Pi−1. Pre- and post-multiplying (50) by
diag {Xi, I } leads to [

N11 Bdi
∗ 2̃i22

]
< 0 (51)

where

N11
1
=
(
Āi + Adi

)
Xi + Xi

(
Āi + Adi

)T
+ τAdiQ1ATdi + τiXiĀTi Q

−1
1i ĀiXi

+ τiAdiQ2iATdi + τiXiATdiQ
−1
2i AdiXi

+ τiXiAdiQ
−1
3i A

T
diXi + XiCT

i CiXi

Utilizing the Schur complement, the above inequality
holds if and only if (33) is feasible. The above derivation
shows that if the symmetric, positive-definite matrices Xi,
Q1i, Q2i and Q3i, then Pi = Xi−1 > 0, satisfying 2̃i < 0,
which means that JTi < 0 for any T > 0. This completes the
proof.
Corollary 2: Let γ i be a given positive scalar, If there exist

symmetric, positive-definite matrices Xi, Q1i, Q2i, Q3i and a
matrix Yi satisfying

H11 Bdi XiCT
i H14

∗ 2̃i22 0 0
∗ ∗ −I 0
∗ ∗ ∗ −Qi

 < 0, (52)

then the closed-loop system (31) with Ki = YiXi−1 is stable
and satisfies (17),
where

H11
1
= He

((
Ai + Adi

)
Xi − BiYi

)
+ τiAdiQ1iATdi + τiAdiQ2iATdi ,

H14
1
=
[
XiAiT − Y Ti B

T
i XiATdi Adi

]
.

Proof: The proof follows from (33) by letting
Yi = KiXi.

IV. SIMULATION RESULTS
In this section, three simulation cases are conducted to
address the LFC problem in a three-area interconnected
thermal power system with ESS cooperation, as depicted in
Fig. 1. The performance of the designed controller compared
with traditional PI and conventional SMC schemes is tested
under various disturbances. The nominal system parameters
for the three-area power system are presented in Table 2.
The tuning parameter Li of the disturbance observer (13) is

determined based on Lemma 2 and is chosen as an arbitrary
positive definite matrix for all controlled areas. For the sake
of simplicity, we assume:

Li =

20 0 0
0 30 0
0 0 40


Appropriate values are also selected for the matrix gain

Kτi , the memory parameter τi of the sliding surface (18)
and the tuning parameter mi of the proposed adaptive
controller (24). In addition, the H∞ performance index γi
is minimized by solving the LMI constraint (52) using the
YALMIP optimization toolbox [57]. This process determines
the sliding surface gain Ki. A list of preset parameters and
calculated values is provided in Table 3.
Case 1: In Case 1, the proposed MASMLFC is applied to

the three-area power system with nominal parameters. The
participation factors of the ESS and thermal power plan for
all areas i = 1, 2, 3 are assumed to be χi = 0.3 and
αi = 0.7. A continuous nonlinear load variation of1PL1 (t) =

0.1 × Sin(t) takes place in Area 1, followed by step load
changes of 1PL2 (t) = 1PL3 (t) = 0.15 p.u. in Areas 2
and 3 at t = 5 s and at t = 15 s, respectively. The
dynamic performance of the proposed disturbance observer
is shown in Fig. 3. The results demonstrate that the observer
can estimate both the step and sinusoidal load perturbations,
with the estimation error approaching zero after a short
transient time. The system frequency deviation responses,
1fi, i = 1, 2, 3, under different control strategies, are
illustrated in Fig. 4. The performance of the proposed
MASMLFC is compared with SMLFC [34], DOB-SMLFC
[60] and the conventional PI-based LFC. It can be observed
that the proposed MASMLFC exhibits superior transient
performance and significantly reduces frequency deviations
compared to the other control strategies A comparison
of overshoot between the proposed MASMLFC (memory-
based) and the DOB-SMLFC (memoryless) is provided in
Table 4 for all three interconnected areas. Fig. 5 displays
that the proposed scheme’s sliding surface and control effort
signals are smaller than those of the memory-less method
in [60]. This indicates that the proposed scheme effectively
eliminates the chattering effects by incorporating a saturation
function in the design process. The system dynamics are
driven to the sliding surfaces within finite time in all
control areas. The impact of different memory parameters
on the frequency deviation in Area2 is illustrated in Fig. 6.
It can be observed that smaller memory parameters result

VOLUME 11, 2023 102523



F. Farivar et al.: Memory-Based Adaptive Sliding Mode LFC in Interconnected Power Systems

TABLE 3. Preset parameter values for the proposed sliding surface and adaptive controller.

FIGURE 3. Disturbance estimation performance of the proposed DOB.

FIGURE 4. The frequency deviation responses with nominal plant parameters under different control strategies.

in increased overshoot and settling time. Thus, the proposed
memory-based SMC method exhibits a great performance
improvement on the transient response of the power system
frequency deviations, thereby highlighting its advantages.

Case 2: In this subsection, the robustness of the proposed
controller is evaluated under various uncertainties, including
system parameter variations and nonlinear dynamics such
as GRC limiters and GDB. In this simulation scenario,

a time-varying step load disturbance is applied to all three
controlled areas, as shown in Fig. 7. Additionally, sine
functions are used to simulate the bounded system parameter
variations, with an uncertainty range of ±50% around the
nominal values given in Table 1. The GRC and GDB values
are selected±0.0018p.u.MW/sec and 0.6, respectively, for all
three areas, based on [58]. The frequency deviation responses
1fi for all control areas are shown in Fig. 8. It is evident from
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FIGURE 5. Comparative sliding surface si (t) and control effort ui (t) between memory-based and memory-less approaches.

FIGURE 6. Frequency deviation response in area 2 under different memory parameters τi .

Fig. 8 that the maximum values of frequency fluctuations
with system parameter variations are |1f1|max = 0.16035Hz,
|1f2|max = 0.1921, Hz |1f3|max = 0.2335 Hz, whereas these
values with GRC and GDB consideration increase by 0.2845,
0.3175 and 0.4545 Hz, respectively. The analysis indicates
that the nonlinear dynamics, such as GRC limiters and GDB,
have a more significant impact on the frequency deviations
compared to system parameter variations. However, even
in the presence of these nonlinear dynamics, the proposed
controller, in conjunction with the ESS, effectively mitigates

the impact of these uncertainties on frequency deviations.
This demonstrates the robust performance of the proposed
controller under real operational conditions, where various
uncertainties and nonlinearities are present.
Scenario 3: In Case 3, the effectiveness of the proposed

control schemes is tested against a severe actual operating
condition, where the power system disturbances are random
and their bounds are unknown. Figs. 9 and 10 illustrate the
bounded load and wind power fluctuations, respectively. The
wind turbine parameters are listed in Table 5, and system
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FIGURE 7. Variable step load disturbance pattern for all three areas.

FIGURE 8. The frequency deviations response 1fi under the proposed MASMLFC considering
system parameter uncertainties with and without GRC and GDB nonlinearities.

FIGURE 9. Random load profile for the three area interconnected power system.

parameter uncertainties remain the same in Case 2. In this
simulation, the participation of ESS in the proposed LFC
strategy is illustrated in Fig. 11. It is evident from Fig. 11

that the frequency nadir of the system in all controlled
areas under ESS participation is decreased, and the dynamic
response of the frequency deviations 1fi exhibits improved
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FIGURE 10. Wind power fluctuation profile.

FIGURE 11. The frequency deviation responses with and without ESS participation under MASMLFC strategy with random disturbances.

TABLE 4. Comparative maximum frequency deviations.

transient and steady-state performance compared to the case
when ESS is not applied. This highlights the significance
of effective coordination between the ESS and the proposed
MASMLFC in maintaining the frequency deviations within
an acceptable range and ensuring power system frequency
stability. The simulation results presented in Fig. 12 highlight
that the proposed approach demonstrates superior dynamic
performance compared to other control strategies when

TABLE 5. Nominal parameters of the wind turbine [49], [50].

subjected to both random matched and mismatched dis-
turbances arising from system parameter variations, load
changes and wind power fluctuations. Additionally, the
performance indicators shown in Table 6 provide further
evidence of the superior performance of the proposed
MASMLFC strategy compared to the other approaches in
terms of minimizing the influence of random disturbances
on the controlled output 1fi. This confirms the robustness of
the designed controller in mitigating the effects of random
disturbances and maintaining desired system performance.
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FIGURE 12. The frequency deviation responses in all three interconnected areas under various LFC methods considering
random disturbances.

TABLE 6. Performance indices across all controlled areas.

V. CONCLUSION
The proposed paper introduces a memory-based adaptive
sliding mode LFC scheme for multiarea interconnected
power systems with ESS. The system’s dynamic model
is developed, and a disturbance observer is developed to
accurately estimate the lumped disturbance. The sliding sur-
face design incorporates current and delayed state variables
along with the estimated disturbance to improve the dynamic
performance of the controller. An H∞-based sliding mode
controller utilizing rigorous LMIs is constructed. A detailed
synthesis analysis is conducted to validate the theoretical
properties of the proposed control strategy. The simulation
results demonstrate that the proposed MASMLFC method
outperforms the recent memoryless SMC approaches in
terms of transient performance for the LFC problem. The
selection of an appropriate memory parameter τi enhances
the controller’s transient response. The continuous control
law also contributes to reducing chattering and control effort,
as observed in the simulation results. The proposed controller
exhibits robust performance in the presence of random
uncertainties and unmodeled dynamics. Furthermore, the
coordination of MASMLFC with energy storage devices
effectively mitigates frequency deviations caused by large
power perturbations, thereby reducing mechanical stress on
the traditional thermal units and improving power system
frequency stability.

Considering the promising results of the proposed
approach, our future work will focus on deriving a
fuzzy-evolutionary optimization algorithm to cooperatively
determine the memory parameter of the sliding surface
and the variable gain of the ESS, subject to the state of
charge constraints. Additionally, with the growing integration
of renewable energy sources and ESS in future power
system configurations, it becomes imperative to explore
the suitability of employing of the sliding mode control
strategy in smart grids for hybrid power systems that face
communication delays.
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