
Australian Journal of Teacher Education Australian Journal of Teacher Education

Volume 44 Issue 4 Article 4

2019

The Next Chapter in the STEM Education Narrative: Using The Next Chapter in the STEM Education Narrative: Using

Robotics to Support Programming and Coding. Robotics to Support Programming and Coding.

SUSAN BLACKLEY
Curtin University

Jennifer Howell

Follow this and additional works at: https://ro.ecu.edu.au/ajte

 Part of the Other Teacher Education and Professional Development Commons

Recommended Citation Recommended Citation
BLACKLEY, S., & Howell, J. (2019). The Next Chapter in the STEM Education Narrative: Using Robotics to
Support Programming and Coding.. Australian Journal of Teacher Education, 44(4). https://doi.org/
10.14221/ajte.2018v44n4.4

This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ajte/vol44/iss4/4

https://ro.ecu.edu.au/ajte
https://ro.ecu.edu.au/ajte/vol44
https://ro.ecu.edu.au/ajte/vol44/iss4
https://ro.ecu.edu.au/ajte/vol44/iss4/4
https://ro.ecu.edu.au/ajte?utm_source=ro.ecu.edu.au%2Fajte%2Fvol44%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/810?utm_source=ro.ecu.edu.au%2Fajte%2Fvol44%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.14221/ajte.2018v44n4.4
https://doi.org/10.14221/ajte.2018v44n4.4

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 51

The Next Chapter in the STEM Education Narrative: Using

Robotics to Support Programming and Coding

Susan Blackley

Jennifer Howell

Curtin University

Abstract: In this paper, we use our qualitative research notes and

observations to portray a model for integrated STEM education and

summarise primary school students’ typical and recurring ways in

which they engaged with each new robot. The purpose of this paper is

two-fold: first, to unpack key elements of the Australian Curriculum:

Technologies in order to support teachers and pre- service teachers to

implement these components, and second, to describe ways in which

teachers can teach authentic integrated STEM education that also

provides opportunities for students to develop and demonstrate 21st

century competencies. Based on data collected from projects

undertaken in a number of school sites over 18 months, we have

developed and share a model for the gradual structured release of

teacher control over student activity in STEM activities, and describe

how this concept can be a basis for in-situ teacher professional

learning. The affordances of robotics and visual programming as a

context for integrated STEM education are discussed, and identified

as promoting “head-heart-hands” learning.

Key words: STEM education, visual programming, robotics

Problem

Institutions that provide Initial Teacher Education (ITE) programs are faced with

Australian Institute for Teaching and School Leadership (AITSL) accreditation imperatives,

and of particular interest to this position paper is Program Standard 4:

In addition to study in each of the learning areas of the primary school

curriculum sufficient to equip teachers to teach across the years of primary

schooling, programs provide all primary graduates with a subject specialisation

through:

a) clearly defined pathways into and/or within a program that lead to

specialisations, that are in demand, with a focus on subject/curriculum

areas

b) assessment within the program requiring graduates to demonstrate expert

content knowledge and pedagogical content knowledge and highly effective

classroom teaching in their area of specialisation

c) publishing the specialisations available, and numbers of graduates per

specialisation through their annual reports. (AITSL, 2015, p. 14)

Many institutions that offer ITE programs in primary education (such as Curtin

University, Queensland University of Technology, RMIT, and La Trobe University) have

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 52

targeted Science, Technology, Engineering, Mathematics (STEM) or STEAM (incorporating

the Arts) education as a “specialisation” option in response to Commonwealth and State

government financial and resource commitments to STEM education. Further evidence of

this focus area, the University of Canberra has begun offering a Bachelor of Education,

Primary STEM, delivered by the Faculty of Education, Science, Technology, and

Mathematics.

The development and accreditation of these specialised units is time-consuming and

costly, and requires commitment and consensus from faculty leadership and teaching staff.

This in itself may be problematic for the following reasons: (1) lack of consensus about what

constitutes STEM education, (2) the potential impact of the Technologies Curriculum upon

ITE programs, and (3) the competence and confidence of in-service teachers to mentor pre-

service teachers whilst on professional placement in a STEM specialisation, given their

possible lack of training in this field (Blackley & Howell, 2015).

This paper unpacks the Australian Curriculum: Technologies, (ACARA, 2015)

developed and released in Phase 3 of the Australian Curriculum rollout, was developed to

provide some guidance as to how pre-service and in-service teachers can authentically

incorporate the content descriptions into their practice, within a context of integrated STEM

education. As such, this unpacking may serve as a useful starting point for STEM educators.

Following this, we focus in this paper, not so much a report on our research, rather, how our

work with programmable robotics in primary schools has informed our concept of integrated

STEM education, and in particular how the T for technology can be robustly enacted. From

semester 1, 2016 to the end of semester 2, 2017, we worked with three Western Australian

schools – two metropolitan and one regional – with seven teachers and four Year 4 classes,

two Year 5/6 classes and one composite class of Years 6 to 8 (students, N = 198). The

primary qualitative data sources were student worksheets, which were completed each week

and pertained to a particular aspect of the week’s robot, teacher interviews, and the

researchers’ observations and field notes. In this paper, we use our observations and notes to

portray a model for integrated STEM education and summarise the students’ typical and

recurring ways in which they engaged with each new robot.

As suggested by Ntemngwa and Oliver (2018) there is a need for “documentation

with emphasis on the nature of the integration process, how teacher scaffold the instruction

and the outcomes of the integrated STEM instruction on student and teachers are particularly

necessary” (p. 12), and this paper addresses this need.

Background

The release and implementation of the Australian Curriculum: Technologies has

already impacted teachers, particularly in primary schools, as they access digital tools and

professional learning events with the goal of successfully teaching and assessing this

additional curriculum area in an already over-crowded space. Further to this, Initial Teacher

Education (ITE) programs have been impacted by new accreditation imperatives resulting in

pre-services teachers having to nominate a specialisation in their degree, two of which are

science and mathematics, although many Australian ITE programs have chosen to provide a

specialisation in STEM education.

The implementation of the Australian Curriculum (AC): Technologies for students in

Foundation to Year 10 (5 to 15 years of age) is one of a raft of curricula that have been

developed globally to reignite engagement with what was called “Computer Science” in the

1960s. The Computer Science Teachers Association (CSTA) of the United States defined

“Computer Science” as the study of computers and algorithmic processes, including

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 53

hardware, software, and programming (Heitlin, 2014), and Wilson, Sudol, Stephenson, and

Stehlik (2010, p. 24) referred to Computer Science as “an academic discipline that

encompasses the study of computers and algorithmic process, including their principles,

their hardware and software designs, their applications and their impact on society”.

However, Computer Science Education includes: the creation of digital artefacts,

computational thinking, algorithm development and implementation, programming

(character and graphical user interfaces), networks, graphics, databases and information

retrieval, information security and privacy, artificial intelligence, applications in information

technology and systems, and the social impacts of computing (Wilson et al., 2010). Whilst a

resurgence in Computer Science has been occurring this decade in countries such as the

United States, New Zealand, England, Wales, Scotland, Greece, Israel, Germany, India, and

South Korea (Jones, 2011), the depth and breadth of study, as outlined in Computer Science

Education, does not seem to be addressed other than in specialist senior secondary school

subjects.

As indicated in the AC: Technologies, and in many of the individual state curricula

throughout the United States, computer programming is also making a comeback across K-

12 levels of schooling. In the mid-1990s, schools tended to relegate programming to the “too

hard” or “for what purpose” buckets: access to computer labs and qualified teachers was

problematic, and why deal with exacting coding languages with syntactical challenges when

access to pre-assembled multimedia packages via CD-ROMs was easy (Kafai & Burke,

2013). Over the last decade, the affordances and accessibility of mobile smart devices (e.g.,

tablets, iPads, and iPhones) and improved Internet bandwidth have supported a move to

engage with programming that strongly reflects the organic and dynamic way in which 21st

century learners utilise their technology of choice in their everyday life. The primary uses of

Internet-connected personal mobile devices have been to connect on social media sites and

to instantaneously access information. Increasingly, the scope of application is widening to

incorporate the entrepreneurial aspirations of users to create websites and apps, and to

upload clips to win fame and make money. In this paper, we suggest that the next chapter in

the STEM narrative (Blackley & Howell, 2015) should be a deeper investigation into the T

in STEM education, in particular the inclusion of programming and coding, and ways in

which the T can be integrated with science, engineering and mathematics in authentic ways

in the classroom.

The continued preoccupation with nationwide (e.g., National Assessment Program –

Literacy and Numeracy (NAPLAN)), international, and high-stakes testing (e.g. Programme

for International Student Assessment (PISA), Trends in International Mathematics and

Science Study (TIMSS), and Progress in International Reading Literacy Study (PIRLS))

across a limited selection of curriculum (mathematics, science and literacy) has not only

narrowed the taught curriculum in schools, but has also consolidated and elevated the status

of didactic and implicit pedagogies in schools, and in so doing, has effectively eliminated

engagement with the computer programming of the 70s and 80s (Pinkston, 2015). So why is

there now a push to re-engage with computer programming and coding from the early years

of schooling onwards? Clearly, the aim is not to produce tens of thousands of prospective

professional coders and programmers; rather, the benefits of the cognitive demands of

programming and coding have been researched (e.g., Eisenberg & Johnson, 1996), and it is

evident that students who have had experience with programming and coding have superior

problem-solving and higher-order thinking skills. Despite having computers in schools for

the last 30 years, there has been a paucity of attention given to the explicit engagement in

computational thinking across all phases of schooling; teaching word processing,

spreadsheet creation, and pervasive PowerPoint presentations does little to strengthen

student engagement in the deeper analysis needed to creatively, systematically and critically

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 54

engage with, and potentially solve, a wide range of problems (Collins & Halverson, 2009;

Kafai & Burke, 2013).

Wing, in 2006, was one of the first researchers to define computational thinking as

"solving problems, designing systems and understanding human behaviour, using the

fundamental concepts of computer science" (Wing, 2006, p. 33). However, in her role as

United States President’s Professor of Computer Science and head of the Computer Science

Department at Carnegie Mellon University, she explained that it is so much more than that.

Wing (2006, p. 33) is expansive in her contestation that "computational thinking is a

fundamental skill for everyone, not just for computer scientists. To reading, writing, and

arithmetic, we should add computational thinking to every child’s analytical ability".

Computational thinking is about "using abstraction and decomposition when attacking a

large complex task or designing a large complex system" (Wing, 2006, p.33), and

celebrating the ways in which humans think and create whilst utilising the functionality of

computers to deal with huge data sets, representations and models, and complex

calculations. In other words, humans do the thinking and the technology carries out the

algorithms.

Along with the development of computational thinking as a process, is a specialised

lexicon with which educators and students need to become familiar in order to share and

interpret the thinking. This specialised register (referred to by some as “jargon”) including

terms such as backtracking, prefetching, caching, preconditions, and algorithms, can be

daunting to the uninitiated. We contend that in school settings, the correct terminology

should be modelled by the teacher and encouraged of the students when the process is being

initially explained and demonstrated – in the same way that mathematics terminology should

be introduced (e.g., use "equation" from the outset, rather than "number sentence"). In

addition, the use of student- relevant examples would contribute to facility with the use of

the terminology and understanding of the processes. For example, have the students bring

their school bags into the classroom and turn out the contents. What they have packed for the

day is a real example of both prefetching (deciding what to pack) and caching (packing the

items in some order). Naturally there would be differences in the contents, and the teacher

could segue to a discussion about variability and notions of preconditions (predicted

activities and needed items are considered), and also highlight similarities in and differences

between each student's thinking.

Computer programming is an aspect of computational thinking and globally has

become a focus of many school curricula over the last 10 years, and it strongly reflects

Computer Science Education in that it is a way in which students can develop and

demonstrate computational competences (Grover & Pea, 2013), higher-order thinking skills,

and algorithmic problem-solving skills (Fessakis, Gouli, & Mavroudi, 2013; Kafai & Burke,

2014). There are two basic types of computer programming that are readily accessible for

school students: Character User Interfaces (CUIs) and Graphical User Interfaces (GUIs)

(Pinkston, 2015). With command line (CUI) editing programs, students enter computer

language or codes (e.g., HTML or Java Script) onto a command line, thus allowing the

student to become a creator rather than merely a user of technology. However, this kind of

coding can take time to master, and the accompanying frustrations of syntax error may have

a detrimental effect on students who are not willing or able to persevere. Perhaps this kind of

computer programming has a place in specialist senior secondary school subjects for very

keen students to engage with and master as part of their career projection.

The second and more accessible group, GUIs, take advantage of the affordances of

touch screens with tiles or objects to "drag and drop”, such as SCRATCH and SCRATCH Jr

(Junior) developed by the Massachusetts Institute of Technology (MIT) Media Lab's

Lifelong Kindergarten group, and allows users to intuitively program and to join an online

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 55

community of users. We contend that the visual programming associated with GUIs is most

appropriate for students in the first year of formal education through to the middle years

(i.e., ages 5 – 14), and that visual programming also has the potential to appeal to and

develop The Arts with students through choices of images and sounds that embellish their

digital work. This also allows personalisation of projects that can support identity

development and positive self-efficacy. With this in mind, we explore the curriculum in

Australia, focusing on the content and progression of programming and coding.

The Australian Context

The new Australian Curriculum: Technologies (Foundation -Year 10) has two

subjects within it: Design and Technologies and Digital Technologies (ACARA, 2015), and

the stated rationale for its inclusion in what is already a crowded curriculum includes the

view that digital systems “support new ways of collaborating and communicating, and as

such require new skills such as computational and systems thinking” (ACARA, 2015).

Despite the richness of what is essentially a very ambitious, albeit commendable,

curriculum, the focus seems to rest on “programming and coding (PAC)”. This is reflected

by the Federal Government’s commitment of $3.5m on the ‘Coding across the Curriculum’

initiative in a bid to incorporate coding into existing subjects. Further, in 2016 the first round

of the Federal Government Digital Literacy School Grants was awarded to 54 applications

with a total funding amount of $1,989,312.

Perhaps the focus on programming and coding is because other aspects of AC:

Technologies, such as graphical representations and data analysis, are reassuringly familiar

in the context of the mathematics curriculum, and as such do not warrant extraordinary

attention.

The Progression of Programming and Coding

In the AC: Technologies, the Foundation to Year 2 content description related to

PAC states that students will “follow, describe and represent a sequence of steps and

decisions (algorithms) needed to solve simple problems” (ACTDIP004). When the

elaborations are accessed on the website, it becomes evident that four of the five reflect

activities that are generally already undertaken in F-2 classes: nominally “activity

sequences” that are incorporated into both the mathematics and English curriculum. For

example, recounting a typical school day in chronological order. The fifth elaboration

(situated in first position) is the “new” focus - engaging with programmable devices in order

to generate a specified movement or series of movements. Whilst the elaboration states that

the provision of instructions could be made to “physical or virtual objects or robotic

devices” the key to the content description is the purpose of this programming, namely to

solve simple problems. Without this purpose, we believe that the exercise of programming

becomes somewhat trivial, in the same way the learning multiplication facts is not an end in

itself. Further, questions of equity arise when consideration is given to classroom resourcing

and access to the virtual and robotic devices: cost, location, bandwidth, and student home

experience all come into play.

In the next band, Year 3 and 4, there are two content descriptions related to PAC:

Define simple problems, and describe and follow a sequence of steps and decisions

(algorithms) needed to solve them (ACTDIP010) and Implement simple digital solutions as

visual programs with algorithms involving branching (decisions) and user input

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 56

(ACTDIP011). The elaborations for the second content description are considerably more

removed from other curriculum content, in particular the use of a visual programming

language, creating flowcharts, and implementing programs that make decisions on the basis

of user interaction (input or choice) involving branching. The implications of enacting these

elaborations for teachers could potentially be very stressful as it is unlikely that their initial

teacher education programs or their ensuing professional learning covered these areas, and

even if their personal experience is such that they can do these tasks themselves, their digital

pedagogy knowledge or self-efficacy to teach this to their students may be lacking.

The last band situated in the primary school years, Year 5 and 6, incorporates

designing and producing user interfaces and the repetition of a process or set of instructions

in programming (iterations) as an extension to designing and following simple algorithms.

For Years 7 and 8, in the last band that is mandated for all students to engage with, students

are required to Implement and modify programs with user interfaces involving branching,

iteration and functions in a general-purpose programming language (ACTID030), which in

essence is “coding” as a distinct activity from programming. Situating coding in secondary

schooling is perhaps not as problematic as programming is in primary school, as there would

generally be specialist digital technology (or computer science) teachers who could either

teach this curriculum or mentor other teachers to do so.

Digital Technologies and Integrated STEM Education

In 2001, Judith Ramaley, the director of the United States’ National Science

Foundation's education and human resources division, was working to develop curriculum

that would enhance education in science, technology, engineering and mathematics, and

coined the term “STEM” (Teaching Institute for Excellence in STEM, 2010). Following this,

Sanders (2009) was the first to promote the concept of integrated STEM education, and he

described a pedagogical approach of “purposeful design and inquiry” (Sanders, 2009, p. 21).

In this paper, by “integrated” STEM education we refer to the intentional engagement with

products or solving real world problems that requires utilising two or more of the STEM

disciplines, with or without other discipline areas such as the Arts, in tandem with 21st

century competencies – adaptability, communication, social skills (collaboration),

creativity, non-routine problem solving, self- management, self-development and systems

thinking (Bellanca & Brandt, 2010).

How can teachers incorporate the new AC: Technologies curriculum and its focus

areas effectively into a crowded curriculum program? Our response to this question is

integrated STEM education. We believe that the incorporation of the T in STEM being

sourced from the AC: Technologies presents a great opportunity for improved integrated

STEM education; particularly as there already is a synergy between some of the content and

the mathematics curriculum in the areas of data collection, management and representations.

We posit that the key to successful integrated STEM education lies in the tools that teachers

are able to access and confidently engage with in their classrooms, and the nature of

professional learning opportunities and support to which they are privy. Ideally these tools

would: provide opportunities for students to learn by doing; exemplify some of the key

mechanisms that revolutionised human labour and production; link design and construction

to visual programming for the operation of the devices; and support students to develop and

demonstrate the 21st century competencies. In this way, students would not merely be

consumers of digital technologies; they would be producers of digital artefacts. Are such

tools readily available to and affordable for schools or are they merely elusive and

aspirational? This paper describes how one such tool, LEGO WeDo, can foster integrated

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 57

STEM education in primary schools, including visual programming and 21st century

competencies, thus providing potentially rich and authentic learning experiences.

We began using WeDo in 2010 when it was relatively new on the scene in Australia,

as a tool to develop integrated STEM education, and to foster literacy and numeracy

development in a culturally diverse class of Prep/Year 1 students (ages 5 to 6). Six years

later, with the resurgence of interest in STEM education, we conducted professional learning

for in-service teachers at the Curtin University, School of Education Professional Learning

Hub in 2016, to engage in-service teachers in using WeDo, and in so doing, make explicit

related digital pedagogies and overt links to integrated STEM education and the Western

Australian Curriculum. Robotics resources, such as WeDo, are a rich means of introducing

students to the interplay between the component disciplines of STEM, and we believe they

are superior to visual programming environments such as Scratch (Resnick et al., 2009) and

Alice (Dann, Cooper, & Pausch, 2009) as the programming relates to student-constructed

objects rather than virtual characters (“sprites”) on screen (Armoni, Meerbaum-Slant, &

Ben-Ari, 2015). As a result of this professional learning, a number of schools approached us

to bring WeDo to their school to introduce it to students and interested staff. In our planning

for these sessions, we decided to base the professional learning upon a model of structured

release of instructor control that we had previously developed in 2010, as it had proven

effective in supporting real pedagogical change (McDonald & Howell, 2011).

Integrated STEM in Action

It is of note that the robotics sessions were not inserted into mathematics, science or

technology blocks – rather the teachers surrendered a whole teaching session (90 minutes)

each week to provide adequate time to the project. The strategy used at each school site was

essentially the same and incorporated staged transitioning from highly scaffolded to

independent learning for both the teachers and the students. The WeDo robotics were

deployed over four weeks, for one 90-minute session per week per class. The session for

each 4-week cycle positioned the students in modelling, exploring, challenging and

evaluating engagements with the robots, and concurrently the level of teacher support

decreased from highly-scaffolded to independent problem-solving group work. The class

teachers’ roles developed from observing and participating, to managing groups, to co-

teaching with the researchers, to operating as the lead teacher. The gradual release of input

into student activity whilst also gradually increasing class teacher responsibility is a

particular feature of this project that has proven successful in student and teacher

engagement with integrated STEM education. Table 1 shows the model of structured release

of instructor control, in which the research team members (“instructors”) model the digital

pedagogy to the class teacher and support them to gradually lead the session.

Week focus

Student engagement

Teacher role

Instructor role

1

Modelling

Highly scaffolded Observing &

participating

Leading

2

Exploring

Moderately scaffolded Overseeing group work

Co-teaching

3

Challenging

Independent group work

Co-teaching Overseeing group work

4

Evaluating

Problem-solving group

work

Leading Observing &

participating

Table 1: Model of Structured Release of Instructor Control

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 58

The basis for this model of release of instructor control was built on our belief that,

in order to authentically teach STEM education, as it is enacted in vocational and

professional settings (Reiss & Holman, 2007), an integrated approach appears to work most

effectively in primary school settings, accompanied by opportunities for students to discuss,

contest, modify, and evaluate their work and how they work together. This can be achieved

by scaffolded professional learning in teachers’ classrooms, using contexts and digital

technologies that provide the potential for cross-curricular learning, such as those afforded

by WeDo. Conducting teacher professional learning in situ is one of the most effective forms

of generating change (Evans, 2019; Jung & Brady, 2016; Takker & Subramanian, 2018).

During the modelling focus of Week 1, the students were in groups (pre-assigned by

the class teacher) and the finding and placing of the component parts was managed explicitly

by one of the research team. This was the opportunity to demonstrate how to interpret each

instructional building frame (which component to locate and where precisely to place it –

this also included decoding the 2D isometric representation on the screen to the matching 3D

component and location), to model the language (e.g., a 2 by 6 flat), and to demonstrate how

to develop the visual programming. Whilst this was highly scaffolded, and some groups

went ahead of their own accord, it was necessary for all students to have this basic starting

point. This initiation into the WeDo set-up is an example of “teachable moments”: the 2D to

3D matching aligns with the mathematics curriculum (Measurement & Geometry), whilst

the brick identification using array terminology (i.e., the 2 by 6 flat example above) is the

underpinning of the concept of area as well as multiplication.

The groups, ideally of four students, were managed by role assignation: component

finder, robot builder, assemblage checker, and computer operator, and the students were

rotated through these roles each week. Working in this way, the students developed and

could demonstrate the key 21st century competencies of collaboration, communication, and

critical reasoning. The skill of problem-solving and the attribute of perseverance were

evident every week, as students struggled to deal with instances in which their robot did not

work or their systems broke down. Whilst role assignation was used for expediency, it

challenged many of the students’ interpersonal and collaborative skills.

In Week 2, the initial context-situating video was played on a large screen to the

whole class, and then the students were encouraged to undertake the finding-constructing

processes in their groups, moving at a pace that was suitable for them. In Week 3, students

were merely told which robot they were to construct, and they were asked to modify the

programming once they had the basic functionality operating satisfactorily. During this

stage, students were actively engaged in the AC: Technologies – Digital Technologies Strand

– as they used the drag-and-drop functionality of the visual programming component of

WeDo to program their robot to move in different ways, make different sounds, and

incorporate text or backgrounds related to the context of the introductory scenario

established by the video. Week 4 was similar to Week 3 however a problem was introduced

to the scenario that required alterations or modifications to both the robot construction and

the visual programming. Altering the construction of the robots lends itself to exploring

basic engineering processes, such as ideate, create, operate, and evaluate. During this week,

students were also invited to demonstrate their modifications to other groups and were asked

to describe the changes they made and the resulting impact on the operation or construction

of their robot.

After several iterations of the 4-week cycle (as outlined in Table 1), we compared

our field notes and recognised that there were distinctive stages through which the students

moved during each session. We describe these stages as component related (to do with the

actual pieces and how the robot is assembled) and programming related (to do with the

visual programming required to mobilise the robots). Each stage seemed to have three

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 59

phases that were similar: recognition, placement, and system, and it could be argued that

these resemble the recall, comprehension, and synthesis levels of Bloom’s taxonomy

(Bloom, 1956). “Recognition” involves making the link between the 2D isometric image of

a piece (as displayed on the laptop screen, and the actual 3D piece in the kit. As familiarity

with this process develops, students “recall” the matches and this results in a more rapid

assembly of the robots. “Placement” refers to comprehending where the new piece is

situated – first, in the 2D image on screen, and second, matching this position on their 3D

robot. Finally, “system” describes how the pieces interplay or are synthesised into the

functionality of the robot – for example, how a number of cogs work together to drive a

shaft that in turn rotates a wheel.

Relating these stages to Bloom’s taxonomy may provide clarity and a sense of

familiarity to teachers who are engaged in integrated STEM education, as they may able to

link these concepts to their initial teacher education training and current teaching practice.

Figure1 illustrates the stages that students were observed to have passed through during each

4-week cycle: the component related stages (1, 2, & 3), the programming related stages (4,

5, & 6), and a final evaluation of the entire system in stage 7. We believe that this

framework could assist teachers in planning for integrated STEM activities, and it also

reinforces the language of the AC: Technologies.

Figure 1: Framework for Integrated STEM Development

2. Component/s

placement (in

situ → system)

1.

Component

recognition

3.

System

functionality

4. Visual

programming

icon

recognition

5. Visual

programming

icon/s

placement →

system

6. Visual

programming

system

operation

7. System

evaluation

(components &

visual

programming)

Application &

modification

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 60

Figures 2 – 19 show examples of the seven stages using illustrations from the WeDo kits

and visual programming software.

Figure 2: Stage 1 - Component recognition (Crown gear, as opposed to standard gear.)

Figure 3: Stage 2 - Component placement (Crown gear is secured to the axle that has been inserted

into the motor.)

Figure 4: Stage 3 - System functionality (The system works by the crown gear meshing with the

smaller cog that in turn meshes with the gear.)

Figure 5: Stage 4 - Visual programming icon recognition (This is the START icon.)

Figure 6: Stage 5 - Visual programming icon/s placement (By placing the icons in series, a system is

created.)

Figure 7: Stage 6 - Visual programming system operation (By activating the program the robot can be

made to do certain actions.)

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 61

Figures 8 & 19: Stage 7 - System evaluation (component & visual programming) – students make

judgements about the quality and functionality of their robot, and experiment with

making alterations to the construction or the programming.

Although the framework suggests transitioning from stage to stage in a one-way

progression, what actually occurred in all groups was iterative movement between stages. In

most cases this was the result of the realisation that the selected component was the wrong

one or had been placed in the wrong location, and so could not join into the system under

construction or could not allow the system functioning to occur as needed to activate the

robot.

Discussion

The research used to underpin this paper was conducted in numerous school sites,

across various year levels, and over time. As such, the limitations are minor, however we

acknowledge that we have conducted this work without other collegial input other than

feedback at conference.

Whilst the original LEGO WeDo robots were tethered (that is, the power block is

attached to the laptop via a USB connection), WeDo 2.0 in not tethered and uses Wi-Fi with

iPads to power and program the robots, providing a greater scope and range of construction

and movement. By using the iPads, students can also capture still shots and videos of their

robots, and these captures can then be incorporated into other class work and curriculum

areas. LEGO Mindstorms ® EV3 robots are also not physically tethered, and by combining

LEGO® elements with a programmable brick, motors and sensors, the creations can walk,

talk, grab, think, shoot or anything else students can imagine. As with WeDo, Mindstorms®

EV3 provides rich opportunities for integrated STEM education, high-level programming,

complex component assembly, and the development of 21st century competences. The

financial outlay is significantly more than for WeDo however this is mediated by the greater

potential for breadth and depth of learning, particularly the level of programming required

for complex, staged movement incorporating higher-level mathematical concepts. Another

tool for this kind of integrated STEM education, in which students construct robots and

program their movements, are the Edison robots. Edison educational robots are an

innovation of Microbric, an Australian company based in South Australia, and were

launched in 2014. Edison robots work with any compatible LEGO brick building system,

and so could value-add WeDo kits or basic LEGO kits, and are a powerful, engaging tool for

teaching computational thinking and computer programming in a hands-on way.

These three tools authentically engage students in what we refer to as head-heart-

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 62

hands learning: head – cognitive demands and intellectual engagement; heart – enthusiastic

engagement and development of interpersonal skills; hands – fine motor skills and spatial

reasoning. We posit that these are key to authentic integrated STEM education, and whilst

there are other high-profile digital tools that schools are acquiring, such as Spheros ®,

LittleBits ™, MakeyMakey ® and Arduino ®, they have limited scope for covering all of the

characteristics of integrated STEM education we have outlined in this paper, and the most

expensive, Sphero, focuses solely on programming. The key point of difference between

these digital tools and robotics is that when constructing the robots, students are actually

engaging in building mechanical systems (e.g., using appropriate cogs to gear up) and thus

they develop a genuine understanding of the synergies of the components and how their

functionality can be altered.

Walker, Moore, Guzey, and Sorge (2018) developed nine categories for quality

integrated STEM curricula and used these to develop their framework to support curriculum

planning and reflection. The categories are: “(1) a motivating and engaging context, (2) an

engineering design challenge, (3) integration of science content, (4) integration of

mathematics content, (5) student-centred instructional strategies, (6) teamwork, (7)

communication, (8) organisation, and (9) performance and formative assessment” (Walker et

al., 2018, p. 332). We contend that the construction and programming of robots, as described

in this paper, in conjunction with a focus on building teacher capacity and confidence by

employing our Model of Structured Release of Instructor Control, can result in quality

integrated STEM education as determined by Walker et al. (2018). Further, the use of

robotics provides an engaging context for students to develop engineering skills and

practices in a way that no other digital tool can achieve, and clearly provides value for

investment.

Implications

The flurry of activity and fiscal commitment by governments and education

authorities in regard to STEM education needs to be moderated by a ground swell of reason

– we believe that educators have been left out of the frenetic STEM agenda, despite the

responsibility for making it work being firmly placed on their shoulders. Are we now at the

stage where all stakeholders need to pause, take breath and think long and hard about the

progress of STEM education to date?

We have concerns about an approach to STEM education that: promotes one

discipline over the other, that sidelines the Arts and creativity, that channels every student

into what has been referred to as the “STEM pipeline” or even a STEM career, and zealously

clambers onto the programming and coding bandwagon, whilst expecting that every student

will have the ability and desire to engage with these skills. Rather, we champion an approach

that recognises that integrated STEM education should not be conceived as the context for

the explicit teaching of science, technology and mathematics; integrated STEM education is

a space for students to apply their discipline knowledge to create products and/or solve

problems that can be made or solved using engineering principles. We contend that students

need to be involved in situations that demonstrate how STEM knowledge and skills and 21st

century competencies can be applied in different contexts. In this paper we have presented

one such approach that builds capacity in classroom teachers and engages students. Using

WeDo as the tool to do this, allows us to also implement key components of the AC:

Technologies, and to spotlight 21st century competencies in classroom practice.

The implications for teachers and school leaders are not subtle: plan and map

intentional, integrated STEM activity across all year levels providing access to all students;

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 63

carefully consider the procurement of digital tools; focus on skills and processes rather than

specific tools that could soon be superseded; engage in authentic professional learning;

explore other avenues that may provide a platform for integrated STEM education, such as

Makerspaces; and improve robust, explicit teaching of science, technology and mathematics.

References

ACARA. (2015). Australian Curriculum: Digital Technologies (F-10). Retrieved from

http://www.australiancurriculum.edu.au/technologies/digital-technologies/structure

AITSL. (2015). Accreditation of ITE programs in Australia: Standards and

Procedures. Retrieved from https://www.aitsl.edu.au/docs/default-

source/general/accreditation-of-ite- programs-in-

australia.pdf?sfvrsn=3013e33c_2.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “Real”

Programming. ACM Transactions on Computing Education, 14(4). Retrieved from

https://doi.org/10.1145/2677087

Bellanca, J.A., & Brandt, R.S. (2010). 21st century skills: Rethinking how students learn. Vol.

20. Bloomington, IN: Solution Tree Press.

Blackley, S., & Howell, J. (2015). A STEM Narrative: 15 Years in the Making. Australian

Journal of Teacher Education, 40(7). https://doi.org/10.14221/ajte.2015v40n7.8

Bloom, B. S. (1956). Taxonomy of Educational Objectives, Handbook I: The Cognitive

Domain. New York: David McKay Co Inc.

Collins, A., & Halverson, R. (2009). Rethinking education in the age of technology. New

York, NY: Teachers College Press.

Dann, W., Cooper, S., & Pausch, R. (2009). Learning to Program with Alice (2nd ed.).

Pearson.

Eisenberg, M. B., & Johnson, D. (1996). Computer skills for information problem-solving:

learning and teaching technology in context. Retrieved from

http://www.ericdigest.org/1996-4/skills.html

Evans, L. (2019) Implicit and informal professional development: what it ‘looks like’, how it

occurs, and why we need to research it. Professional Development in Education,

45(1), 3-16. https://doi.org/10.1080/19415257.2018.1441172

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6-year-old kindergarten

children in a computer programming environment: A case study. Computers &

Education, 63, 87-97. Retrieved from

http://dx.doi.org/10.1016/j.compedu.2012.11.016

Grover, S., & Pea, R. (2013). Computational thinking in K-12, a review of the state of the

field.

Educational Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051

Heitlin, L. (2014). Computer Science: Not Just an Elective Anymore. Retrieved from

www.edweek.org/ew/articles/2014/02/26/22computer_ep.h33.html

Jones, S. P. (2011). Computing at School: International comparisons. Retrieved from

http://www.computingatschool.org.uk/data/uploads/internationalcomparisons-v5.pdf

Jung, H., & Brady, C. E. (2016). Roles of a teacher and researcher during in situ professional

development around the implementation of mathematical modeling tasks. Journal of

Mathematics Teacher Education, 19(2-3), 277-295. https://doi.org/10.1007/s10857-

015-9335-6

http://www.australiancurriculum.edu.au/technologies/digital-technologies/structure
http://www.australiancurriculum.edu.au/technologies/digital-technologies/structure
https://www.aitsl.edu.au/docs/default-source/general/accreditation-of-ite-programs-in-australia.pdf?sfvrsn=3013e33c_2
https://www.aitsl.edu.au/docs/default-source/general/accreditation-of-ite-programs-in-australia.pdf?sfvrsn=3013e33c_2
https://www.aitsl.edu.au/docs/default-source/general/accreditation-of-ite-programs-in-australia.pdf?sfvrsn=3013e33c_2
https://www.aitsl.edu.au/docs/default-source/general/accreditation-of-ite-programs-in-australia.pdf?sfvrsn=3013e33c_2
https://www.aitsl.edu.au/docs/default-source/general/accreditation-of-ite-programs-in-australia.pdf?sfvrsn=3013e33c_2
https://www.aitsl.edu.au/docs/default-source/general/accreditation-of-ite-programs-in-australia.pdf?sfvrsn=3013e33c_2
https://www.aitsl.edu.au/docs/default-source/general/accreditation-of-ite-programs-in-australia.pdf?sfvrsn=3013e33c_2
https://www.aitsl.edu.au/docs/default-source/general/accreditation-of-ite-programs-in-australia.pdf?sfvrsn=3013e33c_2
https://doi.org/10.1145/2677087
https://doi.org/10.1145/2677087
https://doi.org/10.14221/ajte.2015v40n7.8
https://doi.org/10.14221/ajte.2015v40n7.8
http://www.ericdigest.org/1996-4/skills.html
http://www.ericdigest.org/1996-4/skills.html
https://doi.org/10.1080/19415257.2018.1441172
https://doi.org/10.1080/19415257.2018.1441172
http://dx.doi.org/10.1016/j.compedu.2012.11.016
http://dx.doi.org/10.1016/j.compedu.2012.11.016
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.3102/0013189X12463051
http://www.edweek.org/ew/articles/2014/02/26/22computer_ep.h33.html
http://www.edweek.org/ew/articles/2014/02/26/22computer_ep.h33.html
http://www.computingatschool.org.uk/data/uploads/internationalcomparisons-v5.pdf
http://www.computingatschool.org.uk/data/uploads/internationalcomparisons-v5.pdf
https://doi.org/10.1007/s10857-015-9335-6
https://doi.org/10.1007/s10857-015-9335-6
https://doi.org/10.1007/s10857-015-9335-6
https://doi.org/10.1007/s10857-015-9335-6

Australian Journal of Teacher Education

 Vol 44, 4, April 2019 64

Kafai, Y. B., & Burke, Q. (2013). Computer Programming Goes Back to School. Retrieved

from www.edweek.org/ew/articles/2013/09/01/kappan_kafai.html

https://doi.org/10.1177/003172171309500111

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming.

MIT Press. Retrieved from https://searchworks.stanford.edu/view/10610063

McDonald, S., & Howell, J. (2011). Watching, creating and achieving: Creative technologies

as a conduit for learning in the early years. British Journal of Educational Technology

(BJET), 43(4), 641-651. https://doi.org/10.1111/j.1467-8535.2011.01231.x

Pinkston, G. (2015). Forward 50, Teaching Coding to Ages 4-12: Programming in the

Elementary School. Retrieved from http://dl4.globalstf.org/?wpsc-product=forward-

50- teaching-coding-to-ages-4-12-programming-in-the-elementary-school

Reiss, M., & Holman, J. (2007). S-T-E-M Working Together for schools and colleges. The

Royal Society handbook of research on environmental education. New York:

Routledge.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,

Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch:

Programming for all. Communications of the ACM, 52(11), 60-67. Retrieved from

https://dl.acm.org/citation.cfm?id=1592779

Sanders, M. (2009). STEM, STEM Education, STEMmania. The Technology Teacher,

December/January, 20-26. Retrieved from

https://vtechworks.lib.vt.edu/bitstream/handle/10919/51616/STEMmania.pdf?sequenc

e

Takker, S., & Subramaniam, K. (2018). Teacher Knowledge and Learning In-situ: A Case

Study of the Long Division Algorithm. Australian Journal of Teacher Education,

43(3).

http://dx.doi.org/10.14221/ajte.2018v43n3.1

Teaching Institute for Excellence in STEM (2010). What is STEM education? Retrieved from

http://www.tiesteach.org/stem-education.aspx

Walker, W. S., Moore, T. J., Guzey, S. S., & Sorge, B. H. (2018). Frameworks to develop

integrated STEM curricula. K-12 STEM Education, 4(2), 331-339.

http://dx.doi.org/10.14456/k12stemed.2018.14

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on Empty: The

Failure to Teach K-12 Computer Science in the Digital Age. Retrieved from

http://www.fit-in-

it.ch/sites/default/files/downloads/Running%20on%20Empty%20(ACM).pdf

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

http://dx.doi.org/10.1145/1118178.1118215.

http://www.edweek.org/ew/articles/2013/09/01/kappan_kafai.html
http://www.edweek.org/ew/articles/2013/09/01/kappan_kafai.html
https://doi.org/10.1177/003172171309500111
https://doi.org/10.1177/003172171309500111
https://searchworks.stanford.edu/view/10610063
https://searchworks.stanford.edu/view/10610063
https://doi.org/10.1111/j.1467-8535.2011.01231.x
https://doi.org/10.1111/j.1467-8535.2011.01231.x
http://dl4.globalstf.org/?wpsc-product=forward-50-
http://dl4.globalstf.org/?wpsc-product=forward-50-
http://dl4.globalstf.org/?wpsc-product=forward-50-
http://dl4.globalstf.org/?wpsc-product=forward-50-
http://dl4.globalstf.org/?wpsc-product=forward-50-teaching-coding-to-ages-4-12-programming-in-the-elementary-school
http://dl4.globalstf.org/?wpsc-product=forward-50-teaching-coding-to-ages-4-12-programming-in-the-elementary-school
https://dl.acm.org/citation.cfm?id=1592779
https://dl.acm.org/citation.cfm?id=1592779
https://vtechworks.lib.vt.edu/bitstream/handle/10919/51616/STEMmania.pdf?sequence
https://vtechworks.lib.vt.edu/bitstream/handle/10919/51616/STEMmania.pdf?sequence
https://vtechworks.lib.vt.edu/bitstream/handle/10919/51616/STEMmania.pdf?sequence
https://vtechworks.lib.vt.edu/bitstream/handle/10919/51616/STEMmania.pdf?sequence
http://dx.doi.org/10.14221/ajte.2018v43n3.1
http://dx.doi.org/10.14221/ajte.2018v43n3.1
http://www.tiesteach.org/stem-education.aspx
http://www.tiesteach.org/stem-education.aspx
http://dx.doi.org/10.14456/k12stemed.2018.14
http://dx.doi.org/10.14456/k12stemed.2018.14
http://www.fit-in-it.ch/sites/default/files/downloads/Running%20on%20Empty%20(ACM).pdf
http://www.fit-in-it.ch/sites/default/files/downloads/Running%20on%20Empty%20(ACM).pdf
http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1145/1118178.1118215

	2019
	The Next Chapter in the STEM Education Narrative: Using Robotics to Support Programming and Coding.
	Recommended Citation

	tmp.1556070045.pdf.pL6IM

