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Abstract: In this paper, we use our qualitative research notes and 

observations to portray a model for integrated STEM education and 

summarise primary school students’ typical and recurring ways in 

which they engaged with each new robot. The purpose of this paper is 

two-fold: first, to unpack key elements of the Australian Curriculum: 

Technologies in order to support teachers and pre- service teachers to 

implement these components, and second, to describe ways in which 

teachers can teach authentic integrated STEM education that also 

provides opportunities for students to develop and demonstrate 21st 

century competencies. Based on data collected from projects 

undertaken in a number of school sites over 18 months, we have 

developed and share a model for the gradual structured release of 

teacher control over student activity in STEM activities, and describe 

how this concept can be a basis for in-situ teacher professional 

learning. The affordances of robotics and visual programming as a 

context for integrated STEM education are discussed, and identified 

as promoting “head-heart-hands” learning. 
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Problem 

 

Institutions that provide Initial Teacher Education (ITE) programs are faced with 

Australian Institute for Teaching and School Leadership (AITSL) accreditation imperatives, 

and of particular interest to this position paper is Program Standard 4: 

In addition to study in each of the learning areas of the primary school 

curriculum sufficient to equip teachers to teach across the years of primary 

schooling, programs provide all primary graduates with a subject specialisation 

through: 

a) clearly defined pathways into and/or within a program that lead to 

specialisations, that are in demand, with a focus on subject/curriculum 

areas 

b) assessment within the program requiring graduates to demonstrate expert 

content knowledge and pedagogical content knowledge and highly effective 

classroom teaching in their area of specialisation 

c) publishing the specialisations available, and numbers of graduates per 

specialisation through their annual reports. (AITSL, 2015, p. 14) 

Many institutions that offer ITE programs in primary education (such as Curtin 

University, Queensland University of Technology, RMIT, and La Trobe University) have 
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targeted Science, Technology, Engineering, Mathematics (STEM) or STEAM (incorporating 

the Arts) education as a “specialisation” option in response to Commonwealth and State 

government financial and resource commitments to STEM education. Further evidence of 

this focus area, the University of Canberra has begun offering a Bachelor of Education, 

Primary STEM, delivered by the Faculty of Education, Science, Technology, and 

Mathematics. 

The development and accreditation of these specialised units is time-consuming and 

costly, and requires commitment and consensus from faculty leadership and teaching staff. 

This in itself may be problematic for the following reasons: (1) lack of consensus about what 

constitutes STEM education, (2) the potential impact of the Technologies Curriculum upon 

ITE programs, and (3) the competence and confidence of in-service teachers to mentor pre-

service teachers whilst on professional placement in a STEM specialisation, given their 

possible lack of training in this field (Blackley & Howell, 2015).  

This paper unpacks the Australian Curriculum: Technologies, (ACARA, 2015) 

developed and released in Phase 3 of the Australian Curriculum rollout, was developed to 

provide some guidance as to how pre-service and in-service teachers can authentically 

incorporate the content descriptions into their practice, within a context of integrated STEM 

education. As such, this unpacking may serve as a useful starting point for STEM educators. 

Following this, we focus in this paper, not so much a report on our research, rather, how our 

work with programmable robotics in primary schools has informed our concept of integrated 

STEM education, and in particular how the T for technology can be robustly enacted. From 

semester 1, 2016 to the end of semester 2, 2017, we worked with three Western Australian 

schools – two metropolitan and one regional – with seven teachers and four Year 4 classes, 

two Year 5/6 classes and one composite class of Years 6 to 8 (students, N = 198). The 

primary qualitative data sources were student worksheets, which were completed each week 

and pertained to a particular aspect of the week’s robot, teacher interviews, and the 

researchers’ observations and field notes. In this paper, we use our observations and notes to 

portray a model for integrated STEM education and summarise the students’ typical and 

recurring ways in which they engaged with each new robot. 

As suggested by Ntemngwa and Oliver (2018) there is a need for “documentation 

with emphasis on the nature of the integration process, how teacher scaffold the instruction 

and the outcomes of the integrated STEM instruction on student and teachers are particularly 

necessary” (p. 12), and this paper addresses this need. 

 

 

Background 

 

The release and implementation of the Australian Curriculum: Technologies has 

already impacted teachers, particularly in primary schools, as they access digital tools and 

professional learning events with the goal of successfully teaching and assessing this 

additional curriculum area in an already over-crowded space. Further to this, Initial Teacher 

Education (ITE) programs have been impacted by new accreditation imperatives resulting in 

pre-services teachers having to nominate a specialisation in their degree, two of which are 

science and mathematics, although many Australian ITE programs have chosen to provide a 

specialisation in STEM education. 

The implementation of the Australian Curriculum (AC): Technologies for students in 

Foundation to Year 10 (5 to 15 years of age) is one of a raft of curricula that have been 

developed globally to reignite engagement with what was called “Computer Science” in the 

1960s. The Computer Science Teachers Association (CSTA) of the United States defined 

“Computer Science” as the study of computers and algorithmic processes, including 
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hardware, software, and programming (Heitlin, 2014), and Wilson, Sudol, Stephenson, and 

Stehlik (2010, p. 24) referred to Computer Science as “an academic discipline that 

encompasses the study of computers and algorithmic process, including their principles, 

their hardware and software designs, their applications and their impact on society”. 

However, Computer Science Education includes: the creation of digital artefacts, 

computational thinking, algorithm development and implementation, programming 

(character and graphical user interfaces), networks, graphics, databases and information 

retrieval, information security and privacy, artificial intelligence, applications in information 

technology and systems, and the social impacts of computing (Wilson et al., 2010). Whilst a 

resurgence in Computer Science has been occurring this decade in countries such as the 

United States, New Zealand, England, Wales, Scotland, Greece, Israel, Germany, India, and 

South Korea (Jones, 2011), the depth and breadth of study, as outlined in Computer Science 

Education, does not seem to be addressed other than in specialist senior secondary school 

subjects. 

As indicated in the AC: Technologies, and in many of the individual state curricula 

throughout the United States, computer programming is also making a comeback across K-

12 levels of schooling. In the mid-1990s, schools tended to relegate programming to the “too 

hard” or “for what purpose” buckets: access to computer labs and qualified teachers was 

problematic, and why deal with exacting coding languages with syntactical challenges when 

access to pre-assembled multimedia packages via CD-ROMs was easy (Kafai & Burke, 

2013). Over the last decade, the affordances and accessibility of mobile smart devices (e.g., 

tablets, iPads, and iPhones) and improved Internet bandwidth have supported a move to 

engage with programming that strongly reflects the organic and dynamic way in which 21st 

century learners utilise their technology of choice in their everyday life. The primary uses of 

Internet-connected personal mobile devices have been to connect on social media sites and 

to instantaneously access information. Increasingly, the scope of application is widening to 

incorporate the entrepreneurial aspirations of users to create websites and apps, and to 

upload clips to win fame and make money. In this paper, we suggest that the next chapter in 

the STEM narrative (Blackley & Howell, 2015) should be a deeper investigation into the T 

in STEM education, in particular the inclusion of programming and coding, and ways in 

which the T can be integrated with science, engineering and mathematics in authentic ways 

in the classroom.  

The continued preoccupation with nationwide (e.g., National Assessment Program –

Literacy and Numeracy (NAPLAN)), international, and high-stakes testing (e.g. Programme 

for International Student Assessment (PISA), Trends in International Mathematics and 

Science Study (TIMSS), and Progress in International Reading Literacy Study (PIRLS)) 

across a limited selection of curriculum (mathematics, science and literacy) has not only 

narrowed the taught curriculum in schools, but has also consolidated and elevated the status 

of didactic and implicit pedagogies in schools, and in so doing, has effectively eliminated 

engagement with the computer programming of the 70s and 80s (Pinkston, 2015). So why is 

there now a push to re-engage with computer programming and coding from the early years 

of schooling onwards? Clearly, the aim is not to produce tens of thousands of prospective 

professional coders and programmers; rather, the benefits of the cognitive demands of 

programming and coding have been researched (e.g., Eisenberg & Johnson, 1996), and it is 

evident that students who have had experience with programming and coding have superior 

problem-solving and higher-order thinking skills. Despite having computers in schools for 

the last 30 years, there has been a paucity of attention given to the explicit engagement in 

computational thinking across all phases of schooling; teaching word processing, 

spreadsheet creation, and pervasive PowerPoint presentations does little to strengthen 

student engagement in the deeper analysis needed to creatively, systematically and critically 
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engage with, and potentially solve, a wide range of problems (Collins & Halverson, 2009; 

Kafai & Burke, 2013). 

Wing, in 2006, was one of the first researchers to define computational thinking as 

"solving problems, designing systems and understanding human behaviour, using the 

fundamental concepts of computer science" (Wing, 2006, p. 33). However, in her role as 

United States President’s Professor of Computer Science and head of the Computer Science 

Department at Carnegie Mellon University, she explained that it is so much more than that. 

Wing (2006, p. 33) is expansive in her contestation that "computational thinking is a 

fundamental skill for everyone, not just for computer scientists. To reading, writing, and 

arithmetic, we should add computational thinking to every child’s analytical ability". 

Computational thinking is about "using abstraction and decomposition when attacking a 

large complex task or designing a large complex system" (Wing, 2006, p.33), and 

celebrating the ways in which humans think and create whilst utilising the functionality of 

computers to deal with huge data sets, representations and models, and complex 

calculations. In other words, humans do the thinking and the technology carries out the 

algorithms. 

Along with the development of computational thinking as a process, is a specialised 

lexicon with which educators and students need to become familiar in order to share and 

interpret the thinking. This specialised register (referred to by some as “jargon”) including 

terms such as backtracking, prefetching, caching, preconditions, and algorithms, can be 

daunting to the uninitiated. We contend that in school settings, the correct terminology 

should be modelled by the teacher and encouraged of the students when the process is being 

initially explained and demonstrated – in the same way that mathematics terminology should 

be introduced (e.g., use "equation" from the outset, rather than "number sentence"). In 

addition, the use of student- relevant examples would contribute to facility with the use of 

the terminology and understanding of the processes. For example, have the students bring 

their school bags into the classroom and turn out the contents. What they have packed for the 

day is a real example of both prefetching (deciding what to pack) and caching (packing the 

items in some order). Naturally there would be differences in the contents, and the teacher 

could segue to a discussion about variability and notions of preconditions (predicted 

activities and needed items are considered), and also highlight similarities in and differences 

between each student's thinking. 

Computer programming is an aspect of computational thinking and globally has 

become a focus of many school curricula over the last 10 years, and it strongly reflects 

Computer Science Education in that it is a way in which students can develop and 

demonstrate computational competences (Grover & Pea, 2013), higher-order thinking skills, 

and algorithmic problem-solving skills (Fessakis, Gouli, & Mavroudi, 2013; Kafai & Burke, 

2014). There are two basic types of computer programming that are readily accessible for 

school students: Character User Interfaces (CUIs) and Graphical User Interfaces (GUIs) 

(Pinkston, 2015). With command line (CUI) editing programs, students enter computer 

language or codes (e.g., HTML or Java Script) onto a command line, thus allowing the 

student to become a creator rather than merely a user of technology. However, this kind of 

coding can take time to master, and the accompanying frustrations of syntax error may have 

a detrimental effect on students who are not willing or able to persevere. Perhaps this kind of 

computer programming has a place in specialist senior secondary school subjects for very 

keen students to engage with and master as part of their career projection. 

The second and more accessible group, GUIs, take advantage of the affordances of 

touch screens with tiles or objects to "drag and drop”, such as SCRATCH and SCRATCH Jr 

(Junior) developed by the Massachusetts Institute of Technology (MIT) Media Lab's 

Lifelong Kindergarten group, and allows users to intuitively program and to join an online 
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community of users. We contend that the visual programming associated with GUIs is most 

appropriate for students in the first year of formal education through to the middle years 

(i.e., ages 5 – 14), and that visual programming also has the potential to appeal to and 

develop The Arts with students through choices of images and sounds that embellish their 

digital work. This also allows personalisation of projects that can support identity 

development and positive self-efficacy. With this in mind, we explore the curriculum in 

Australia, focusing on the content and progression of programming and coding. 

 

 

The Australian Context 

 

The new Australian Curriculum: Technologies (Foundation -Year 10) has two 

subjects within it: Design and Technologies and Digital Technologies (ACARA, 2015), and 

the stated rationale for its inclusion in what is already a crowded curriculum includes the 

view that digital systems “support new ways of collaborating and communicating, and as 

such require new skills such as computational and systems thinking” (ACARA, 2015). 

Despite the richness of what is essentially a very ambitious, albeit commendable, 

curriculum, the focus seems to rest on “programming and coding (PAC)”. This is reflected 

by the Federal Government’s commitment of $3.5m on the ‘Coding across the Curriculum’ 

initiative in a bid to incorporate coding into existing subjects. Further, in 2016 the first round 

of the Federal Government Digital Literacy School Grants was awarded to 54 applications 

with a total funding amount of $1,989,312. 

Perhaps the focus on programming and coding is because other aspects of AC: 

Technologies, such as graphical representations and data analysis, are reassuringly familiar 

in the context of the mathematics curriculum, and as such do not warrant extraordinary 

attention. 

 

 

The Progression of Programming and Coding 

 

In the AC: Technologies, the Foundation to Year 2 content description related to 

PAC states that students will “follow, describe and represent a sequence of steps and 

decisions (algorithms) needed to solve simple problems” (ACTDIP004). When the 

elaborations are accessed on the website, it becomes evident that four of the five reflect 

activities that are generally already undertaken in F-2 classes: nominally “activity 

sequences” that are incorporated into both the mathematics and English curriculum. For 

example, recounting a typical school day in chronological order. The fifth elaboration 

(situated in first position) is the “new” focus - engaging with programmable devices in order 

to generate a specified movement or series of movements. Whilst the elaboration states that 

the provision of instructions could be made to “physical or virtual objects or robotic 

devices” the key to the content description is the purpose of this programming, namely to 

solve simple problems. Without this purpose, we believe that the exercise of programming 

becomes somewhat trivial, in the same way the learning multiplication facts is not an end in 

itself. Further, questions of equity arise when consideration is given to classroom resourcing 

and access to the virtual and robotic devices: cost, location, bandwidth, and student home 

experience all come into play. 

In the next band, Year 3 and 4, there are two content descriptions related to PAC: 

Define simple problems, and describe and follow a sequence of steps and decisions 

(algorithms) needed to solve them (ACTDIP010) and Implement simple digital solutions as 

visual programs with algorithms involving branching (decisions) and user input 
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(ACTDIP011). The elaborations for the second content description are considerably more 

removed from other curriculum content, in particular the use of a visual programming 

language, creating flowcharts, and implementing programs that make decisions on the basis 

of user interaction (input or choice) involving branching. The implications of enacting these 

elaborations for teachers could potentially be very stressful as it is unlikely that their initial 

teacher education programs or their ensuing professional learning covered these areas, and 

even if their personal experience is such that they can do these tasks themselves, their digital 

pedagogy knowledge or self-efficacy to teach this to their students may be lacking. 

The last band situated in the primary school years, Year 5 and 6, incorporates 

designing and producing user interfaces and the repetition of a process or set of instructions 

in programming (iterations) as an extension to designing and following simple algorithms. 

For Years 7 and 8, in the last band that is mandated for all students to engage with, students 

are required to Implement and modify programs with user interfaces involving branching, 

iteration and functions in a general-purpose programming language (ACTID030), which in 

essence is “coding” as a distinct activity from programming. Situating coding in secondary 

schooling is perhaps not as problematic as programming is in primary school, as there would 

generally be specialist digital technology (or computer science) teachers who could either 

teach this curriculum or mentor other teachers to do so. 

 

 

Digital Technologies and Integrated STEM Education 

 

In 2001, Judith Ramaley, the director of the United States’ National Science 

Foundation's education and human resources division, was working to develop curriculum 

that would enhance education in science, technology, engineering and mathematics, and 

coined the term “STEM” (Teaching Institute for Excellence in STEM, 2010). Following this, 

Sanders (2009) was the first to promote the concept of integrated STEM education, and he 

described a pedagogical approach of “purposeful design and inquiry” (Sanders, 2009, p. 21). 

In this paper, by “integrated” STEM education we refer to the intentional engagement with 

products or solving real world problems that requires utilising two or more of the STEM 

disciplines, with or without other discipline areas such as the Arts, in tandem with 21st 

century competencies – adaptability, communication, social skills (collaboration), 

creativity, non-routine problem solving, self- management, self-development and systems 

thinking (Bellanca & Brandt, 2010).  

How can teachers incorporate the new AC: Technologies curriculum and its focus 

areas effectively into a crowded curriculum program? Our response to this question is 

integrated STEM education. We believe that the incorporation of the T in STEM being 

sourced from the AC: Technologies presents a great opportunity for improved integrated 

STEM education; particularly as there already is a synergy between some of the content and 

the mathematics curriculum in the areas of data collection, management and representations. 

We posit that the key to successful integrated STEM education lies in the tools that teachers 

are able to access and confidently engage with in their classrooms, and the nature of 

professional learning opportunities and support to which they are privy. Ideally these tools 

would: provide opportunities for students to learn by doing; exemplify some of the key 

mechanisms that revolutionised human labour and production; link design and construction 

to visual programming for the operation of the devices; and support students to develop and 

demonstrate the 21st century competencies. In this way, students would not merely be 

consumers of digital technologies; they would be producers of digital artefacts. Are such 

tools readily available to and affordable for schools or are they merely elusive and 

aspirational? This paper describes how one such tool, LEGO WeDo, can foster integrated 
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STEM education in primary schools, including visual programming and 21st century 

competencies, thus providing potentially rich and authentic learning experiences.  

We began using WeDo in 2010 when it was relatively new on the scene in Australia, 

as a tool to develop integrated STEM education, and to foster literacy and numeracy 

development in a culturally diverse class of Prep/Year 1 students (ages 5 to 6). Six years 

later, with the resurgence of interest in STEM education, we conducted professional learning 

for in-service teachers at the Curtin University, School of Education Professional Learning 

Hub in 2016, to engage in-service teachers in using WeDo, and in so doing, make explicit 

related digital pedagogies and overt links to integrated STEM education and the Western 

Australian Curriculum. Robotics resources, such as WeDo, are a rich means of introducing 

students to the interplay between the component disciplines of STEM, and we believe they 

are superior to visual programming environments such as Scratch (Resnick et al., 2009) and 

Alice (Dann, Cooper, & Pausch, 2009) as the programming relates to student-constructed 

objects rather than virtual characters (“sprites”) on screen (Armoni, Meerbaum-Slant, & 

Ben-Ari, 2015). As a result of this professional learning, a number of schools approached us 

to bring WeDo to their school to introduce it to students and interested staff. In our planning 

for these sessions, we decided to base the professional learning upon a model of structured 

release of instructor control that we had previously developed in 2010, as it had proven 

effective in supporting real pedagogical change (McDonald & Howell, 2011). 

 

 

Integrated STEM in Action 

 

It is of note that the robotics sessions were not inserted into mathematics, science or 

technology blocks – rather the teachers surrendered a whole teaching session (90 minutes) 

each week to provide adequate time to the project. The strategy used at each school site was 

essentially the same and incorporated staged transitioning from highly scaffolded to 

independent learning for both the teachers and the students. The WeDo robotics were 

deployed over four weeks, for one 90-minute session per week per class. The session for 

each 4-week cycle positioned the students in modelling, exploring, challenging and 

evaluating engagements with the robots, and concurrently the level of teacher support 

decreased from highly-scaffolded to independent problem-solving group work. The class 

teachers’ roles developed from observing and participating, to managing groups, to co-

teaching with the researchers, to operating as the lead teacher. The gradual release of input 

into student activity whilst also gradually increasing class teacher responsibility is a 

particular feature of this project that has proven successful in student and teacher 

engagement with integrated STEM education. Table 1 shows the model of structured release 

of instructor control, in which the research team members (“instructors”) model the digital 

pedagogy to the class teacher and support them to gradually lead the session. 

 
Week focus 

 

Student engagement 

 

Teacher role 

 

Instructor role 

 

1 

Modelling 

Highly scaffolded Observing & 

participating 

 

Leading 

2 

Exploring 

Moderately scaffolded Overseeing group work 

 

Co-teaching 

3 

Challenging 

Independent group work 

 

Co-teaching Overseeing group work 

4 

Evaluating 

Problem-solving group 

work 

Leading Observing & 

participating 

Table 1: Model of Structured Release of Instructor Control 
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The basis for this model of release of instructor control was built on our belief that, 

in order to authentically teach STEM education, as it is enacted in vocational and 

professional settings (Reiss & Holman, 2007), an integrated approach appears to work most 

effectively in primary school settings, accompanied by opportunities for students to discuss, 

contest, modify, and evaluate their work and how they work together. This can be achieved 

by scaffolded professional learning in teachers’ classrooms, using contexts and digital 

technologies that provide the potential for cross-curricular learning, such as those afforded 

by WeDo. Conducting teacher professional learning in situ is one of the most effective forms 

of generating change (Evans, 2019; Jung & Brady, 2016; Takker & Subramanian, 2018). 

During the modelling focus of Week 1, the students were in groups (pre-assigned by 

the class teacher) and the finding and placing of the component parts was managed explicitly 

by one of the research team. This was the opportunity to demonstrate how to interpret each 

instructional building frame (which component to locate and where precisely to place it – 

this also included decoding the 2D isometric representation on the screen to the matching 3D 

component and location), to model the language (e.g., a 2 by 6 flat), and to demonstrate how 

to develop the visual programming. Whilst this was highly scaffolded, and some groups 

went ahead of their own accord, it was necessary for all students to have this basic starting 

point. This initiation into the WeDo set-up is an example of “teachable moments”: the 2D to 

3D matching aligns with the mathematics curriculum (Measurement & Geometry), whilst 

the brick identification using array terminology (i.e., the 2 by 6 flat example above) is the 

underpinning of the concept of area as well as multiplication. 

The groups, ideally of four students, were managed by role assignation: component 

finder, robot builder, assemblage checker, and computer operator, and the students were 

rotated through these roles each week. Working in this way, the students developed and 

could demonstrate the key 21st century competencies of collaboration, communication, and 

critical reasoning. The skill of problem-solving and the attribute of perseverance were 

evident every week, as students struggled to deal with instances in which their robot did not 

work or their systems broke down. Whilst role assignation was used for expediency, it 

challenged many of the students’ interpersonal and collaborative skills. 

In Week 2, the initial context-situating video was played on a large screen to the 

whole class, and then the students were encouraged to undertake the finding-constructing 

processes in their groups, moving at a pace that was suitable for them. In Week 3, students 

were merely told which robot they were to construct, and they were asked to modify the 

programming once they had the basic functionality operating satisfactorily. During this 

stage, students were actively engaged in the AC: Technologies – Digital Technologies Strand 

– as they used the drag-and-drop functionality of the visual programming component of 

WeDo to program their robot to move in different ways, make different sounds, and 

incorporate text or backgrounds related to the context of the introductory scenario 

established by the video. Week 4 was similar to Week 3 however a problem was introduced 

to the scenario that required alterations or modifications to both the robot construction and 

the visual programming. Altering the construction of the robots lends itself to exploring 

basic engineering processes, such as ideate, create, operate, and evaluate. During this week, 

students were also invited to demonstrate their modifications to other groups and were asked 

to describe the changes they made and the resulting impact on the operation or construction 

of their robot. 

After several iterations of the 4-week cycle (as outlined in Table 1), we compared 

our field notes and recognised that there were distinctive stages through which the students 

moved during each session. We describe these stages as component related (to do with the 

actual pieces and how the robot is assembled) and programming related (to do with the 

visual programming required to mobilise the robots). Each stage seemed to have three 



Australian Journal of Teacher Education 

 Vol 44, 4, April 2019   59 

phases that were similar: recognition, placement, and system, and it could be argued that 

these resemble the recall, comprehension, and synthesis levels of Bloom’s taxonomy 

(Bloom, 1956). “Recognition” involves making the link between the 2D isometric image of 

a piece (as displayed on the laptop screen, and the actual 3D piece in the kit. As familiarity 

with this process develops, students “recall” the matches and this results in a more rapid 

assembly of the robots. “Placement” refers to comprehending where the new piece is 

situated – first, in the 2D image on screen, and second, matching this position on their 3D 

robot. Finally, “system” describes how the pieces interplay or are synthesised into the 

functionality of the robot – for example, how a number of cogs work together to drive a 

shaft that in turn rotates a wheel. 

Relating these stages to Bloom’s taxonomy may provide clarity and a sense of 

familiarity to teachers who are engaged in integrated STEM education, as they may able to 

link these concepts to their initial teacher education training and current teaching practice. 

Figure1 illustrates the stages that students were observed to have passed through during each 

4-week cycle: the component related stages (1, 2, & 3), the programming related stages (4, 

5, & 6), and a final evaluation of the entire system in stage 7. We believe that this 

framework could assist teachers in planning for integrated STEM activities, and it also 

reinforces the language of the AC: Technologies. 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 1: Framework for Integrated STEM Development 

2. Component/s 

placement (in 

situ → system) 

1. 

Component 

recognition 

3.  

System 

functionality 

4. Visual 

programming 
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5. Visual 

programming 

icon/s 

placement → 

system 
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programming 

system 

operation 

7. System 

evaluation 

(components & 

visual 

programming) 

 

 

Application & 

modification 
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Figures 2 – 19 show examples of the seven stages using illustrations from the WeDo kits 

and visual programming software. 

 

Figure 2: Stage 1 - Component recognition (Crown gear, as opposed to standard gear.) 

 

Figure 3: Stage 2 - Component placement (Crown gear is secured to the axle that has been inserted 

into the motor.) 

 

 
Figure 4: Stage 3 - System functionality (The system works by the crown gear meshing with the 

smaller cog that in turn meshes with the gear.) 

 

 
Figure 5: Stage 4 - Visual programming icon recognition (This is the START icon.) 

 

 
Figure 6: Stage 5 - Visual programming icon/s placement (By placing the icons in series, a system is 

created.) 

 

 

Figure 7: Stage 6 - Visual programming system operation (By activating the program the robot can be 

made to do certain actions.) 
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Figures 8 & 19: Stage 7 - System evaluation (component & visual programming) – students make 

judgements about the quality and functionality of their robot, and experiment with 

making alterations to the construction or the programming. 
 

Although the framework suggests transitioning from stage to stage in a one-way 

progression, what actually occurred in all groups was iterative movement between stages. In 

most cases this was the result of the realisation that the selected component was the wrong 

one or had been placed in the wrong location, and so could not join into the system under 

construction or could not allow the system functioning to occur as needed to activate the 

robot. 

 

 

Discussion 

 

The research used to underpin this paper was conducted in numerous school sites, 

across various year levels, and over time. As such, the limitations are minor, however we 

acknowledge that we have conducted this work without other collegial input other than 

feedback at conference. 

Whilst the original LEGO WeDo robots were tethered (that is, the power block is 

attached to the laptop via a USB connection), WeDo 2.0 in not tethered and uses Wi-Fi with 

iPads to power and program the robots, providing a greater scope and range of construction 

and movement. By using the iPads, students can also capture still shots and videos of their 

robots, and these captures can then be incorporated into other class work and curriculum 

areas.  LEGO Mindstorms ® EV3 robots are also not physically tethered, and by combining 

LEGO® elements with a programmable brick, motors and sensors, the creations can walk, 

talk, grab, think, shoot or anything else students can imagine. As with WeDo, Mindstorms® 

EV3 provides rich opportunities for integrated STEM education, high-level programming, 

complex component assembly, and the development of 21st century competences. The 

financial outlay is significantly more than for WeDo however this is mediated by the greater 

potential for breadth and depth of learning, particularly the level of programming required 

for complex, staged movement incorporating higher-level mathematical concepts. Another 

tool for this kind of integrated STEM education, in which students construct robots and 

program their movements, are the Edison robots. Edison educational robots are an 

innovation of Microbric, an Australian company based in South Australia, and were 

launched in 2014. Edison robots work with any compatible LEGO brick building system, 

and so could value-add WeDo kits or basic LEGO kits, and are a powerful, engaging tool for 

teaching computational thinking and computer programming in a hands-on way. 

These three tools authentically engage students in what we refer to as head-heart-
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hands learning: head – cognitive demands and intellectual engagement; heart – enthusiastic 

engagement and development of interpersonal skills; hands – fine motor skills and spatial 

reasoning. We posit that these are key to authentic integrated STEM education, and whilst 

there are other high-profile digital tools that schools are acquiring, such as Spheros ®, 

LittleBits ™, MakeyMakey ® and Arduino ®, they have limited scope for covering all of the 

characteristics of integrated STEM education we have outlined in this paper, and the most 

expensive, Sphero, focuses solely on programming. The key point of difference between 

these digital tools and robotics is that when constructing the robots, students are actually 

engaging in building mechanical systems (e.g., using appropriate cogs to gear up) and thus 

they develop a genuine understanding of the synergies of the components and how their 

functionality can be altered.  

Walker, Moore, Guzey, and Sorge (2018) developed nine categories for quality 

integrated STEM curricula and used these to develop their framework to support curriculum 

planning and reflection. The categories are: “(1) a motivating and engaging context, (2) an 

engineering design challenge, (3) integration of science content, (4) integration of 

mathematics content, (5) student-centred instructional strategies, (6) teamwork, (7) 

communication, (8) organisation, and (9) performance and formative assessment” (Walker et 

al., 2018, p. 332). We contend that the construction and programming of robots, as described 

in this paper, in conjunction with a focus on building teacher capacity and confidence by 

employing our Model of Structured Release of Instructor Control, can result in quality 

integrated STEM education as determined by Walker et al. (2018). Further, the use of 

robotics provides an engaging context for students to develop engineering skills and 

practices in a way that no other digital tool can achieve, and clearly provides value for 

investment.  

 

 

Implications 

 

The flurry of activity and fiscal commitment by governments and education 

authorities in regard to STEM education needs to be moderated by a ground swell of reason 

– we believe that educators have been left out of the frenetic STEM agenda, despite the 

responsibility for making it work being firmly placed on their shoulders. Are we now at the 

stage where all stakeholders need to pause, take breath and think long and hard about the 

progress of STEM education to date? 

We have concerns about an approach to STEM education that: promotes one 

discipline over the other, that sidelines the Arts and creativity, that channels every student 

into what has been referred to as the “STEM pipeline” or even a STEM career, and zealously 

clambers onto the programming and coding bandwagon, whilst expecting that every student 

will have the ability and desire to engage with these skills. Rather, we champion an approach 

that recognises that integrated STEM education should not be conceived as the context for 

the explicit teaching of science, technology and mathematics; integrated STEM education is 

a space for students to apply their discipline knowledge to create products and/or solve 

problems that can be made or solved using engineering principles. We contend that students 

need to be involved in situations that demonstrate how STEM knowledge and skills and 21st 

century competencies can be applied in different contexts. In this paper we have presented 

one such approach that builds capacity in classroom teachers and engages students. Using 

WeDo as the tool to do this, allows us to also implement key components of the AC: 

Technologies, and to spotlight 21st century competencies in classroom practice. 

The implications for teachers and school leaders are not subtle: plan and map 

intentional, integrated STEM activity across all year levels providing access to all students; 
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carefully consider the procurement of digital tools; focus on skills and processes rather than 

specific tools that could soon be superseded; engage in authentic professional learning; 

explore other avenues that may provide a platform for integrated STEM education, such as 

Makerspaces; and improve robust, explicit teaching of science, technology and mathematics. 
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