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Some Statistical Models for Durations
and their Applications in Finance

Shelton Peiris® Dawd )
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Abstract : This paper considers a ew class of time series models called Autoregressive Conditional
Duration (ACD)models. Various statistical properties of this class of ACD models are given. A
minimum mean square error {mmse)forecast function is obtained as it plays a important role in many
practical applications. The theory is illustrated using a potential application based on financial data.

Keywords: Autoregressive, Conditional expectation, Intensity, Hazard function, Stochastic process,
Prediction, Estimation, Irvegular data, Transaction data, Finance, Autocorrelations.

1. Intreduction

In traditional time series analysis investigators
are concerned with the behaviour of the
variable of interest (ie. price, volume,
temperature etc) separated by equally {or
unequally)spaced fixed time points.That is, in
this case, the time process is considered as
being non-stochastic.The general time series
theory of Auto-regressive Moving Average
(ARMA)} (see Box and Jenkins (1976)) or
some of its modifications (see Brockwell and
Davis (1991)) can be used in the modelling
and forecasting of such situations. Although
many financial data may be treated as time
series, the standard techniques of time series
analysis cannot be employed here directly due
to the rapid variation of the time intervals.
Since many finance problems involve the
arrival of events such as prices or trades in
irregular time intervals, a2 new direction of
modelling is mnecessary to explain  the
properties of such data. With that view in mind
Engle and Russell (1998) introduced a new
class of models called “Autogressive
Conditional Duration "(ACD) models, The
formulation of this ACD class of models
focuses on the inter-temporal correlations of
the durations or the time intervals between
events. In Section 2, we review this ACD class
of models in order to form a basis of this

paper.
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2. ACD Models and their Properties

Transaction data can be described by two types
of random variables. One is the time of the
transaction and the other is the observation
{called marks) at the time of the transaction, It
is well know that financial data inherently
arrive in  imvegular time intervals and
investigators are concerned not only with the
variable of interest {ie. price, quote, volume),
but also the time of each incident. Thus in
many financial modelling problems, the
variable “time *is considered as stochastic
{or random) and the corresponding analysis
proposes an alternative method to  the
traditional fixed time (or interval) analysis.
Now the statistical problem is to estimate the
probability of a event, for example, the price at
each time point. This requires specifying the
stochastic process of arrival times, cstimating
the parameters and computing the probability
of events.The instantancous probability of an
event is called the intensity of the process. In
dependent processes this intensity is obtained
by conditioning on past information.

Consider a sequence of arrival times
Ty, Tz, Ty from a particular point process,
where T; is the time at which the i® trade
occurs and Ty <T, <T<--<Ty . Suppose that the
observation at time T; is denoted by X; Denote
by F; the o field generated by ail random
variables {(T;,X;); 181 sN L LetN(T)be
the munber of trapsactions (or  events)
occurring by time T . Obviously, N (T }is a
{non-decreasing) step function of time with N
(Tg } = 0. (N(T) is continuous from the left
with limits from the right). Define the
conditional intensity of a process A as



BT + 8Ty N T o Ty

—D aT

HINDE, . oTyyy=  $im 2.1
(TN, ) o (£3}}

A function similar to that of (2.1) is used in
survival analysis and is called the hazard
function (see, for example Kalbfleisch and
Prentice (1980)).

Let D; be the interval between two
events (or waiting times) for the events at
T; and Ty, such that
Dy=Ti-Tiy:i=1, 2, - N, (2.2)
Note that the values of D are the i™ duration
between i and (i-1)" trades.
Consider the conditional expectation of D; as
give below:
E(D; |Dyy,

D)=y, 23)

where y; is a function of Dy, -+ -, D, and @ is
a vector of parameters such that
v, =D,y - ... Dy;@) 24

H is obvious that y; > ( since D; > 0.

A new class of models for possibly
unequally spaced correlated data (example,
financial data) is developed via the dependence
of the conditional intensity on the past
durations. The crucial assumption for this class
of models is that the dependence can be
summarized by a function w; (the conditional
expected duration give past information) with
the property that ; /D, are independent and
identically distributed (iid) random variables,
Equivalently,write

D; = e, (2.5)
where e;’s are iid random variables with the
probability density function Py (e;®), which
must be specified, and @ and @ are variation
free. Further assume that e’s are independent
of D; and E(e; [Fi; } = 1. Since the durations
and expected durations are positive, the
muitiplicative disturbance naturally will have
positive probability only for positive values
and it must have a mean of unity. This
assumption requires that all the temporal
dependence in the durations be captured by the
mean function. This assumption is testable in
practice using the standardized durations.

A new class of models is developed
based o the parameterizations of (2.3) and
(2.5). It is clear that the probabilistic structure
of D is similar to that of an autoregressive
(AR} process and hence the class of meodels
described by (2.3) and (2.5) are called
autoregressive conditional duration {ACD)
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models since the conditional expectations of
the durations, I;, wiil depend upon the past
durations Dy, Do, -...... D; as in the AR
situation.

It is possible to define a family of
ACD models satisfying (2.3) and (2.5) via
different specifications for y and for the
disiributions of e,

Define

So(t )=P0(e = t), 0 . (26)
where Sqt) can be considered as the survival
function associated with {e}.

Clearly, (0)=22)

So ()
the baseline hazard function since it does not
depend upon any conditioning information.
Now we state an important result from Engle
and Russell (1998).

can be considered as

Result 1; The conditional intensity for an ACD
model based on (2.3) and (2.5) is given by

AN T - Ty =gy L

YN Vv
This indicates that the past history influences
the conditional intensity by both a
multiplicative effect and a shift in the baseline
hazard functicn.
It is easy to verify that when the durations are
conditionally exponential, the baseline hazard
function is unity and in this case the
conditional intensity in (2.7) reduces to
ATINIL T T )= L

W on(re

Now we consider some general forms of the
ACD class in Section 3.

3. General ACD Models

Consider the class of models given by

F g
wi=o+ Y aD+Y B »i=l2... N  (3.D

J=l J=1

where ® > 0 and o; and P are non-negative
constants, Dy = W =0 and p and g are the
orders of the corresponding lags.

This is called 2 ACD (p,q) memory
model or simply an ACD (p,q). This model
(3.1) implies that only the most recent p actual
durations and recent q expected durations
influence the conditional mean durations. This
model (3.1} introduces an ACD family with
infinite memory specifications of the intensity.
Let & = D; - ;. Now (3.1) reduces to

2.7y



D,—& =w+ aJD,_J, +i BDi;~&p)

or

D= co+i(a + B0~ iﬁjg,m +&  (3.2)

J=i

where p’ =max {p, q).

Clearly, (3.2) is a ARMA (p, q) type model
with highly auto-correlated innovations.
NOTE: When g = 0, (3.1} reduces to

W= w+iajl)i_j

ek
This is a simple p-memory specification of the
intensity. In this case the most recent p
durations influenced the conditional duration
wi, Obviously, (3.3) reduces to an AR type
model with autocorrelated  innovations
satisfying

(3-3)

-»—m-f-ZaJ i T &5 3.4
Equations (3.2) and (3.4) are useful ARMA
type models for durations. Forecasts for
waiting times can be obtained from these
representations using the standard ARMA
theory. For example, the one-step-ahead mmse
forecast function, Dy(1)} of Dy, based on (3.2)
(assuming o; and J; are know ) is

2 g
D=0+ Y (@ +)Pray= ) Bidray (B3

i jed

The one-step-shead mmse forecast function,
Dy(1) of Dy.; based on (3.4) is simply

Dr(h= o )p:(a +B,)Dray.;,
J=i

However, the model (3.1) is convenient in

theoretical development as it allows various

moments to be calculated easily. From (3.1}, it

is obvious that the un-conditional mean of D; is

(3.6)

p=E(D;)= (3.7

QL Z

where 0 <X oy + LB<1.
For example, wher p = I = ¢, the

corresponding standard  ACD (1,1)
specification is given by
yi=ot+aD .+ By . (3.8)
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The unconditional mean in (3.7), in this case
reduces to
@

e 3.9
# I-(x+p) @)
The corresponding unconditional variance of
this ACD (1.1} in (3.8) is
2o @t
o2 U= f" ~20P) (3.10)

1- % ~20f-2a*
provided a+B<l, B? +20B <1, and p* +20p

+20’ <1,
In this case it is easy to verify that
1- 8% - 2ap

5 5>1 and hence o> p. This
1- 87 -2af-2a
exhibits the excess dispersion of the variable
D; as often noticed (in econometrics) in
duration data.

Although this ACD (1,1) given in
(3.8) seems to be a very useful member of this
class of models in practice, in Section 4,in
brief, we describe the ideptification and
estimation procedures in general.

4. Parameter Estimation

Specifications of (3.1} can be generalized in
many ways using different distributions for e;
In view of the non-negativity of D;, a natural
(and more popular) form of the distribution of
e; is the Weibull with the probability density
function

F(0)= 6% expl-(x0* } @1
where 8 = 0,and k,y > 0.
The failure rate function or the baseline hazard
function associated with (4.1) is

Ao (@)= y7 67 (4.2)

From (2.7), the conditional intensity in terms
of ¥, is

MIN). Ty Tur)= 0+ Vo)

N(:i" 1)

where I'(.) is the gamma function.

When v = 1, (4.3) reduces to the
conditional intensity for the exponentiai case.
The parameters of (3.1) can be estimated by
maximizing the corresponding log likelihood
function

Ytoat, )+ roaa+ VP s-@as YOy

J=l

[See Allen, McDonald and Yang (2001)].
To evaluate (44), one needs some
parameterization of v; . For example, for an

V=T Y3



ACD (1,1) (as in (3.8)), w;, i > 1, is recursively
obtained with the initial value yo = .

5. An Application

The data sets used in this paper are based on a
sample of high frequency transactions data
acquired from the Securities Industry Research
Centre of the Asia-Pacific (SIRCA). The quote
prices are viewed trade by trade for a listed
Australian company, News Corporation from
the Sydney Stock Exchange over a period of
sixty-two trading days in the first quarter of
2000. As suggested by Lee and Ready (1991),
for every transaction the prevailing quote is the
last quote which appears at least five seconds
before the transaction itself. All tramsactions
that occurred from 10:10 am to 4:00 pm are
adopted for every trading day. The first ten
minutes trading at the opening and the
overnight price change are removed

to aveid the influences of overnight news
arrival. News Corporation has an average
market capitalisation of 37.8 billion dollars and
an average share price over the sample period
of A$21.96. Summary statistics for this stock
and the ACD(1,]} estimates using {4.4) are
presented in the Table below:
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