
Edith Cowan University Edith Cowan University

Research Online Research Online

Research outputs 2022 to 2026

2023

MalBoT-DRL: Malware botnet detection using deep reinforcement MalBoT-DRL: Malware botnet detection using deep reinforcement

learning in IoT networks learning in IoT networks

Mohammad Al-Fawa'Reh
Edith Cowan University

Jumana Abu-Khalaf
Edith Cowan University

Patryk Szewczyk
Edith Cowan University

James J. Kang
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2022-2026

 Part of the Information Security Commons

10.1109/JIOT.2023.3324053
Al-Fawa'reh, M., Abu-Khalaf, J., Szewczyk, P., & Kang, J. J. (2023). MalBoT-DRL: Malware botnet detection using
deep reinforcement learning in IoT networks. IEEE Internet of Things Journal, 11(6), 9610-9629. https://doi.org/
10.1109/JIOT.2023.3324053
This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworks2022-2026/3304

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2022-2026
https://ro.ecu.edu.au/ecuworks2022-2026?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F3304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F3304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/JIOT.2023.3324053
https://doi.org/10.1109/JIOT.2023.3324053
https://doi.org/10.1109/JIOT.2023.3324053

1

MalBoT-DRL: Malware Botnet Detection using
Deep Reinforcement Learning in IoT Networks

Mohammad Al-Fawa’reh ID , Member, IEEE, Jumana Abu-Khalaf ID , Senior Member, IEEE , Patryk Szewczyk
ID ,and James Jin Kang ID

Abstract—In the dynamic landscape of cyber threats, multi-
stage malware botnets have surfaced as significant threats of con-
cern. These sophisticated threats can exploit Internet of Things
(IoT) devices to undertake an array of cyberattacks, ranging
from basic infections to complex operations such as phishing,
cryptojacking, and distributed denial of service (DDoS) attacks.
Existing machine learning solutions are often constrained by their
limited generalizability across various datasets and their inability
to adapt to the mutable patterns of malware attacks in real world
environments, a challenge known as model drift. This limitation
highlights the pressing need for adaptive Intrusion Detection
Systems (IDS), capable of adjusting to evolving threat patterns
and new or unseen attacks. This paper introduces MalBoT-
DRL, a robust malware botnet detector using deep reinforcement
learning. Designed to detect botnets throughout their entire
lifecycle, MalBoT-DRL has better generalizability and offers
a resilient solution to model drift. This model integrates damped
incremental statistics with an attention rewards mechanism, a
combination that has not been extensively explored in literature.
This integration enables MalBoT-DRL to dynamically adapt to
the ever-changing malware patterns within IoT environments.
The performance of MalBoT-DRL has been validated via trace-
driven experiments using two representative datasets, MedBIoT
and N-BaIoT,resulting in exceptional average detection rates of
99.80% and 99.40% in the early and late detection phases,
respectively. To the best of our knowledge, this work introduces
one of the first studies to investigate the efficacy of reinforcement
learning in enhancing the generalizability of IDS.

Index Terms—Intrusion detection, IoT botnet, Mirai, Torii,
Botnet detection, Bashlite, Network traffic analysis, incremental
statistics, Reinforcement learning, MalBoTDRL.

I. INTRODUCTION

THE rapid proliferation of IoT devices is expected to
revolutionize various aspects of our lives, from improving

efficiency in manufacturing [1] and healthcare [2] to evolving
the concept of smart homes further [3]. According to Dat-
aprot [4], the number of IoT devices deployed globally will
exceed 29 billion by 2030. However, this drastic growth is not
without concerns and challenges. The security of these devices
is a primary concern, where threats from malware botnets are
increasingly becoming a significant threat to the IoT ecosys-
tem [5]–[10]. Cybercriminals are continuously leveraging ad-
vanced techniques to exploit the vulnerabilities of IoT devices
and convert them into botnets to perform malicious activities,

Corresponding author: Mohammad Al-Fawa’reh (e-mail:
m.alfawareh@ecu.edu.au)

Jumana Abu-Khalaf (e-mail: j.abukhalaf@ecu.edu.au)
Patryk Szewczyk (e-mail: p.szewczyk@ecu.edu.au)
James Jin Kang (e-mail: james.kang@ecu.edu.au)

such as distributed denial-of-service (DDoS) attacks and data
theft [11]–[16]. A recent report by Nokia [17] has revealed
that, as of 2023, approximately 1 million IoT devices are
implicated in botnet-propelled DDoS attacks. Presently, IoT
devices contribute to more than 40% of all DDoS traffic. This
development does not only accentuate the susceptibility of
IoT devices to cyber-attacks but also underscores the potential
risk to critical infrastructures including energy grids, transport
systems, and healthcare services, all of which are reliant on
IoT. To counter this rising threat, current defensive measures
largely rely on the use of Machine Learning (ML) and Deep
Learning (DL) models as anomaly-based Intrusion Detection
Systems (IDS) [18]–[25]. However, despite their impressive
capabilities, these models often face challenges, such as lack
of generalizability [26] and model drift [27]. Generalizability
refers to a model’s capacity to effectively apply its learned
knowledge from training data to new, unseen contexts, such
as zero-day attacks [28]. Model drift, conversely, arises when
underlying data distribution changes over time, resulting in
the deterioration of a model’s performance [29], [30]. Given
the dynamic landscape of cyber threats to IoT devices ,
where cyber criminals constantly devise new strategies and
create novel malware (such as adversarial attacks [31]–[33]
), the difference between the data used to train a model
and the data it encounters in reality, can become substantial.
Additionally, a prominent shortcoming in the existing body of
research is the focus on the later stages of malware botnet life
cycles, where the early stages of infection and propagation are
often overlooked. Addressing these early stages is crucial, as
identifying and stopping botnets early on can prevent further
propagation and subsequent damage.

Existing solutions address these challenges by retraining
ML models with new data. However, this approach is com-
putationally expensive as evident in [26], [29]. Moreover,
the time required to identify new types of threats can be
significant, which makes IoT devices vulnerable during this
time. Motivated by the escalating complexity of cyber threats
and the limitations of existing defensive strategies, our paper
focuses on the application of Reinforcement Learning (RL) as
an IDS. An integral part of our paper involves evaluating the
generalizability of RL when used as an IDS, with the goal
of better understanding its potential to adapt and effectively
respond to a broad spectrum of cyber threats and malware ac-
tivities throughout their entire lifecycle [34]. An IDS based on
RL has the capacity to evolve its strategies over time, guided
by the feedback it receives. This provides a robust defense

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-5621-4126
https://orcid.org/0000-0002-6651-2880
https://orcid.org/0000-0003-3040-9344
https://orcid.org/0000-0003-3040-9344
https://orcid.org/0000-0002-0242-4187

2

against malware botnets in IoT devices, while addressing the
early stages of the botnets’ life cycles. RL has considerable
advantages when compared to other learning strategies. Unlike
supervised learning, which demands large volumes of labeled
data, RL operates on the principle of learning from delayed,
scaled rewards [35]. This key feature allows RL to exhibit
a more flexible adaptation to its environment. In contrast to
this, unsupervised learning utilizes unlabeled data to discern
underlying patterns. On the other hand, RL applies a differ-
ent approach, gaining knowledge through direct interaction
with its environment, independent of any prerequisite data.
Significantly, a pronounced differentiation is evident in the
way data samples are handled by RL versus other DL models.
DL typically assumes that data samples are independent and
uniformly distributed [36]. This assumption can lead to a
lack of generalization. However, RL does not uphold this
assumption and recognizes the possible dependencies among
data samples [36], which can prove to be beneficial in various
real-world applications. Moreover, a fundamental disparity
exists between the learning processes in RL and DL [36].
While DL models learn from a static underlying data dis-
tribution, RL models are capable of handling dynamic data
distribution. This characteristic makes RL better equipped
to handle unpredictable environments where the properties
and characteristics of the data may change over time [35].
While a significant volume of research has recently been
conducted on utilizing RL for cyber attack detection, only a
handful of these studies have focused on botnets, particularly
during the different stages of their life cycle. To the best
of our knowledge, there are no comprehensive studies that
investigate the issues of generalizability and model drift in
the context of RL applications for detecting malware botnets
throughout their entire life cycle . In this research, an RL-
based IDS which integrates a damped incremental statistics
approach with a reward attention mechanism is proposed for
the detection of malicious botnet activities on IoT devices,
with particular emphasis on the early stages of botnet infection
and propagation. The objective is to bridge existing research
gaps in ML/DL models and present a robust, scalable and
self-learning solution that can secure IoT devices against the
escalating threat of malware botnets. The main contributions
of this paper are:
• To propose a state-of-the-art (SOTA) intrusion detection

system utilizing an RL off-policy learning strategy with a deep
neural network (DNN) model to detect IoT botnet attacks
throughout their life cycle: the infection phase,communication
with the Command and Control (C&C), and post-attack activ-
ities.
• To introduce an attention-based reward mechanism for

managing attacks with a smaller number of samples.
• To provide an in-depth performance analysis of the

proposed model using realistic scenarios with varying malware
samples, as well as comparing the proposed model with SOTA
models.
• To provide a model that has low computational com-

plexity, rendering it suitable for implementation within small
office/home office (SoHo) environments.

The remainder of this paper is organized as follows: An

overview of related work is presented in Section II. Section III
provides an overview of reinforcement learning. The proposed
RL-based IDS is introduced in Section IV. A comprehensive
evaluation of the system compared to existing solutions is
described in Section V. Section VI addresses discussions
and limitations of the proposed system. Lastly, the paper is
concluded in Section VII, where potential future directions
for this research are also outlined.

II. RELATED WORK

Current research studies primarily concentrate on develop-
ing strategies, such as anomaly detection methods, to address
botnet activities in IoT network environments. With a focus
on the botnet life cycle, the activities include propagation
processes in the early stages, and establishing communications
with C&C servers in the later stages. These activities can
culminate in subsequent cyber-attacks. This section reviews
SOTA anomaly detection techniques in IoT networks, empha-
sizing the challenges presented by cost-effective centralized
malware botnets.These techniques are categorized into two
main types: netflow-based and packet-based. This review cov-
ers:

1) DL-based anomaly detection.
2) Graph-based anomaly detection.
3) ML-based anomaly detection.
4) RL-based anomaly detection.
Table I summarizes the most important findings of the

reviewed papers. The table accounts for a variety of aspects in-
cluding the utilized datasets, the applied methods, the achieved
accuracy (A), whether the study examined the full life cycle
of the malware (FL), if it adopted a flow-based (FB) or
packet-based (PB) approach, whether the study investigated
generalizability (Gen), and the limitations encountered in each
study.
• DL-based anomaly detection : Deep neural networks

(DNNs) are foundational elements in commercial se-
curity products, known for their efficacy in identifying
various network attacks [37]. Their significance has led
researchers to widely adopt them for attack detection.
For instance, Kou et al. [38] have introduced a botnet
detection method for cloud architecture, leveraging DL
techniques. They extracted basic network flow charac-
teristics from data packets and transformed them into
gray images. A Convolutional Neural Network (CNN)
algorithm has been employed to learn and extract ab-
stract features that represent the underlying patterns and
structural relationships in the network flow. The proposed
method achieved an accuracy of 89.6%, but suffered
from a high false positive rate. Similarly, Liu et al. [39]
have proposed a CNN with statistical methods to extract
network traffic features specific to IoT botnets. These
features were further transformed into grayscale images
using triangle area maps and multivariate correlation
analysis algorithms. The CNN model was trained and
evaluated using the N-BaIoT dataset, achieving an accu-
racy rate of 99.57%. However, it is worth noting here that
the study’s main limitation lies in its focus solely on the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

3

later stages of malware activities, without considering the
full range of malware behaviors. Alghazzawi et al. [40]
have focused on DDoS attacks launched from botnets
in a heterogeneous environment. Their approach utilized
a combination of CNN and Long Short-Term Memory
(LSTM). The CNN was employed to extract the most
impactful features from the network flow data, which
were then fed into the LSTM model. The experimental
results demonstrated that the hybrid model achieved an
accuracy rate of up to 94.52%. However, this approach
neglects low-traffic DDoS attacks. Wazzan et al. [41]have
employed a different architecture as compared to Alg-
hazzawi et al. [40] to investigate the propagation stages
of malware botnets and their communication with the
C&C. Their proposed approach yielded promising re-
sults, achieving an accuracy rate of 99.7%. However, the
authors have used a simulated dataset for their evalua-
tion, which may differ from real-world scenarios. Jung
et al. [42] have presented a power consumption-based
detection system for IoT devices. The system monitors
the power consumption patterns of IoT devices during
normal activities and compares them to changes in power
consumption observed during malicious bot activities.
The study found that botnet traffic exhibits a detectable
pattern in power consumption. However, the proposed
model faced challenges with model drifting when at-
tackers employed adversarial attacks. These attacks aim
to manipulate the power consumption patterns to evade
detection, posing a limitation to the effectiveness of the
detection system. Hussain et al. [43] have proposed a
two-fold approach for detecting IoT botnets, employing
a pretrained ResNet-18 model. The first phase focused on
identifying scanning activities during the initial stage of
the attack, while the second phase aimed to detect DDoS
activity. While the approach achieved a high accuracy rate
of 98.89%, it suffered from a lack of generalization. This
limitation indicates that the model’s performance may be
limited to the specific scenarios and datasets used during
training, and may not effectively detect botnet activities
in different environments or with unseen variations. Zhou
et al. [44] have introduced a deep packet inspection
framework for detecting IoT botnets based on Hypertext
Transfer Protocol. They extracted dimensional feature
vectors from network traffic within a one-hour time
window. Their test results using a Multi-Layer Perceptron
(MLP) achieved an accuracy rate of 65.1%. However,
their model resulted in high false positive rates, despite
reducing the feature extraction time. Sattari et al. [45]have
introduced an IDS fog computing model that combines
parallel learning with a Software-Defined Network (SDN)
approach to tackle bottleneck attacks in IoT environ-
ments. Their model leverages simultaneous learning from
various network features and integrates the learning using
a DNN approach. Experimental evaluations on the N-
BaIoT dataset yielded impressive results, with an average
accuracy of 99.98% and an average testing time of 0.022
ms. However, one limitation of this model is its reliance
on fixed attacks distribution, rendering it susceptible to

model drifting over time. McDermott et al. [46] have
introduced a packet-based approach to detect malicious
botnet activities, employing a Bidirectional LSTM-based
Recurrent Neural Network (BLSTM-RNN) combined
with word embedding techniques. Five features were
extracted from a simulated environment, including source
and destination IP addresses, packet length and payload
information. Whilst the proposed model achieved a high
accuracy rate of 99%, it was computationally expensive.
Moreover, a limitation of the BLSTM-RNN approach is
its disregard for malware mutation activities. Giaretta et
al. [47] have developed a Lightweight Memory Network
(LiMNet) that utilizes an internal memory component
to capture the behavior of individual IoT devices over
time during the propagation phase. The memory module
incorporates both packet features and the behavior of peer
devices. However, the study reported a limitation in the
model’s generalization capabilities.

• Graph-based anomaly detection : The graph analysis
approach is a powerful method for finding anomalies in
data by utilizing the inherent structure and relationships
in graph data [48]–[50]. It has proven especially useful
in several areas such as network security [51], social
network analysis [52], and bioinformatics [53]. Several
studies have detailed the effectiveness and versatility of
these graph-based anomaly detection techniques, such as:
Wang et al. [54] have proposed a deep packet inspection

approach, where they integrate graph-based and flow-
based network traffic analysis. The framework extracts
15 flow-based features and 3 graph-based features. Flow-
based detection involves measuring C-flow similarity and
stability using k-means clustering and packet length dis-
tribution. Graph-based detection focuses on identifying
anomalous node neighborhoods using least-square and
Local Outlier Factor (LOF) techniques. This model inte-
grates similarity, stability, and anomaly scores to identify
botnets. However, as identified by [55], a limitation of
the model is its inability to effectively detect evolving
attacks. In contrast Yassin et al. [56] have concentrated on
the frequency-based dependency graph approach, with the
study’s main focus on analyzing registry information to
identify similar and dissimilar malicious activities within
the Mirai botnet. A limitation of this study includes
overlooking other commonly used data sources such as
DLL and API call information. Additionally, the be-
havior analysis was limited to the Mirai botnet, which
narrowed the scope of the study. Similarly, Nguyen et
al. [57] have presented a graph-based detection system
designed to identify malicious activities of IoT botnets
targeting multi-architecture environments. Printing String
Information (PSI) graphs were used as the foundation
for this approach, extracting high-level features from the
function call graph of each executable file associated with
IoT devices. By employing a CNN, the proposed system
achieved an accuracy of 98.7% during testing. However,
one notable limitation of this PSI approach is its disregard
for runtime information of executable files, which could
potentially provide valuable insights, especially in the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

4

case of stealth-based malware.
• ML-based anomaly detection : Studies incorporating

unsupervised learning techniques, such as the work by
Nõmm and Bahsi [58], employ feature selection methods
based on entropy, variance and Hopkins statistics, using
ML models like LOF, One-Class Support Vector Machine
(OCSVM), and Isolation Forest (IF) to detect potential
botnet activities by learning from normal traffic only.
Their evaluation demonstrates promising performance,
although limitations exist in detecting stealth-based mal-
ware. Further research is needed to address these lim-
itations and to explore additional IoT botnet behaviors.
Similarly, Al Shorman et al. [59] have presented an
unsupervised detection system for identifying IoT bot-
net activities using an OCSVM, where the grey wolf
optimization (GWO) algorithm was employed to fine-
tune the hyperparameters of the OCSVM model and rank
the features. The evaluation conducted on the N-BaIoT
dataset resulted in an accuracy rate of 96-99%. However,
the model testing was based on a small number of attack
samples, and it did not consider post-attack activities.
Injadat et al. [60] have proposed a Tiny ML approach
for detecting malicious botnet activities by integrating the
Bayesian optimization Gaussian Process (BO-GP) with
the Decision Tree (DT) algorithm. The authors utilized
flow-based network features as inputs to their model.
During the evaluation phase, the model was tested using
the Bot-IoT-2018 dataset, and achieved an outstanding ac-
curacy rate of 99.99%. However, the model’s performance
declined when confronted with complex attack patterns,
as evidenced in reference [26].Gandh and Li [61] have
employed flow-level-based analysis along with the Chi-
Square method to reduce the number of network features.
They evaluated a variety of ML algorithms, including
Logistic Regression, K-Nearest Neighbor, Naïve Bayes,
Decision Tree, and Random Forest, as well as two DL
algorithms, MLP and LSTM. The primary focus of this
analysis was on the Mirai botnet, which served as the
basis for the adapted samples. However, the experimental
results revealed a limitation in the generalization ca-
pabilities of the ML algorithms across different attack
vectors. These findings suggest that the effectiveness
of these algorithms in detecting botnet attacks may be
specific to the context of the Mirai botnet, and their
performance may not extend to other botnet variants
or diverse attack scenarios. Aprianti and Stiawan [62]
have employed Tiny ML techniques to detect IoT botnet
activities utilizing a Gaussian model and principal com-
ponent analysis (PCA) for dimensionality reduction and
capturing statistical patterns. Their approach achieved a
high detection rate of 97.49% during the late stage of the
botnet life cycle. However, further research is needed to
enhance the generalization capabilities of this approach,
as highlighted in reference [26].
The aforementioned techniques [38], [39], [56]–[62] have
demonstrated efficacy in identifying conspicuous alter-
ations induced by atypical behaviors. However , these
methods were tested solely on certain attack vectors

and were limited to a single stage of malicious botnet
operations. According to evidence from literature [26],
the learning methodologies employed by various models,
such as the use of labeled data and learning from static
distributions, are inadequate when addressing mutable
threats, notably malware botnets. Recently, there has been
a significant shift towards RL techniques [63] inspired
by their ability to generalize well in gaming [64] and
robotic navigation tasks [65], RL offers the potential to
address the complexities associated with detecting and
combating botnet activities. RL models learn to make op-
timal decisions through interactions with the environment,
without requiring explicit supervision or labeled data.
This approach appears promising in developing robust
and adaptable detection systems capable of addressing
the dynamic and evolving nature of botnet attacks.

• RL-based anomaly detection : Cyber security re-
searchers have begun investigating this paradigm to de-
tect malicious attacks. However, the majority of these
attempts remain in their infancy, and few researchers have
investigated IoT botnet attacks in this context. In [66],
an RL model was developed to enhance the security of
IoT devices and Wireless Sensor Networks (WSN) via
integrating Q-learning with CNN. The model achieved a
commendable accuracy rate of 98%. However, the evalu-
ation process was restricted to legacy attacks, possibly
neglecting its performance against emerging and more
sophisticated attack techniques. A major issue with this
approach is the overestimation of the Q-value, as their
method only considers the maximum value of possible
actions. This limitation can result in incorrect classifi-
cations, as evidenced by [67]. In addition, the authors
delved into examining the entire distribution of future
returns (total rewards), rather than solely focusing on
their expected value. They also integrated the Generative
Adversarial Network (GAN) algorithm to oversample
less-frequent network attacks, aiming to detect network
intrusions in the context of the Industrial Internet of
Things (IIoT) [68]. However, a significant limitation of
this study is its primary focus on a specific type of attack,
overlooking stealth-based intrusions such as malware bot-
nets. Furthermore, the GAN approach generated invalid
attack samples, as evidenced in [69]. In [70], the authors
concentrated on adversarial RL, where they implemented
the State Action Reward State Action (SARSA) algorithm
in a supervised manner. The proposed system consisted
of two agents: one acting as the environment and the
other serving as a classification agent. An accuracy rate of
96.99% was achieved using the MedBIoT dataset. How-
ever, as highlighted in [71], the application of the SARSA
algorithm can encounter challenges, such as not being
able to determine the optimal policy for detection when
the agent does not perform sufficient exploration. Another
limitation is that the model heavily relies on labeled data,
which is a costly approach. Caminero et al. [72] have
utilized two RL agents to detect network attacks. The
first agent was responsible for classifying the network
traffic as malicious, while the second agent focused on

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

5

classifying the attack type. The main limitation of this
approach is the high false positive rate (80% accuracy),
along with the high computational cost. Furthermore, this
approach is constrained in its applicability, as it operates
exclusively in supervised environments where labeled
training data and attack samples, are costly to acquire.
Ma and Shi [67] built upon the approach introduced
in [72], with a specific emphasis on addressing the issue
of data imbalance. They employed various techniques,
including SMOTE, ROS and NearMiss, to mitigate the
impact of imbalanced data. Among these approaches,
SMOTE demonstrated the best performance, achieving
an accuracy of 82%. The model developed by Ma and
Shi outperformed the one presented by Caminero et
al. [72]. However, despite its improved performance,
the model still encountered challenges in reducing false
positive alerts to an acceptable level, as highlighted in
reference [73], where 10-20 alerts remained problematic.
Hsu et al. [74] have used Deep Q Learning (DQN)
to detect network traffic behavior and evaluated their
model using the NSL-KDD and UNSW-NB15 datasets.
Their model achieved a high detection rate. However,
the DQN algorithm overestimated the expected future
rewards, which led to poor performance and generated
high false positive rewards, as evident in [75]. In [76], the
authors introduced an anomaly detection system based on
a Q-learning approach, utilizing a simulated environment.
However, the reward value in the system was manu-
ally controlled, which may introduce biases and affect
the accuracy of anomaly detection. Moreover, the Q-
learning approach employs a tabular structure to store
the agent’s history, making it less suitable for handling
multi-dimensional network traffic. Huang et al. [77] have
proposed a time series anomaly detection method based
on Recurrent Neural Networks (RNN) and Q-learning.
This approach does not rely on any assumptions about the
underlying mechanism of anomaly patterns. Notably, the
anomaly detector is threshold-free, meaning it functions
as a logical classifier without the need for tuning a
specific threshold. The model achieved a high accuracy
rate of 100% in their evaluation. However, the approach
is theoretical and requires further experimentation using
realistic datasets to validate its effectiveness in real-world
scenarios. Sengupta et al. [78] have proposed an RL
model that integrates the Q-learning algorithm and the
rough set theory (RST). They applied a modification of
the Q-learning algorithm to automatically detect network
intrusions. The main limitation of their study pertains to
its adaptability to complex network states, as their model
utilizes a table to store the Q values, which is not suitable
for high-dimensional data distributions.
In the existing body of literature on the application of RL
in the IoT field, there are several areas requiring further
exploration. One noticeable gap is the limited generaliz-
ability of RL models, which often struggle to adapt to
varying or unseen scenarios. This challenge underscores
the need for future research to focus on developing mod-
els capable of learning more generalized strategiesand

enhancing their applicability across a variety of situations.
Furthermore, the presence of a significant class imbalance
in most IoT datasets, characterized by a greater number
of normal behavior instances compared to anomalous or
attack behaviors, is often overlooked. This imbalance can
negatively impact the learning process and the ability of
systems to detect rare but critical anomalies, emphasizing
the need for more effective solutions to address this
imbalance in future studies. Finally, existing RL models
in IoT frequently rely on manually designed reward
functions, introducing potential biases and limiting their
learning efficiency. A shift towards automated or learned
reward functions could pave the way for more robust and
effective RL models.

III. REINFORCEMENT LEARNING: AN OVERVIEW

In this section, a theoretical background to RL is pre-
sented. Following this, an in-depth discussion of Q-learning
is provided. In particular, Q-learning is incorporated as a core
component in our proposed approach.

A. A Theoretical Background of Reinforcement Learning
One of the most active research areas in artificial intel-

ligence is RL, a branch of ML that is rapidly growing.
RL is predominantly used to solve sequence-decision tasks
such as robotic navigation [79]. RL can be formulated as a
Markov Decision Process (MDP) to solve decision sequence
problems [80]. Typically, agents interact with an environment
by observing a state and taking actions to exploit a reward over
a discrete time period (t). Driven by the success of RL in other
fields (in terms of generalization) such as gaming [81], [82],
as well as the growing research on RL in cyber security [83],
this paper adapts RL to detect malicious botnet activities in
an IoT environment. The detection process in this paper is
formulated as an MDP. MDP can be defined as a quintuple
value [84]:

𝑆,A,𝑅, T, Υ
Where 𝑆 represents a finite set of possible states represent-

ing the world of the problem, whether discrete or continuous;
A represents a set of actions the agent can perform on the en-
vironment; T is a transition method from one state to another,
based on a probability distribution; R denotes a reward; and Υ

is a discount factor, to balance the immediate reward with the
long-term reward (the value of Υ lies between 0 and 1). The
agent uses a policy 𝜋 to select different actions based on the
state, whereby the policy represents a conditional probability
distribution denoted as T (s,a,a'). Using this policy, the agent
can navigate the environment and garner different rewards
through each transition. The policy can also be represented as
𝜋(𝑎 |𝑠) = 𝑃(𝑎𝑡 = 𝑎 |𝑠𝑡 = 𝑠). Given the policy 𝜋 and a discount
factor, the value of each state can be defined as follows [80]:

𝑣𝜋 = 𝐸𝜋 (
∑𝑡=∞

𝑡=1 𝛾𝑡−1𝑅𝑡 |𝑆1 = 𝑠) (1)
While the value for the action-state pairs is as follows [85]:

𝑞𝜋 (𝑠, 𝑎) = 𝐸𝜋 (
∑𝑡=∞

𝑡=1 𝛾𝑡−1𝑅𝑡 |𝑆1 = 𝑠, 𝐴1 = 𝑎) (2)

Using Bellman equations [80], the value of the state-action
pair could be rewritten in a recursive way as follows [86]:

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

6

TABLE I: SUMMARY OF THE REVIEWED PAPERS

Ref Dataset Model A FL FB PB Gen Limitation
[38] UNB ISCX CNN 89.6 ✓ ✓ ✗ ✗ High false positive alerts
[39] N-BaIoT CNN 99.57 ✓ ✓ ✗ ✗ inability to detect stealth communication with the C&C
[40] CIC-DDoS2019 Hybrid-DL 94.52 ✗ ✓ ✗ ✗ Inability to detect low-based DDoS (crossfire attacks)
[41] MedBIoT LSTM-CNN 99.7 ✗ ✓ ✗ ✗ Computationally costly
[42] Self CNN 90 ✗ ✓ ✗ ✗ Cannot detect complex attacks such as covert channels
[43] Bot- IoT ResNet-18 98.89 ✗ ✓ ✗ ✗ Limited to the specific scenarios and datasets
[44] Self MLP 65.1 ✓ ✓ ✗ ✗ High false positive & negative samples
[46] Self BLSTM-RNN 99 ✓ ✗ ✓ ✗ computationally expensive
[47] MedBIoT LiMNet 99.7 ✗ ✓ ✗ ✗ Inability to detect stealth-based malware
[54] Self Graph-based 99.94 ✗ ✓ ✗ ✗ Inability to detect evasion malware
[57] IoTPOT PSI 98.7 ✓ ✓ ✗ ✗ Easy to bypass
[58] Self OCSVM 85 ✓ ✓ ✗ ✗ Inability to detect stealth-based malware
[59] N-BaIoT GWO 96-99 ✗ ✓ ✗ ✗ Inability to detect stealth-based malware
[60] Bot-IoT-2018 BO-GP 99.99 ✗ ✓ ✗ ✗ Can not detect complex attack patterns
[61] N-BaIoT LSTM- Chi20 99 ✗ ✓ ✗ ✗ Can not detect dynamic malware
[62] MedBIoT G-PCA x ✗ ✓ ✗ ✗ Scalability
[45] N-BaIoT Parallel learning 99.98 ✗ ✓ ✗ ✗ Computationally costly
[66] NSL-KDD DQN 98 ✗ ✓ ✗ ✗ Easy to bypass
[67] NSL-KDD AESMOTE 82 ✗ ✓ ✗ ✗ Limited to supervised environment
[68] DS2OS DRL-GAN 99.05 ✗ ✓ ✗ ✗ GAN generates invalid network samples
[70] MedBIoT SARSA 96.99 ✗ ✓ ✗ ✗ Limited to labeled data
[72] NSL-KDD AE-RL 80 ✗ ✓ ✗ ✗ Limited to supervised environment
[74] NSW-NB15 DQN 98 ✗ ✓ ✗ ✗ Computationally costly
[76] Self Q 90 ✗ ✓ ✗ ✗ Can not handle high-dimensional distribution
[78] NSL-KDD Q-RST 98 ✗ ✓ ✗ ✗ Computationally costly
[77] Simulated RNN-Q 100 ✗ ✓ ✗ ✗ Not applicable in real environments

Algorithm 1 Traffic Handler

1: Input: Network traffic (P)
2: Output: Preprocessed network traffic
3: Time windows = {0.1s, 0.5s, 1.5s, 10s, 60s}
4: Traffic aggregating
5: Remove duplicate packets
6: if packet in time windows then
7: Extract statistical features (𝜇, 𝜎, w, M, R, 𝐶𝑜𝑣𝑖, 𝑗 ,

𝐶𝑜𝑟 𝑖, 𝑗)
8: Data scaling using 𝑆𝑐𝑎𝑙𝑒(𝑓) = 𝑓 −min(𝑓)

max(𝑓)−min(𝑓)
9: end if

10: Split the preprocessed traffic to: 60% training, 10% vali-
dation, 30% testing

𝑣𝜋 (𝑠) = 𝐸𝜋 (𝑅𝑡+1 + 𝛾𝑣𝜋 (𝑆𝑡+1) |𝑆𝑡 =s) (3)

𝑞𝜋 (𝑠, 𝑎) = 𝐸𝜋 (𝑅𝑡+1 + 𝛾𝑣𝜋 (𝑆𝑡+1) |𝑆𝑡 =s, 𝐴1 = 𝑎) (4)

In each episode of learning, whenever a state exists (i.e., is
not in a terminal state), the agent tries to maximize its rewards.
At state (s), the reward is the sum of current rewards plus
discounted rewards of the new states. This can be expressed
as 𝑅(𝑠′) = 𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 ∗ 𝑅(𝑠′). Further, the agent can
obtain the optimal values of the policy using a cyclic process
by a trial-and-error approach of interaction with the environ-
ment. Model-based and model-free approaches are well-known
methods for solving decision sequence tasks under uncertainty.
The model-based approach relies on the transition probability
function of the task, whereas the model-free approach relies
on the interaction between the agent and the environment to
determine the transition probability. Although model-based
systems exhibit higher responsiveness compared to model-
free systems, they necessitate prior knowledge concerning

potential agent actions. In contrast, model-free systems, which
learn from environmental interactions, are more suitable for
accommodating dynamic attack behaviors due to their inherent
adaptability.

B. Q-learning

Q-learning uses the model-free approach, where every
timestamp is assigned an experienced sample that allows the
agent to estimate the Q-values. Bellman equations can be used
to approximate Q-learning, which represents how effective
a particular action is for an agent in a particular state, as
follows [75]:

𝑄𝑛𝑒𝑤 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼 ∗ (𝑟 + 𝛾 ∗𝑄∗ (𝑠′, 𝑎′) −𝑄 (𝑠, 𝑎)) (5)

Where 𝛼 is the learning rate, Q(s; a) is the current estimation,
and Q*(s‘,a‘) is the highest Q value among the possible
actions that could be taken in the new state. In the Q-learning
approach, the agent interacts with the environment and then
obtains a trajectory (s,a,r,s1,a',r',..n) and stores it in a Q table,
which the agent can use to reach the optimal policy. The size
of the Q table depends on the numerical complexity of the
problem that the agent wants to solve. However, this approach
is not suited for the work presented in this paper as it is only
suitable for solving simple problems.

IV. MALBOT-DRL SYSTEM

In this section, the primary components of the proposed
system, namely the Traffic Handler and the MalBoT-DRL
engine, are examined. The process from data collection to
traffic classification is elaborated upon, with the model’s
architecture, its learning parameters, and the operations of the
RL engine being detailed. Fig. 1 illustrates the MalBoT-DRL
architecture.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

7

Traffic
Handler

0.1s 0.5s 1.5s n

t
Network traffic

Data Mirroring

Feature Extraction

Network Switch

IoT Devices

a) Traffic handler

Traffic
Handler

Environment

Target
DDQN

Online
DDQN

Loss
Function

Policy

Synchronization

Replay
Memory

Actions

Network States

Q(s,a,θ)Q(s,a,θ`)

Rewards

b) IDS-engine

Fig. 1: MalBoT-DRL architecture

A. Traffic handler

The traffic handler component of the model is responsible
for collecting network traffic between the IoT devices as raw
PCAP data, and then extracting statistical temporal features of
the network traffic. Since this paper targets limited and con-
strained devices, the proposed model should be lightweight in
terms of implementation (computational resources). Therefore
in this paper, a damped incremental statistics method [87] was
utilized to extract network traffic features. This method has
the advantage of extracting features from dynamic network
traffic at high speed, while only requiring O (1) computa-
tional resources, as demonstrated in [88]. Suppose P= {f1,
f2. . . fn} is an unbounded network traffic stream, where f
represents the feature associated with every packet collected
by the traffic handler. For each traffic stream, our handler
will maintain an array ∀𝑖

𝛽
= (𝑁𝑚, 𝐿𝑝 , 𝑆𝑝 , 𝐿𝑝𝑅𝑖 𝑗 ,𝑇𝑙), where

𝑁𝑚 represents the number of the network packets that were
captured recently, 𝐿𝑝 is the sum of the capture packets, 𝑆𝑝

is the square sum of the network traffic and 𝐿𝑝𝑅𝑖 𝑗 represents
the sum of residual products between two streams (i and j),

defined as follows [87]:

𝐿𝑝𝑅𝑖 𝑗 =
∑

𝑟 𝑖 𝑟 𝑗 (6)

𝐿𝑝𝑅𝑖 𝑗 =
∑ (

𝑓 𝑖𝑐𝑢𝑟 −
𝑃

𝑁𝑚

)
∗
(
𝑓
𝑗
𝑐𝑢𝑟 −

𝑃

𝑁𝑚

)
(7)

𝑇𝑙 represents the last timestamp that has been updated for ∀𝑖
𝛽
.

The array ∀𝑖
𝛽
will be incrementally updated using statistical

values such as the mean, variance, and standard deviation of P.
When a new f is captured, ∀𝑖

𝛽
will be updated as follows: ∀𝑖

𝛽
=

(𝑁𝑚 + 1, 𝐿𝑝 + 𝑓 , 𝑆𝑝 + 𝑓 2). The old packets must be discarded
in order to extract the current status of the packet stream.
The incremental statistics method adds a decay function in
the following manner [87]:

𝑑𝛽 (𝑡) = 𝑒𝛽𝑡 (8)

𝛽𝑡 > 0 represents a default value, and t represents the time
since the last observation from the stream. The new ∀𝑖

𝛽
will

be updated as follows:
• Calculate the decay factor 𝛽← 𝑒𝛽 (𝑇𝑛−𝑇𝑙) , where 𝑇𝑛 is the

current timestamp.
• Process the decay as
∀𝑖
𝛽
← (𝛽𝑁𝑚, 𝛽𝐿𝑝 , 𝛽𝑆𝑝 , 𝛽𝐿 𝑝𝑅𝑖 𝑗 , 𝑇𝑙)

• Insert the new value as ∀𝑖
𝛽
← (𝑁𝑚+1, 𝐿𝑝+ 𝑓 , 𝑆𝑝+ 𝑓 2, 𝑇𝑛)

• When both incoming and output packets require two-
dimensional statistics, calculate 𝐿𝑝𝑅𝑖 𝑗 for each variable, as
follows [87]:

𝐿𝑝𝑅𝑖 𝑗 = 𝛽 𝐿𝑝𝑅𝑖 𝑗 +
∑ (

𝑓 𝑖𝑐𝑢𝑟 − 𝑃
𝑁𝑚

)
∗
(
𝑓
𝑗
𝑐𝑢𝑟 − 𝑃

𝑁𝑚

)
(9)

• Return ∀𝑖
𝛽

By utilizing ∀𝑖
𝛽
, we can calculate one-dimensional statistics

of the network traffic sequence 𝑓𝑖 . The statistics include weight
(w), mean (𝜇) and variance (𝜎2). 𝜇 and 𝜎2 are calculated as
follows [88]:

𝜇 = 𝐿 𝑝 /𝑤 (10)

𝜎2 = |
𝑆𝑝

𝑤
− 𝜇2

𝑓𝑖
| (11)

While the 2-D statistics of 𝑓𝑖 and 𝑓 𝑗 include the magni-
tude(M) || 𝑓𝑖 , 𝑓 𝑗 ||, radius (𝑅 𝑓𝑖 , 𝑓 𝑗), covariance (𝐶𝑜𝑣 𝑓𝑖 , 𝑓 𝑗) and
the correlation coefficient (𝐶𝑜𝑟 𝑓𝑖 , 𝑓 𝑗). The 2-D statistics are
calculated as follows [88]:

| | 𝑓 𝑖, 𝑓 𝑗 | | =
√︃
𝑓 2
𝑖
+ 𝑓 2

𝑗
(12)

𝑅 𝑓𝑖 , 𝑓 𝑗 =

√︃
(𝜎4

𝑖
+ 𝜎4

𝑗
) (13)

𝐶𝑜𝑣𝑖, 𝑗 =
𝐿𝑝𝑅𝑖 𝑗

𝑤𝑖 + 𝑤 𝑗
(14)

𝐶𝑜𝑟 𝑖, 𝑗 =
𝐶𝑜𝑣𝑖, 𝑗

𝜎𝑖 + 𝜎𝑗

(15)

For each packet captured during a given time window, the
feature extractor checks the Netflow information including the
sender IP address (Src-IP), MAC-IP address, sender-receiver

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

8

TABLE II: EXTRACTED FEATURES

Feature no. Description Source

F1-8 Statistics: 𝜎, 𝜇

Feature: Packet
size

SrcIP/SrcIP-MAC/Socket/Channel

F9-12 Statistics: w
Feature: Packet
count

SrcIP/SrcIP-MAC/Socket/Channel

F13-15 Statistics: 𝜇, 𝜎, 𝑤

Feature: Packet jit-
ter

Channel

F16-23 Statistics: M, R,
𝐶𝑜𝑣𝑖, 𝑗 , 𝐶𝑜𝑟𝑖, 𝑗
Feature: Packet
size

Socket/Channel

IP (Channel) and the sender-receiver TCP/UDP socket. The
flow is subsequently based on this information. Traffic han-
dlers are capable of extracting 23 statistical features for each
time window. This research only considers five temporal time
windows to compare the proposed model with other SOTA
models: {0.1s, 0.5s, 1.5s, 10s, 60s}. The extracted features
are summarized in Table II. A data normalization method was
applied to prevent the model from being biased to the normal
traffic. The network features in the final stage of the pre-
processing phase are split into training, validation, and testing,
using a ratio of 60:10:30. Traffic collection and network traffic
processing are elaborated in Algorithm 1.

B. MalBoT-DRL engine

This section is composed of two parts: the first details
the engine components, and the second explains the learning
process.

1) Engine Components: In our paper, we introduce a robust
method for detecting a variety of network attacks, employing
a model-free technique, Q-learning and a DNN architecture.
The system also incorporates an attention reward function
to address the data imbalance issue associated with minor
attack samples, thereby improving classification accuracy. Un-
like previous studies [70], [72] that utilized adversarial RL
strategies, our approach is more streamlined as it eliminates the
need for an adversarial agent. Furthermore, it can identify the
attacking behavior at both early and later stages of an attack’s
life cycle, offering a broader scope of detection. This approach
also considers generalizability across different environments,
an aspect that is often overlooked in similar works.

In the Q-learning process, the agent’s experiences are cap-
tured, and their behavior is guided by reward functions. Each
action performed by the agent leads to a new state and a
reward, which then prompts the agent to carry out a new
action. IoT devices generate workload, which is directed into
a switch and then sent to a traffic analyzer via a Local Area
Network or a Wide Area Network, as shown in Fig. 2.
Given that the Q-learning table cannot handle high-
dimensionality state space environments [89], a neural network
is employed as a function approximator to manage network
traffic complexity. The integration of Q-learning with DNN

results in a new model, the DQN. In DQN, the DNN ap-
proximates the Q-value for every action based on a state (s),
instead of storing the Q-values in a table. This RL approach
uses two networks, online DQN, and target DQN, to stabilize
the learning process [90], [91]. The shared architecture of the
online and target networks includes three hidden layers with
256, 64, and 32 neurons, respectively. A Rectified Linear Unit
(ReLU) activation function is used, with a learning rate of
0.001. Optimization is achieved using the Adam optimizer.

Environment

Agent

Light bulbs, Fans, and
Smart locks

N
et

w
or

k
Tr

af
fic

IoT devices

R
ew

ar
ds

Ac
tio

ns

St
at

es

Fig. 2: MalBot-DRL interaction with incoming traffic

The online DQN is represented by 𝑄 (𝑠,𝑎, 𝜃) , where the
parameters of the model are state, action, and 𝜃. 𝜃 denotes
the NN weights for every layer in the Q-network at a specific
time t. The online DQN is utilized to estimate the Q-values
for each action (a).

The target DQN is represented by 𝑄 (𝑠′ ,𝑎′ , 𝜃 ′) , and is used to
calculate the value of the next state and action (s’,a). Further,
it is used to train the parameters of the online DQN.

The online NN is responsible for the training process.
During the learning process, the target DQN is frozen for a
few iterations, then the online DQN transfers its experience
to the target network by synchronizing the weights (𝜃 and
𝜃’). This process stabilizes the training process and makes the
estimations of the Q-value more accurate [92]. The Q target
values can be represented in the DQN as follows [93]:

𝑄 (𝑠,𝑎, 𝜃) = 𝑟𝑡 + 𝛾𝑚𝑎𝑥𝑄𝑎𝑡+1 (𝑠𝑡+1, 𝑎𝑡+1, 𝜃′) (16)

To optimize the learning process of the NN, a gradient descent
approach is utilized to minimize the loss (or cost) function.
By squaring the difference between the target and the online
networks, the loss function can be calculated as follows [94]:

𝐿 (𝜃) = 𝐸 [(𝑌 𝑡 −𝑄 (𝑠,𝑎, 𝜃))2] (17)

Where 𝑌𝑡 represents the target value 𝑌𝑡 = 𝑟𝑡 +
Υ𝑚𝑎𝑥𝑄𝑎𝑡+1 (𝑠𝑡+1, 𝑎𝑡+1 + 𝜃′). The target DQN values are de-
termined by combining the immediate reward r' and the
maximum value of 𝑄 (𝑠′ ,𝑎′) , obtained from inputting s' into the
target DQN, Thus, 𝑌𝑡 can be further expanded as follows [94]:

𝑌𝑡 = 𝑟𝑡+1 + Υ𝑄 (𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑄(𝑠𝑡+1 , 𝑎𝑡 ; 𝜃
′); 𝜃′) (18)

The proposed MalBoT-DRL is represented by an environment,
space of system actions, space of actions, and reward function.
These are detailed as follows :

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

9

• Environment: The environment of the proposed model
is established after pre-processing and normalizing the
network traffic stream. The feature vector of the network
traffic represents the states in our model. The feature
vectors are temporal window features, where the states
are represented by the statistical features multiplied by
the time windows of the network stream. The ground
truth samplesare then used to compute the reward vector
(depending on the prediction of the model).

• Agent: The MalBoT-DRL model incorporates a DQN-
RL agent for estimating the discounted future rewards
post-model training. The agent interacts with the
environment and receives rewards based on the actions
taken, corresponding to different states. During the
training phase, the agent explores the actions and the
environment, adhering to a designated policy. The
exploration and exploitation strategy employed by the
MalBoT agent is 𝜀, which is widely considered to be
SOTA [95]. The agent selects a random action with
a probability of 𝜀, or selects the best action based
on a probability of 1- 𝜀. The value of 𝜀 at the start
of the training is a high value to give the agents a
chance to explore their actions. The goal of our agent
is to maximize the Expected Future Return (EFR) as
follows [94]:

EFR=
∑𝑖

𝑐=0 𝛾
𝑐𝑟 𝑡+𝑖 (19)

• States: In the proposed model, the states refer to in-
put values from the environment that the agent can
observe and utilize for decision-making. More specifi-
cally, the environment is characterized by the network
traffic captured by the traffic handler, with the net-
work stream features serving as the state parameters
for the DDQN agent. At any given time t, the net-
work state, denoted by S, is defined by the source
and destination IoT nodes, along with the temporal and
spatial features associated with the network traffic. These
network features are captured by the IDS, represented
as: S={s1=infection/propagation,s2=command execution,
s3=normal communication}
Where s1 means the IoT node is infected and the mal-
ware started the propagation phase, s2 indicates that the
infected device is communicating with the botmaster, and
s3 means that the IoT device is communicating with
another node with a legitimate communication.

• Actions: During a given time window, the agent/IDS
interacts with the environment and makes a sequence of
decisions, called actions. The DDQN agent processes a
list of states called a mini-batch and then generates a
list of action vectors based on the NN that processes
the input features. The agent determines the nature of
the traffic according to the current network state. The
action space is defined as A= {Qv, argmax Qv}, where
Qv is a prediction of s for all actions that belong to the
total number of random actions, and is fed to an action
vector (Av= argmax Qv). Av in this paper is calculated
using the greedy strategy, where the value is estimated

by 𝑎𝑟𝑔𝑚𝑎𝑥𝑄(𝑠𝑡 , 𝑎𝑡).
• Rewards: The agent performs an action then feedback is

received from the environment, in the form of a reward.
If the agent makes a correct action - defined by matching
with the estimated Q value, it will receive a positive
reward. In contrast, a negative reward may be received. It
is challenging to identify attack samples accurately in an
environment with imbalanced network streams. As a re-
sult, it is necessary to increase the algorithm’s sensitivity
to minority samples in order to improve the detection of
subsequent minority attack samples. Whenever an agent
meets a minority sample, it receives a large reward or
punishment [96]. The attention rewards mechanism has
been utilized in our model to handle the data imbalance
issue of the less-frequent samples. In the MalBoT model,
the reward function is defined as follows:

𝑅(𝑠, 𝑎) =


𝑃𝑟 , 𝐹𝑜𝑟 𝑎𝑡 = 𝐺𝑡 𝑎𝑛𝑑 𝑠𝑡 ∈ 𝐴𝑠

𝑁𝑟 , 𝐹𝑜𝑟 𝑎𝑡 = 𝐺𝑡 𝑎𝑛𝑑 𝑠𝑡 ∈ 𝐴𝑠

𝜆 , 𝐹𝑜𝑟 𝑎𝑡 = 𝐺𝑡 𝑎𝑛𝑑 𝑠𝑡 ∈ 𝑁𝑠

−𝜆, 𝐹𝑜𝑟 𝑎𝑡 = 𝐺𝑡 𝑎𝑛𝑑 𝑠𝑡 ∈ 𝑁𝑠

(20)

Where 𝐴𝑠 represents infection flows or malicious com-
munication with the C&C server, 𝑁𝑠 represents legitimate
communication between two nodes, 𝑃𝑟 represents a pos-
itive reward (value = 1), 𝑁𝑟 represents a negative reward
(value = -1), 𝑎𝑡 is an action taken by the agent, Gt is the
ground truth of the traffic flow, and 𝜆 represents attention
rewards, where a value of 𝜆 can be calculated using the
imbalance ratio (number of malicious flows/number of
legitimate communication).
The agent will receive +1 as a reward value when
correctly predicting the attack states, whilst receiving a
negative reward when it predicts attack states incorrectly.
The agent will receive 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 when it pre-
dicts normal traffic correctly. The value of 𝜆 will be 1 if
the network traffic in the environment is balanced. In this
case, all classes will have the same reward or punishment
based on the corrections of the action. Based on this
approach, the agent will place more attention on the minor
samples. This paper evaluated the MalBoT model using
different imbalance ratios to test the robustness of the
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 for the anomaly detection problem, as
well as to test the generalization of the proposed model.

2) The Learning Process in MalBoT-DRL : The training
procedure of the proposed model is broken down into the
following phases: Initialization Phase, Sampling Phase,
Training Phase, Experience Replay Phase and Overestimation
Avoidance Phase.

Initialization Phase:The learning process begins with the
initialization of the state, environment, action and Neural
Network (NN) parameters of the online DQN. The traffic
handler fetches the current network state and generates tailored
state data for the model based on the traffic flow generated by
the end device. The input of a neural network consists of the
state 𝑠𝑡 , while the output consists of the function value. An
action-value can be represented using DQN.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

10

Sampling Phase: The agent produces actions and the
observed experiences are stored in the reply memory (D). The
agent follows the greedy policy, where a random action is
selected with a probability of 𝜀, while the best action will be
selected with 1- 𝜀 probability. At the start of the training, an 𝜀

value is set to (1) to make the agent explore the environment,
then the value is gradually decreased based on a decay rate. By
utilizing the 𝜀-greedy policy, the agent explores all possible
actions, from which it selects the optimal action.

Training Phase: A random batch of samples is selected to
learn the attack behaviors through a gradient descent update.
By selecting random samples as mini-batches, samples used in
the online network are not biased toward recent experiences.
Consequently, correlation observation sequences are removed,
and oscillating action values are prevented. DQN uses two
networks to avoid instability of training. A major cause of
the instability issue is the combination of bootstrapping and
the nonlinear value function (NN). The bootstrapping method
involves updating the target based on an estimate, not the
actual data. The training phase has also been stabilized by
using Experience Replay and Double Deep Q-Learning.

Experience Replay Phase : The agent interacts with the
environment and then obtains experiences (s,a,r,s'), which are
updated and inputted into the NN, after which their values
are discarded. To leverage past experiences, a replay buffer
is created within the experience replay model, storing the
experience and reusing it during training. Replay buffers allow
us to leverage the same experience multiple times.

Overestimation avoidance Phase: The overestimation
problem occurs when the agent wants to select the optimal
action for the next state (s'). The agent selects the action with
the highest Q-value. This choice is based on the experience
that the agent had and on its exploration of neighboring
states. However, the agent in the beginning of the training
has insufficient information regarding the best action ; thus,
selecting the best action based on the maximum Q-value leads
to high false positive rates. To avoid this problem, we apply
the same approach used by [75], which is known as Double
DQN. The agent computes the Q target using two distinct
networks. These networks are employed to separate the
action selection process from the target Q value generation.
For the next state 𝑠′, the action with the highest Q-value is
determined by the DQN network. This action 𝑎 is then used
by the target network to calculate the target Q-value at 𝑠′.
DDQN’s target value can be expressed as follows [94]:

𝑌𝑡 = 𝑟𝑡+1 + Υ𝑄 (𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑄(𝑠𝑡+1 , 𝑎𝑡 ; 𝜃); 𝜃
′) (21)

The learning process of the DDQN agent is described in
Algorithm 2.

V. MODEL EVALUATION

In this section, the evaluation process of the proposed model
is delineated. First, the simulation environment is presented,
followed by the criteria for dataset selection and the chosen
evaluation metrics. The evaluation in the early phase of the
malware botnet life cycle is discussed, taking into considera-

Algorithm 2 Deep Q-Learning Algorithm

1: Parameters: 𝑊 : network weight, 𝐵: bias, GD: gradient
descent

2: Input: Preprocessed network traffic
3: Output: F1, Precision, Recall, G-mean, Accuracy
4: Initialize the online DQN with random 𝑊 and 𝐵 as 𝜃;
5: Initialize the target DQN as a copy of the online DQN 𝑊

and 𝐵 as 𝜃′;
6: Initialize replay memory M;
7: for 𝑘 = 1 to Max Episode do
8: Initialize state 𝑠𝑡;
9: Input the system state 𝑠𝑡 into the online DQN;

10: Compute the Q-value based on online DQN;
11: Based on the probability 𝜀, choose an action;
12: Execute action 𝑎𝑡, receive a reward 𝑟𝑡 and observe the

next state 𝑠𝑡 + 1;
13: Store the interaction tuple in M;
14: for 𝑜 = 1 to MaxStep do
15: Sample a random batch from M;
16: Compute the target Q value: 𝑌𝑡 = 𝑟𝑡+1 +

Υ𝑄(𝑠𝑡+1, argmax𝑄(𝑠𝑡+1, 𝑎𝑡 ; 𝜃); 𝜃′);
17: Train the NN to minimize the loss function: 𝐿 (𝜃) =

𝐸 [(𝑌𝑡 −𝑄(𝑠, 𝑎, 𝜃))2];
18: Execute GD with respect to 𝜃;
19: Update target DQN every N steps based on DDQN:

𝜃′ ← 𝜃;
20: end for
21: end for
22: Calculate the performance metrics using the testing net-

work traffic;

tion realistic scenarios that encompass both compromising sin-
gle devices and multiple devices simultaneously. Subsequent
evaluation focuses on the later stages of the malware botnet
life cycle, wherein stealthy attacks such as data exfiltration
are considered. Lastly, a complexity analysis is provided,
alongside model requirements. The specifications of our model
are then compared with other SOTA models.

A. Simulation environment

The list of tools and libraries used during the implementa-
tion and evaluation phases are listed in Table III. To evaluate
the adaptability of our model we tested it using multiple
scenarios. A performance evaluation of the MalBoT-DRL
model was conducted using the parameters listed in Table IV.
Various discount factor values were used to test the behavior
of the proposed model. Based on the results, it appears that
a higher discount factor produces a higher loss value and a
lower performance. Therefore, a lower discount factor (gamma
=0.001) was selected based on the conducted experiments.

B. Dataset selection

To evaluate the proposed model using authentic scenarios,
the dataset adapted for this study was selected with the
following criteria in mind:

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

11

TABLE III: SPECIFICATIONS OF HARDWARE AND
SOFTWARE IMPLEMENTATION ENVIRONMENTS

Item Description
Processor Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz 2.60 GHz
Memory 16.0 GB
OS 64-bit operating system, x64-based processor
Python 3.8
Gym 0.23.0
Tensor flow 2.11.0

TABLE IV: DETAILED PARAMETERS OF THE PRO-
POSED MODEL

Parameter Description Value

N-episode Number of episodes 160_000
Warm-up Random actions 16000
cspe Collect steps 2000
𝐸 Exploration method 1
tup Update periods 800
min_ 𝜀 Epsilon value 0.02
LR Learning rate 0.001
Gamma Discount factor 0.001
Batch-size Model update 32
Input Traffic stream 115
H-Layer1 First layer 256
H-Layer2 Second layer 64
H-Layer3 Third layer 32
activation Activation Function Relu

TABLE V: A SUMMARY OF THE USED DATASETS

Dataset Malware type # of data flows # of devices
N-BaIoT Bashlite ,Mirai 6272960 9
MedBIoT Bashlite ,Mirai, Torii 17,845,567 89

• The dataset should be compiled from a diverse range of
IoT devices and should encompass normal activities, including
traffic types such as TCP and UDP.
• A new variety of malware with stealth properties should

be included in the dataset.
• All stages of the deployment life cycle of the IoT botnet

should be included in the dataset.
• Malicious traffic including spreading samples, communi-

cation samples, flooding attacks as well as spamming should
be included in the dataset.

MedBIoT [97] and N-BaIoT [98] datasets met these require-
ments and have been extensively used for IoT botnet detection.
Table V provides a comprehensive summary of the datasets,
detailing the number of flows, devices involved, and types of
malware.

C. Evaluation metrics

Numerous evaluation metrics are considered for assessing
the effectiveness of the proposed model. The model has been
evaluated using True Positive (TP), False Positive (FP), True
Negative (TN) and False Negative (FN) values, defined as:
• TP: The proposed IDS correctly predicts the malicious

samples
• FP: The proposed IDS wrongly predicts the malicious

samples

• TN: The proposed IDS correctly predicts the normal
samples
• FN: The proposed IDS wrongly predicts the normal

samples.
Based on these metrics, the accuracy, precision, recall, F1-

score and G-mean are calculated as described below.
Accuracy (A): The total number of correctly predicted values
over the total number of predication, represented by:

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(22)

Precision (P): The ratio of correctly predicted malicious
samples to all samples that the model predicted as malicious:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(23)

DR/Recall (R): The ratio of correctly predicted malicious
samples to all samples that were actually malicious, regardless
of whether the prediction was correct:

𝐷𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(24)

F1:The harmonic value of the precision and recall:

𝐹1 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(25)

G-mean(G): Geometric mean of sensitivity and precision:

𝐺 − 𝑚𝑒𝑎𝑛 =

√︂
𝑇𝑃 ∗ 𝑇𝑁

(𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃)
(26)

D. Early-Stage Malware Activities Detection

In our early detection evaluation, experiments encompassed
all conceivable attacks across the botnet life cycle, focusing
particularly on the initial stages. We considered three prevalent
malware: Bashlite, Mirai and Torii (as depicted in Table VI).
These early-stage activities involve the hacking of IoT devices,
further spreading to compromise other devices, and initiating
communication with the C&C server.

Initially, the study postulated scenarios where individual IoT
devices, represented by a smart fan, were compromised. In the
first three scenarios, these devices were individually infected
with one of the three malware types: Bashlite (Scenario
1), Mirai (Scenario 2), or Torii (Scenario 3). Each scenario
was dissected into two primary malicious activities—malware
spreading (SP) and illicit C&C server communication. Specific
metrics and findings for these scenarios can be referenced in
Table VI. The results indicated a specifically high efficiency
of the model, albeit with some challenges, especially with
the Bashlite malware, which bore a resemblance to normal
communication.

As we expanded our scope, Scenarios 4 through 6 inves-
tigated the behavior when multiple devices were infected.
These devices, namely a fan, light, lock, and switch, were
subjected to Bashlite (Scenario 4), Mirai (Scenario 5), or
Torii (Scenario 6). Notably, while the model’s efficiency with
Bashlite presented challenges, its efficiency notably improved
when dealing with Mirai, with fewer FN samples recorded.
The confusion matrices (CM) detailing these activities are
presented in Table VI.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

12

In Scenarios 7 and 8, all four IoT devices were exposed to a
concurrent infection of multiple malware types: Bashlite, Mirai
and Torii. Scenario 7 predominantly focused on the spreading
aspect of these malwares, while Scenario 8 concentrated on
their C&C communication methods. These settings were de-
veloped to highlight the intricate threat environment facing IoT
devices, with adversaries deploying a combination of malware
to facilitate different malicious operations. The performance
metrics of the model for these specific scenarios are detailed in
Table VI. Lastly, in Scenario 9, the assumption made was that
all IoT devices are infected by all three malware types. Using
a combination of 300,000 attack and 700,000 normal traffic
samples, MalBoT-DRL demonstrated significant proficiency,
optimizing the detection process and minimizing FP samples.
The relevant CM for this scenario can be found in Table VI.

Discussion : In Table VI, the proposed model demonstrates
efficacy in detecting a majority of malware activities, including
the initial stages of a botnet life cycle, such as propagation and
communication with C&C servers. Nevertheless, the model
encounters difficulties in handling Bashlite malware. Bashlite
malware presents a unique challenge for detection systems due
to its distinct characteristics, employing a P2P network based
on the UDP protocol, which is characterized by low latency
but limited reliability. Consequently, detecting and blocking
malicious traffic associated with Bashlite malware becomes
a complex task for these systems. Furthermore, Bashlite
malware adopts advanced evasion techniques, including the
randomization of C&C server addresses and obfuscation of its
network traffic to resemble legitimate traffic patterns. These
factors pose considerable challenges for detection systems,
such as the proposed model, to accurately identifying and
mitigating Bashlite malware, particularly during the critical
early phases of a botnet life cycle.

E. Late-Stage Malware Activities Detection
In this phase of the evaluation, the emphasis is placed

on post-attack activities. More specifically, the (C&C) server
sends commands to the compromised devices to initiate vol-
umetric attacks, including spamming and flooding attacks.
By examining these subsequent actions, the study seeks to
provide a comprehensive understanding of the malware’s life
cycle and its impact on the targeted IoT devices. This is
expected to ultimately inform the development of more ef-
fective mitigation strategies for post-attack scenarios. Data
splitting for evaluation in the later stages of the malware
life cycle follows the same distribution as that of the earlier
malware activities. This consistent approach ensures that the
assessments accurately reflect the malware’s behavior patterns,
enabling a comprehensive understanding of its progression
from initial infection to subsequent actions. The evolution
phase follows four scenarios (Table VII):

1. The IoT devices are individually infected by Bashlite and
Mirai malware.

2. Different normal profiles of the IoT activities with
Bashlite malware.

3. Normal profiles with Mirai malware.
4. A group of IoT devices, that are infected by Bashlite and

Mirai, launching different attacks.

In Scenario 1, individual IoT devices, as listed in Table
VIII, were examined when infected by Bashlite and Mirai mal-
ware. With balanced samples for evaluation, devices ranging
from doorbells to thermostats were subjected to infections.
It was found that the doorbell struggled against Bashlite
but responded better to Mirai infections. Likewise, when
Bashlite infected a thermostat, the device found it challenging
to cope; however, the Mirai malware was easily detected
by the same device. Expanding the scope to IoT security
cameras, particularly in Cases 8 and 9, the results indicated
a distinct ability to recognize Bashlite over Mirai attacks.
These findings are summarized in Table XI. Transitioning to
Scenario 2, the stealth attacks by Bashlite malware, which
involved diverse activities like spamming, data exfiltration and
flooding, were explored. Employing a million samples for
training and testing, the model achieved a detection rate of
99.94% and a precision of 99.91%. In scenario 3, the blend
of normal profiles from the N-BaIoT dataset with malicious
patterns from Mirai malware formed the backdrop. Out of
the million samples used for evaluation, 70% were normal,
leading to an impressive precision rate of 99.91% and a similar
detection rate. This scenario was particularly noteworthy for
the significant reduction in FP samples. Scenario 4 was crafted
to mimic a more complex attack environment where both
Bashlite and Mirai malware were active. By employing various
normal profiles and analyzing them under this multi-malware
paradigm, the study intended to unveil the intricate challenges
that arise from such configurations. The model was tested
using 855,932 samples, with 65% being normal. Subsequently,
it showcased a precision and detection rate both nearing
99.91%. The crucial aspect of this scenario was the low FP
rate, indicating the model’s potential in fortifying the IoT
device security landscape while ensuring efficient resource
utilization.

Discussion : As demonstrated in Table VIII, the proposed
model exhibited a high level of precision. Out of the sixteen
experiments conducted, the model detected all false positive
samples in fourteen of them. This result indicates that, if
deployed in a real-world environment, the model has the
potential to reduce the cost and time required for validating
these samples. Regarding the detection of attack samples, the
model was able to detect all of them in only three cases, and
in three other cases, it missed fewer than four FN samples.
In five cases, the model only missed one sample. Through
our experimentation, we observed that the majority of the
missed samples originated from UDP traffic, particularly in
the case of Bashlite malware. This finding highlights the
need for continued research and development to improve the
effectiveness of malware detection models.

F. Impact of Attention Mechanism on Model Performance

Our model is equipped with an attention mechanism that
has been used to deal with the issue of data imbalance by
making the model more sensitive to minor classes. In order to
accomplish this, we provided these samples with more rewards
and fewer punishments. To illustrate the impact of the attention
reward mechanism, the model was evaluated with and without

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

13

TABLE VI: A SUMMARY OF EVALUATION SCENARIOS BASED ON EARLY MALWARE LIFE CYCLE

Scenario Devices Malware Activity Normal Attack P (%) R (%) F1 (%) G (%) TP FN TN FP 𝝀

1 Single Bashlite SP 300000 300000 99.99 99.96 99.97 99.97 89966 34 89998 2 1
1 Single Bashlite C&C 300000 188852 98.88 99.08 98.98 98.98 56135 521 89362 638 0.63
2 Single Mirai SP 300000 119827 99.87 99.85 99.86 99.86 35895 53 89956 45 0.40
2 Single Mirai C&C 300000 296642 99.99 99.95 99.97 99.97 88946 47 89996 4 0.99
3 Single Torii SP 300000 137476 99.99 99.95 99.97 99.97 41223 20 89999 1 0.46
3 Single Torii C&C 300000 46222 100.00 99.98 99.99 99.99 13864 3 90000 0 0.15
4 Multiple Bashlite Mixed 700000 300000 97.02 88.14 92.37 92.54 79333 10667 207561 2439 0.43
5 Multiple Mirai Mixed 700000 300000 99.16 99.84 99.50 99.50 89859 141 209244 756 0.43
6 Multiple Torii Mixed 700000 300000 99.67 99.83 99.75 99.75 89850 150 209703 297 0.43
7 Multiple All C&C 700000 300000 97.15 82.79 89.29 89.83 74513 15487 207836 2164 0.43
8 Multiple All SP 700000 300000 99.99 99.97 99.98 99.98 89970 30 209996 4 0.43
9 Multiple All Mixed 700000 300000 99.37 99.83 99.60 99.60 89850 150 209430 570 0.43

Bash
lite

-S
P

Bash
lite

-C
&C

M
ira

i-S
P

M
ira

i-C
&C

Tori
i-S

P

Tori
i-C

&C
0.98

0.99

1

Sc
or

e

Performance Metrics by Malware Activity

G
F1
P
R

Fig. 3: Comparison of different malware activities using single IoT device

the attention reward mechanism using 700,000 training and
300,000 testing samples during the early life cycle of the
botnet malware.

The model without attention reward produced 619 FP sam-
ples and 437 FN samples in the early stages. In contrast, when
employing attention reward in our model, the number of FP
samples was reduced by 49. The FN samples decreased sub-
stantially from 437 samples to 150 samples. The improvement
in performance is depicted in Fig. 4a and in Table IX.

The model was also evaluated in the late stage of the
malware life cycle. By utilizing the attention reward mech-
anism, the FP samples were reduced, as illustrated in Fig. 4b.
Furthermore, the number of FN alerts dropped from 210 to 23.

TABLE VII: SUMMARIZED EVALUATION SCENARIOS
BASED ON LATER MALWARE LIFE CYCLE

Scenario Devices Malware Activity
1 Single Bashlite, Mirai Case1-12: SP
2 Multiple Bashlite SP
3 Multiple Mirai SP
4 Multiple Bashlite, Mirai C&C

Considering the results of the experiment, we can conclude
that the attention mechanism improves the detection rates and
reduces the number of FP samples.

G. Complexity Analysis & Model Requirements
The proposed system employs two DNNs: the online net-

work and the target network. Since the target DQN is updated
periodically by adopting the parameters from the online DQN,
the computational complexity of the online network is predom-
inantly considered in our analysis. The online DQN includes
the input layer (𝑙1), three fully connected layers (𝑙2, 𝑙3, and
𝑙4), and one output layer (𝑙5). An online network’s complexity
can be expressed as:

|𝑙1 | ∗|𝑙2 | + |𝑙2 | ∗|𝑙3 | + |𝑙3 | ∗|𝑙4 | + |𝑙4 | ∗|𝑙5 |
Where |𝑙𝑖 | represents number of the neurons of layer i. Each

training step involves taking a random sample from the replay
memory and feeding it to the online DQN. Therefore, the
training process has an overall complexity of:

𝑂 = (𝑇 ∗ 𝑁𝑏 ∗ (|𝑙1 | ∗|𝑙2 | + |𝑙2 | ∗|𝑙3 | + |𝑙3 | ∗|𝑙4 | + |𝑙4 | ∗|𝑙5 |))

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

14

TABLE VIII: DATASET PROPERTIES, TRAINING SUMMARY, AND MODEL EVALUATION FOR LATE STAGE
MALWARE BOTNET ACTIVITIES

Scenario Case IoT device Malware Attack Normal G(%) F1(%) P(%) R(%) TP FN TN FP 𝝀

1 1 Doorbell Bashlite 316650 49548 99.99 99.99 100 99.99 14862 2 14865 0 1
1 2 Doorbell Mirai 652100 49548 100 100 100 99.99 14863 1 14865 0 1
1 3 Thermost Bashlite 310630 13113 99.95 99.95 100 99.90 3930 4 3934 0 1
1 4 Thermost Mirai 512133 13113 100 100 100 100 3934 0 3934 0 1
1 5 Ennio Door Bashlite 316400 39100 99.99 99.99 100 99.97 11727 3 11730 0 1
1 6 B120N10 Bashlite 312723 175240 99.96 99.96 99.95 99.96 52551 21 52546 26 1
1 7 B120N10 Mirai 316400 39100 100 100 100 100 52571 1 52572 0 1
1 8 PT_737E Bashlite 330096 62154 99.99 99.99 100 99.98 18642 4 18647 0 1
1 8 PT_737E Mirai 436010 62154 99.97 99.97 100 99.95 18636 10 18646 0 1
1 9 PT_838 Bashlite 309040 98514 99.98 99.98 100 99.95 29540 14 29554 0 1
1 9 PT_838 Mirai 429337 98514 99.99 99.99 100 99.97 29546 8 29555 0 1
1 10 Webcam Bashlite 323072 52150 99.99 99.99 99.98 99.99 15644 1 15642 3 1
1 11 XCS7_1002 Bashlite 303223 46585 100 100 100 99.99 13974 1 13975 0 1
1 11 XCS7_1002 Mirai 513248 46585 100 100 100 100 13975 0 13975 0 1
1 12 XCS7_1003 Bashlite 316438 19528 100 100 100 100 11717 0 11717 0 1
1 12 XCS7_1003 Mirai 19528 19528 99.99 99.99 100 99.98 5857 1 5858 0 1
2 - Mixed Bashlite 300000 700000 99.95 99.93 99.91 99.94 166685 95 333413 146 0.5
3 - Mixed Mirai 300000 700000 99.99 99.99 99.99 99.99 83382 8 166777 3 0.5
4 - Mixed Mixed 300000 700000 99.97 99.95 99.93 99.98 89977 23 166716 64 0.54

TP TN FP FN
100

101

102

103

104

105

V
al

ue
s

(l
og

sc
al

e)

Comparison of Metrics

With
Without

(a) Early stage

TP TN FP FN
100

101

102

103

104

105

V
al

ue
s

(l
og

sc
al

e)

With
Without

(b) Later stage

Fig. 4: Assessing reward attention during early and later stages
of detection.

Where T represents the total number of training cycles
and 𝑁𝑏 is the number of training batches. According to
our study, 𝑙1 is defined as the number of state features in
the state space, so 𝑙1 has a value of 115. There are 256,
64, and 32 neurons for all hidden layers. Each neuron in
the output layer corresponds to one of the AV’s actions, as
explained previously. The online network is clearly based
on a simple architecture; consequently, it can be applied to
detection systems with adequate computing resources.

In this study, the performance of the proposed MalBoT-DRL
model is compared with two other models, namely Parallel
Learning [45] and CNN-LSTM [41], in terms of their resource
requirements and processing times during both training and
testing phases using psutil library [99]. The comparison is
illustrated in Fig. 5. During the training phase, the proposed
MalBoT-DRL model demonstrated the most efficient resource
usage. It required an "additional" 140.3 MB of RAM and
induced a 17.1% increase in CPU usage, completing the
training process in approximately 12.6 minutes. The term
"additional" here refers to the extra amount of RAM that is
needed by the model over and above the amount that is already
being used by the system for other tasks. This is important
to consider because the testing device or system is typically
running other tasks in the background, and these tasks also
require a certain amount of RAM and CPU usage. In contrast,
the Parallel Learning model requires an additional 650 MB of

TABLE IX: REWARD ATTENTION COMPARISON

Scenario TP TN FP FN
Without-Early 89563 209381 619 437
With-Early 89850 209430 570 150
With-Late 89977 166716 64 23
Without-Late 89790 165929 851 210

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

15

M
alB

oT
-D

RL

Para
lle

l Lea
rni

ng

CNN-L
STM

0

500

1,000

M
B

U
til

iz
at

io
n

RAM

Training Testing

M
alB

oT
-D

RL

Para
lle

l Lea
rni

ng

CNN-L
STM

0

20

40

60

C
PU

%
U

til
iz

at
io

n

CPU

Training Testing

M
alB

oT
-D

RL

Para
lle

l Lea
rni

ng

CNN-L
STM

0

0.5

1

·104

Se
co

nd
s

Time

Training Testing

Fig. 5: Comparison of resource requirements and processing times of different models (Training vs. Testing).

RAM and increases CPU usage by 27.7%, but has a longer
training time of approximately 21.5 minutes. The CNN-LSTM
model exhibits the highest increase in CPU usage (59.7%) and
the longest training duration (approximately 208.2 minutes).
Interestingly, the CNN-LSTM model requires an additional 1.1
GB of RAM during the training phase. In the testing phase,
the proposed MalBoT-DRL model continued to demonstrate
efficient resource usage. It required an additional 6.8 MB of
RAM, exhibited a CPU usage of 42% during testing, and
completed the testing process in approximately 8.4 seconds.
The Parallel Learning model, while requiring less additional
RAM than the CNN-LSTM model and demonstrating lower
CPU usage, completed the testing in the shortest time of
approximately 76.4 seconds. The CNN-LSTM model exhibited
the highest CPU usage during testing (80.1%) and the longest
testing duration (approximately 330.8 seconds), whereby its
RAM usage increased the most during testing. These find-
ings underscore the robustness of the proposed MalBoT-DRL
model, which consistently requires fewer additional resources
and exhibits lower CPU usage during both training and testing
phases. This makes it a suitable choice for deployment in
environments where resource constraints are a concern, such
as in IoT devices. Furthermore, considering the number of
network flows processed during the study, which was 599152,
it is evident that each network flow requires less and less
resources, further emphasizing the efficiency of the proposed
MalBoT-DRL model. More specifically, the time taken per
network flow during training was approximately 0.00126 sec-
onds, and during testing, it was approximately 3.266e-05 sec-
onds/sample. This demonstrates the model’s ability to process
a large number of network flows efficiently and quickly, further
enhancing its suitability for real-time applications in resource-
constrained environments.

VI. DISCUSSION AND LIMITATIONS

To further evaluate the effectiveness of the proposed DRL
model in detecting malware botnet activity in IoT environ-
ments, a comparative analysis was conducted with SOTA ML,
DL, and RL models. The performance of the proposed model

during different stages of the malware life cycle was investi-
gated through this evaluation. To ensure a fair comparison, all
of the models were evaluated based on the same number of
samples. This was achieved by utilizing published codes when
available, or recreating the code for the models based on the
descriptions provided in their respective papers.

The evaluation process encompassed three scenarios: early
phases of malware propagation, post-attack activities and a
generalization test to mimic zero-day attacks. During the early
detection stage, 1 million samples were employed for training
and testing, encompassing 300,000 attack samples and 700,000
normal samples. The early stages of the malware life cycle
were examined through an experiment conducted using the
MedBIoT dataset. The results, generated using SOTA ML [61],
[62], DL [41], [45], [61] , and DRL [70]models, indicate that
these models exhibit good performance in detecting malware
activities, with the exception of a few ML models. Related
performance metrics are detailed in Table X and Fig. 6. The
comparison revealed that the LSTM-CNN, Parallel Learning,
and MalBoT-DRL models achieved the highest detection rates.
Nevertheless, LSTM-CNN exhibited the highest precision,
which can be attributed to the imbalanced data used for
evaluation, predisposing the model to favor major classes. It
is worth noting here that the performance of the LSTM-CNN
model degraded during the late stage of the malware life cycle,
as illustrated in Table XI.

In assessing the latter stage of the malware life cycle within
IoT settings using the N-BaIoT dataset, 855,932 samples were
employed for training and testing purposes. This included
300,000 attack samples with the remaining constituting normal
samples, where the proposed model achieved the highest
detection rate with the lowest number of FP samples (64), as
shown in Table XI , Table IX , Fig. 6 and Fig. 7 . While the
performance of most models degraded during the malware life
cycle, the proposed model exhibited superior generalizability.
This can be ascribed to the learning process that relies on
interaction with the environment rather than learning directly
from labeled data.

In the second phase, the detection rates of the Paral-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

16

lel Learning approach, LSTM-CNN, and MalBot-DRL were
96.1%, 99.1%, and 99.8%, respectively. Although MalBot-
DRL showed marginally better performance compared to
LSTM-CNN, further evaluation was necessary to assess the
model’s generalization ability in the face of previously unseen
threats, such as zero-day attacks. In the third scenario, the best
models from the first two cases were trained using a combi-
nation of distinct attack and normal samples, totaling 764,137
samples [87]. These models were then tested on previously
unseen normal and attack samples from the N-BaIoT dataset.
The results revealed a significant drop in the accuracy for all
models, with MalBot-DRL falling from 99.97% to 80.06%,
Parallel Learning to 36.16%, and LSTM-CNN to 36.67%, as
shown in the generalization test results (Table XII). These
findings emphasize the challenges associated with maintaining
high detection rates in the face of previously unseen threats,
such as zero-day attacks.

Our study offers valuable insights into the performance
of different models during various stages of the malware
botnet life cycle in IoT environments, as evident in Table
and Table . While the MalBot-DRL model exhibited strong
performance in specific scenarios, detecting unseen attacks
remained a significant challenge. The DRL approach, as
employed by the MalBot-DRL model, possessed the potential
to provide enhanced generalization capabilities due to its
inherent adaptability and optimization of behavior through
interaction with the environment. It is evident that further
research and development are necessary to refine the DRL
model’s adaptability and effectiveness in detecting and mit-
igating emerging cybersecurity risks in IoT environments.
By leveraging the power of DRL, more robust and adaptive
cybersecurity solutions may be developed to better respond to
the ever-evolving threat landscape in IoT ecosystems.

While the evaluation of MalBoT-DRL offers compelling
results, it is crucial to recognize the inherent limitations and
potential challenges of the proposed approach for a com-
prehensive understanding of its capabilities. One limitation
is demonstrated by the Bashlite malware, which employs
stealth communication techniques with its (C&C) server. In
this case, the proposed model has encountered challenges
in accurate detection and response, indicating the need for
further refinement to effectively handle sophisticated mal-
ware behavior, especially those utilizing covert communication
channels. Moreover, the potential vulnerability of the system
to adversarial attacks, as pointed out in the literature, is a
significant concern. Given that MalBoT-DRL employs a neural
network as part of its Deep RL (DRL) architecture, this
susceptibility must be addressed to bolster the resilience of
the proposed solution against evolving malware strategies.
In complex scenarios marked by rapid changes and volumi-
nous datasets, our model may require a longer convergence
period to reach an optimal policy. To counter this, we can
enhance the model’s exploration and exploitation policies
and employ network distillation for maintaining or enhancing
performance while reducing computational demands. This
process starts by training a larger, more complex model,
known as Q ’teacher,’ in the cloud. After achieving satisfactory
performance, we can then transfer its knowledge to a smaller

’student’ model. This student model, situated at the edge, is
trained on both the raw data and the outputs from the teacher
model. This setup allows the student model to emulate the
teacher model’s performance while demanding significantly
less computational resources, making it an ideal solution for
real-world IoT environments where resource constraints are
prevalent.
Furthermore, improvements in performance generalization are
often associated with an increase in computational complexity,
leading to potential latency issues. As the model’s capacity
to generalize across a wider range of scenarios expands,
the time taken to process each sample may increase. This
effect was evidenced during our experiments when we ex-
panded our training data set to include 855,932 flow samples
and tested the model on a set of 256,781 samples. In the
testing phase, a distinct trend was observed as the sample
size increased. Prior to the expansion of the sample size,
the model processed each sample in approximately 3.266e-
05 seconds. After testing on the larger dataset, however, the
processing time per sample increased to roughly 4.725e-05
seconds. This growth, corresponding to an additional latency
of around 14.59 microseconds per sample, implies a rise in
latency with the growth of the testing sample size. Despite this
increase, it is important to note here that this delay remains
within acceptable boundaries. On the other hand, the training
phase presented a different characteristic. Irrespective of the
increase in the number of training samples, from 599,152
to 855,932, the model maintained a steady training time per
sample,indicating strong consistency and efficiency.

TABLE X: EVALUATION OF THE PERFORMANCE OF
OUR MODEL IN COMPARISON TO SOTA MODELS IN
THE EARLY STAGE

Ref Model G A P R Bias Gen
[41] LSTM-

CNN
N/A 99.93 99.95 99.8 ✓ ✗

[45] Parallel N/A 99.91 99.8 99.8 ✓ ✗
[47] RNN N/A 98.8 N/A 99 ✓ ✗
[61] LR N/A 82 88 71 ✓ ✗
[61] LSTM-

Chi20
N/A 99.72 99.36 99.53 ✓ ✗

[62] G-
PCA

N/A 83.27 76.75 63.41 ✓ ✗

[70] DQL N/A 96.99 97.02 96.99 ✓ ✓
Our DRL 99.75 99.74 99.4 99.8 ✗ ✓

TABLE XI: EVALUATION OF THE PERFORMANCE OF
OUR MODEL IN COMPARISON TO SOTA MODELS IN
THE LATE STAGE

Ref Model G A P R Basis Gen
[39] CNN N/A 99.57 N/A 99.5 ✓ ✗
[41] LSTM-

CNN
N/A 98.35 96.3 99.1 ✓ ✗

[45] Parallel N/A 95.6 96.4 90.1 ✓ ✗
[59] GWO 96.8 98 N/A 98 ✓ ✗
[61] LR N/A 94.8 94.2 87.26 ✓ ✗
[61] LSTM-

Chi20
N/A 95.77 99.19 88.64 ✓ ✗

[62] G-PCA N/A 83.27 76.75 63.41 ✓ ✗
Our DRL 99.97 99.97 99.93 99.98 ✗ ✓

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

17

CNN
GW

O

G-P
CA LR

LSTM
-C

hi2
0

Para
lle

l lea
rni

ng

LSTM
-C

NN

M
alB

ot-
DRL

0

20

40

60

80

100

R
ec

al
l

Recall by Model

Fig. 6: Comparing the detection rate between our model and
other SOTA models in the early stage.

TABLE XII: EVALUATION OF THE GENERALIZABILITY
OF OUR MODEL VS. SOTA MODELS WITH UNSEEN
SAMPLES

Ref Model A F1 P R
[41] CNN-LSTM 39.44 53.66 36.67 99.99
[45] Parallel learning 38.05 53.08 36.13 99.98

Our MalBot-DRL 80.06 76.01 67.19 88.05

VII. CONCLUSION

As the landscape of cyber attacks continues to evolve in
response to the rapid growth of IoT devices and applications,
it becomes increasingly crucial to efficiently detect suspicious
behavior within IoT devices and handle a broad spectrum of
threats. The primary aim of this paper was to introduce the
MalBoT-DRL system, a solution designed to detect botnets
utilizing the damped incremental statistics method and DRL
throughout various stages of the malware botnet life cycle. The
proposed system effectively classifies botnet devices, thereby
safeguarding IoT devices from potential threats. The key
finding of this paper is the ability of our model to accurately

CNN

LSTM
-C

NN

Para
lle

l lea
rni

ng
GW

O LR

LSTM
-C

hi2
0

G-P
CA

M
alB

ot-
DRL

0

20

40

60

80

100

R
ec

al
l

Recall by Model

Fig. 7: Comparing the detection rate between our model and
other studies based on late stage.

identify the propagation activities of attacks and detect post-
activity when malware manages to evade initial detection.
Compared to alternative ML approaches, the proposed so-
lution demonstrates superior detection rates and adaptability
across a diverse range of IoT environments. Future research
should explore other RL methods and investigate the potential
benefits of combining metaheuristics with RL, which could
significantly reduce the learning time. Additionally, examining
adversarial attacks, such as poisoning against the MalBoT-
DRL system itself, is a vital future research direction. This
would further enhance the resilience and adaptability of the
model amidst the ever-changing threat landscape.

REFERENCES

[1] S. Salini and B. P. U. Ivy, “Chapter 3 - digital twin and artificial
intelligence in industries,” in Digital Twin for Smart Manufacturing,
R. K. Dhanaraj, A. K. Bashir, V. Rajasekar, B. Balusamy, and P. Malik,
Eds. Academic Press, 2023, pp. 35–58. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780323992053000146

[2] R. U. Rasool, H. F. Ahmad, W. Rafique, A. Qayyum, and J. Qadir,
“Security and privacy of internet of medical things: A contemporary
review in the age of surveillance, botnets, and adversarial ml,” Journal
of Network and Computer Applications, vol. 201, p. 103332, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1084804522000017

[3] H. Benyezza, M. Bouhedda, R. Kara, and S. Rebouh, “Smart
platform based on iot and wsn for monitoring and control of
a greenhouse in the context of precision agriculture,” Internet
of Things, vol. 23, p. 100830, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2542660523001531

[4] B. Jovanovic, 2022. [Online]. Available: https://dataprot.net/statistics/
iot-statistics/

[5] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot:
Applications, challenges, and opportunities with china perspective,”
IEEE Internet of Things Journal, vol. 1, no. 4, pp. 349–359, 2014.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[7] Y. Lu and L. D. Xu, “Internet of things (iot) cybersecurity research:
A review of current research topics,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2103–2115, 2019.

[8] G. L. Nguyen, B. Dumba, Q.-D. Ngo, H.-V. Le, and T. N. Nguyen,
“A collaborative approach to early detection of iot botnet,” Computers
Electrical Engineering, vol. 97, p. 107525, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045790621004717

[9] U. Garg, S. Kumar, and M. Ghanshala, “Analysis and categorization
of emotet iot botnet malware,” in 2023 International Conference on
Artificial Intelligence and Smart Communication (AISC), 2023, pp. 909–
914.

[10] S. Dange and M. Chatterjee, “Iot botnet: The largest threat to
the iot network,” Advances in Intelligent Systems and Computing,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
208125836

[11] P. Kumari and A. K. Jain, “A comprehensive study of ddos
attacks over iot network and their countermeasures,” Computers
Security, vol. 127, p. 103096, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167404823000068

[12] X. Zhang, O. Upton, N. L. Beebe, and K.-K. R. Choo, “Iot
botnet forensics: A comprehensive digital forensic case study
on mirai botnet servers,” Forensic Science International: Digital
Investigation, vol. 32, p. 300926, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2666281720300214

[13] Z. Ahmed, S. M. Danish, H. K. Qureshi, and M. Lestas, “Protecting
iots from mirai botnet attacks using blockchains,” in 2019 IEEE 24th
International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 2019, pp. 1–6.

[14] P. Victor, A. H. Lashkari, R. Lu, T. Sasi, P. Xiong, and
S. Iqbal, “Iot malware: An attribute-based taxonomy, detection
mechanisms and challenges,” Peer-to-Peer Networking and Applications,
vol. 16, no. 3, pp. 1380–1431, 2023. [Online]. Available: https:
//doi.org/10.1007/s12083-023-01478-w

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.sciencedirect.com/science/article/pii/B9780323992053000146
https://www.sciencedirect.com/science/article/pii/B9780323992053000146
https://www.sciencedirect.com/science/article/pii/S1084804522000017
https://www.sciencedirect.com/science/article/pii/S1084804522000017
https://www.sciencedirect.com/science/article/pii/S2542660523001531
https://www.sciencedirect.com/science/article/pii/S2542660523001531
https://dataprot.net/statistics/iot-statistics/
https://dataprot.net/statistics/iot-statistics/
https://www.sciencedirect.com/science/article/pii/S0045790621004717
https://api.semanticscholar.org/CorpusID:208125836
https://api.semanticscholar.org/CorpusID:208125836
https://www.sciencedirect.com/science/article/pii/S0167404823000068
https://www.sciencedirect.com/science/article/pii/S0167404823000068
https://www.sciencedirect.com/science/article/pii/S2666281720300214
https://www.sciencedirect.com/science/article/pii/S2666281720300214
https://doi.org/10.1007/s12083-023-01478-w
https://doi.org/10.1007/s12083-023-01478-w

18

[15] O. Yousuf and R. N. Mir, “Ddos attack detection in internet of
things using recurrent neural network,” Computers and Electrical
Engineering, vol. 101, p. 108034, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S004579062200297X

[16] A. Alatram, L. F. Sikos, M. Johnstone, P. Szewczyk, and J. J.
Kang, “Dos/ddos-mqtt-iot: A dataset for evaluating intrusions in iot
networks using the mqtt protocol,” Computer Networks, vol. 231,
p. 109809, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1389128623002542

[17] Nokia, “Nokia threat intelligence report finds malicious iot
botnet activity has sharply increased,” June 7 2023. [Online].
Available: https://www.nokia.com/about-us/news/releases/2023/06/07/
nokia-threat-intelligence-report-finds-malicious-iot-botnet-activity-has-
sharply-increased/

[18] R. Faek, M. Al-Fawa’reh, and M. Al-Fayoumi, “Exposing bot attacks
using machine learning and flow level analysis,” in International
Conference on Data Science, E-Learning and Information Systems
2021, ser. DATA’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 99–106. [Online]. Available: https:
//doi.org/10.1145/3460620.3460739

[19] M. Al-Fawa’reh, M. Al-Fayoumi, S. Nashwan, and S. Fraihat, “Cyber
threat intelligence using pca-dnn model to detect abnormal network
behavior,” Egyptian Informatics Journal, vol. 23, no. 2, pp. 173–
185, 2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1110866521000785

[20] R. Z. Mohd, M. F. Zuhairi, A. Z. Shadil, and H. Dao, “Anomaly-based
nids: A review of machine learning methods on malware detection,”
in 2016 International Conference on Information and Communication
Technology (ICICTM), 2016, pp. 266–270.

[21] Z. Yang, X. Liu, T. Li, D. Wu, J. Wang, Y. Zhao, and H. Han,
“A systematic literature review of methods and datasets for anomaly-
based network intrusion detection,” Computers Security, vol. 116,
p. 102675, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404822000736

[22] P. R. Kannari, N. S. Chowdary, and R. Laxmikanth Biradar, “An
anomaly-based intrusion detection system using recursive feature
elimination technique for improved attack detection,” Theoretical
Computer Science, vol. 931, pp. 56–64, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304397522004479

[23] A. Meena, D. Nigam, D. Sharma, and A. Chauhan, “Anomaly based
intrusion detection for iot: (a deep learning approach),” in 2021 3rd
International Conference on Advances in Computing, Communication
Control and Networking (ICAC3N), 2021, pp. 1349–1356.

[24] M. Bhavsar, K. Roy, J. Kelly, and O. Olusola, “Anomaly-based
intrusion detection system for iot application,” Discover Internet
of Things, vol. 3, no. 1, p. 5, 2023. [Online]. Available: https:
//doi.org/10.1007/s43926-023-00034-5

[25] Y. Al-Hadhrami and F. K. Hussain, “Ddos attacks in iot networks:
A comprehensive systematic literature review,” World Wide Web,
vol. 24, no. 3, p. 971–1001, may 2021. [Online]. Available:
https://doi.org/10.1007/s11280-020-00855-2

[26] K. Sethi, E. Sai Rupesh, R. Kumar, P. Bera, and Y. Venu Madhav,
“A context-aware robust intrusion detection system: a reinforcement
learning-based approach,” International Journal of Information Security,
vol. 19, no. 6, pp. 657–678, 2020. [Online]. Available: https:
//doi.org/10.1007/s10207-019-00482-7

[27] Y. Badr, “Enabling intrusion detection systems with dueling double
deep-learning,” Digital Transformation and Society, vol. 1, no. 1, pp.
115–141, 2022. [Online]. Available: https://doi.org/10.1108/DTS-05-
2022-0016

[28] J. Yang, A. A. S. Soltan, and D. A. Clifton, “Machine learning
generalizability across healthcare settings: insights from multi-site covid-
19 screening,” npj Digital Medicine, vol. 5, p. 69, June 7 2022.

[29] R. E. Carter, V. Anand, D. M. Harmon, and P. A. Pellikka, “Model
drift: When it can be a sign of success and when it can be an
occult problem,” Intelligence-Based Medicine, vol. 6, p. 100058, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2666521222000114

[30] J.-S. Lee, Y.-C. Chen, C.-J. Chew, C.-L. Chen, T.-N. Huynh, and C.-W.
Kuo, “Conn-ids: Intrusion detection system based on collaborative
neural networks and agile training,” Computers Security, vol. 122,
p. 102908, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404822003017

[31] E. Anthi, L. Williams, M. Rhode, P. Burnap, and A. Wedgbury,
“Adversarial attacks on machine learning cybersecurity defences
in industrial control systems,” Journal of Information Security

and Applications, vol. 58, p. 102717, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214212620308607

[32] A. Alotaibi and M. A. Rassam, “Adversarial machine learning attacks
against intrusion detection systems: A survey on strategies and
defense,” Future Internet, vol. 15, no. 2, 2023. [Online]. Available:
https://www.mdpi.com/1999-5903/15/2/62

[33] L. Sun, M. Tan, and Z. Zhou, “A survey of practical adversarial
example attacks,” Cybersecurity, vol. 1, no. 1, p. 9, 2018. [Online].
Available: https://doi.org/10.1186/s42400-018-0012-9

[34] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[35] A. Uprety and D. B. Rawat, “Reinforcement learning for iot security: A
comprehensive survey,” IEEE Internet of Things Journal, vol. 8, no. 11,
pp. 8693–8706, 2021.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” 2013.

[37] M. Al-Fawa’reh, Z. Ashi, and M. T. Jafar, “Detecting malicious
dns queries over encrypted tunnels using statistical analysis and bi-
directional recurrent neural networks,” Karbala International Journal
of Modern Science, vol. 7, no. 4, 2021. [Online]. Available:
https://doi.org/10.33640/2405-609X.3155

[38] Y. B. Guang, Kou, Guang-Ming Tang, W. Shuo, and Hai-Tao Song,
“Using deep learning for detecting BotCloud,” J. Commun, vol. 47,
no. 11, pp. 114–128, 2016.

[39] J. Liu, S. Liu, and S. Zhang, “Detection of IoT Botnet Based on Deep
Learning,” 2019 Chinese Control Conference (CCC), pp. 8381–8385,
2019.

[40] D. Alghazzawi, O. Bamasag, H. Ullah, and M. Z. Asghar, “Efficient
Detection of DDoS Attacks Using a Hybrid Deep Learning Model with
Improved Feature Selection,” Applied Sciences, vol. 11.

[41] M. Wazzan, D. Algazzawi, A. Albeshri, S. Hasan, O. Rabie, and M. Z.
Asghar, “Cross Deep Learning Method for Effectively Detecting the
Propagation of IoT Botnet,” Sensors, vol. 22, no. 10, pp. 2022–2022.

[42] W. Jung, H. Zhao, M. Sun, and G. Zhou, “IoT botnet detection via power
consumption modeling,” Smart Heal, vol. 15, pp. 100 103–100 103,
2020.

[43] F. Hussain, “A Two-Fold Machine Learning Approach to Prevent and
Detect IoT Botnet Attacks,” IEEE Access, vol. 9, pp. 163 412–163 430,
2021.

[44] Z. H. C. Zhou, “Deep learning detection based on traffic characteristics
of botnet,” Inf. Technol, vol. 4, no. 1-9, 2018.

[45] F. Sattari, A. H. Farooqi, Z. Qadir, B. Raza, H. Nazari, and M. Almutiry,
“A Hybrid Deep Learning Approach for Bottleneck Detection in IoT,”
IEEE Access, vol. 10, pp. 77 039–77 053, 2022.

[46] C. D. Mcdermott, F. Majdani, and A. Petrovski, “Botnet Detection in the
Internet of Things using Deep Learning Approaches,” 2018 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2018.

[47] L. Giaretta, A. Lekssays, B. Carminati, E. Ferrari, and Š Girdzijauskas,
pp. 605–625, 2021.

[48] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly
detection and description: a survey,” Data Mining and Knowledge
Discovery, vol. 29, pp. 626 – 688, 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:5865347

[49] J. Wang, Z. Li, M. Sun, B. Yuan, and J. C. Lui, “Iot anomaly
detection via device interaction graph,” in 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2023, pp. 494–507.

[50] M. Gao, L. Wu, Q. Li, and W. Chen, “Anomaly traffic detection in iot
security using graph neural networks,” Journal of Information Security
and Applications, vol. 76, p. 103532, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214212623001163

[51] T. Pourhabibi, K.-L. Ong, B. H. Kam, and Y. L. Boo, “Fraud detection:
A systematic literature review of graph-based anomaly detection
approaches,” Decision Support Systems, vol. 133, p. 113303, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167923620300580

[52] R. Kaur and S. Singh, “A survey of data mining and social network
analysis based anomaly detection techniques,” Egyptian Informatics
Journal, vol. 17, no. 2, pp. 199–216, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1110866515000651

[53] W. Gao, H. Wu, M. K. Siddiqui, and A. Q. Baig, “Study of
biological networks using graph theory,” Saudi Journal of Biological
Sciences, vol. 25, no. 6, pp. 1212–1219, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1319562X17302966

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.sciencedirect.com/science/article/pii/S004579062200297X
https://www.sciencedirect.com/science/article/pii/S004579062200297X
https://www.sciencedirect.com/science/article/pii/S1389128623002542
https://www.sciencedirect.com/science/article/pii/S1389128623002542
https://www.nokia.com/about-us/news/releases/2023/06/07/nokia-threat-intelligence-report-finds-malicious-iot-botnet-activity-has-sharply-increased/
https://www.nokia.com/about-us/news/releases/2023/06/07/nokia-threat-intelligence-report-finds-malicious-iot-botnet-activity-has-sharply-increased/
https://www.nokia.com/about-us/news/releases/2023/06/07/nokia-threat-intelligence-report-finds-malicious-iot-botnet-activity-has-sharply-increased/
https://doi.org/10.1145/3460620.3460739
https://doi.org/10.1145/3460620.3460739
https://www.sciencedirect.com/science/article/pii/S1110866521000785
https://www.sciencedirect.com/science/article/pii/S1110866521000785
https://www.sciencedirect.com/science/article/pii/S0167404822000736
https://www.sciencedirect.com/science/article/pii/S0167404822000736
https://www.sciencedirect.com/science/article/pii/S0304397522004479
https://doi.org/10.1007/s43926-023-00034-5
https://doi.org/10.1007/s43926-023-00034-5
https://doi.org/10.1007/s11280-020-00855-2
https://doi.org/10.1007/s10207-019-00482-7
https://doi.org/10.1007/s10207-019-00482-7
https://doi.org/10.1108/DTS-05-2022-0016
https://doi.org/10.1108/DTS-05-2022-0016
https://www.sciencedirect.com/science/article/pii/S2666521222000114
https://www.sciencedirect.com/science/article/pii/S2666521222000114
https://www.sciencedirect.com/science/article/pii/S0167404822003017
https://www.sciencedirect.com/science/article/pii/S0167404822003017
https://www.sciencedirect.com/science/article/pii/S2214212620308607
https://www.mdpi.com/1999-5903/15/2/62
https://doi.org/10.1186/s42400-018-0012-9
https://doi.org/10.33640/2405-609X.3155
https://api.semanticscholar.org/CorpusID:5865347
https://www.sciencedirect.com/science/article/pii/S2214212623001163
https://www.sciencedirect.com/science/article/pii/S0167923620300580
https://www.sciencedirect.com/science/article/pii/S0167923620300580
https://www.sciencedirect.com/science/article/pii/S1110866515000651
https://www.sciencedirect.com/science/article/pii/S1319562X17302966

19

[54] W. Wang, Y. Shang, Y. He, Y. Li, and J. Liu, “BotMark: Automated
Botnet Detection with Hybrid Analysis of Flow-Based and Graph-Based
Traffic Behaviors,” Inf. Sci, vol. 511, no. C, pp. 284–296, 2020.

[55] D. P. Hostiadi and T. Ahmad, “Hybrid model for bot group activity
detection using similarity and correlation approaches based on network
traffic flows analysis,” Journal of King Saud University - Computer
and Information Sciences, vol. 34, no. 7, pp. 4219–4232, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1319157822001537

[56] W. Yassin, R. Abdullah, M. F. Abdollah, Z. Mas’ud, and F. A. Bakhari,
“An IoT Botnet Prediction Model Using Frequency Based Dependency
Graph: Proof-of-Concept,” Proceedings of the 2019 7th International
Conference on Information Technology: IoT and Smart City, pp. 344–
352, 2020.

[57] H.-T Nguyen, Q.-D Ngo, and V.-H Le, “A novel graph-based approach
for IoT botnet detection,” Int. J. Inf. Secur, vol. 19, pp. 567–577, 2019.

[58] S. Nomm and H. Bahsi, “Unsupervised Anomaly Based Botnet Detec-
tion in IoT Networks,” Proceedings - 17th IEEE International Confer-
ence on Machine Learning and Applications, ICMLA 2018, pp. 1048–
1053, 2019.

[59] A. Shorman, H. Faris, and I. Aljarah, “Unsupervised intelligent system
based on one class support vector machine and Grey Wolf optimization
for IoT botnet detection,” J. Ambient Intell. Humaniz. Comput, vol. 11,
no. 7, pp. 2809–2825, 2020.

[60] M. Injadat, A. Moubayed, and A. Shami, “Detecting Botnet Attacks
in IoT Environments: An Optimized Machine Learning Approach,” Int.
Conf. Microelectron, vol. 2020, pp. 1–4, 2020.

[61] R. Gandhi and Y. Li, “Comparing Machine Learning and Deep Learning
for IoT Botnet Detection,” 2021 IEEE International Conference on
Smart Computing (SMARTCOMP), pp. 234–239, 2021.

[62] W, D. S. Aprianti, and “implementasi Principal Component Analy-
sis (pca) Dan Algoritma Naïve Bayes Classifier Pada Klasifikasi Botnet
Di Jaringan Internet Of Things, 2021.

[63] X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, “Federated
deep reinforcement learning for internet of things with decentralized
cooperative edge caching,” IEEE Internet of Things Journal, vol. 7,
no. 10, pp. 9441–9455, 2020.

[64] G. Gomes, C. A. Vidal, J. B. Cavalcante-Neto, and Y. L. Nogueira,
“A modeling environment for reinforcement learning in games,”
Entertainment Computing, vol. 43, p. 100516, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1875952122000404

[65] M. Dalal, D. Pathak, and R. Salakhutdinov, “Accelerating robotic
reinforcement learning via parameterized action primitives,” CoRR, vol.
abs/2110.15360, 2021. [Online]. Available: https://arxiv.org/abs/2110.
15360

[66] H. Benaddi, K. Ibrahimi, A. Benslimane, and J. Qadir, “A Deep
Reinforcement Learning Based Intrusion Detection System (DRL-IDS)
for Securing Wireless Sensor Networks and Internet of Things,” Wireless
Internet, pp. 73–87, 2020.

[67] X. Ma and W. Shi, “Aesmote: Adversarial reinforcement learning with
smote for anomaly detection,” IEEE Transactions on Network Science
and Engineering, vol. 8, no. 2, pp. 943–956, 2021.

[68] H. Benaddi, M. Jouhari, K. Ibrahimi, J. B. Othman, and E. M. Amhoud,
“Anomaly Detection in Industrial IoT Using Distributional Reinforce-
ment Learning and Generative Adversarial Networks,” Sensors, vol. 22.

[69] G. Apruzzese, M. Andreolini, M. Marchetti, A. Venturi, and M. Cola-
janni, “Deep reinforcement adversarial learning against botnet evasion
attacks,” IEEE Transactions on Network and Service Management,
vol. 17, no. 4, pp. 1975–1987, 2020.

[70] P. May raju and G. P. Gupta, “Intrusion detection framework using an
improved deep reinforcement learning technique for iot network,” in Soft
Computing for Security Applications, 2022, pp. 765–779.

[71] “Bootcamp summer 2020 week 4: On-policy vs off-policy reinforcement
learning,” https://core-robotics.gatech.edu/2022/02/28/bootcamp-
summer-2020-week-4-on-policy-vs-off-policy-reinforcement-learning/,
2022, accessed: 2023-07-20.

[72] G. Caminero, M. Lopez-Martin, and B. Carro, “Adversarial environment
reinforcement learning algorithm for intrusion detection,” Comput. Net-
works, vol. 159, pp. 96–109, 2019.

[73] C. R. Team. (2022, 1) Intrusion detection in information systems
using reinforcement learning techniques. [Video]. [Online]. Available:
https://www.youtube.com/watch?v=UzZ1urlJTc8

[74] Y. F. Hsu and M. Matsuoka, “A Deep Reinforcement Learning Approach
for Anomaly Network Intrusion Detection System,” Proc. - 2020 IEEE
9th Int. Conf. Cloud Networking, 2020.

[75] H. V. Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, pp. 2094–2100, 2016.

[76] A. Servin, “Towards traffic anomaly detection via reinforcement learning
and data flow,” 2007.

[77] C. Huang, Y. Wu, Y. Zuo, K. Pei, and G. Min, “Towards ex-
perienced anomaly detector through reinforcement learning,” ser.
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[78] N. Sengupta, J. Sen, J. Sil, and M. Saha, “Designing of on line intrusion
detection system using rough set theory and q-learning algorithm,”
Neurocomputing, vol. 111, pp. 161–168, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S092523121300060X

[79] R. V. Hoa, T. D. Chuyen, N. T. Lam, T. N. Son, N. D. Dien, and V. T. T.
Linh, “Reinforcement Learning based Method for Autonomous Naviga-
tion of Mobile Robots in Unknown Environments,” 2020 International
Conference on Advanced Mechatronic Systems (ICAMechS), pp. 266–
269, 2020.

[80] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Cambridge, MA, USA: A Bradford Book, 2018.

[81] V. Mnih, “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[82] S. N. Vu, M. Stege, P. I. El-Habr, J. Bang, and N. Dragoni, “A Survey
on Botnets: Incentives, Evolution, Detection and Current Trends,” Futur.
Internet, vol. 13, no. 8, pp. 2021–2021.

[83] R. Mishra and S. K. Jha, “Survey on botnet detection techniques,” in
Internet of Things and Its Applications, K. Dahal, D. Giri, S. Neogy,
S. Dutta, and S. Kumar, Eds. Singapore: Springer Nature Singapore,
2022, pp. 441–449.

[84] Y. Shen and D. L. Lee, “An MDP-based peer-to-peer search server
network,” Proceedings of the Third International Conference on Web
Information Systems Engineering, pp. 269–278, 2002.

[85] H. V. Hasselt, A. Guez, and D. Silver, 2015. [Online]. Available:
http://arxiv.org/abs/1509.06461

[86] H. Hasselt, “Double q-learning,” in Advances in Neural Information
Processing Systems, J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, Eds., vol. 23. Curran Associates, Inc.,
2010. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf

[87] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” 01
2018, pp. 18–21. [Online]. Available: https://www.ndss-symposium.org/
wp-content/uploads/2018/02/ndss2018_06B-3_Wang_paper.pdf

[88] Y. Tian-Yi, L. Shi-Yue, and L. Jun-Yi, “Network Traffic Anomaly
Detection Based on Incremental Possibilistic Clustering Algorithm,” J.
Phys. Conf. Ser, vol. 1284, no. 1, pp. 12 067–12 067, 2019.

[89] G. Caminero, M. Lopez-Martin, and B. Carro, “Adversarial environment
reinforcement learning algorithm for intrusion detection,” Comput. Net-
works, vol. 159, pp. 96–109, 2019.

[90] H. V. Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, pp. 2094–2100, 2016.

[91] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Process.
Mag, vol. 34, no. 6, pp. 26–38, 2017.

[92] W. Jia, J. Li, and Y. Zhao, “DQN Algorithm Based on Target Value
Network Parameter Dynamic Update,” 2021 IEEE 4th International
Conference on Computer and Communication Engineering Technology
(CCET), pp. 285–289, 2021.

[93] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative Q-Learning
for Offline Reinforcement Learning,” CoRR, 2006.

[94] M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas, “Application
of deep reinforcement learning to intrusion detection for supervised
problems,” Expert Syst. Appl, vol. 141, pp. 112 963–112 963, 2020.

[95] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration
in reinforcement learning with deep predictive models,” ArXiv, vol.
abs/1507.00814, 2015. [Online]. Available: https://api.semanticscholar.
org/CorpusID:10296902

[96] E. Lin, Q. Chen, and X. Qi, “Deep reinforcement learning for
imbalanced classification,” Applied Intelligence, vol. 50, pp. 2488
– 2502, 2019. [Online]. Available: https://api.semanticscholar.org/
CorpusID:57573816

[97] A. Guerra-Manzanares, J. Medina-Galindo, H. Bahsi, and S. Nõmm,
“MedBIoT: Generation of an IoT botnet dataset in a medium-sized IoT
network,” ICISSP 2020 - Proc. 6th Int. Conf, pp. 207–218, 2020.

[98] Y. Meidan, “N-BaIoT-Network-based detection of IoT botnet attacks
using deep autoencoders,” IEEE Pervasive Comput, vol. 17, no. 3, pp.
12–22, 2018.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.sciencedirect.com/science/article/pii/S1319157822001537
https://www.sciencedirect.com/science/article/pii/S1319157822001537
https://www.sciencedirect.com/science/article/pii/S1875952122000404
https://arxiv.org/abs/2110.15360
https://arxiv.org/abs/2110.15360
https://core-robotics.gatech.edu/2022/02/28/bootcamp-summer-2020-week-4-on-policy-vs-off-policy-reinforcement-learning/
https://core-robotics.gatech.edu/2022/02/28/bootcamp-summer-2020-week-4-on-policy-vs-off-policy-reinforcement-learning/
https://www.youtube.com/watch?v=UzZ1urlJTc8
https://www.sciencedirect.com/science/article/pii/S092523121300060X
http://arxiv.org/abs/1509.06461
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_06B-3_Wang_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_06B-3_Wang_paper.pdf
https://api.semanticscholar.org/CorpusID:10296902
https://api.semanticscholar.org/CorpusID:10296902
https://api.semanticscholar.org/CorpusID:57573816
https://api.semanticscholar.org/CorpusID:57573816

20

[99] P. Developers, “psutil,” https://pypi.org/project/psutil/, accessed: August
19, 2023.

Mohammad Al-Fawa’reh is currently a Ph.D. candidate in Cybersecurity
at Edith Cowan University, Perth, Australia. He holds an M.S. degree in
Information Systems Security and Digital Criminology from PSUT, Amman,
Jordan. His research interests include reinforcement learning , adversarial
attacks, Cyber threat hunting, and Malware analysis.

Jumana Abu-Khalaf is a lecturer at Edith Cowan University, Perth, Australia,
with a Ph.D. in Mechanical Engineering from the University of Utah, USA.
Prior to joining ECU, she served as an Associate Professor in Mechatronics
Engineering at the German Jordanian University, Jordan. Jumana’s research
focuses on bio-robotics, artificial intelligence, and machine learning tech-
niques for health care applications.

Patryk Szewczyk is a senior cyber security and digital forensics lecturer at
Edith Cowan University, Perth, Australia, where he also obtained his PhD
in cyber security. Patryk has been an international reviewer for numerous
conferences and journal and supervised numerous Masters and PhD students.

James Jin Kang is an Associate Professor of Smart Medical Health Informat-
ics at National Taiwan University, Taipei, Taiwan, and an Adjunct Lecturer
in Computing and Security at Edith Cowan University, Perth, Australia. With
over 20 years of experience in the telecommunications industry, Dr. Kang’s
research interests include cybersecurity, informatics and computing in the
health care sector and wireless sensor networks.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3324053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://pypi.org/project/psutil/

	MalBoT-DRL: Malware botnet detection using deep reinforcement learning in IoT networks
	Introduction
	Related work
	Reinforcement Learning: An Overview
	A Theoretical Background of Reinforcement Learning
	Q-learning

	MalBoT-DRL System
	Traffic handler
	MalBoT-DRL engine
	Engine Components
	The Learning Process in MalBoT-DRL

	Model Evaluation
	Simulation environment
	 Dataset selection
	Evaluation metrics
	Early-Stage Malware Activities Detection
	Late-Stage Malware Activities Detection
	Impact of Attention Mechanism on Model Performance
	Complexity Analysis & Model Requirements

	Discussion and limitations
	Conclusion
	References
	Biographies
	Mohammad Al-Fawa'reh
	Jumana Abu-Khalaf
	Patryk Szewczyk
	James Jin Kang

