Fe73.5Si13.5B9Cu1Nb3 metallic glass: Rapid activation of peroxymonosulfate towards ultrafast Eosin Y degradation

Jincheng Wang
Edith Cowan University, jincheng.wang@ecu.edu.au

Zhe Jia
Edith Cowan University, zhe.jia@ecu.edu.au

Peng Qin
Edith Cowan University, p.qin@ecu.edu.au

W. C. Zhang

M. D. Wang

See next page for additional authors

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

Part of the Materials Science and Engineering Commons

10.1016/j.matdes.2017.11.049
This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworkspost2013/3902
Authors
Jincheng Wang, Zhe Jia, Peng Qin, W. C. Zhang, M. D. Wang, T. B. Sercombe, and Laichang Zhang

This journal article is available at Research Online: https://ro.ecu.edu.au/ecuworkspost2013/3902
Accepted Manuscript

Fe73.5Si13.5B9Cu1Nb3 metallic glass: Rapid activation of peroxymonosulfate towards ultrafast Eosin Y degradation

J.C. Wang, Z. Jia, S.X. Liang, P. Qin, W.C. Zhang, W.M. Wang, T.B. Sercombe, L.C. Zhang

PII: S0264-1275(17)31079-1
Reference: JMADE 3526
To appear in: Materials & Design
Received date: 6 September 2017
Revised date: 20 November 2017
Accepted date: 21 November 2017

Please cite this article as: J.C. Wang, Z. Jia, S.X. Liang, P. Qin, W.C. Zhang, W.M. Wang, T.B. Sercombe, L.C. Zhang, Fe73.5Si13.5B9Cu1Nb3 metallic glass: Rapid activation of peroxymonosulfate towards ultrafast Eosin Y degradation. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jmade(2017), doi:10.1016/j.matdes.2017.11.049

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ metallic glass: Rapid activation of peroxymonosulfate towards ultrafast Eosin Y degradation

J.C. Wanga, Z. Jiaa,b, S.X. Lianga, P. Qina, W.C. Zhange, W.M. Wangd**, T.B. Sercombee, L.C. Zhanga*

aSchool of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia

bDepartment of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China

cEnvironmental Protection Administration of Ji’an City, Ji’an, Jiangxi Province, 343000, China

dSchool of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China

eSchool of Mechanical and Chemical Engineering, M050, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia

*Corresponding author. Tel: +61 8 6304 2322; fax: +61 8 6304 5811; email addresses: l.zhang@ecu.edu.au; lc.zhangimr@gmail.com
**Co-corresponding author. +86 531 88392749; email address: weiminw@sdu.edu.cn
Abstract

Discovering functional applications of metallic glasses (MGs) as heterogeneous catalysts is a fundamental and essential topic. This work reports the rapid production of sulfate radicals ($\text{SO}_4^{\cdot-}$) from peroxymonosulfate (PMS) using Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ glassy ribbons as catalysts for Eosin Y (EY) dye wastewater treatment. The reaction rates (k) from the experimental data reveal that the EY degradation is well fitted with the pseudo-first-order kinetic model. The strong electron transfer ability is characterized by electrochemical methods, presenting an advanced catalytic performance for EY degradation. Various experimental parameters, including dye concentration, catalyst dosage, PMS concentration, light intensity, pH and reaction temperature as well as the saline and natural inorganic effects, are fully investigated. The results show that the color removal of EY dye could achieve nearly 100% within 20 min. The quenching experiments are performed to verify the production of reactive species, suggesting that both •OH and $\text{SO}_4^{\cdot-}$ are produced from PMS that play significant roles for EY degradation. This critical study reveals that using Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs as catalysts exhibit a superior reactivity on PMS activation in wastewater treatment. The discoveries shed lights into the study of electron transfer ability for MGs, presenting extensive prospects in the application of dye wastewater treatment.

Keywords: Metallic glass; Heterogeneous catalysis; Peroxymonosulfate; Sulfate radicals; Eosin Y
1. Introduction

Metallic glasses (MGs) have been extensively employed as either structural [1] or functional materials [2] in industries due to their superior physical and chemical properties such as high strength [3, 4], excellent corrosion resistance [5, 6], and soft magnetic properties [7, 8]. However, the development of bulk metallic glasses (BMGs) still has many obstacles, such as the absence of plasticity [9]. Recent reports demonstrate that thin film MGs with enhanced mechanical properties present great potential application in the catalytic research field [10, 11]. To date, MGs with various elemental compositions have been widely studied as effective catalysts for industrial effluents treatment [12-15]. It has been reported that the Fe_{78}Si_{9}B_{13} and Fe_{73.5}Si_{13.5}B_{9}Cu_{1}Nb_{3} MGs demonstrate 5 - 10 times quicker production rate of reactive species than the currently employed Fe-based catalysts [16]. The Fe_{76}B_{12}Si_{3}Y_{3} MG powders show 1000 times higher reactivity than crystalline Fe powders in treating methyl orange [17]. In addition to their superior reusability, the Fe_{76}B_{12}Si_{3}Y_{3} MG powders and ribbons could be reused up to 13 cycles in methyl orange degradation [17] and more than 30 times in degrading methyl blue without significantly loosing efficiency [18], respectively. These catalytic performances show that using amorphous alloys as catalysts would provide better efficiency than the traditional crystalline catalysts. However, the catalytic mechanism is still not yet clear.

Conventional techniques, such as physical, biological, and chemical approaches, have been widely explored to remove various dye effluents. The physical treatments achieve removal of toxic organics by naturally occurring forces without altering the nature of organics. Biological methods are ineffective because the microorganisms are less resistant to the complex aromatic structure of dye effluents [19]. The traditional chemical method always causes seriously secondary pollution. Recently, advanced oxidation processes (AOPs), which combining chemical and advanced material technologies are rapidly developed, such as
ozone (O$_3$) oxidation [20], Fenton/Fenton-like process [21-23], and photocatalysis [24-26]. The superiority of the AOPs is that the reactive species, such as hydroxyl radicals (•OH) and sulfate radicals (SO$_4$$^\bullet$•), can be generated to effectively oxidize organic matters from effluents into H$_2$O, CO$_2$, and other harmlessly inorganic molecules [24]. Very recently, largely due to the superior features of abundant natural source, low cost, and friendly environmental compatibility, Fe-based heterogeneous catalysts have been extensively investigated for their performance in AOPs, such as goethite (α-FeOOH) [27], magnetite (Fe$_3$O$_4$) [28], hematite (α-Fe$_2$O$_3$) [29], maghemite (γ-Fe$_2$O$_3$) [30], and zero-valent iron (ZVI) [31]. However, these catalysts still have significant disadvantages, such as low efficiency, less reusable, fast decay, and secondary pollution [21]. Recent reports demonstrate that using MGs as catalysts could effectively overcome the abovementioned shortcomings and their catalytic activity could be much improved by tuning their particle size [32], surface morphology [33], surface to volume ratio [5], and chemical composition [14, 15]. For example, the Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs can be used as an effective catalyst in activation of hydrogen peroxide (H$_2$O$_2$) to rapidly generate hydroxyl radicals (•OH) for completely degrading methyl blue and methyl orange within 20 min [16]. Compared to the •OH with the redox potential of $E' = 2.7 - 2.8$ V [34] and the short half-life of 10^{-3} µs [35], the SO$_4$$^\bullet$• with a similar redox potential of $E' = 2.5 - 3.1$ V [36] has a much longer stability (half-life 30 - 40 µs) in the dye effluents [35, 37]. In addition to the reactive environment, the Fe$^{2+}$/H$_2$O$_2$ system is preferred at pH range from 2 - 6, which largely limits the actual industrialization. In comparison, the broad operative pH range of the SO$_4$$^\bullet$• [37] is the second attractive property in water treatment. According to Nidheesh and Rajan [38], the AOPs involved SO$_4$$^\bullet$• have a higher removal efficiency for pollutants and can be used in a wide pH range (i.e. 3, 6 and 9). Peroxymonosulfate (PMS) [39, 40] and persulfate (PS) [41] are two important resources for producing the SO$_4$$^\bullet$•. Traditionally, the SO$_4$$^\bullet$• can be generated by the homogeneous energetic
activation of UV [42] or thermal activation [43] and heterogeneous catalytic activation of metal-free catalysts [44] or metal-based catalysts [45]. Especially, the reaction rate of $\text{SO}_4\cdot^-$ by homogeneously energetic activation (e.g., heat, $k = 1.0 \times 10^{-7} \text{ M}^{-1}\cdot\text{s}^{-1}$ [46]) is much lower than heterogeneously catalytic activation by transition metals, such as using iron as the catalyst with the reaction rate of $k = 2.0 \times 10^1 \text{ M}^{-1}\cdot\text{s}^{-1}$ [46]. However, the most important drawback to the transition metals/$\text{SO}_4\cdot^-$ system is that the leached metallic ions would react with the PS/PMS to reduce the activation rate, and the salinity as well as natural inorganic ions in the water would consume the generated $\text{SO}_4\cdot^-$. According to those aforementioned advantages and disadvantages, developing an advanced catalyst that has high efficiency in catalytic activation of $\text{SO}_4\cdot^-$ and low leaching rate of the transition metals as well as the effect of the salinity or natural inorganic ions for degrading contaminants in wastewater is always a challenging topic.

Eosin Y (EY), also named as Acid Red 87, is a xanthene red dye that defined as a conjugated π system [47]. The EY dye is broadly used in dyeing, printing, leather, and fluorescent pigment, and painting industries because of its low prices and bright color. The carcinogenicity of EY has been experimentally confirmed, and the acute poisonousness of the dye can lead to a variety of chronic effects to the health of inhabitants and damages to the environment [48]. Therefore, to explore an effective, low cost, and environmental-friendly catalyst is increasingly concerned in the textile or paper industry. This work reports the sulfate radicals ($\text{SO}_4\cdot^-$) and hydroxyl radicals ($\cdot\text{OH}$) activation from PMS using Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs under heterogeneous Fenton-like process. Initially, the amorphous nature of the manufactured Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs glassy ribbon is characterized by XRD and the surface morphology is analyzed by SEM. The electrochemical performance in simulated solution is also performed to examine electron transfer and corrosion resistance abilities of the glassy ribbons. The influenced factors on EY dye degradation efficiencies are
systematically examined, and the corresponding pseudo-first-order reaction kinetic rates (k) are thoroughly studied.

2. Materials and methods

2.1. Materials

The metallic glass with a nominal atomic composition of Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ was prepared by arc melting of a mixture of Fe, Si, B, Cu and Nb with purity higher than 99.9 wt.% under a Ti-gettered argon atmosphere. The melted master ingot was melted by induction heating in a quartz crucible, and then the molten master ingot was ejected onto a chilled copper roll surface with a rotating speed of 5 - 39 m/s and then fast quenched. Afterwards, the as-quenched ribbons have an approximate thickness of 30 - 40 µm and a width of 5mm [49]. The Eosin Y used throughout this experiment was obtained from Ji’an Haomai Fine Chemical Industry Co., Ltd. (China). The characteristics of EY are summarized in Table 1. The peroxymonosulfate and tert-butanol (TBA, ≥ 99%) were purchased from Sigma-Aldrich. Ethanol (absolute, EtOH) was purchased from Merck. All other chemicals and reagents, such as NaOH, H$_2$SO$_4$, HCl, HNO$_3$, humic acid (HA), NaCl, NaNO$_2$ were at analytical grades, and used without further purification. All the required sample solutions were diluted with Milli-Q water (18.2 MΩ·cm) throughout the experiments.
Table 1
Characteristics and structure of Eosin Y dye.

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>C<sub>20</sub>H<sub>6</sub>Br<sub>4</sub>Na<sub>2</sub>O<sub>5</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight (g/mol)</td>
<td>691.85</td>
</tr>
<tr>
<td>λ<sub>max</sub> (nm)</td>
<td>516</td>
</tr>
<tr>
<td>Structure</td>
<td></td>
</tr>
</tbody>
</table>

2.2. Characterizations

The structural characteristic and phase contents of the fabricated glassy ribbons were characterized by X-ray diffraction (XRD, PANalytical Empyrean, Netherlands) with Co-Kα radiation (λ = 0.179 nm). The surface morphologies of glassy ribbons before and after reactions were characterized by using a Scanning Electron Microscope (SEM) outfitted with EDS (JEOL 6000, Japan). Electrochemical tests of the Fe_{73.5}Si_{13.5}B₉Cu₁Nb₃ glassy ribbons were conducted in a beaker containing sulfuric acid (H₂SO₄) solution at pH is equal to 3.4 (same as the experimental condition after adding PMS into dye solution). All electrochemical measurements were recorded by electrochemical workstation (PARSTAT 2273) in a conventional three-electrode cell, where the Fe_{73.5}Si_{13.5}B₉Cu₁Nb₃ ribbon was used as working electrode with an exposed surface area of approximately 1.0 cm². A platinum net applied as the counter electrode, and a saturated calomel electrode (SCE) served as the reference electrode, which connected to a Luggin capillary bridge. All the potential recorded and mentioned in this electrochemical measurement section were versus SCE. The potentiodynamic polarization measurement was performed at a scan rate of 0.1667 mV/s. The cathodic polarization curve starting from -0.5 V and scanned to the potential of +2 V at anodic polarization region. The electrochemical impedance spectroscopy (EIS) was probed at
open circuit potential (OCP) potentiostatically, and performed with an AC amplitude of 5 mV over the frequency range from 10^{-2} to 10^4 Hz. The OCP of Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ ribbon was acquired by raising immersion time from 0 to 16 hours. The ZSimpWin software was used to fit the electrochemical impedance data, which were interpreted by a specific electrical equivalent circuit. For the measurements of total organic carbon (TOC), an excessive NaNO$_2$ solution (0.1 M) was used to quench the reaction, following by a TOC analyzer (TOC-VCSH, Shimadzu, Japan) for the mineralization analysis. For Fe and Nb leaching experiments, 2% v/v nitric acid (HNO$_3$) was used to dilute the samples and then filtered by the 0.22 μm filter before the trace element analysis (iCAP Q ICP-MS, Thermo Fisher Scientific, USA). The pH of dye solution was measured by a pH meter (Oakton PC 2700 Benchtop Meter, Oakton Instruments, USA).

2.3. Methods

Eosin Y dye was used to study the catalytic activity of the Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ glassy ribbons. All tests were implemented in a 250 ml beaker containing with 100 ml specific concentration of dye solution. A Vortex-Genie 2 mixer (Scientific Industries, USA) and a solar light (Perfectlight, China) were utilized for stirring and irradiating dye solutions, respectively. The catalytic activity was measured at the predetermined time intervals using Perkin Elmer Lambda 35 UV–vis spectrometer (Shelton, CT, USA), which can determine the variation of dye concentration as a function of absorbance peak value. For constant temperature experiments, the beaker was put into a thermostatic water bath with the predetermined temperature at 25 °C, 30 °C, 40 °C, 50 °C, and 60 °C. The initial pH of dye was measured as 5.8. The H$_2$SO$_4$ solution was prepared by using analytical grades of NaOH (0.1 M) and H$_2$SO$_4$ (0.1 M) with Milli-Q water to simulate the favorable pH of dye degradation. The experimental parameters were briefed in Table 2.
Table 2
Summarized experimental parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe${73.5}$Si${13.5}$B$_9$Cu$_1$Nb$_3$ dosage (g/L)</td>
<td>0-2.0</td>
</tr>
<tr>
<td>Initial dye concentration (ppm)</td>
<td>20-120</td>
</tr>
<tr>
<td>Irradiation intensity (μW/cm2)</td>
<td>0-14.8</td>
</tr>
<tr>
<td>PMS concentration (mM)</td>
<td>0-2.0</td>
</tr>
<tr>
<td>pH</td>
<td>3.4-11.5</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>25-60</td>
</tr>
<tr>
<td>Reaction time (min)</td>
<td>up to 50</td>
</tr>
</tbody>
</table>

The characteristic absorption peak of Eosin Y was measured to be $\lambda_{\text{max}} = 516$ nm. Eq. (1) computed the color removal rate of EY solution:

$$X(\%) = 100\% \times \frac{(C_0 - C)}{C_0}$$

where C_0 is the initial concentration at $t = 0$ and C is the concentration of EY dye at time t.

The equation of the pseudo-first-order kinetic reaction model was estimated using Eq. (2):

$$\ln \left(\frac{C_0}{C} \right) = k_{\text{obs}} t$$

where k_{obs} (min$^{-1}$) is the kinetic rate constant, C_0 is the initial concentration at $t = 0$ and C is the concentration of EY dye at time t.

3. Results and discussion

3.1. Catalyst characterization

Fig. 1. (a) XRD pattern and (b) SEM micrograph (inset shows a corresponding zoom-in SEM micrograph) for the as-spun Fe$_{73.5}$Si$_{13.5}$B$_{9}$Cu$_{1}$Nb$_{3}$ glassy ribbons.

Fig. 1(a) shows the XRD pattern of the as-spun Fe$_{73.5}$Si$_{13.5}$B$_{9}$Cu$_{1}$Nb$_{3}$ glassy ribbons. It can be clearly seen that a broad diffuse diffraction peak presented in the 2θ domain of 40° - 60°, representing that the amorphous phase of the glassy ribbon is predominant [50, 51]. Fig. 1(b) displays the SEM image of the Fe$_{73.5}$Si$_{13.5}$B$_{9}$Cu$_{1}$Nb$_{3}$ glassy ribbons, indicating that the initial surface of the sample is smooth and defectless. Further demonstration can be seen from the inset of corresponding SEM image, which is also hard to find any apparent defect on the materials surface.
3.2. Electrocatalytic performance

MGs have been attracting extensive attention in wastewater treatment due to their excellent corrosion resistance behavior [52-54]. As shown in Fig. 2, the potentiodynamic polarization curve and EIS measurements are recorded after observing a relatively stable OCP of the Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3} glassy ribbon. Fig. 2(a) shows the potentiodynamic polarization curve that is characterized from cathodic and anodic polarization region. Notably, no standard Tafel region can be observed, but it can be clearly seen that the corrosion potential of the glassy ribbon is approximately at -0.35 V, which is much higher than the MgZn-based MGs (-1V) [12] and slightly greater than the Fe\textsubscript{78}Si\textsubscript{9}B\textsubscript{13} glassy ribbon (-0.6V) [55]. This result proves that the Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3} glassy ribbon has a strong corrosion resistance compared to the other two MGs. With respect to the anodic region of the polarization curve, unlike the 316L stainless steel [56] or other coated materials with superior corrosion resistance, the manufactured Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3} glassy ribbon does not present passivation behavior. Furthermore, the anodic polarization curve shows a continuous dissolution and the curve extends to the potential of 2V even without any pitting behavior. This phenomenon indicates an excellent corrosion resistance of Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3} MGs in withstanding the localized corrosion under the acid solution [52]. Fig. 2(a) inset presents the stabilization progress of open circuit potential (OCP) against the immersion time. The reduction of the OCP in the first two hours reveals a dissolution stage of the active metal immersed in acidic solution, and the main dissolution element is Fe. The lowest OCP has been observed at the immersion time of 2 hours, and the cationic metal ion at this stage has reached its critical point in the test solution. After passing this point, the OCP has a quickly positive move in the next 1 hour. This stage involves the swift development of passivation by fast electron transfer on the ribbon surface, which would lead to high chemical reactivity in dye degradation. After the immersion time of 3 hours, the OCP curve moves along a flat line.
and trends to stable while the time approaches to 16 hours. During this period, the electrons between the ribbon surface and the test solution have a relatively stable state, providing a protective film on the ribbon surface. The produced film would definitely improve the sustainability and reusability of the manufactured Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ catalysts in the wastewater treatment. The stable and protective passive film on the metal surface is mainly formed by chemical reactions of the Fe, Si, and Nb [57] atoms, where the atoms are progressively hydrated or oxidized to γ-FeO(OH) [58], SiO$_2$ [33], and Nb$_2$O$_5$ [16], respectively. As shown in Figs. 2(b) and (c), the electrochemical impedance spectroscopy (EIS) measurements demonstrate the analysis in the shape of Nyquist and Bode plots for the Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ glassy ribbons. The EIS Nyquist plot is relevant to the electron transfer resistance. The radius of the semi-circular arc in the Nyquist curve indicates the interface layer resistance existing on the electrode surface and a smaller semi-circular arc radius means a lower electron transfer resistance [59]. From the Nyquist plot (Fig. 2b), two capacitive arcs with small radius are observed. Comparing with semi-circular arc radiiuses of different partially crystallized Fe$_{78}$Si$_9$B$_{13}$ MGs [55], the relatively small radius of Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs reveals a low polarization resistance of the passive film, presenting a considerably strong electron transfer ability on the metal surface [55]. Considering the Nyquist plot (Fig. 2b) and the Bode plot (Fig. 2c), two times constant equivalent circuit module (Fig. 2d) is used to fit the EIS results. The circuit model constitutes with a parallel combination of a constant phase element (CPE$_2$) and a charge transfer resistance (R$_c$), in cascade with the passive film resistance (R$_f$), and then parallel with another constant phase element (CPE$_1$) and next in series connected with solution resistance (R$_s$). The using of CPE$_1$ and CPE$_2$ are because the material surface is never ideal flat, it is normally considered as a rough or defective layer on the surface of the electrode [60]. As can be seen from Figs. 2(b) and (c), the obtained results from potentiodynamic measurements and EIS data are in very good agreement.
Fig. 2. (a) The potentiodynamic polarization curve (inset shows open circuit potential (OCP) as function of time), the EIS results in the form of (b) nyquist plots, (c) bode plots and (d) electrical equivalent circuit used for impedance spectra analysis for Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3} glassy ribbons in aerated H\textsubscript{2}SO\textsubscript{4} solution of pH 3.4 at room temperature.

3.3. Catalytic evaluation

3.3.1. Dye degradation and efficiency

To confirm the effects of various experimental parameters on EY degradation efficiency, the comparable results of color removals using as-spun Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3} MGs and the corresponding reaction rates \((k)\) are shown in Fig. 3 and Table 3, respectively. Fig. 3(a) shows the effect of EY concentration in the range of 20 - 120 ppm. It can be seen that the color removal rate slightly decreases when EY initial concentration increases. At 20 ppm of EY dye solution, the color removal rate reaches 95% within 10 min and the reaction rate \((k)\) can be achieved at \(k = 0.876\) min\(^{-1}\). By comparison, the color removal rate only rises to 72% with \(k = 0.170\) min\(^{-1}\) for the initial concentration of 120 ppm within the same time. The possible reasons are that: 1) increasing the concentration of EY dye, more organic dye
molecules would adsorb on the ribbon surface and thus blocking the reaction of Fe and PMS; 2) the produced reactive species from ribbon surface are not sufficient to consume extra organic molecules within the same time intervals; 3) the increased number of molecules could increase the optical density of solution, leading to less UV-vis light energy being transferred for producing SO_4^{2-} from PMS [25, 41].

Fig. 3. Comparison of color removals for Eosin Y dye by using: as-spun $\text{Fe}_{73.5}\text{Si}_{13.5}\text{B}_9\text{Cu}_1\text{Nb}_3$ MGs as function of (a) dye concentration, (b) catalyst dosage, (c) PMS concentration, (d) irradiation intensity and (e) pH; (f) UV-vis spectra changes of Eosin Y dye in the presence of the $\text{Fe}_{73.5}\text{Si}_{13.5}\text{B}_9\text{Cu}_1\text{Nb}_3$ metallic glass/UV-vis/PMS at different time intervals (if not mentioned, the conditions are catalyst dosage: 0.5 g/L, irradiation intensity: 7.7 μW/cm2, dye concentration: 100 ppm, and PMS concentration: 1.0 mM)
Table 3

Kinetic reaction rates (k) over various experimental parameters

<table>
<thead>
<tr>
<th>Dye concentration (ppm)</th>
<th>PMS concentration (mM)</th>
<th>Dosage (g/L)</th>
<th>Irradiation intensity (µW/cm²)</th>
<th>pH</th>
<th>Temperature (°C)</th>
<th>k (min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.876</td>
</tr>
<tr>
<td>40</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.477</td>
</tr>
<tr>
<td>50</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.303</td>
</tr>
<tr>
<td>80</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.230</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.171</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>0</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.073</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>0.3</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.166</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.171</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>1.0</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.235</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>2.0</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.260</td>
</tr>
<tr>
<td>100</td>
<td>0.0</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.001</td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.098</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.171</td>
</tr>
<tr>
<td>100</td>
<td>2.0</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.189</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td>3.4</td>
<td>25</td>
<td>0.033</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
<td>0.171</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>11.1</td>
<td>3.4</td>
<td>25</td>
<td>0.212</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>14.8</td>
<td>3.4</td>
<td>25</td>
<td>0.205</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>3.4</td>
<td>25</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>4.0</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>6.8</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>8.9</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>7.7</td>
<td>11.5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>0</td>
<td>3.4</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>0</td>
<td>3.4</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>0</td>
<td>3.4</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>0</td>
<td>3.4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0</td>
<td>0.5</td>
<td>0</td>
<td>3.4</td>
<td>60</td>
</tr>
</tbody>
</table>

Fig. 3(b) shows the effect of catalyst dosage on dye degradation. It can be seen that only 58% of EY dye degradation with $k = 0.073 \text{ min}^{-1}$ is reached within 10 min by only using PMS under UV-vis irradiation and 78% of color removal achieved at 40 min. When the dosage of Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$MGs increases from 0 g/L to 0.5 g/L, the EY dye degradation rate significantly rises from 58% to 76% within 10 min and the reaction rate k increases from $k = 0.073 \text{ min}^{-1}$ to $k = 0.171 \text{ min}^{-1}$, respectively, owing to a large amount of SO$_4^{•−}$ from PMS (Eqs. 3 and 4) are activated from the Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ glassy ribbon. Further increasing the dosage from 0.5 g/L to 2.0 g/L could only slightly enhance the decolorization rate. The results indicate that excessive ribbon dosages would not act as the scavenger of SO$_4^{•−}$ (Eq. 5) because Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ metallic glass has superior surface stability, resulting in the relatively lower leaching of Fe ions (Fe$^{2+}$ or Fe$^{3+}$) [16, 41]. The reason behinds the better performance is that both of the Fe0 and Fe$^{2+}$ (Eqs. 3 and 4) can react with PMS to generate SO$_4^{•−}$. Considering the effective utilization of the catalyst, 0.5 g/L is treated as the referenced dosage for the following experiments. Variation of PMS concentration is another significant
parameter in the dye degradation. Fig. 3(c) shows the influences of PMS concentration on EY dye degradation. Only less than 8% of EY decolorization with $k = 0.001 \text{ min}^{-1}$ could be reached by solely adding Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs within 50 min, which is possibly caused by dye molecules adsorption on the surface of Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs. When increasing the PMS concentration to 0.5 mM, the dye degradation efficiency sharply increases to 73% within 15 min with $k = 0.098 \text{ min}^{-1}$. Such performance suggests that a certain quantity of SO$_4$$^•^-$ (Eqs. 3 and 4) are swiftly activated by the Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs from a very low PMS concentration. At higher concentration, such as 1.0 mM, the excessive HSO$_5^-$ from PMS may react with the Fe$^{3+}$ to re-produce Fe$^{2+}$ (Eq. 6), which could further enhance the production of SO$_4$$^•^-$. However, further increasing PMS concentration from 1.0 mM to 2.0 mM only shows a very slight rise of decolorization rate from 81% to 83% within 15 min. It is attributed to the scavenging effect of excessive HSO$_5^-$ and the generation of less reactive SO$_5$$^•^-$ ($E^° = 1.1 \text{ V}$) (Eq. 7) in the reactive system [61]. Fig. 3(d) shows the effect of irradiation intensity from 0 to 14.8 µW/cm2 on EY dye color removal. Interestingly, the EY dye degradation without light irradiation can only achieve 56% at 40 min with $k = 0.033 \text{ min}^{-1}$, indicating that sole Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs could activate PMS. While increasing the light intensity to 7.7 µW/cm2, the color removal sharply improving to 85% at 20 min with $k = 0.171 \text{ min}^{-1}$. Further increasing irradiation intensity from 7.7 to 11.1 µW/cm2 could improve the color removal from 85% to 92% within 20 min. The effect of the dye degradation is negligible when further increasing the intensity to 14.8 µW/cm2. The proposed reason is that the photochemical conversion from Fe0 to Fe$^{2+}$ and Fe$^{3+}$ to Fe$^{2+}$ could be enhanced by the light energy, providing more active Fe$^{2+}$ source to react with PMS. Also the simulated UV-vis irradiation could assist the activation of PMS to produce extra •OH and SO$_4$$^•^-$(Eqs. 8 and 9). Consequently, the generated •OH and SO$_4$$^•^-$ could oxidize organic molecules into non-toxic by-products (Eq. 10). In addition, the effect of pH plays a significant role in the Fenton-
like process. Fig. 3(e) indicates the effect of solution pH after adding PMS on the EY degradation. Initially, the dye solution pHs are 5.8, 9.0, 10.0, 11.0 and 12.0. After adding 1.0 mM PMS, the corresponding pHs are 3.4, 4.0, 6.8, 8.9 and 11.5, respectively, which have been shown in Fig. 3(e). It should be known that the fastest decolorization occurs at the pH of 3.4, which is favorable for the Fenton-like reaction [16]. The acidic nature of PMS leads to the similar reaction rate $k = 0.171 \text{ min}^{-1}$ and 0.180 min^{-1} for pH of 3.4 and 4.0, respectively. On the other hand, both pHs of 6.8 and 8.9 experience a two-stage reaction: a very slow decolorization process and a sudden increase. The possible explanation is that under the neutral and weak alkaline conditions, PMS is mainly activated by irradiation to produce $\cdot\text{OH}$ and $\text{SO}_4^{\cdot-}$ (Eq. 9) with a slow rate. Part of $\text{SO}_4^{\cdot-}$ subsequently react with PMS to generate H^+ (Eq. 7). Then the pH become lower (results not shown) until the condition is satisfied for ribbons to rapidly activate PMS. In the alkaline condition of 11.5, the ribbons surface is highly passivated and degradation efficiency also decreases.

$$Fe^0 + 2\text{HSO}_5^- \rightarrow Fe^{2+} + 2\text{OH}^- + 2\text{SO}_4^{\cdot-}$$ (3)

$$Fe^{2+} + \text{HSO}_5^- \rightarrow Fe^{3+} + \text{OH}^- + \text{SO}_4^{\cdot-}$$ (4)

$$Fe^{2+} + \text{SO}_4^{\cdot-} \rightarrow Fe^{3+} + \text{SO}_4^{2-}$$ (5)

$$Fe^{3+} + \text{HSO}_5^- \rightarrow Fe^{2+} + \text{H}^+ + \text{SO}_5^{\cdot-}$$ (6)

$$\text{HSO}_5^- + \text{SO}_4^{\cdot-} \rightarrow \text{SO}_4^{2-} + \text{H}^+ + \text{SO}_5^{\cdot-}$$ (7)

$$Fe(\text{OH})^{2+} + h\nu \rightarrow \cdot\text{OH} + Fe^{2+}$$ (8)

$$\text{HSO}_5^- + h\nu \rightarrow \cdot\text{OH} + \text{SO}_4^{\cdot-}$$ (9)

$$\cdot\text{OH} + \text{SO}_4^{\cdot-} + \text{organic} \rightarrow \text{byproducts} + \text{CO}_2 + \text{H}_2\text{O} + \text{SO}_4^{2-}$$ (10)

Fig. 3(f) demonstrates the UV-vis absorbance spectra of Eosin Y dye degradation by using $\text{Fe}_{73.5}\text{Si}_{13.5}\text{B}_9\text{Cu}_1\text{Nb}_3$ MGs/PMS system. The absorbance intensity decreases as a function of reaction time increases. Three absorption peaks of Eosin Y dye are observed at wavelengths of 259 nm, 485 nm, and 516 nm. The main absorption peak at 516 nm is
ascribed to the initial red color of EY’s chromophore. The shoulder peak at 485 nm shows the dimeric substance of EY and the less intense peak at 259 nm corresponds to the $\pi \rightarrow \pi^*$ transitions in the aromatic rings [47]. As can be observed from UV bands during the dye degradation process, the UV absorption bands at $\lambda = 516$ nm and 485 nm in the visible region gradually decrease and become invisible after 20 min, indicating the chromophoric part of the molecules has been destructed. Furthermore, the absorption peak at 259 nm also rapidly decreases with increasing the light irradiation time, denoting that aromatic linkage bonds in EY dye molecules have been gradually mineralized. It suggests that the Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs can effectively activate PMS to generate reactive species, which can efficiently decompose the aromatic rings in dye molecules [62].

In general, the intermediate compounds are very important to be analyzed during the dye degradation process in chemistry. However, the primary objective at the current stage in this work is to investigate the dye degradation efficiency and the mineralization by Fe-based metallic glass. As such, TOC experiments were conducted investigated to prove that the toxic organic dye pollutants have been degraded and mineralized. Fig. 4 verifies the dye degradation and mineralization process. It is observed that TOC removal rate increases with the reaction time and up to 60 % can be reached within 30 min, indicating that the reactive species generated by PMS activation can effectively convert dye molecules into CO$_2$, H$_2$O and other harmlessly inorganic substances. Similar TOC removal rate can be achieved with a wide pH range, which is reported by Sarath et al. [63]. However, more than 50% of mineralization rate can be seen within 20 min in this work, indicating a higher efficiency.

During the Eosin Y mineralization, the intermediates including 2-(2-formylphenyl)-2-carboxylate, 2-(2-(3,6-dihydro-2H-pyran-4-yl)phenyl)2-carboxylate and 3,5-dibromocyclohex-5-ene-1,2,4-trione are proposed to be generated in the photo-enhanced oxidative degradation [62, 64], after which radical groups on the benzene ring are
substituted and a series of ring opening reactions attacked by •OH and SO₄•⁻ occur. On the other hand, Fig. 4 shows a low iron (mainly in the form of Fe²⁺ and Fe³⁺) leaching concentration during PMS activation, demonstrating the advanced surface stability and effective activation efficiency of Fe₇₃.₅Si₁₃.₅B₉Cu₁Nb₃ MGs. Notably, inset of Fig. 4 presents extremely low Nb leaching concentrations which are lower than 10.0 µg/L for all those reaction time, indicating that the Nb on the ribbons surface are very stable and hard to be corroded.

![Fig. 4. TOC removal rate of Eosin Y dye (left), Fe leaching concentration (right) and Nb leaching concentration (inset) within 30 min (the conditions are catalyst dosage: 0.5 g/L, irradiation intensity: 7.7 µW/cm², dye concentration: 100 ppm, and PMS concentration: 1.0 mM).](image)

3.3.2. Effect of reaction temperatures

Regarding chemical reactions, the reaction temperature is always considered as an important experimental condition. Fig. 5(a) shows the evaluation of the degradation efficiency in the temperature ranging from 25 to 60 °C. Notably, the degradation rate rises along with the increase of temperature. A highest efficiency at the temperature of 60 °C is observed compared to other temperatures. It agrees well with other literatures [65, 66]. Fig. 5(b) illustrates the linear relationship between ln (C₀/C) and reaction time. All the regression coefficients (R²) are higher than 0.98 for different temperatures, indicating that the kinetic reaction of EY follows well to pseudo first-order kinetic model. The values of k obtained
from the slope of the straight line are 0.023 min\(^{-1}\), 0.032 min\(^{-1}\), 0.045 min\(^{-1}\), and 0.051 min\(^{-1}\) at 30 °C, 40 °C, 50 °C, and 60 °C, respectively. The results are summarized in Table 3. Apparently, increasing the reaction temperature will lead to a higher reaction rate.

Fig. 5. (a) Effect of temperature on color removal rate in percentage vs. time; (b) variation of ln(C\(_o\)/C) vs. time at different temperature intervals (c) Arrhenius plot of ln k vs. 1/T for the decolorization of EY to determine activation energy; (d) comparison of experimental effect of PMS, irradiation intensity, and temperature for decolorization of EY dye; (if not mentioned, catalyst dosage: 0.5 g/L, irradiation intensity: 0 µW/cm\(^2\), dye concentration: 100 ppm and PMS concentration: 1.0 mM).

Fig. 5(c) depicts the plot of ln k verse 1/T, where k is the acquired kinetic constants at different temperature intervals (in Kelvin). The activation energy (\(E_a\)) on the degradation of EY by Fe\(_{73.5}\)Si\(_{13.5}\)B\(_9\)Cu\(_1\)Nb\(_3\) can be obtained by applying Arrhenius equation (Eq. 11) [67].

\[
\ln k = -\frac{E_a}{R_g}T + \ln A
\]

(11)

Where A is the pre-exponential factor, \(R_g\) is the ideal gas constant (8.314 J/K·mol) and T is the reaction absolute temperature (K). Based on Eq. (11), the activation energy can be calculated as \(E_a = 22.2\) kJ/mol for EY dye degradation by Fe\(_{73.5}\)Si\(_{13.5}\)B\(_9\)Cu\(_1\)Nb\(_3\) MGs over the
temperature range from 30 to 60 °C. The result shows that the removal of EY dye is a chemically controlled processes [68]. The activation energy for ordinary thermal reactions using crystalline Fe-based catalysts is between 60 and 250 kJ/mol [69]. Therefore, a lower energy is required for the oxidation reaction process using catalysts with an amorphous structure. As mentioned above in Fig. 5(a), the decolorization is sensitive to the temperature. Thus, it is important to investigate the effects of temperature on this chemical oxidation reaction mechanism. In Fig. 5(d), only 5% and 23% color removal rates are achieved at the temperature of 50 °C after 50 min for the only addition of Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ and PMS, respectively. By adding Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ and PMS without UV-vis irradiation, the raising of temperature from 25 to 50 °C results in the decolorization efficiency increasing from 42% to 66% within 20 min. It reveals that the degradation efficiency can be effectively enhanced at higher reaction temperature. Although both the temperature and UV-vis irradiation are important factors in this oxidation process, it is still not clear that which one has a relative higher contribution during the reactions. From Fig. 5(d), the color removal rate achieves 91% after 50 min at 25°C under the UV-vis irradiation intensity of 7.7 µW/cm2, while the decolorization efficiency without UV-vis irradiation only reaches 71% after 50 min at 50 °C. It reveals the light irradiation is more favorable than temperature in this degradation process.

3.3.3. Effect of salinity and natural inorganic ions
Fig. 6. The effect of (a) humic acid concentration on EY dye color removal, (b) the corresponding reaction kinetics \(k \); (c) chloride ions concentration on EY dye color removal, and (d) the corresponding reaction kinetics \(k \) (catalyst dosage: 0.5 g/L, UV-Vis irradiation intensity: 7.7 µW/cm², dye concentration: 100 ppm and PMS concentration: 1.0 mM)

The natural inorganic ions are commonly existing in wastewater that would have impacts on the success of industrial effluents treatment. Humic acids (HA) are produced by biodegradation of dead organic matters and largely exist in aquatic environments. It has been reported that HA have the capability to activate PMS or PS to generate \(\text{SO}_4^{\cdot-} \) and \(\bullet\text{OH} \) [70, 71]. Fig. 6(a) shows the influence of HA initial concentrations on EY dye degradation. Specifically, without the addition of PMS, decolorization rate of EY is only reached about 10% in the presence of HA and Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3}. Increasing the HA concentration from 0 ppm to 40 ppm could slightly decrease the EY dye degradation efficiency. The experimental results show that the presence of HA in the Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3} MGs/PMS system inhibits for EY dye degradation. The likely reasons are: 1) the adsorption of HA molecules to the active sites of the Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3} surface are stronger than the dye molecules, resulting
in reducing oxidation efficiency [72]; 2) the inclusion of Cu in the Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ ribbon can increase the formation of inner-sphere complexes with HA, further reducing the effective surface contact area [73]. Fig. 6(b) depicts the pseudo first-order kinetic rate constants k_{obs} with the addition of HA. It can be clearly seen that the reaction rates (k) moderately drop while increase HA initial concentration. The addition of 40 ppm HA in EY dye solution shows the lowest reaction rate of 0.071 min$^{-1}$. Reducing the HA concentration to 20 ppm, the kinetic rate increases to 0.120 min$^{-1}$, whereas without adding HA shows the highest kinetic rate of 0.183 min$^{-1}$. In terms of high concentration of salinity, chloride ion (Cl$^-$) is one of the major inorganic particles in the natural wastewater. The chloride ion (Cl$^-$) could scavenge both SO$_4$•$^-$ (Eq. 12) and •OH (Eq. 13). The redox potential of the generated Cl$_2$•$^-$ (Eqs. 14 and 15) is 2.1 V, which is much lower than the redox potentials of SO$_4$•$^-$ (2.5 - 3.1 V) and •OH (2.7 - 2.8 V). Meanwhile, the chloride ion (Cl$^-$) could also break PMS down to inorganics (Eqs. 16 and 17), resulting in the reduction of the dye degradation efficiency. Fig. 6(c) demonstrates that increasing the Cl$^-$ concentration from 0 mM to 20 mM has no obvious effect on EY degradation efficiency. The reason is that excessive production of Cl$_2$•$^-$ could quickly compensate the depletion of SO$_4$•$^-$ and •OH [74]. Fig. 6(d) shows the pseudo first-order kinetic rate constants k with the addition of chloride ions. The results indicate a slight decrease. Therefore, the Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs/PMS system is a very promising treatment method even with a certain amount of Cl$^-$ existing in EY dye water.

\[
SO_4\cdot^- + Cl^- \rightarrow SO_4^{2^-} + Cl\cdot
\]
\[\cdot OH + Cl^- \rightarrow ClOH \cdot^- \]
\[Cl\cdot + Cl^- \rightarrow Cl_2 \cdot^- \]
\[ClOH \cdot^- + Cl^- \rightarrow Cl_2 \cdot^- + OH^- \]
\[HSO_5^- + Cl^- \rightarrow SO_4^{2^-} + HOCl \]
\[HSO_5^- + 2Cl^- + H^+ \rightarrow SO_4^{2^-} + Cl_2 + H_2O \]
3.4. Catalytic mechanism

![Graph showing effects of quenching agents on EY dye degradation]

Fig. 7. Effects of quenching agents of (a) TBA and (b) EtOH on EY dye degradation (irradiation intensity: 7.7 \(\mu \text{W/cm}^2 \), dye concentration: 100 ppm, catalyst dosage: 0.5 g/L, PMS concentration: 1.0 mM)

In order to distinguish the dominant radical species for PMS activation, the tertiary butanol (TBA), and ethanol (EtOH) are chosen as chemical probes for monitoring the generation of •OH [75] and SOA•− [76], respectively. Fig. 7(a) shows the effect of the addition of TBA in EY dye degradation. When increasing the TBA concentration from 0 M to 1.0 M, the degradation rate sharply drops from 78% to 30% after 5 min. Further raising the TBA concentration to 2.0 M, the color removal rate decreases to 10% within 5 min. It reveals a significant scavenging effect of •OH by employing TBA. On the other hand, the degradation
rates of EY with three different TBA concentrations (0.5 M, 1.0 M, and 2.0 M) achieve at approximate 78% after 20 min, indicating the produced SO$_4$$^-$$^-$ contributes to the EY degradation. Fig. 7(b) depicts the scavenging influence of EtOH on EY dye degradation. It is observed that the degradation efficiency slightly drops from 76% to 68% within 10 min while increasing EtOH from 0 M to 1.0 M. The degradation rate is slightly reduced in the presence of EtOH, suggesting that the •OH play a dominant role at the first 10 min. Obviously, the color removal rate of EY with three EtOH concentrations (0.5 M, 1.0 M, and 2.0 M) reach at approximate 78% after 20 min, indicating the radical species (•OH) is responsible for the EY dye color removal.

By comparison, such performance denotes that both •OH and SO$_4$$^-$$^-$ are dominant radical species for decolorization of EY dye. It is noted that the EY dye color removal efficiency sharply decreases to 20% within 10 min in the presence of 2.0 M TBA. This result demonstrates that •OH is the dominant radical in the first 10 min and SO$_4$$^-$$^-$ has more impact on the EY dye degradation after 10 min. The mechanism of PMS activation by employing Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MG is proposed in Fig. 8. The proposed mechanism is that the disordered atomic structure of Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ glassy ribbon has weak atomic bonding, where the electrons around the randomly disordered atoms can be easily activated on the surface of metal. The amorphous Fe0, acting both electron donator and acceptor, could significantly enhance the electron transfer ability, and the inclusion of Si and B elements would further strengthen the glass-forming ability (GFA) [16] and improve the surface stability [16, 41, 58]. Therefore, the effective electron transfer could enhance the activation efficiency of reactive species [77] from PMS by the Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ glassy ribbons. In addition, the thermostat water bath and UV-vis light are employed in this work could also improve activation efficiency of PMS, thereby increasing the production of •OH and SO$_4$$^-$$^-$ to degrade organic molecules.
From previous literatures, the Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MG has been demonstrated with high potential to activate H$_2$O$_2$ [16] and persulfate [41] to rapidly generate •OH and SO$_4$$^{2-}$, respectively. The Fe$_{73.5}Si_{13.5}B_9Cu_1Nb_3$ MGs show at least 5 times of reusability for the persulfate activation in malachite green dye degradation [41]. In this work, the Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MG also shows a high reusability and surface stability in the PMS activation.

3.5. Reusability and surface aging
Fig. 9. Color removal rate of Eosin Y dye with reused Fe_{73.5}Si_{13.5}B_{9}Cu_{1}Nb_{3} MGs, inset shows reaction kinetics (k) at the corresponding reused time. (Experimental conditions: catalyst dosage: 1.0 g/L, irradiation intensity: 7.7 µW/cm², dye concentration: 100 ppm, and PMS concentration: 1.0 mM)

According to Fig. 9, the Fe_{73.5}Si_{13.5}B_{9}Cu_{1}Nb_{3} MGs demonstrate an excellent reusability in the PMS activation for degrading Eosin Y dye even resused 10 times. The dye degradation efficiency slightly decreases after reused for 4 times but all the reactions can achieve 90% of color removal rate in 20 min. The reaction rates for these 4 reused times are 0.227 min⁻¹, 0.210 min⁻¹, 0.162 min⁻¹ and 0.134 min⁻¹, respectively. Then the decrease of reaction rate almost terminates after reused 7 times and 10 times, which have a same reaction rate of 0.120 min⁻¹. In order to assess the surface stability of MGs, Fig. 10(a) shows the surface aging of identical MGs after reused 10 times. Although the surface of ribbon has a slight decay with several corrosion areas, most of surface still present relative smooth as as-spun ribbons in the Fig. 1(b). In addition, it can be seen from Fig. 10(b) that there are some precipitations around the corrosion area, which can be confirmed as Si/Nb oxides. Those precipitation are very similar as reported previously [41], as generated near the rougher areas. According to previous discussion of extreme low Nb leaching concentration in Fig. 4, it can be known that the inclusion of Nb can promote the formation of Nb oxides on the surface, which are very hard for shedding, and enhance the surface stability avoiding fast decay of surface as demonstration in Fig. 10 [16, 41]. Therefore, the activation efficiency of Fe_{73.5}Si_{13.5}B_{9}Cu_{1}Nb_{3} MGs toward PMS in the EY degradation slowly decrease with increasing reused time while the surface decay is very slow.
4. Conclusion

This work reports the PMS activation using Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs as catalysts in wastewater treatment. The result shows the low-cost glassy ribbons have excellent performance in catalytic degradation of EY effluents under heterogeneous photo Fenton-like process. The dye degradation processes are well fitted with the pseudo-first-order reaction kinetic model. Compared to the crystalline catalysts, a lower activation energy of $E_a = 22.2$ kJ/mol is evaluated with Arrhenius equation for Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs that are responsible for the high reactivity of dye treatment. Furthermore, the electrochemical behavior of Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ MGs in simulated dye solution gives the evidence of high
corrosion resistance ability and strong electron transfer ability. The disordered atomic packing structure gives weak atomic bonding in Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3} MGs, suggesting fast electron transfer ability during the dye treatment process. The fast generation of SO\textsubscript{4}•− and •OH from PMS by Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3} MGs are evidenced as the catalytic mechanism for dye degradation. This critical study provides a significant advance in the understanding of electron transfer ability of Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Cu\textsubscript{1}Nb\textsubscript{3} MGs in the treatment of organic dye effluents and more importantly, gives a great idea to synthesize novel catalysts in dye wastewater treatment.

Acknowledgement

The authors are grateful for the financial supports from the ECU Innovator Awards (Project No. 23641), Australian Research Council Discovery Project (DP130103592) and National Science Foundation of China (Grant No. 51771103).
References

Graphical abstract
Highlights

- Strong electron transfer ability of Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ metallic glasses has been studied.
- The peroxymonosulfate activation as a function of various parameters has been investigated.
- 100% of Eosin Y degradation has been achieved within 20 min under rational experiment control.
- The catalytic mechanism of photo-enhanced peroxymonosulfate activation by Fe$_{73.5}$Si$_{13.5}$B$_9$Cu$_1$Nb$_3$ metallic glasses has been discussed.