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Abstract
Background  Quality assurance (QA) and quality control (QC) are two quality management processes that are integral to the 
success of metabolomics including their application for the acquisition of high quality data in any high-throughput analyti-
cal chemistry laboratory. QA defines all the planned and systematic activities implemented before samples are collected, to 
provide confidence that a subsequent analytical process will fulfil predetermined requirements for quality. QC can be defined 
as the operational techniques and activities used to measure and report these quality requirements after data acquisition.
Aim of review  This tutorial review will guide the reader through the use of system suitability and QC samples, why these 
samples should be applied and how the quality of data can be reported.
Key scientific concepts of review  System suitability samples are applied to assess the operation and lack of contamination 
of the analytical platform prior to sample analysis. Isotopically-labelled internal standards are applied to assess system 
stability for each sample analysed. Pooled QC samples are applied to condition the analytical platform, perform intra-study 
reproducibility measurements (QC) and to correct mathematically for systematic errors. Standard reference materials and 
long-term reference QC samples are applied for inter-study and inter-laboratory assessment of data.

Keywords  Quality assurance (QA) · Quality control (QC) · System suitability samples · Pooled QC samples · Standard 
reference materials (SRMs) · Long-term reference (LTR) QC samples

1  Introduction

Clinical metabolomics (otherwise known as metabonom-
ics or metabolic phenotyping) is a rapidly growing field of 
research, primarily focused on the investigation of human 
health (Dunn et al. 2015), disease (Xie et al. 2014) and 

ageing (Menni et al. 2013), with diverse clinical application 
in areas such as prognostic biomarkers (Rhee et al. 2016; 
Shah et al. 2012; O’Gorman and Brennan 2017), patho-
physiological mechanisms (Kirpich et al. 2016; Terunuma 
et al. 2014; Drenos et al. 2016), and stratified medicine 
(Kaddurah-Daouk and Weinshilboum 2015). Depending on 
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the research question, or specific application, there are three 
commonly used analytical metabolomics strategies (Dunn 
et al. 2011a):

•	 Untargeted assays where the objective is to reproducibly 
measure as many metabolites as is feasible [typically low 
thousands of metabolites when (multiple) MS platforms 
are applied], provide semi-quantitative data (chroma-
tographic peak areas are reported, not concentrations), 
and where the chemical identity of metabolites is not 
necessarily known before data are acquired (post hoc 
identification is performed applying full-scan and MS/
MS data acquired during the assays).

•	 Targeted assays where the focus is on a small number 
of biologically important metabolites whose chemical 
identity is known prior to data acquisition, and for which 
an absolute concentration of each metabolite is reported 
through the use of isotopically-labelled internal standards 
(calibration curves constructed with authentic chemical 
standards and isotopically-labelled internal standards for 
each targeted metabolite) or via the standard addition 
method.

•	 Semi-targeted assays which act as an intermediate 
between untargeted and targeted methodologies, where 
low hundreds of metabolites are targeted, whose chemi-
cal identity is known prior to data acquisition, and for 
which semi-quantification is applied to define approxi-
mate metabolite concentrations (typically applying one 
calibration curve and internal standard for multiple 
metabolites).

Quality assurance (QA) and quality control (QC) are two 
quality management processes that are integral to the suc-
cess of any research study, and in the context of metabo-
lomics, they are critical for the acquisition of high quality 
data in any high-throughput analytical chemistry laboratory. 
According to ISO9000 (ISO9000 2015), QA addresses the 
activities the laboratory undertakes to provide confidence 
that quality requirements will be fulfilled, whereas QC 
describes the individual measures which are used to actually 
fulfil the requirements. These definitions have been endorsed 
by CITAC (the Cooperation on International Traceability in 
Analytical Chemistry) and EuraChem (A Focus for Analyti-
cal Chemistry in Europe) (Barwick 2016).

QA can also be defined, from a more chronological per-
spective, as all the planned and systematic activities imple-
mented before samples are collected, to provide confidence 
that a subsequent analytical process will fulfil predetermined 
requirements for quality. Such activities will include: for-
mal design of experiment (DoE); certified and documented 
staff training; standard operating procedures for biobank-
ing, sample handling, and instrument operation; preventative 
instrument maintenance; and standardised computational 

workflows. Correspondingly, QC can be defined as the oper-
ational techniques and activities used to measure and report 
these quality requirements during and after data acquisition.

Laboratories running targeted and semi-targeted metab-
olomics assays may adopt established guidelines defining 
both the expected quality of data and the processes to meas-
ure and report this quality. The most commonly applied 
guidelines are those published by the Food and Drug 
Administration titled: “Guidance for Industry: Bioanalyti-
cal Method Validation” (FDA 2001). Whilst these guide-
lines were originally developed for targeted drug analysis, 
the general principles they encompass can be adapted, with 
care, to multi-analyte targeted (and semi-targeted assays). 
More recently, further guidance has been developed for the 
measurement of biomarkers (usually proteins) with slightly 
different acceptance criteria (Lowes and Ackermann 2016).

Whilst these guidelines provide a good practical founda-
tion for metabolomics system suitability and QA/QC pro-
cesses they were not designed with metabolomics in mind, 
and although readily adaptable to (semi-) targeted methods, 
they are not easily translated into a form usable for untar-
geted metabolomics. As such, currently there are no com-
munity agreed-upon guidelines for QA, and there is very 
little consistency in the system suitability and QC methods 
for assessing system performance and reporting data quality. 
A recent review article has comprehensively discussed QA 
processes in untargeted metabolomics (Dudzik et al. 2018).

In targeted and semi-targeted assays, the use of QC sam-
ples for assessing data quality is common practice (FDA 
2001). Similar approaches can be applied for untargeted 
assays. In 2006, the introduction of a pragmatic approach 
to the use of pooled QC samples for within-study reporting 
of data quality helped drive the QC processes forward in 
this area (Sangster et al. 2006). This initial work was fur-
ther developed with recommendations as to how the data 
from such QCs could be analysed, (Gika et al. 2007) and 
numerous papers and reviews have emerged from this early 
introduction (for example see, Dunn et al. 2011b, 2012; 
Godzien et al. 2015). The importance of QA and QC in the 
metabolomics community is further illustrated through the 
establishment of the Data Quality task group of the Inter-
national Metabolomics Society (Bearden et al. 2014; Dunn 
et al. 2017), and the convening of a NCI-funded Think Tank 
on Quality Assurance and Quality Control in Untargeted 
Metabolomics Studies in 2017. A recent questionnaire on 
training in metabolomics also highlighted the unmet need 
for training in QA and QC processes (Weber et al. 2015).

In this paper, we will focus on the two areas of system 
suitability and quality control. That is, the types of samples 
applied to untargeted metabolomics workflows in order to 
demonstrate system suitability prior to data acquisition and 
QC samples applied to demonstrate analytical accuracy, 
precision, and repeatability after data processing and which 
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can be converted to metrics describing data quality. We will 
describe complementary types of system suitability and QC 
sample, each having its own specific utility, but when com-
bined can provide a robust and effective analytical system 
suitability and QC protocol. We will discuss the motivation 
for each sample type, followed by recommendations on how 
to prepare the samples, how the resulting data are assessed 
to report quality, and how these samples can be integrated in 
to single or multi-batch analytical experiments.

2 � Types of system suitability and quality 
control tasks

2.1 � System suitability testing

In order to yield specimens of high intrinsic value, the col-
lection of biological samples in a clinical study requires 
careful planning, recruitment, financial support, and invest-
ment of time. As such, it is imperative that actions are put in 
place to minimise the loss of potentially irreplaceable bio-
logical samples as they pass through the metabolomics ana-
lytical pipeline, from sample preparation to data processing. 
Therefore, prior to the analysis of any biological sample, the 
suitability of a given analytical platform for imminent sam-
ple analysis should be assessed, and thus its analytical per-
formance assured. This initial process can be accomplished 
by performing a set of activities involving system suitability 
samples and blank samples designed to test analytical per-
formance metrics that will qualify the instrument as “fit for 
purpose” before biological test samples are analysed. The 
simplest approach for system suitability checks are to first 
run a “blank” gradient with no sample as this will reveal 
problems due to impurities in the solvents or contamination 
of the separations system including the LC/GC/CE column.

If clean, the analysis of a solution containing a small 
number of authentic chemical standards (typically five to ten 
analytes) dissolved in a chromatographically suitable dilu-
ent, from which the acquired data can be quickly assessed 
for accuracy and precision in an automated computational 
approach (for example, Dunn et al. 2011b). Importantly, 
as these analytes are not in a biological matrix, they act to 
assess the instrument as a clean sample devoid of biological 
matrix effects. The most appropriate solution will contain 
analytes which are distributed as fully as possible across the 
m/z range and the retention time range so to assess the full 
analysis window. The results for this sample are assessed for 
the mass-to-charge (m/z) ratio and chromatographic charac-
teristics, including retention time, peak area, and peak shape 
(e.g. tailing factor) and compared to pre-defined acceptance 
criteria. In cases where the acceptance criteria are fulfilled 
then sample processing and data acquisition can be initiated. 
In cases where the acceptance criteria are not fulfilled then 

corrective maintenance of the analytical platform should be 
performed and the system suitability check solution reana-
lysed. An example of acceptance criteria to apply are: (i) 
m/z error of 5 ppm compared to theoretical mass, (ii) reten-
tion time error of < 2% compared to the defined retention 
time, (iii) peak area equal to a predefined acceptable peak 
area ± 10% and (iv) symmetrical peak shape with no evi-
dence of peak splitting. Acceptance criteria can be tailored 
to laboratory specific requirements for each analytical assay 
and no community-agreed acceptance criteria for untargeted 
metabolomics are currently reported. As a secondary check, 
a system suitability sample can be analysed at the end of 
each batch to act as a rapid indicator of intermediate system 
level quality failure, before proceeding to time-consuming 
and in-depth data analysis. Figure 1 shows a base peak chro-
matogram for a seven-component system suitability sample 
analysed using a HILIC UHPLC-MS platform.

2.2 � System suitability blank and process blank 
samples

Untargeted metabolomics, by definition, attempts to be unbi-
ased; although we note the metabolite extraction method and 
chosen analytical platform used will influence the types of 
small molecules enriched and detected based on their phys-
icochemical properties. Therefore, the associated analytical 
methodologies aim to maximise the number, and physico-
chemical diversity, of metabolites detected in a biological 
sample. An undesirable, but unavoidable, by-product of this 
comprehensive “catch all” approach is that the resulting data 
may unintentionally include signals from chemicals pre-
sent in mobile phases, together with contaminants derived 
from sample collection, sample handling, and sample pro-
cessing consumables.

To ensure that the data matrix used for statistical analy-
sis and biological interpretation accurately reflects the bio-
logical system being studied, signals derived from these 
sources need to be identified and then removed, constrained, 
or labelled. This is particularly the case for the analysis of 
volatile metabolites (e.g. from breath) as plastics used dur-
ing collection and column bleed from siloxanes is hard to 
negate. To achieve this a “blank” sample preparation process 
can be performed applying the same solvents, chemicals, 
consumables, and standard operating procedure, as for the 
test samples, but in the absence of any actual biological sam-
ple. These “blank” samples are commonly known as process 
blanks, or extraction blanks. This is a third type of system 
suitability sample when analysed at the start of an analytical 
batch to assess the suitability of the system. Sample pro-
cessing can involve dilution (e.g. urine), biochemical pre-
cipitation (e.g. applying organic solvents to precipitate pro-
teins, RNA and DNA in plasma) and extraction (e.g. tissue 
homogenisation and metabolite extraction in to an extraction 
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solution). Any detected signals in these blank processed 
samples can be confidently identified as contaminants and 
dealt with appropriately as described below.

Another undesirable artefact, known as “carryover”, 
needs to be tested for after each analytical run. Here, signals 
from one biological test sample are also detected in (carried 
over to) the next biological test sample. For example, this is 
usually the result of inadequate washing of the LC injection 
system between sample injections. This source of contami-
nation can be investigated by injecting a blank sample after 
a series of test samples, and then look for the appearance of 
sample-related signals in that blank sample. Unlike above 
where a blank sample is analysed at the start of the run to 
assess system suitability, this blank sample is a QC sam-
ple to assess influence of blank signal on data quality. Any 
sample-based signal in the blank extraction samples can be 
confidently identified as carryover contaminant and dealt 
with appropriately.

After deconvolution of all raw spectra into a data matrix, 
peaks observed in the blank samples satisfying a specific 
exclusion criterion may require the deletion of the associated 
peak from the data matrix. Theoretical exclusion criteria are 
listed below but no defined criteria have been reported or 
agreed as a standard to apply in the metabolomics commu-
nity and the authors only recommend that the criteria used 
are reported. These theoretical exclusion criteria could be 
(a) the signal in the blank sample is great than a predefined 
threshold (e.g. above 10× the expected background noise 

signal), (b) the signal in the blank sample is greater than a 
percentage of the average signal from the complete set of 
biological samples. (e.g. a 5% of median acceptance criteria 
could be set, thus any peaks with a “blank” signal > 5% of 
the median are removed from the dataset), or (c) calculate 
the blank contribution but do not remove the peak prior to 
data analysis; instead, the peak is flagged as “potentially 
contaminated”. If the peak is subsequently defined as bio-
logically important, a balanced decision as to whether the 
blank-related contribution influences the impact/quality of 
the associated peak can be made. As no definitive recom-
mendation is currently agreed upon, the acceptance criteria 
used in a study should be reported in publications, and pub-
lic data repositories.

2.3 � Pooled QC sample(s) for intra‑study assessment 
of data

A number of published reports have discussed the use of 
pooled QC samples and we will discuss in greater depth 
below (Dudzik et al. 2018; Sangster et al. 2006; Gika et al. 
2007; Dunn et al. 2011b, 2012; Godzien et al. 2015; Lewis 
et al. 2016). From an analytical chemistry perspective, untar-
geted metabolomics has two seemingly paradoxical aspira-
tions. Methodologies aim to maximise both the number and 
diversity of measured metabolites across several orders of 
concentration magnitude, whilst simultaneously generat-
ing high precision, repeatable, and reproducible data. This 

Fig. 1   Example of typical data acquired for a system suitability sam-
ple. Here, a seven component system suitability sample has been 
applied in a HILIC positive ion assay and includes an early elution 
metabolite (decanoic acid) and later elution metabolites. Leucine and 

isoleucine are included to assess chromatographic resolving power for 
isomers. The base peak chromatograms are shown for each metabo-
lite to assess peak symmetry with retention time and m/z calculated to 
assess chromatographic stability and mass accuracy
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dichotomy is particularly challenging, given that untargeted 
methodologies are “blind”, and all of the acquired data are 
simply “peaks” until they are aligned/grouped/filtered and 
ultimately identified in an extensive and mathematically 
complex computational pipeline.

With untargeted metabolomics, where hundreds or thou-
sands of metabolites are detected, and the chemical identity 
of all metabolites is not known prior to data acquisition, it is 
impossible to use internal standards comprehensively and it 
is also impossible to generate metabolite specific calibration 
curves. Consequentially, it is impossible to provide absolute 
quantification, absolute estimates of accuracy (how close the 
measured concentration is to the real concentration), abso-
lute estimates of precision (random error in quantification 
over repeated measurement of an identical biological speci-
men), with no clearly defined limits of detection, limits of 
quantification, and linearity quantifiers.

A high quality, multi-analyte targeted assay may take 
months to develop. However, all the effort invested in initial 
development, is returned by way of clear QA acceptance 
criteria, and relatively simple QC protocols (FDA 2001). 
QC samples can simply consist of a mixture of the authen-
tic chemical standard representing the target analytes and 
associated isotopically labelled internal standards, of a fixed 
concentration, spiked into the test sample matrix, where each 
QC sample is, to a very high degree of confidence, iden-
tical. Then, acquiring quantitative measurement of all the 
targeted metabolites for a small number of QC samples, dis-
tributed evenly in an analytical batch, can quickly generate 
the required acceptance criteria metrics. This process may be 
repeated for different concentrations of analyte (typically as 
QC-low, QC-medium, QC-high). After an analytical batch, if 
the calculated QC measures are within the predefined toler-
ances (acceptance criteria) for precision and accuracy, and 
the acquired data for the test samples are within the linear 
calibration range, then the data are deemed fit for purpose 
and statistical analysis can begin, otherwise the assay failed, 
and system diagnostic tests need to be performed before 
reanalysing (and reprocessing) the biological samples.

Providing similar tangible metrics for ensuring that an 
untargeted metabolomics assay is performing effectively is 
much more difficult. There are no predetermined QC accept-
ance criteria for each detected metabolite, and no limits of 
quantification. In fact, the only solution is to shift a large 
proportion of the effort traditionally directed toward gen-
erating quality assurance processes (for example, internal 
standards and calibration curves), over to providing more 
comprehensive quality control protocols and introduce the 
concept of cleaning data. Unfortunately, this is not straight-
forward as QC for untargeted metabolite quantification is 
severely constrained. Of all the metrics of quality mentioned 
thus far, for untargeted assays, it is only possible to pro-
vide a relative measure of precision—the random error in 

quantification over repeated measurement of a biologically 
identical sample. The choice of “biologically identical sam-
ple” (QC sample) is also limited. The composition of the 
QC sample should reflect the aggregate metabolite compo-
sition of all of the biological samples in a given study. The 
sample matrix composition is also important because this 
can provide variability in the response measured through its 
interaction with the analytical platform (e.g. through matrix-
specific and sample-specific ionisation suppression). It is 
important to note that if a metabolite is not present in the 
pooled QC sample then the quality of its measurement can-
not be calculated and reported.

The most appropriate way to create multiple copies of 
such a complex QC sample is to use the biological test sam-
ples themselves. One could simply sub-aliquot each test 
sample into replicates (e.g. n = 3), then randomise the order 
of processing and injection for the new sample set. After 
data acquisition and spectral deconvolution into a metabolite 
data matrix (N samples × P metabolite features), measures 
of repeatability can be calculated for each set of replicates, 
and then aggregated into a single measure of precision. 
This strategy however, comes with the considerable cost of 
greatly increased total analysis time as it triples the number 
of biological sample injections.

An alternative and more time-efficient method of using 
the test samples themselves as the source for QC samples, is 
to generate multiple replicates of a single test sample (n > 5). 
These replicates would then be evenly distributed through 
the analytical batch. At the end of data processing, a sin-
gle measure of precision can then be calculated for each 
metabolite feature. One clear problem with this method is 
the assumption that a single QC sample has a suitably rep-
resentative metabolite composition, both in terms of number 
and concentration of metabolites and matrix species. A very 
simple work-around for this problem is to generate a single 
pooled QC sample from all, or a representative subset, of the 
biological test samples in a given study. This is achieved by 
taking a small volume of each biological test sample, thor-
oughly mixing into a homogenous pooled sample, and then 
preparing multiple aliquots from that pooled sample, thus 
generating a set of “pooled QC” samples (see Fig. 2). There 

Fig. 2   Visualisation of how a pooled QC sample is prepared from 
aliquots of the study biological samples from which aliquots of the 
pooled QC sample are extracted for analysis in an identical manner as 
for the study biological samples
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are several variations on this basic premise of a pooled QC, 
and they are summarised in Table 1.

The preparation of pooled QC samples is dependent on 
the type of sample to be studied and the volume of each 
sample available. The authors recommend, whenever pos-
sible, option 1 followed by option 2 in Table 1. Option 3 
should only be used as a last resort, or when test samples are 
only available at low volumes. In this instance, the choice of 
the alternative biological source is important, as its metabo-
lite composition will determine the metabolites reported in 
the QC assessment. These approaches can be applied for 
common sample types such as culture media or mammalian 
biofluids, but e.g., some biofluids can only be collected in 
extremely small volumes (e.g. human tears). Where alter-
native sources are not readily available or may prove to be 
too expensive to be practical, the preparation of an artificial 
QC sample (option 5) may be considered but significant 
care should be taken over the interpretation and value of the 
resulting QC data.

For cellular and tissue samples, different options are 
available. The preparation of a single pooled and homog-
enous sample fully representative of the biological test sam-
ples is not possible prior to sample extraction. However, 
there are two options for preparing a reasonable substitute. 
The first is to combine small aliquots of each of the extracted 
samples prior to analysis; this can be before any extract dry-
ing process or following reconstitution of dried extracted 
samples. Data collected for these samples represents varia-
tion associated with data acquisition and data pre-processing 
to convert raw data files in to a data matrix but not sample 
processing, and this should be clearly defined when qual-
ity is reported. The capability to do this is dependent on 
the mass of tissue, and/or volume of extracted sample, as 
well as the number of pooled QC samples to be prepared. 
For tissue samples, excess tissue from the same subjects 
could be collected if ethically appropriate and applied to 
separately generate a pooled QC sample. If these options are 
not possible then the same sample type should be applied 
from a different biological source of the same species or if 
not available a representative different species. The second 
option, specific for cellular samples, is to culture the same 
cell line in parallel, extract these surrogate “QC” samples, 
and pool the extraction volumes. Again, this allows the vari-
ation associated with data acquisition and pre-processing to 
be performed but does not include variation associated with 
the sample preparation for the study samples themselves.

Breath analysis (breathomics) is used for diagnostics 
of diseases of the lung (Rattray et al. 2014; Lawal et al. 
2017). By its very nature breath contains volatile organic 
compounds (VOCs) that need to be captured before mass 
spectrometry. As such, it is not feasible to prepare a single 
pooled and homogenous VOC sample, due to their lability, 
volatile nature, and the way in which they are captured and 

pre-concentrated. Compared to more common biofluids, the 
implementation of QCs for VOC samples is to date relatively 
underdeveloped (Ahmed et al. 2017). What is currently 
analysed are QA samples, which are used to try and draw 
some standardization (Herbig and Beauchamp 2014). The 
QA samples (not referred to as QCs) are reference mixtures 
of VOCs which are commonly found in breath. There is a 
recent working group publication discussing the standardi-
zation of the process from exhaled condensates of breath 
(ECB) or trapped VOCs (as well as for nitric acid) through to 
analysis and the interested reader is directed here (Horváth 
et al. 2017).

It is important to note that the pooled QC samples and 
the biological test samples must be processed in an identi-
cal way to ensure that the resulting measure of precision is 
applicable to the biological test samples and provides qual-
ity control for the complete metabolomics pipeline. Also, to 
ensure that QC injections are representative of biological test 
sample injections, we strongly recommend having separate 
QC samples in separate vials and injecting from each vial on 
a single occasion, or small number of injections (maximum 
of three injections from a single vial) close together in time. 
This is especially important if the sample/extract contains a 
large amount of organic solvent, where evaporation from the 
vial will result in a change of concentration of metabolites 
in the QC sample changing over time.

3 � Measurement of precision and detection

In analytical chemistry, the measurement of any analyte 
present in a given sample is never perfect. There is always 
some level of measurement error. Measurement error can be 
broken down into two components: systematic (determinate) 
error, and random (indeterminate) error (Philip et al. 1992).

Systematic error is a consistent, repeatable inaccuracy, 
generally caused by an impaired analytical method, instru-
ment, or analyst. Multiple measurements of samples under 
the influence of a constant systematic error will always con-
verge toward a mean value that is different to the true value. 
Such measurements are considered “biased”. In untargeted 
metabolomics, systematic error can be estimated through 
multiple measurements, but it cannot be known with cer-
tainty because, without an internal standard, the true value 
also cannot be known.

Random error has no pattern and is unavoidable in 
measurement systems. It is an error caused by factors 
that vary from one measurement to another seemingly 
without any known reason. In a metabolomics analytical 
workflow there are many sources of random error. They 
can be reduced, but not removed, through good design 
of experiments, together with optimization of analytical 
methods, instrumentation, and data processing. The aim 
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of the analytical chemist is to reduce the random error in 
quantification to the point that it is negligible in compari-
son to the biological variance.

According to ISO 5725 (ISO5725 1994), precision 
refers to “the closeness of agreement between test results 
… attributed to unavoidable random errors inherent in 
every measurement procedure”. Within the context of this 
paper, we will use the term “precision” to refer specifically 
to “repeatability precision”, which is defined by ISO 5725 
as “a measure of dispersion of the distribution of [inde-
pendent] test results”, where, “independent test results are 
obtained with the same method on identical test items in 
the same laboratory by the same operator using the same 
equipment within short intervals of time”. Typically, the 
random error measured can be described by a Gaussian 
distribution, and therefore can be described statistically by 
calculating the standard deviation of the repeated meas-
urements. In order for this metric to be a useful compari-
son tool across multiple analytes it is common practice to 
standardise this measure of dispersion by dividing it by the 
mean value. So, for the pooled QC sample measurements 
detected for metabolitei (vector mi,qc ) the relative stand-
ard deviation is calculated using Eq. (1), where si,qc is the 
sample standard deviation, and m̄i,qc is the sample mean.

In untargeted metabolomics, the relationship between 
measured analyte (peak area) and actual concentration is 
often nonlinear and thus a Gaussian error in actual metab-
olite concentration will not translate to a Gaussian error 
in measured value. In which case, it may be preferable to 
calculate the nonparametric statistical equivalent to stand-
ard deviation, median absolute deviation (MAD). MAD can 
be used as an unbiased estimate of the standard devia-
tion by multiplying by the scaling factor 1.4826 [Hoaglin 
et al. 1983]. From this, we can derive the robust estimate 
of relative standard deviation, RSD∗

i
 described by Eq. (2).

An alternative standardised metric for describing the 
measurement precision of a detected metabolite can be 
calculated by focusing on the statistical dispersion (i.e. 
variability, scatter, or spread) of the pooled QC samples 
in relation to the dispersion of the biological test sam-
ples, rather than the average metabolite concentration, as 
practically demonstrated in several papers (Dunn et al. 
2011b; Lewis et  al. 2016; Reinke et  al. 2017). In this 
paper we define a similar metric called the “Dispersion 
ratio” (D-ratio). If the distribution of both the biological 

(1)RSDi,qc =
si,qc

m̄i,qc

× 100%

(2)RSD∗
i,qc

=
1.4826 ×MADi,qc

median(mi,qc)
× 100%

test sample measurements and the QC random error are 
Gaussian then the D-ratio for metabolitei can be defined 
by Eq. (3), where si,qc is the sample standard deviation for 
the pooled QC samples, and si,sample is the sample standard 
deviation for the biological test samples. Again, if the dis-
tribution of data is not Gaussian then, the raw data either 
needs to be mathematically transformed, e.g. log10, before 
calculating the D-ratio, or a non-parametric alternative 
used, for example see Eq. (4).

Untargeted metabolomics assays consist of multiple 
procedural steps in a linear workflow. Before interpreting 
the D-ratio it is important to consider how the different 
random error characteristics for each step combine to pro-
duce the overall workflow error. Random errors can either 
be additive or multiplicative, depending on the measure-
ment transfer characteristic of each step of the workflow. 
The total random error can be expected to be almost exclu-
sively either additive or multiplicative, because the addi-
tive effect of two random errors is such that only the larger 
error significantly impacts the final measurement if it is 
more than double the other error (Werner et al. 1978). If 
we assume that the overall measurement error in untar-
geted metabolomics is dominated by an additive random 
error structure, then the total random variance measured 
can be simplified to: �2

i,total
= �

2

i,biological
+ �

2

i,technical
 , where 

�i,biological is the unobserved biological variance for 
metabolitei, and �i,technical is the sum of all the unwanted 
variances accumulated while performing all of the pro-
cesses in the workflow. We now assume that sample stand-
ard deviation of the pooled QCs, s2

i,qc
 , is a good approxima-

tion of complete technical variance, and the sample 
standard deviation of the biological test samples, s2

i,sample
 , 

is a good approximation of the total variance. So, Eq. (4) 
can now be approximated as Eq. (5), where the denomina-
tor describes the Euclidean length of the �total directional 
vector, given that �2

biological
 is orthogonal to �2

technical
.

From Eq. (5), a D-ratio of 0% means that the technical 
variance is zero, i.e. a perfect measurement, and all 
observed variance can be attributed to a biological cause. 

(3)D-ratioi =
si,qc

si,sample
× 100%

(4)D-ratio∗
i
=

MADi,qc

MADi,sample

× 100%

(5)
D-ratioi ≈

�i,technical
√

�
2

i,biological
+ �

2

i,technical

× 100%
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A D-ratio of 100% indicates that the biological variance 
equals zero, and the measurement can be considered as 
100% noise with no biological information. So, when 
assessing a given metabolitei, the closer the D-ratio is to 
zero the better, with the aim of 𝜎2

biological
≫ 𝜎

2

technical
.

A descriptive statistic complementary to the estimate 
of precision is the detection rate. This can be defined as 
simply the number of detected QC samples divided by the 
number of expected QC samples for a given metabolite, 
expressed as a percentage. The detection rate provides a 
very simple measure of whether a metabolite is consist-
ently detected across a given study. If the detection rate 
is low, then the reliability of any subsequent statistical 
analysis on that metabolite will also be low.

These three calculations (RSD, D-ratio, and detec-
tion rate) provide a measurement of quality that can be 
reported for each detected metabolite and can also be used 
to remove low quality data from the dataset prior to fur-
ther univariate or multivariate analysis. In this process of 
“data cleaning”, acceptance criteria for each metric are 
predefined and then applied to each metabolite in turn, 
removing metabolites where the acceptance criteria have 
not been fulfilled. The acceptance criterion for detection 
rate is typically set to > 70%, the acceptance criterion 
for RSD is typically set to < 20% (Sangster et al. 2006; 
Dunn et al. 2011b) or < 30% (Lewis et al. 2016; Want 
et al. 2010) depending on the sample type, and it is rec-
ommended that the acceptance criterion for D-ratio is set 
to, at most, < 50% (preferably much lower). This process, 
when combined with removal of blank-related metabolites, 
can often result in up to 40% of metabolites being removed 
from the dataset. Although this can be a significant volume 
of data, the confidence the investigator may place on the 
remaining data is much higher.

A rapid systematic check of data quality before or after 
data cleaning can be made by performing principal com-
ponents analysis (PCA) on the complete data set (suit-
ably scaled and normalized). Then by plotting the first two 
principal components scores (a projection describing the 
maximum orthogonal variance in the data) and labelling 
the data points as either QC samples or biological test 
samples, the difference in multivariate dispersion can be 
visually assessed. Figure 3 shows a typical PCA plots for 
a data set deemed of high quality. Here, one observes that 
the QC data points cluster tightly in comparison to the 
total variance in the projection. Ideally the QCs should 
cluster at the origin of the PCA scores plot, as prior to 
PCA implementation the input data are mean centred. Any 
deviation from the origin is usually due to unavoidable 
pipetting errors or sample weight discrepancies, or when 
the pooled QC is not generated from sub-aliquots of all the 
biological test samples. As long as the QCs cluster tightly, 

relative to the observed dispersion of biological samples, 
then these data can be deemed as of high quality.

It cannot be emphasised enough that the primary reason 
for including multiple pooled QC samples in any given study 
is to calculate a measure of precision for each metabolite 
detected in that pooled QC sample. These calculations can 
be made for a single batch or be extended to include as many 
batches as there are pooled QC samples drawn from a sin-
gle homogeneous source. The result is a measure of within-
batch precision, between-batch precision, and total precision 
for pooled QC samples drawn from a single source.

4 � Analytical platform conditioning

In addition to measurement of precision, there are three fur-
ther uses of the pooled QC sample in untargeted metabo-
lomics studies. Firstly, pooled QC samples can be used to 
equilibrate, or “condition”, the analytical platform prior to 
running an analytical batch. This allows for matrix coat-
ing of active sites (which can absorb metabolites) in the 
analytical system, whilst allowing both the chromatography 
platform, and mass spectrometer to equilibrate. This con-
ditioning process allows higher reproducibility data to be 
attained for the biological test samples by removing vari-
ability in retention times and stabilizing detector response 
(Zelena et al. 2009). This is not a QC process directly; it is 
applied to increase data quality.

There is considerable debate on the exact number of con-
ditioning injections required, as this is dependent on mul-
tiple factors including the type of sample under analysis, 

Fig. 3   A typical PCA scores plot for a data set deemed of high qual-
ity, as the QC data points cluster tightly in comparison to the total 
variance in the projection
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the chromatography system, the injection volume, the 
chromatography column applied and the mass spectrom-
eter design. Each laboratory should determine the optimal 
number of conditioning QC injections for each analytical 
platform and sample type through the injection of 50 pooled 
QC samples and defining the number of injections where 
stable data starts to be acquired. Also, using larger sample 
volumes for the conditioning, may reduce the number of 
injections required (Michopoulos et al. 2009). We recom-
mend that each laboratory determine the optimal number 
of conditioning samples for their particular platform, bear-
ing in mind that this number will be different for different 
operating conditions and sample types. Importantly, the data 
acquired during this conditioning phase will be more vari-
able than will be observed once the system is conditioned 
and so it is essential that the data from the conditioning 
samples are removed from any subsequent data processing, 
including when calculating each metabolites precision.

5 � Systematic measurement bias

The second further use of the pooled QC sample data is for 
modelling and correcting for systematic measurement bias. If 
the measured response for a given metabolite is plotted against 
injection order (excluding conditioning samples and blanks), 
time related systematic variation in the reported metabo-
lite response can often be observed (see Fig. 4). This system-
atic error can result from non-enzymatic metabolite conversion 
(e.g. oxidation or hydrolysis) of samples in the autosampler 
or from changes in the properties of the analytical platform 

caused by changes in chromatography (retention time or peak 
shape) or interaction of the sample components with the sur-
faces of the chromatography system and MS instrumenta-
tion (e.g. column, cones, ion skimmers, transfer capillaries) 
and therefore influencing measured response (Sangster et al. 
2006; Dunn et al. 2011b; Lewis et al. 2016). These effects 
are dependent on the type of chromatography, analytical sys-
tem, type of sample, and number of sample processing steps 
applied.

Systematic error is observed in almost all untargeted data 
sets. The direction of change and degree of nonlinearity is 
dependent on the metabolite. Some metabolites show mini-
mal drift, some metabolites show a significant linear increase 
in response over time, some a linear decrease over time, and 
many show a nonlinear change over time. If possible, it is 
advantageous to correct each metabolite mathematically for 
this systematic error. Doing so will not only allow for a more 
accurate measure of precision, it will also remove a source of 
variance which may confound subsequent statistical analysis. 
The relationship between time, t , and response vector, mi , for 
a given metabolitei can be described by Eq. (6), where mi,j is 
the measured response for metabolite i, at time-point j, fi(t) 
the time dependent systematic error function, m̄i is the mean 
response for metabolite i, and �i is a random variable describ-
ing the distribution of the test samples around the systematic 
error function, We will assume that �i,total has a Gaussian dis-
tribution with variance, �2

i,total

(6)mi,j = m̄i + fi
(

tj
)

+ 𝜀i,total

Fig. 4   For a given metabolite peak, the measured response can be 
plotted against injection order (excluding conditioning samples 
and blanks) and the time varying systematic variation in metabo-
lite response observed (a). The systematic variation can be modelled, 
in this case using a regularised cubic spline with a smoothing param-

eter. The optimal smoothing parameter value is the one with the low-
est cross-validated error (b). The ‘correction curve’ can then be sub-
tracted from the raw data (c). Accurate measures of precision after 
the correction can then be calculated (d). Red squares are QC sam-
ples, blue circles are study samples
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Now, if we assume that the pooled QC samples are suf-
ficiently representative to describe both the random and 
systematic technical error for metabolite i, then we can also 
assume that Eq. (7) is true, i.e. fi(t) is the systematic error 
function for both the test data and the pooled QC data. We 
will also assume that �i,qc = �i,total (i.e. �i,qc has a Gaussian 
distribution with variance, �2

i,total
).

If all these assumptions hold, then fi(t) can be estimated 
using any linear or non-linear function that is optimised by 
the least squares method using the pooled QC sample data, 
and then the corrected data, zi,j can be calculated by the sim-
ple subtraction described by Eq. (8) 

Many algorithms have been developed to approximate 
the true systematic error function. Methods include linear 
regression (van der Kloet et al. 2009), bracketed local linear 
regression (van der Kloet et al. 2009), LOESS regression 
(Dunn et al. 2011b), regularized cubic spline regression (see 
Fig. 4) (Kirwan et al. 2013), support vector regression (Kuli-
gowski et al. 2015), and cluster-based regression (Brunius 
et al. 2016). All have their theoretical advantages and disad-
vantages, and no single method is clearly superior; however, 
there has been a tendency for some of these methods to be 
implemented without due care by third parties. Most of the 
methods require the optimization of at least one “smooth-
ing parameter”. The value of this parameter determines the 
degree in which the regression curve fits to the non-line-
arity in the data. There is a danger that if this parameter is 
not sufficiently constrained then the regression curve will 
begin to fit to the random error in addition to the systematic 
error in the data. This will negatively impact on the quality, 
and usability, of the recovered data, but counterintuitively 
the reported precision will be unrealistically good. This is 
clearly very dangerous, as the unsuspecting scientist will 
read the precision report and assume that the data are better 
than they actually are. As such, it is critical that some form 
of validation is performed during the model fitting process. 
One approach is to create a random hold-out set of pooled 
QC samples (approximately 1/3rd). The correction function 
is optimised using 2/3rds of the pooled QC samples (training 
set) and the hold-out set (test set) is used to report the preci-
sion measurement (van der Kloet et al. 2009). This method is 
effective but wasteful of precious QC data, which may result 
in a significantly inferior generalised model. A more effi-
cient approach is to use, for example, k-fold or leave-one-out 
cross validation (Kirwan et al. 2013; Wen et al. 2017). These 
methods are standard practice for model optimization in the 
machine learning community, and cleverly use all of the data 

(7)mi,jqc
= m̄iqc

+ fi

(

tjqc

)

+ 𝜀i,total

(8)zi,j = 𝜀i,total + m̄iqc
= mi,j − fi

(

tj
)

in both the training and testing of the regression curve. It 
has been shown that, after QC based correction with cross 
validation, the precision of the QC random error is similar 
to the precision of technical replicates of biological test sam-
ples blinded to the modelling process (Kirwan et al. 2013; 
Ranjbar et al. 2012). As an aside, it is also worth noting that 
there have been several attempts to correct for systematic 
error without using pooled QC samples (Rusilowicz et al. 
2016; Wehrens et al. 2016); however, these methods are not 
recommended by the authors.

If pooled QC samples drawn from a single homogeneous 
source are used across multiple analytical batches, then it is 
also possible to correct for between-batch systematic error. 
Often, step changes in sensitivity can be observed between 
batches. Once within-batch systematic error has been cor-
rected then multiple batches can simply be aligned by mean 
response. Typically, a grand mean is calculated across all 
batches, and then error between each batch mean and the 
grand mean is subtracted from all the samples in that batch 
(see Fig. 5). This process has previously been described in 
detail (Kirwan et al. 2013).

Real-time correction for instrument sensitivity has also 
been reported, where the detector voltage is rapidly cali-
brated after each analysed sample to maintain a consistent 
measured response across the analytical batch. This has been 
applied for one thousand urine samples in a single analytical 
batch producing high precision data with minimal need for 
post-acquisition correction (Lewis et al. 2016).

6 � Other QC sample types

The use of pooled QC samples can be expanded further by 
way of a pooled QC serial dilution. Here, a set of pooled QC 
samples are diluted in a defined range (e.g. dilution factor 
range of 1–100%) and analysed to ensure a positive correla-
tion between observed signal and metabolite concentration, 
satisfying this inherent assumption made in data interpreta-
tion (Lewis et al. 2016). The use of linear correlation as a 
metric of quality clearly biases the data cleaning process 
toward those metabolite peaks that respond linearly within 
the range of sample dilution. It does take into account severe 
non-linearity, and it does not take into consideration the 
measured response of any biological sample concentrations 
appearing above the undiluted pooled QC concentration. It is 
also worth mentioning that calculating the linear correlation 
coefficient does not provide a metric for peak sensitivity (i.e. 
the angle of slope between observed signal and metabolite 
concentration). Also, when interpreting this data, it must be 
held in mind that dilution of the entire matrix may not fairly 
represent dilution of any given metabolite within an other-
wise static matrix due to idiosyncrasies particularly evident 
in electrospray ionisation (e.g. ionisation suppression and 
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enhancement). Including a concentration process for the QC 
sample (e.g. by drying and solubilisation in a smaller volume 
of sample diluent) for this purpose is not advised due to the 
potential for broad changes in the matrix. Further work is 
required to extend the utility of this approach.

6.1 � Process internal standards

An approach for providing rapid assessment of data quality 
for each test sample, independent of any pooled QC sample 
is to add to each test sample a mixture of multiple com-
pounds (internal standards) of predetermined concentrations 
representative of the metabolite classes in the test sample 
metabolome. It is then a relatively straightforward compu-
tational process to measure the m/z, retention time, chro-
matographic peak shape, and peak area, for each internal 
standard, for every biological test sample. These data can 
then either be compared to a theoretical expected value, and 
criteria for warning of systematic failure during the analyti-
cal run can be defined (such as a given parameter moving 
outside of a specified tolerance interval) or be used to simply 
monitor systematic changes in parameter values over time 

(parameter drift), thus providing indication, at a systems 
level, for the likely need for computational adjustment, after 
data acquisition, but before statistical analysis or need for 
instrument maintenance.

One advantage of this internal standard methodology over 
the pooled QC approach is that data collection and assess-
ment (m/z, retention time, peak area, peak shape) for each 
sample can be performed independently of any other sample 
in the batch. Remember, for untargeted metabolomics it is a 
computational requirement that raw spectra be deconvolved 
into a metabolite table after ALL data has been collected as 
untargeted peak filtering, alignment, and grouping require a 
consensus algorithm. As such, accurate QC cannot be per-
formed until the end of a batch, or complete study, and only 
after the completion of this time-consuming deconvolution 
process. So, it can be considered a post-data acquisition 
quality control process. Conversely, the internal standard 
QC monitoring can be performed manually for any sample 
immediately after the raw data are acquired, or potentially 
implemented as an online real-time monitoring system. In 
this way, analytical runs can be stopped mid-batch directly 
after a catastrophic event and system checks/cleaning/
restart performed (saving valuable test samples), or “failed” 

Fig. 5   When pooled QC samples drawn from an identical source are 
used across multiple analytical batches then it is also possible to cor-
rect for inter-batch systematic error. First, a grand mean is calculated 
across all batches, and then difference between each batch mean and 

the grand mean is subtracted from all the samples in that batch. Red 
squares are QC samples, blue, green and yellow circles are study 
samples from batches 1, 2, and 3, respectively
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individual samples may be re-injected at the end of the same 
batch, without too much disruption to the overall workflow. 
However, it is important to note that the results determined 
from a small number of compounds do not comprehensively 
show that all the data generated are of suitable quality. They 
do, however, provide a simple measure of performance of 
the analytical platform online during an analytical batch.

The internal standards are typically isotopically-labelled 
metabolites, although non-isotopically labelled metabolites 
that are guaranteed to not be present in the biological test 
samples can also be applied. The authors recommend the 
use of isotopically-labelled metabolites. The choice of which 
internal standards to apply is dependent on commercial 
availability, cost, and physicochemical properties. As the 
solution will be spiked into all samples, inexpensive internal 
standards are preferred because of the mass of each inter-
nal standard required for each biological study. The internal 
standards should also provide a broad coverage of physico-
chemical properties, for the analytical platform applied this 
should cover a wide range of m/z values and retention times 
and therefore include different classes of metabolites with 
different chemical functional groups. The choice of inter-
nal standards will also be based on the analytical method 
applied, the choice for a hydrophilic interaction liquid 
chromatography (HILIC) assay will typically be different 
than that for a lipidomics method. This is because the polar 
metabolites that are retained on a HILIC column typically 
elute early in a lipidomics assay and therefore do not meet 
the criteria of a broad range of retention times. A number of 
groups have published recommendations (for example, Dunn 
et al. 2011b; Lewis et al. 2016; Soltow et al. 2013).

The step in the sample preparation process at which the 
internal standards are added defines the steps for which any 
variation is measured. When the internal standards are added 
at the final preparation step and after sample processing, 
then variation associated with data acquisition only can be 
recorded. However, if the internal standards are added to the 
biological samples before they are processed then variation 
associated with sample processing and data acquisition pro-
cesses are recorded, albeit only for those compounds used as 
internal standards. One option is to add some internal stand-
ards before sample processing and some internal standards 
before sample analysis to allow both options to be applied. 
The choice is for the analyst though reporting of data quality 
should define when the internal standards were added.

It is important to note that this mixture of internal 
standards is used to ONLY monitor the performance of 
the system and should NOT be confused with the internal 
standards used in quantitative analysis for determining 
analyte concentrations. Their use for quantification has 
been suggested by some groups. However, for untargeted 
studies using a small selection of internal standards to act 
as quantifiers for all detected metabolites is extremely 

difficult, if not impossible. This is because the chemical 
identity of all metabolites, and their associated calibration 
curves, is typically not known before or after data acquisi-
tion. In addition, ionization is structure dependent, and can 
vary significantly across a class, and that ion suppression 
is usually retention time dependent.

6.2 � Standard reference materials (SRMs) 
and long‑term reference (LTR) QC samples 
for inter‑study and inter‑laboratory assessment 
of data

While all of the above QC samples allow assessment of 
data quality within a single laboratory and single study, 
they do not allow data quality comparisons across different 
studies within a laboratory or across different laboratories. 
To address this concern, standard reference materials or 
a different type of pooled QC sample can be applied. For 
intra-laboratory and inter-study data quality assessment, 
a laboratory pooled QC sample can be prepared by pur-
chasing the sample type in large volumes from a vendor 
or preparing it from a range of individuals from within 
the study facility and thoroughly mixing these samples 
together to create a single pooled QC sample (Dunn et al. 
2011b; Begley et al. 2009). This sample can then be sub-
aliquoted and stored at − 80 °C or in liquid nitrogen. One 
or multiple aliquots can then be processed and analysed for 
each analytical batch and/or multi-batch study. The data 
acquired provides a long-term assessment of data within 
the laboratory. The use of this type of sample (also called 
a LTR) does not preclude the use of a pooled QC obtained 
from the study biological samples in the same run as these 
QCs perform slightly different functions. The LTR allows 
data from different batches to be compared, whilst the data 
from the study-derived samples will potentially provide 
a more relevant QC for that particular batch (see, Lewis 
et al. 2016).

A standard reference material provides a method to 
allow quality assessment across different laboratories. 
SRMs are created and sold by a certified group, with NIST 
providing the most widely applied. The SRM can be pur-
chased by different laboratories and the data reported from 
each laboratory. Currently, SRM1950 (Simon-Manso et al. 
2013) is the most widely used plasma SRM in metabo-
lomics as shown by a number of inter-laboratory com-
parison studies (Bowden et al. 2017; Siskos et al. 2016). 
SRM’s may be considered an expensive option for rou-
tine use; however, they have the advantage over LTR with 
respect to considerations for long-term stability of pooled 
QC storage at − 80 °C, if liquid nitrogen storage is not an 
option. Sample stability is an important long-term QA pro-
cess and a small number of papers have reported stability 
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of metabolites (for example see, Haid et al. (2018) for a 
human plasma study).

7 � The order of QC samples in analytical 
batches

In Sect. 2 we abstractly discussed the effectiveness of five 
different types of QC samples in a given analytical batch. 
However, the true effectiveness of these samples is heav-
ily dependent on how many times each type of QC sam-
ple is analysed, and at which positions in the run should 
they be placed. Figure 6 shows an example of a routinely 
used, and effective, untargeted analytical run order fol-
lowing routine maintenance, cleaning of the analytical 
platform, and successful application of system suitability 
tests. Here, eight pooled QC samples are analysed at the 
start of each batch to condition the platform, and their 
data removed prior to data processing. Pooled QC samples 
are then analysed periodically throughout the batch. In 
this example pooled QCs are analysed every 5th sample; 
however, the required frequency is dependent on several 
independent factors each potentially contributing to vary-
ing degrees of systematic non-linear change in peak-area 
sensitivity, individual to each detected metabolite. These 
factors include: complexity of sample matrix, specific 
instrument dynamics, batch length, and data processing 
software. As such, it is recommended that each laboratory 
develop their own “fit for purpose” process. However, for 
accurate QC assessment, it is recommended that a pooled 
QC is analysed at least every 10th sample, and/or there are 
at least five pooled QCs distributed evenly across a single 
batch. If a nonlinear signal correction algorithm is to be 
used, then it is recommended that at least eight pooled 
QCs samples are used. Additionally, as a safeguard against 
possible QC miss-injection, it is also recommended that 
two QC samples are analysed at the beginning and end of 
the batch, before and after all test samples have been run 
(in this example, pooled QC sample pairs 9/10, and 17/18). 
The first and last pooled QC samples are disproportionally 

Injection Number Sample Type
1 System Suitability Blank Sample
2 System Suitability Sample 1
3 System Conditioning QC sample 1
4 System Conditioning QC sample 2
5 System Conditioning QC sample 3
6 System Conditioning QC sample 4
7 Blank Extraction Sample 1
8 System Conditioning QC sample 5
9 System Conditioning QC sample 6
10 System Conditioning QC sample 7
11 System Conditioning QC sample 8
12 Pooled QC sample 9
13 Pooled QC sample 10
14 Standard Reference Material injection 1
15 Biological sample 1
16 Biological sample 2
17 Biological sample 3
18 Biological sample 4
19 Biological sample 5
20 Pooled QC Sample 11
21 Biological sample 6
22 Biological sample 7
23 Biological sample 8
24 Biological sample 9
25 Biological sample 10
26 Pooled QC Sample 12
27 Biological sample 11
28 Biological sample 12
29 Biological sample 13
30 Biological sample 14
31 Biological sample 15
32 Pooled QC Sample 13
33 Biological sample 16
34 Biological sample 17
35 Biological sample 18
36 Biological sample 19
37 Biological sample 20
38 Pooled QC Sample 16
39 Standard Reference Material injection 2
40 Biological sample 21
41 Biological sample 22
42 Biological sample 23
43 Biological sample 24
44 Biological sample 25
45 Pooled QC Sample 14
46 Biological sample 26
47 Biological sample 27
48 Biological sample 28
49 Biological sample 29
50 Biological sample 30
51 Pooled QC Sample 15
52 Biological sample 31
53 Biological sample 32
54 Biological sample 33
55 Biological sample 34
56 Biological sample 35
57 Pooled QC Sample 16
58 Biological sample 36
59 Biological sample 37
60 Standard Reference Material injection 3
61 Biological sample 38
62 Biological sample 39
63 Biological sample 40
64 Pooled QC Sample 17
65 Pooled QC Sample 18
66 Blank Extraction Sample 2
67 Pooled QC Sample (MS/MS data acquisition 1)
68 Pooled QC Sample (MS/MS data acquisition 2)
69 Pooled QC Sample (MS/MS data acquisition 3)
70 Pooled QC Sample (MS/MS data acquisition 4)
71 Pooled QC Sample (MS/MS data acquisition 5)
72 System Suitability Sample 2

Fig. 6   A typical analysis order applied for an untargeted metabo-
lomics assay is composed of system suitability samples at the start 
and end of the analytical batch and pooled QC samples analysed at 
the start of the run (typically 10 injections with 8 system condition-
ing QC samples followed by 2 QC samples for QC processes and 
signal correction), at the end of the run (typically 2 injections) and 
periodically during the analysis of biological samples (typically every 
5–10 biological samples). A system suitability blank sample is ana-
lysed at the start of the analytical batch, a blank extraction sample is 
typically analysed twice, and a standard reference material is analysed 
three times during an analytical run. If MS/MS data acquisition is not 
applied for each biological sample, then a set of pooled QC samples 
can be applied separately at the end of the run for MS/MS data acqui-
sition

▸
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influential in constructing the signal correcting regression 
curves, and if missing the resulting models will be forced 
to extrapolate rather than interpolate with unpredictable 
results. If leave-one-out cross-validation is being used to 
optimise the signal correcting regression curves, then it 
may be preferable to include three, rather than two, pooled 
QC samples at the beginning and end of each batch. This 
will act as a further safeguard against extrapolation during 
optimisation; however, it is more efficient to implement 
leave-one-out cross-validation such that the end QCs are 
never left-out.

Two types of “blank” sample can be analysed in an ana-
lytical batch. The first type of blank sample is analysed at 
the start of each batch and is part of the system suitability 
tests, not the QC process. Here, an analysis is performed 
with no injection, or an analysis is performed with injec-
tion of a contaminant-free solvent. We will define this as 
a system suitability blank sample. The second type of 
“blank” sample is a process blank sample. Here, analysis 
is performed on a sample that has been prepared in a man-
ner identical to that of the biological samples except that 
the actual biological sample (serum, urine etc.) is replaced 
with a solution. This process blank (also commonly known 
as an extraction blank) provides information on the detec-
tion of peaks related to (a) contaminants included during 
sample preparation, which are not metabolite peaks and 
(b) sample carryover usually due to inadequate washing 
of the LC injection system between sample injections. We 
recommend that three blank samples are analysed in each 
batch. The system suitability blank is the first injection 
of any analytical batch. The process blanks are injected 
midway through column conditioning to cleanly measure 
“systematic” contamination, and the second at the end of 
a batch immediately after the final pooled QC, to measure 
cumulative “carryover” contamination. It is important to 
note that position of the process blank in the injection 
order must be decided such that no test sample directly 
follows a blank QC because a single blank extraction will 
disturb the equilibrium of the platform, significantly de-
condition the column, and adversely affect the quality 
of the data for samples analysed immediately after. It is 
important to note that typically after a blank injection 4 or 
5 pooled QC samples need to be injected to re-condition 
the system before another biological sample can be accu-
rately analysed; again, the exact number should be deter-
mined by each laboratory.

The intra-study or intra-laboratory pooled LTR QC or 
SRM is typically analysed up to three times in a single study. 
This allows variation across a batch to be monitored as well 
as variation between batches and studies to be monitored. 
Finally, if MS/MS data are not collected for all of the biolog-
ical samples then a set of pooled QC samples can be applied 
at the start or the end of the analytical batch for MS/MS data 

acquisition and can be used to support metabolite annota-
tion [see Mullard et al. (2015) for a discussion on applying 
different data dependent acquisition (DDA) experiments for 
each injected pooled QC sample].

8 � Summary

The application of untargeted metabolomics to biomedical 
and clinical research is now a global phenomenon, but, the 
adoption of global standardised workflows for sample pro-
cessing, data acquisition, and data processing has not yet 
been achieved. In the current research climate, particularly 
with such a diverse range of hyphenated platforms produced 
by many manufacturers, a single unified QA/QC procedure 
will not fit all laboratories. The guidelines presented here 
have been primarily written to promote good practice, both 
in application and reporting. We have discussed different 
types of system suitability and QC samples that can be used 
in untargeted MS-based metabolomics. Each protocol is 
relatively easy to implement, and achievable in both small 
and large laboratories. We have argued the unique impor-
tance, and applicability of each type of system suitability 
and QC sample; described the metrics that can be used to 
enable confidence in both the ongoing reliability of a given 
analytical platform and provided advice on how to ensure 
the collection of high quality data. The authors highly rec-
ommend the use of all the system suitability and QC sample 
types presented, whether performing a short single-batch 
analysis, or embarking on a large-scale multi-batch study. As 
a minimum requirement, we suggest the use of the system 
suitability samples, blank process sample, and the pooled 
QC sample. However, every laboratory needs to optimize 
their methods to best fit their situation.

Currently, within the clinical metabolomics commu-
nity, there is massive inconsistency in the reporting of data 
quality in scientific publications, and data repositories. 
The development of community agreed QA/QC reporting 
standards is urgently needed. Robust workflows including 
comprehensive QC reporting will only enhance the repro-
ducibility of results, facilitate the exchange of experimental 
data, and build credibility within the greater clinical sci-
entific community. Moreover, we strongly endorse that the 
data generated from these QCs are published along with the 
study and deposited in suitable metabolomics databases or 
repositories.
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