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Abstract  

 

Riparian vegetation is important for stream functioning and as a major landscape feature.  

For many riparian plants shallow groundwater is an important source of water, 

particularly in areas where rainfall is low, either annually or seasonally, and when 

extended dry conditions prevail for all or part of the year. The nature of tree water 

relationships is highly complex. Therefore we used multiple lines of evidence to 

determine the water sources used by the dominant tree species Eucalyptus camaldulensis 

(river red gum), growing in riparian and floodplain areas with varying depth to 

groundwater and stream perenniality. Dendrometer bands were used to measure diel, 

seasonal and annual patterns of tree water use and growth. Water stable isotopes (δ2H and 

δ18O) in plant xylem, soil water and groundwater were measured to determine spatial and 

temporal patterns in plant water source use. Our results indicated riparian trees located on 

relatively shallow groundwater had greater growth rates, larger diel responses in stem 
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diameter and were less reactive to extended dry periods, than trees in areas of deep 

groundwater. These results were supported by isotope analysis that suggested all trees 

used groundwater when soil water stores were depleted at the end of the dry season and 

this was most pronounced for trees with shallow groundwater. Trees may experience 

more frequent periods of water deficit stress and undergo reduced productivity in 

scenarios where water table accessibility is reduced, such as drawdown from groundwater 

pumping activities or periods of reduced rainfall recharge. The ability of trees to adapt to 

changing groundwater conditions may depend on the speed of change, the local 

hydrologic and soil conditions as well as the species involved. Our results suggest that E. 

camaldulesis growing at our study site is capable of utilising groundwater even to depths 

>10 m and stream perenniality is likely to be a useful indicator of riparian tree use of 

groundwater. 

 

Keywords: 

Groundwater dependent vegetation, water isotopes, tree water use, plant functional traits, 

plant hydrotypes, phreatophytes. 

 

 

1 INTRODUCTION 

 

Riparian vegetation is a fundamental structural and ecological component of all streams 

and rivers, and loss of riparian vegetation can drastically alter the ecological functioning 

of a stream and the surrounding vegetation (Naiman, Décamps & McClain, 2005).  The 
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riparian zone is a pervasive and important landscape feature that regulates stream 

ecological processes and acts as the interface or ‘ecotone’ between terrestrial and aquatic 

systems (Naiman & Décamps, 1997). Riparian tree species tend to be phreatophytic in 

the presence of shallow groundwater and are adapted to accessing water from a variety of 

sources including in-stream surface water, soil moisture and shallow groundwater 

(Holland, Tyerman, Mensforth & Walker, 2006; Meinzer, 1927; Stromberg, Tiller & 

Richter, 1996; Thorburn & Walker, 1994). Long-term reliability of accessible 

groundwater may encourage riparian trees to develop roots predominantly in the capillary 

fringe and saturated zone rather than throughout the soil profile, especially if 

precipitation during the growing season is unreliable (Ehleringer & Dawson, 1992). 

However, many riparian trees have dimorphic root systems, including shallow roots to 

improve stability in floods, nutrient uptake and rapid uptake of surface soil water after 

rainfall events, as well as deeper sinker roots that can access the capillary fringe of 

groundwater (David et al., 2013; Eamus, Froend, Loomes, Hose & Murray, 2006; Pinto 

et al., 2014). Species that are adapted to exploiting water from a number of sources are 

likely to be drought avoiders (Levitt, 1980; Lo Gullo & Salleo, 1988) and, therefore, 

poorly adapted to prolonged periods of drought. This can result in significantly poorer 

canopy condition in trees occurring where groundwater depths exceed identified 

thresholds and supports the contention that access to groundwater provides a critical 

resource for these drought avoider species (Kath et al., 2014). Understanding the 

dynamics of plant interactions with available water sources is important for managing 

plant communities dependent on groundwater resources.  
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The impacts of climate change, agricultural development and coal seam gas extraction on 

native vegetation health are difficult to predict due to plant interactions that can also 

affect health and floristic composition. Studies have shown links between groundwater 

decline and the degradation of dependent habitats (Busch & Smith, 1995; Stromberg et 

al., 1996). Understanding how keystone species of riparian vegetation use groundwater is 

particularly important to predict resilience to climate change and other factors affecting 

declining groundwater levels. Previous studies of trees growing above shallow 

groundwater have identified a dynamic interaction between deep roots and groundwater 

(Canham, Froend & Stock, 2012; Guevara, Giordano, Aranibar, Quiroga, & Villagra, 

2010; Vonlanthen, Zhang, & Bruelheide, 2011), suggesting mature trees may have the 

capacity to adapt to declining water tables (Richardson et al., 2011). Whether this 

interaction is common to all plants that access groundwater in different biophysical 

settings and the time scale required for adaption to take place, is not known.  Changes in 

groundwater depth and quality have been linked to differences in canopy condition (e.g. 

Cunningham, Thomson, MacNally, Read & Baker, 2011), population characteristics (e.g. 

recruitment and survivorship (e.g. Horner et al., 2009)) and vegetation community 

composition (e.g. Elmore, Manning, Mustard & Crane, 2006; Stromberg et al., 1996), as 

well as decreased leaf water potential, mortality and branch dieback (Cooper, D’Amico & 

Scott, 2003). In general, there are uncertainties regarding the potential for deleterious 

impacts on groundwater-dependent vegetation when exposed to reduced groundwater 

availability (Eamus et al., 2006; Yin et al., 2015). 
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Due to the highly complex nature of tree water relationships (Dawson & Ehleringer 

1991), providing definitive evidence of whether trees are dependent on groundwater for 

survival and growth is difficult. In this study, we therefore use multiple lines of evidence 

to imply groundwater use and dependence by Eucalyptus camaldulensis trees growing in 

riparian and floodplain areas with varying depth to groundwater. Studies show that depth 

to the watertable, fluvial disturbance and degree of flow permanence are strong 

influences on dryland riparian community structure and productivity (Gonzalez-Sanchis, 

Comin & Muller, 2012; Liu, Chen, Chen, Zhang & Li, 2005; Merritt & Poff, 2010). In 

dry landscapes, this raises the question of whether riparian and floodplain trees on 

perennial streams are more dependent on groundwater than trees on intermittent streams 

that will use water from a number of different sources. Trees on permanent streams may 

be more affected by groundwater drawdown, and as these streams transition to 

intermittent conditions, there may be a corresponding change in the relative importance 

of groundwater as a tree water source.  

 

The aim of this study was to determine whether near-channel riparian and interior 

floodplain trees on perennial streams are more dependent on groundwater than riparian 

and floodplain trees on intermittent sections of the stream, where groundwater in 

considerably deeper.  To test this, we first need to establish where trees are accessing 

water at different times of the year across this landscape gradient, and understand the 

diurnal, seasonal and annual water use patterns of trees in different hydrological 

landscape positions. We examine diel and seasonal fluctuations in stem diameter as an 

indication of the degree of tree hydration and tree growth (Biondi & Rossi, 2015; 
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Deslauriers, Morin, Urbinati & Carrer, 2003; Herzog, Hasler & Thum, 1995; Zweifel, 

Item & Häsler, 2001) to determine how the water status of trees is affected by landscape 

position, depth to groundwater and seasonal precipitation. The water source partitioning 

by plants provides evidence for trees using various combinations of groundwater, 

rainfall-derived shallow soil water, and stream water (Lamontagne, Cook, O’Grady & 

Eamus, 2005; O’Grady, Eamus, Cook & Lamontagne, 2006; Pfautsch, Dodson, Madden 

& Adams, 2015; Thorburn & Walker, 1994,). Water isotope studies have indicated 

widespread occurrence of incomplete mixing of subsurface water, and suggest different 

water sources can sustain plant transpiration or contribute to groundwater recharge and 

streamflow (Brooks, Bamard, Coulombe, & McDonnell, 2010; Evaristo, Jasechko, & 

McDonnell, 2015). In a global review across 162 sites of water isotope studies of plant-

groundwater interactions, Evaristo and McDowell (2017) reported groundwater use by 

plants in 37% of these studies.  They also noted that groundwater source contribution to 

plants increases with aridity. We measured the spatial variability of the isotopes δ18O and 

δ2H in tree xylem water, soil water and groundwater along transects spanning the 

elevation gradient of the riparian zone and the floodplain, in perennial and intermittent 

sections of a stream.  

 

 

2 METHODS 

 

Study Site 
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This study was located on riparian and floodplain sites of Maules Creek, a tributary of the 

Namoi River that flows west from the Great Dividing Range and is part of the Murray-

Darling river system in northern New South Wales (Figure 1). Maules Creek rises in the 

Mt Kaputar ranges (a weathered Tertiary era volcano with sedimentary rocks), and flows 

south across the Namoi River floodplain and into the Namoi River.  The Quaternary 

alluvial floodplain of the Maules Creek catchment comprises gravels and clays overlying 

Permian volcanics and coal measures at depth. The top 6 m of the regolith is dominated 

by Holocene clay and silt rich vertosols (Andersen, Meredith, Timms & Acworth, 2008). 

Maules Creek is an intermittent, seasonally dry stream, flowing only after rainfall events 

in the upper reaches and in the lower sections where groundwater is generally too deep to 

directly influence the stream. In the middle section of the creek shallow groundwater 

intersecting the stream creates large permanent pools that continue to exchange water 

with the hyporheic zone throughout the year. Irrigated cotton farming relies on extracting 

water from an extensive groundwater aquifer from a palaeochannel of the Namoi River in 

the lower sections of the catchment.  In the upper sections of the catchment cattle grazing 

on improved pasture is the principal land use.   

 

Climate and groundwater levels for the study period were obtained from the nearest 

weather station - Narrabri Post Office (Australian Government Bureau of Meteorology, 

2017). The climate is semi-arid with hot summers (highest daily maximum temperatures 

in January of 33.8°C) and cool winters (lowest daily maximum temperature in July of 

18°C). Rainfall is fairly evenly spread across the year with a slightly higher proportion 

(56%, November to April) in the summer months (Figure 2a).  Relative humidity is on 
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average highest in winter (June, 52%) and lowest in summer (December, 38%). Annual 

rainfall over the study period (October 2015 to September 2016) was 21% above the 

long-term average (620mm).  However, this varied across the study period with the late 

summer, early autumn period (February to April) 56% below the long term average (132 

mm) for these months (Figure 2a).  In contrast, June to September was 214% above the 

long term average for these months (124 mm). Although groundwater levels did rise 

appreciably at the riparian intermittent (upstream) site in winter 2015, levels did not vary 

greatly across sites during the study period (October 2015 – September 2016) (Figure 

2b). Stream flow data was available at the lower perennial site only. Over 47 years of 

records (1973 – 2017) flow was recorded in all months with no flow recorded on 16 

occasions across all months.  Highest maximum monthly flows were recorded in 

December, January and February (34,602, 52,310 and 78,920 ML respectively). There 

was no stream discharge data for the upstream site.  For most of the year the stream is dry 

as there is no groundwater interaction with the streambed at this site. The stream flows 

episodically for only a short period after large rainfall events, and pools dry out fairly 

rapidly (2-4 weeks) in this semi-arid climate.  

 

The riparian vegetation was dominated by river red gum (E. camaldulensis) and 

contained river oak (Casuarina cunninghamiana) with a midstorey of black tea tree 

(Melaleuca bracteata) in near-channel riparian areas, with a sedge and grass understorey.  

On the interior floodplain, the vegetation consisted of E. camaldulensis, Blakely gum (E. 

blakelyi) and Wilga (Geijera parviflora), with a mixed grassy understory. E. 

camaldulensis was the dominant tree species at all study sites, although at the upstream 
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floodplain site, native cypress pine (Callitris glaucophylla) was a co-dominant overstorey 

tree. E. camaldulensis are the most common and widespread riparian and floodplain tree 

on mainland Australia (Good, Smith & Pettit, 2017) and are able to tolerate high water 

tables and flooded conditions, as well as  extended periods of drought (Smith, Renton & 

Reid, 2017).   

 

Site selection and vegetation measurements 

The rationale for choosing sites was to measure trees that occur across a gradient of 

groundwater depth. At each of two sites, naturally occurring trees were selected from two 

landscape positions; the near-channel riparian bank directly adjacent to the Maules Creek, 

and on the interior floodplain approximately 100 m from the riparian bank and the 

stream. The first site was on the middle section of Maules Creek where groundwater at 

the near channel site is shallow (2 – 3 m depth), indicated by the water level in the 

perennial stream pools at this site. Interior floodplain sites adjacent to the perennial 

stream were considered to have the next shallowest groundwater (5 - 7 m). We refer to 

these sites as the riparian and floodplain perennial stream sites throughout this article. A 

second site in the upstream section of the creek had deeper near-channel riparian 

groundwater between 3 - 8 m and at the nearby interior floodplain sites the groundwater 

was 14 – 18 m deep.  The groundwater at the riparian site does not intersect the stream 

and stream flows and pools persist for only short periods after rainfall events (Andersen 

et al., 2017). These sites are therefore referred to as riparian and floodplain intermittent 

stream sites.   
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At each of the four landscape positions, a 20 m x 20 m overstorey plot was placed 

alongside each measured E. camaldulensis, providing a representation of local riparian 

conditions.  Within each plot, the stem diameter at breast height (dbh) of all woody 

species with a dbh >2 cm was recorded, and basal area per hectare for each site was 

calculated from dbh measurements in these plots. Canopy cover for each site was 

estimated by taking nine tree canopy photos in a grid pattern across a 10 x 10m plot and 

converted to canopy and foliage cover with MatLab Image Processing Toolbox 

(MacFarlane & Ogden 2012).  

 

Stem diameter measurements 

In order to assess the diel and seasonal hydrological state and growth of E. camaldulensis 

trees in the different landscape positions dendrometer bands with an attached data logger 

were fitted to the trunks of three E. camaldulensis trees at the riparian perennial (dbh 

17.4, 25.8, 38.8 cm), floodplain perennial (dbh 18.5, 22.0, 24.0 cm), riparian intermittent 

(dbh 24.5, 27.7, 40.0 cm) and the floodplain intermittent (20.9, 24.5, 58.0 cm) stream 

sites. Stem diameter changes (mm) were measured at 30 minute intervals, with initial 

stem diameters adjusted to zero. All study trees were selected as mature healthy trees 

with a leaf area representative of trees within the forest in which they occur.  Although 

there is range of diameters for our study trees, we were careful to select mature healthy 

trees to minimize any effect young or senescent trees may have on stem increments. 

Initial differences in tree diameter did not influence the final measured stem increment 

with no relationship between tree diameter and annual stem increment (r = 0.003, p > 

0.1). 
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To understand the differences in tree response to rainfall events we calculated metrics for 

each stem diameter increment trace during or following high rainfall periods or extended 

periods of no rainfall.  The high rainfall event (73 mm) occurred between 2nd and 5th 

November 2015, and the dry period was from 12th February to 31st March 2016 (50 days 

where no rain was recorded).  The mean differences in the slope of stem increment traces 

of each three trees, the peak response and decline slope of the increment curve were 

determined.  To assess the responsiveness of tree stem increments to sustained rainfall, 

we also calculated variability of the stem increments as the standard deviation of the 

increment curve during an extended rainfall period from 17th December 2015 to 4th 

February 2016, where 147 mm of rain fell across 20 rain days. Comparisons of stem 

increment changes between trees in different landscape position were analysed using a 

one way analysis of variance (ANOVA), followed by Fisher’s PLSD tests and Bonferroni 

correction. 

 

Stable isotope sampling and analysis 

To determine what water sources were used by E. camaldulensis trees on riparian and 

floodplain sites at Maules Creek the natural abundance of stable isotopes of oxygen 

(δ18O) and hydrogen (δ2H) were measured from xylem water of tree branches, and soil 

samples of the unsaturated soil layers, as well as groundwater and stream pool water.  

The uptake of water by roots is generally considered a non-fractionating process (Dawson 

& Ehleringer, 1991) and the isotopic composition of xylem water represents an integrated 

signal of water source, such as from the soil and/or groundwater (Dawson & Pate 1996). 



	 12	

However there needs to be consideration of the potential for fractionation confounding 

water isotope results (Evaristo, McDonnell, & Clemens, 2017). Samples for stable 

isotope analysis were taken at each tree in October 2015, March and June 2016, where 

small tree branches (5 mm dia. x 100 mm length) from the northern mid-canopy were 

collected. Samples were taken from the part of the branches with mature bark that were 

closest to the main branch to minimize the effect of evaporative enrichment by water loss 

through green stems. At this time, soil samples (~5 g) were also collected near each tree 

at 0.25 m intervals through the soil profile to 1.5 m, where possible. Stem and soil 

samples were collected and placed in a vial, sealed with parafilm, put on ice and taken 

back to the laboratory and stored in a freezer until water was extracted from samples via 

cryogenic distillation (Turner, Farrington & Gailitis, 2001).  Each soil sample was 

divided in two with one sample analysed for water stable isotopes and the other 

gravimetric water content was measured, where samples were weighed, then dried in the 

oven at 105° C for 24hrs then re-weighed so that percentage soil moisture can be 

calculated. Extracted water from soil and stems was analysed for δ18O and δ2H isotopes 

to compare isotope ratios of plant and soil water with values for rainwater, stream pool 

water and groundwater.  A local meteorological water line (LMWL) of best fit for rainfall 

isotope values in the area was taken from Andersen et al., (2008). Groundwater samples 

are from 6-10 monitoring bores located as near as possible to each landscape position 

where sample trees were located. The stable isotope composition (δ18O and δ2H) of all 

water samples was analysed using a L1102-isotopic Liquid Water Analyser (Picarro, 

Sunnyvale, CA, USA). Raw values of δ18O and δ2H samples were normalised to the 

Vienna Standard Mean Ocean Water scale (VSMOW), based on three laboratory 
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standards, each replicated twice and reported in per mil (‰). The long-term analytical 

uncertainty (one standard deviation) was determined as 0.8‰ for δ2H and 0.06‰ for 

δ18O (Skrzypek & Ford 2014). 

 

Water samples with similar isotope ratios are likely to come from the same source and 

therefore provide insight to whether the tree’s xylem water is sourced from soil water 

(rainfall) or groundwater. Stream pool water isotope values were not included in the 

analysis as water was available only once (October, 2015) at the intermittent stream site 

and never at the floodplain sites. To test for evaporative isotopic enrichment, we 

calculated the line conditioned excess (lc-excess*) (Landwehr and Coplen, 2006) or 

precipitation offset (Evaristo et al., 2015) of soil water, xylem water, and groundwater  

lc excess* = [δ2H – a δ18O – b}/ S                                                    (1) 

where a and b are the slope and intercept of the LMWL and S is the standard deviation of 

both δ2H & δ18O values. The lc excess* describes the difference in the isotopic 

composition of environmental waters from that of local precipitation (offset = 0) given as 

the LMWL (Evaristo, McDonnell, Scholl, Bruijnzeel, & Chun, 2016). Therefore lc-

excess* values close to zero are similar to rainfall isotope values and have not been 

affected by high rates of evaporation. By comparing the lc excess for soil and xylem 

water, and groundwater, we can identify which are significantly different from each other 

and therefore likely come from a different source. 

 

For all landscape positions, daily maximum stem diameter expansion of each E. 

camaldulensis tree was calculated at October 2015, March & June 2016, and compared 
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with measured δ180 and δ2H values of tree xylem water for that time. Daily maximum 

stem expansion provided a measure of daily tree hydration that could then compared with 

xylem isotope values measured for each tree at that time. 

 

 

3 RESULTS 

 

Tree measurements 

General measurements of the study sites indicated that tree canopy cover was similar for 

the perennial and intermittent stream sites but differed between riparian (64 ± 2% 

perennial and 62 ± 12% intermittent) and floodplain (48 ± 5 perennial and 38 ± 6 % 

intermittent) landscape positions (ANOVA; F= 6.4, p = 0.04). Tree basal area at the 

perennial riparian site (22.3 ± 8 m2 ha-1) was greater than at the other landscape positions 

(ranging from 12.2 ± 4.2 m2 ha-1 for floodplain perennial, 12.4 ± 3.5 m2 ha-1 for riparian 

intermittent and 11.8 m2 ha-1 for floodplain intermittent sites). However the basal area 

was not a statistically significant different between landscape positions due to high 

variability (ANOVA; F= 2.1, p = 0.08). Tree densities were similar across the sites, 

ranging from 475 to 575 stems ha-1. 

 

Long-term changes in stem diameter of E. camaldulensis indicated seasonal variation in 

hydrological state and growth among trees in the different landscape positions (Figure 3). 

There was little stem diameter increase for trees at all locations in the late autumn and 

summer period, with trees at the intermittent stream site showing negative growth at this 
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time.  Stem growth rates increased for all trees in the late autumn summer period (Figure 

3), corresponding to a drop in daily maximum temperature and vapour pressure deficit 

(Figure 2). There was a significant difference in annual growth rates during the study 

period for trees in the different landscape positions (F = 10.3, p = 0.004). Riparian trees 

on the perennial section of Maules Creek had the highest growth rates (8.4 ± 1.7 mm yr-

1), followed by trees on the adjacent floodplain (4.1 ± 1.1 mm yr-1). At the upstream site 

where stream flow is intermittent, annual stem growth rates were significantly less, 0.12 

± 0.9 mm yr-1 for riparian and -0.02 ± 1.4 mm yr-1 for floodplain trees (Figure 3).  

 

The annual growth rate accorded with average depth to groundwater at each site, so that 

perennial stream sites with shallower depth to groundwater (2 to 7 m) had more rapid 

growth than trees at the intermittent stream sites (Figure 2b and Figure 3). There was a 

reduction in girth of floodplain intermittent trees where depth to groundwater was much 

greater (~14 m depth) than other sites (Figure 2b). There was a general reduction in 

growth rates in April, which was the driest month during the study (22mm rainfall), but 

monthly growth rates of trees at different landscape positions were still significantly 

different (F = 5.17, p = 0.03).  Stem increments for April in riparian trees on the perennial 

stream were 0.94 mm month-1 which were significantly higher that floodplain trees (0.24 

mm month-1), which were in turn greater than trees at the intermittent stream riparian 

(0.05 mm month-1) and floodplain (0.09 mm month-1) sites. However, trees at the 

floodplain intermittent site showed some recovery in stem diameter in the latter stages of 

the study when there was above-average rainfall in the area of Maules Creek, suggesting 

dependence of the trees on rainfall recharge of soil water (Figure 3). During the wettest 
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month (September, 117 mm of rain), stem increment growth was positive for trees at all 

site. However there continued to be a significant difference between sites (F = 18.1, p = 

0.006), with riparian trees on the perennial stream (2.44 mm month-1) greater than the 

floodplain trees (1.03 mm month-1) and in turn greater than trees at the intermittent 

stream riparian (0.18 mm month-1) and floodplain (0.53 mm month-1) sites. There was a 

significant difference in stem increment between the driest and wettest months for all 

landscape positions (F = 22.7, p = 0.002). 

 

Trees in the riparian and floodplain perennial sites had greater responses to a large 

rainfall event than for trees at the intermittent stream sites, in terms of the rate, size and 

duration of the stem increment (Table 1). During a sustained rainfall period, perennial 

stream riparian trees showed the least variation in response to rainfall compared with 

trees at the other locations. In contrast during a sustained period of no rainfall, trees at the 

perennial riparian site showed a lower rate of decline (drought slope) in stem diameter 

than trees at the other sites (Table 1). These differences in stem diameter responses are 

also evident when considering diel traces for trees in each landscape position during a 

period immediately before and after a rainfall event (Figure 4a, b). Diel traces indicated 

that all trees responded to a large rainfall event in early November 2015, with a step 

increase in stem increment that was maintained for some days (Figure 4 a, b, Table 1). In 

contrast, during an extended dry period (38 days of no rain) diel traces showed a much-

reduced amplitude of the stem increment changes for all trees (reflected in the order of 

magnitude reduction in y axis scale in Figure 4c, d). This emphasizes the large 

differences in diel stem increment changes between the wet and dry periods. During this 
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dry period trees at all sites still maintained a regular diel cycle of expansion and 

contraction of their stems. Trees at the perennial stream sites showed greater variability in 

stem increment over a 24 h cycle as trees transpired during day and rehydrated at night 

(Figure 4c, d). In contrast, trees at the intermittent stream sites had flatter traces 

indicating, particularly for the floodplain trees, transpiration and stem recovery was 

restricted by reduced access to water.   

 

Soil moisture at 100 cm soil depth was highest during June 2016 for all sites, after 

substantial rains during the month preceding sampling.  Soil moisture was highest in June 

ranging from 10.2 ± 1.7% at the riparian perennial stream landscape position, 9.6 ± 3.4% 

in floodplain perennial stream site, 7.5 ± 1.5% at the riparian intermittent site and 8.8 ± 

3.3% at the floodplain intermittent site.  The lowest soil moisture for all sites occurred in 

March 2016 after a sustained dry, hot period of 36 days of no rainfall and maximum 

temperatures above 34°C (mean 36.5°C) and varied across sites from 5.6 ± 0.2% at the 

riparian perennial stream site, 5.2 ± 0.4% in floodplain perennial stream site, 4.2 ± 1.1% 

at the riparian intermittent site and 3.9 ± 0.5% at the floodplain intermittent site. 

 

Water source partitioning  

Water isotope values for xylem, soil and groundwater showed variability across sites and 

sample times (Figure 5). For all landscape positions, xylem water isotope values were 

most similar to groundwater and deep soil water in October 2015 when rainfall for the 

previous two months had been well below average.  δ2H and δ18O values for xylem water 

were very different than groundwater for samples taken in March 2016 during a time of 
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extended dry, hot conditions (Figure 5). Isotope values of soil water and xylem water 

showed similar trends, for the different landscape positions and sampling times, although 

the seasonal changes in soil water isotope values were smaller (Figure 5c, d). There was a 

strong evaporative signal for xylem and soil water isotope values at all sites (Figure 5). In 

October, after the driest part of the year, trees on both floodplain and intermittent riparian 

sites have isotope values close to groundwater and may have relied more on this source at 

this time of year (Figure 5). Trees at the perennial riparian site are also close to isotope 

values of the soil water but less enriched. This may indicate that they are using 

groundwater and fractionated against deuterium. Isotope samples for the March sampling 

time are highly enriched indicating possible extreme evaporation effects.  Weather 

conditions during these days were extreme with hot dry conditions with maximum 

temperatures > 40°C and relative humidity < 20%. There were also some variability in 

the values of δ2H and δ18O for xylem water and the different water sources. For example, 

the δ2H values show more overlap between xylem water and groundwater values. In 

contrast the δ18O values show a clear difference of several per mil between xylem water 

and groundwater (Figure 5). 

 

For all sampling times the lc-excess* values of groundwater are near zero and therefore 

show close affinity with rainfall values (LMWL) and are therefore are not affected by 

evaporation. In contrast, the lc-excess* values for soil and plant xylem water were 

distinct from groundwater at all sites and sampling times (all ANOVA; F >8.6, p < 0.03; 

Figure 6). This was particularly apparent during the dry period of the March sampling 

time. These soil and plant xylem water lc-excess* patterns indicate that the variability of 
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soil water isotopic composition during the wet and the dry period, respectively can be 

related to the variability in xylem water composition. The lc-excess* values for xylem 

and soil were most similar to groundwater values during the October sampling time at the 

riparian perennial site (ANOVA; F = 8.6, p = 0.03) and to a lesser extent the riparian 

intermittent site (ANOVA; F = 12.2, p = 0.009; Figure 6). 

 

Comparing xylem water δ18O and δ2H values with maximum daily stem expansion at 

each sampling time showed the relationship of tree hydration with tree water isotope 

values. Seasonal changes in water source availability that produced enriched δ18O values 

of the xylem water were generally accompanied by higher maximum stem expansion 

values for all landscape positions (Figure 7). This figure also shows that trees at the 

perennial site in both landscape positions grew more and to some extent used all available 

source waters. The broad range of δ2H values indicate large fractionation due most likely 

to strong evaporative effects.  The δ18O values therefore appear more reliable in tracing 

tree water sources and the relationship with tree daily stem increments (Figure 7). 

 

For all landscape positions daily maximum stem expansion showed highest values in the 

wettest part of the year (June) and lowest values in the dry period (March).  Trees at the 

riparian perennial stream landscape position showed the highest stem expansion across 

all dates, even during the driest period (March) than the other landscape positions (Figure 

7). For all landscape positions, xylem water δ18O values were more enriched in March 

than at the other sampling times and maximum diel stem expansion was greater in June 

and at the perennial stream sites compared with intermittent stream sites. For the October 
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and June sampling times there was a significant correlation between stem increment and 

xylem water δ18O values for perennial (r = 0.522, p < 0.5) and intermittent stream sites (r 

= 0.639, p < 0.05).  This indicated that δ18O values became more enriched as maximum 

daily stem increment was larger (indicating greater hydration).  

 

 

4 DISCUSSION 

 

This study provides new insights into groundwater dependence of trees growing in 

riparian and floodplain sites with different patterns of groundwater availability and 

stream perenniality. Phreatophytic E. camaldulensis used groundwater opportunistically 

throughout the different seasons, particularly when soil water stores were depleted at the 

end of the dry season, irrespective of their landscape position.  The relative importance of 

groundwater as a plant water source, increased when soil water stores were depleted at 

the end of the dry season. Isotope values (omitting values for the March sampling time) 

somewhat support the idea these trees use a greater proportion of groundwater. As would 

be expected, stream perenniality would seem to define sites that have shallow 

groundwater. Our results also suggest that surface expression of groundwater (i.e. 

perenniality of groundwater-sourced baseflow) is a likely indicator of riparian and 

floodplain tree groundwater use, provided water tables are accessible. However, trees 

may undergo more frequent periods of water deficit stress and reduced productivity in 

scenarios where water table accessibility is reduced, such as drawdown from groundwater 

pumping activities or periods of reduced rainfall recharge. Similar conclusions were 
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made for studies of E. camaldulensis trees growing in various landscapes in eastern 

Australia where groundwater access influences the growth and distribution of this species 

(Lamontagne et al., 2005; Mensforth, Thorburn, Tyerman & Walker, 1994; Smith et al., 

2017; Thorburn & Walker, 1994). Our analysis provides an approach to quantify the 

effects of spatial and temporal and variation in groundwater availability using readily 

available biomonitoring data.   

 

Although stable isotope analysis is a powerful tool in ecological studies, of itself it is 

frequently not enough to disentangle complex ecological interactions (Fry, 2013).  Here 

we have used a combination of techniques to understand water resource partitioning by 

riparian and floodplain trees. Considered together, the stem diameter and stable isotope 

data provides evidence of what water these E. camaldulensis trees as sourcing to fulfil 

their water requirements. The degree of groundwater use varied between locations and 

times of year and for individual trees.  Riparian trees at the downstream site, with shallow 

groundwater, had greater growth rates, larger diel responses in stem diameter and were 

less reactive to rainfall and extended periods of no rainfall. At the upstream site where the 

stream was intermittent with deeper, fluctuating groundwater sources, trees had lower 

growth, smaller diel responses and were more reactive to climate. This was evidenced by 

trees at the upstream sites having increased stem increment response in the latter part of 

the study period when rainfall and soil moisture increased, suggesting water was the main 

limiting factor to growth and access to groundwater was limited. We therefore suggest 

that access to groundwater is likely to be a major factor in lower growth rates of trees at 
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the upstream site, given that the rainfall, soils, geomorphic and landscape conditions are 

similar for the different sites.		

	

While stable isotope analysis of plant water sources was highly variable between 

landscape positions and sampling times, it does suggest that trees access groundwater as a 

water source and that the relative importance of groundwater is variable over time and 

space. It is generally suggested that many tree species are facultative with respect to the 

use of groundwater, i.e. individual plants that access groundwater develop a degree of 

dependence.  Therefore, phreatophytic behaviour may be more related to the prevailing 

environmental conditions than to the capabilities of a given plant species or type 

(Thomas, 2014).  In addition, phreatophytic trees are likely to maximize the exploitation 

of the environmental resources by using the topsoil water during most of the year and 

groundwater in the dry summer (David et al., 2013). While groundwater may constitute a 

small proportion of water use in facultative phreatophytes such as the trees at the 

upstream sites in this study, it is probably still important for their long-term survival. 

Some trees may only revert to groundwater use during drought periods, when all other 

sources are unavailable (Dawson & Pate 1996; Mensforth et al., 1994; Zencich, Froend, 

Turner & Gailitis, 2002). Dimorphic root distribution is therefore advantageous for this 

strategy to work for E. camaldulensis (Gibson, Bachelard & Hubick, 1994; Thorburn & 

Walker, 1994) and other eucalypts (Dawson & Pate, 1996), as well as oaks (Quercus 

robur; Pinto et al., 2014) and poplars (Populus sp.; Snyder & Williams, 2000). 

Groundwater depth thresholds have been identified for E. camaldulensis in the range 

from 12.1 m to 22.6 m, beyond which canopy condition declines (Kath et al., 2014). Our 
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study tree the river red gum (E. camaldulensis) occurs throughout the temperature, sub-

tropical and semi-arid regions of Australia and have developed a range of adaptations to 

cope with droughts and floods and in particular the root system of river red gums allows 

this species to switch between water sources depending on availability (Mensforth et al., 

1994). 

 

Our water isotope results showed a lack of an evaporative signature of both groundwater 

and streams at the study sites. This suggests that rainfall water is transported quickly to 

deeper subsurface storage in the groundwater (Evaristo et al., 2016) and water that 

evaporates from the permanent stream pools is quickly replenished by groundwater. In 

contrast, across all sites stable isotope data for tree xylem and soil water showed strong 

evaporative signals and are evaporatively enriched relative to the sampled source waters. 

This was particularly apparent for the March 2016 samples with the xylem water samples 

very different than the soil water and groundwater isotope values, which suggests a non-

soil profile water source. However this may be soil water from a much earlier rainfall 

event that is tightly bound within the soil matrix and is taken up in the xylem during hot 

dry summer periods when other water is not available (Brooks et al., 2010). Also there 

appears to be some inconsistency in the hydrogen and oxygen water isotope data, with 

the hydrogen isotope data showing strong overlap between xylem water and groundwater 

values, but this is inconsistent for oxygen. The hydrogen isotopic may be a poor tracer of 

water sources to plants because of its relatively higher energy state and tendency to 

fractionate (Singer et al. 2014), with evidence for deuterium fractionation in a wide 

variety of tree species (Evaristo et al., 2017). This suggests that the δ18O data can be more 
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reliable for water source tracing for these trees. The use of δ18O analysis of cellulose 

within tree-rings is commonly used for annual and longer-term (decadal) studies of tree 

water use (Sargent & Singer, 2016). 

 

Stem increment measures combined with stable isotope analysis provide some evidence 

of links to groundwater for trees in the riparian area at the site of a perennial pool, as well 

for trees on the nearby floodplain where groundwater is deeper (5-7 m). At the sites 

further up the catchment where stream flow and shallow groundwater are seasonally 

intermittent, trees may access groundwater periodically when there is little rainfall and 

groundwater levels are at their lowest. For all landscape positions, xylem water isotope 

values were most similar to groundwater and deep soil water in October but very 

different for samples taken in March, at a time of extended dry hot conditions and 

fractionation is high due to high evaporation rates. Other studies have shown the 

opportunistic changes of water sources in trees such as oaks (Quercus ilex) on a 

floodplain in south-west US where the isotope composition of xylem water tracked 

changes in the soil water during the first two months of drought, but began to depart from 

soil values after three months (del Castillo, Comas, Voltas & Ferrio, 2015). Other studies 

have shown a switch to greater dependence on groundwater by trees in the dry season 

(45-75%) for Populus euphratica in desert floodplains in China decreasing to 4–12% 

during the wet period (Yin et al., 2015), and in central Portugal groundwater uptake 

accounts for 73% of Q. suber needs during the dry summer period (Pinto et al., 2014).  
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Our results indicate the importance of both antecedent and current climate conditions 

(rainfall, temperature and vapour pressure deficit) for the hydrated state of the trees and 

the water sources they use. Climatic and hydrologic shifts alter water distribution to 

riparian trees and are influenced by annual (wet versus dry years) and seasonal 

hydrologic conditions (Singer et al., 2014). Following periods of abundant rainfall and 

stream flow, the trees are well-hydrated and drawing water predominately from the 

unsaturated soil profile. Annual rainfall over the study period was 21% above the long-

term average (620 mm) for the Maules Creek area.  However, this rainfall varied across 

the study period with the late summer-early autumn period (February to April) below 

average and June to September was 214% above the long-term average for these months. 

Reduced water availability was likely responsible for the stem shrinking and negative 

growth observed at the intermittent stream sites during the extended dry period in 

summer. Timing and magnitude of daily variations in stem size are mainly determined by 

transpiration and soil water content (Kozlowski, 1976; Zweifel, Zimmermann, Zeugin & 

Newbery, 2006). If water available to the trees is not sufficient to replenish the stem, then 

recovery will be limited and positive stem increments are unlikely to occur (Vieira, 

Rossi, Campelo, Freitas & Nabais, 2013). As a consequence, the stem would 

progressively contract over period of low water availability. In contrast, at the perennial 

stream site where a shallow water table is accessible, trees were not water-limited and 

able to maintain positive stem increments and therefore adequate recovery and growth 

during the dry summer period. This was further supported by significant daytime 

contraction (transpiration) and night-time expansion (recovery) diel patterns of tree trunk 

movements. During the dry part of the year trees which are not accessing groundwater 
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the recovery phase is not likely to be sufficient to replenish the water from the stem lost 

during the day, and stem shrinkage observed as negative growth (Vierra et al., 2013). 

Near-stream riparian trees are also likely influenced by hyporheic water flow via the 

stream (Singer et al., 2013), while the interior floodplain trees are reliant on rainfall 

derived soil water, in the absence of groundwater access.  

 

Over longer time periods, high resolution measurements of stem diameter variation 

recorded by logged dendrometers can also provide valuable information on the growth of 

trees. In this study stem diameter growth appeared to increase in the period when daily 

maximum temperature and vapour pressure deficit were lower, that is, in winter and early 

spring. This suggests that transpirational demand is lower (Kozlowski, 1976) and tree 

water status is higher at this time, and that trees are able to recover quickly from water 

loss and stem radial increments are possible (Viera et al., 2013).  On the other hand, as 

we observed in this study, unless trees have access to groundwater during summer, low 

rainfall, high temperatures and high vapour pressure deficits will likely lead to tree stems 

cycling through contraction through water loss and recovery with no or negative stem 

increments.  

 

5 CONCLUSION  

 

Our study indicates that where groundwater is shallow and therefore readily accessible, 

riparian and floodplain trees will have higher growth rates even in dry summer periods.  

In contrast, riparian and floodplain trees growing were groundwater is deeper have 
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reduced growth, particularly in the drier periods and are therefore highly dependent on 

rainfall. However, the water isotope analysis suggests that trees are likely drawing from 

the groundwater at some period during the year. This intermittent use of groundwater will 

improve the likelihood of survival of trees during drought periods for this drought 

avoider species (Canadell & Zedler, 1995). Therefore, all trees in each landscape position 

may be dependent on groundwater to some extent at particular times of the year. Stream 

perenniality, on the other hand, is likely to indicate riparian tree dependence on 

groundwater only in so far as being an indicator of groundwater depth. 

 

The capability of mature trees to adapt to declining water tables will depend on the rate of 

groundwater decline so that if the decline in groundwater level is greater than the growth 

rate of deep roots, transpiration and therefore growth of trees will decrease dramatically 

(Luo & Sophocleous, 2010; Soylu, Istanbiulluoglu, Lenters & Wang, 2011). Root 

redistribution may afford tolerance to short-term drawdown in water tables but protracted 

and rapid groundwater declines are known to result in phreatophytes experiencing water 

deficit stress and mortality (Barron et al., 2014; Froend & Sommer 2010; Shafroth, 

Stromberg & Patten, 2002), and reduces vegetation resilience (Sommer & Froend, 2011). 

Understanding the dependence on groundwater relative to other sources of water is 

important in differentiating tree responses to changes in groundwater availability.  

Therefore, to assess potential groundwater use by plant communities we suggest that 

ideally sources of tree water must be assessed over several different seasons and years.  

Clearly this is rarely practical for environmental impact assessments and a possible 

compromise is to substitute space for time, so that assessment of groundwater use by 
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trees can be done at different locations with a gradient of groundwater depths. However, 

if the trajectory of environmental change is faster than vegetation adaptability, plants are 

likely to have physiological limits to how quickly root extension can keep pace with rapid 

groundwater drawdown through extraction (Zencich et al., 2002). Our study has 

demonstrated that we can use these methods to develop models that allow the estimation 

of relationships between groundwater depth and vegetation resilience in response to 

changing impacts on groundwater resources.  
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Table	1:	Average	stem	diameter	increment	responses	(±	SE)	of	Eucalyptus	camaldulensis	in	
each	landscape	position	at	Maules	Creek,	New	South	Wales,	Australia	to:	high	rainfall	event	
(2-5	November	2015;	response	slope,	response	maximum,	period	of	response	and	decline	
slope),	a	period	of	sustained	rainfall	(17	December	2015	to	4	February	2016;	standard	
deviation	for	rainfall	period)	and	a	sustained	period	of	no	rainfall	(12	February	to	31	March	
2016).		
	 High	rainfall	event	 Frequent	rainfall	 Dry	period	
Stream	site	 Response	

slope	
Response	
max.	

(mm/day)	

Period	of	
response	
(days)	

Decline	slope	 SD	for	rain	period	 Drought	slope	

Perennial	stream	 	 	 	 	 	
Riparian		 0.09	±0.03	 0.85	±0.18	 18	 -0.03	±0.01	 0.18	±0.07	 0.0003	±0.0002	
Floodplain		 0.26	±0.06	 1.40	±0.34	 16	 -0.12	±0.04	 0.28	±0.11	 -0.0058	±0.004	
Intermittent	stream	 	 	 	 	 	
Riparian	 0.06	±0.04	 0.33	±0.21	 9	 -0.05	±0.02	 0.25	±0.02	 -0.022	±0.01	
Floodplain		 0.05	±0.01	 0.39	±0.11	 10	 -0.08	±0.03	 0.27	±0.09	 -0.034	±0.04	
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Figure	1.	Location	of	the	study	sites	on	Maules	Creek,	a	tributary	of	the	Namoi	River	in	
northern	New	South	Wales,	Australia.	
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Figure	2.		a)	Monthly	rainfall	recorded	during	the	study	period	(dark	bars)	and	long	term	
average	monthly	rainfall	(light	bars),	for	Narrabri,	NSW	b)	Groundwater	depth	from	
groundwater	bores	located	near	each	landscape	position.	c)	Maximum	daily	temperature	
and	vapour	pressure	deficit	(VPD)	before	and	during	the	study	period	(October	2015	to	
September	2016).		Rainfall	and	temperature	data	obtained	from	Australian	Government	
Bureau	of	Meteorology	(2017),	groundwater	data	from	M.	Andersen	(UNSW).	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 41	

		
Figure	3.	Daily	rainfall	(bars)	and	mean	stem	diameter	(lines)	of	Eucalyptus	camaldulensis	
trees	(n	=	3)	in	different	landscape	positions	at	Maules	Creek,	New	South	Wales,	Australia.				
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Figure	4.	Diel	stem	diameter	responses	of	Eucalyptus	camaldulensis	trees	in	the	different	
landscape	positions	at	Maules	Creek,	New	South	Wales,	Australia	to	a	heavy	rainfall	event	of	
36	mm	rain	over	48	h	a)	Riparian	perennial	and	intermittent	trees	and	b)	Floodplain	
perennial	stream	and	intermittent	stream	trees.	And	response	to	a	sustained	period	of	no	
rainfall	(38	days	of	no	rain)	for;	c)	Riparian	perennial	stream	and	intermittent	stream	trees	
and;	d)	Floodplain	perennial	stream	and	intermittent	stream	trees.	Note	the	order	of	
magnitude	difference	in	vertical	scales	(stem	increment)	for	figures	a	&	b	(rainfall	event)	
compared	to	figures	c	&	d	(drought	period).	
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Figure	5.	Biplots	of	water	stable	isotope	(SI)	composition	(δ18O	and	δ2H)	from	water	in	
Eucalyptus	camaldulensis	xylem	and	soil	water	from	Maules	Creek,	New	South	Wales,	
Australia:	a)	Riparian	perennial	stream	site,	b)	Floodplain	perennial	stream	site,	c)	Riparian	
intermittent	stream	site	and	d)	Floodplain	intermittent	stream	site.	Dotted	line	indicates	the	
local	meteorological	water	line	(LMWL)	of	best	fit	(y	=	8.436x	+	14.546,	r²	=	0.9906)	for	
rainfall	isotope	values	in	the	area	(taken	from	Andersen	et	al.,	2008).	Isotope	values	for	
xylem	water	are	a	mean	of	3	samples	from	3	trees	at	each	site	for	each	sampling	time.	Soil	
samples	are	means	of	3	samples	for	each	soil	depth	(cm)	and	each	sampling	time.		
Groundwater	samples	are	of	3	monitoring	bores	at	the	study	sites.			
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Figure	6.	Comparison	of	line-conditioned	excess	values	for	xylem,	soil	and	groundwater	at	
each	landscape	position	and	for	each	of	the	sampling	time.	The	lc-excess*	values	which	are	
close	to	zero	are	similar	to	rainfall	isotope	values	and	have	not	been	affected	by	high	rates	
of	isotopic	fractionation	due	to	evaporation.	
	
	

	
Figure	7.	Comparison	of	mean	(±	SE)	daily	maximum	stem	diameter	expansion	compared	
to	δ180	and	δ2H	values	of	xylem	water	for	Eucalyptus	camaldulensis	trees	(n	=	3)	in	the	
different	landscape	positions,	at	Maules	Creek,	New	South	Wales,	Australia.		Shaded	bars	are	
the	range	of	isotope	values	for	groundwater.	
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