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Type 2 Diabetes Mellitus: Integrative Analysis
of Multiomics Data for Biomarker Discovery

Siqi Ge,1,2 Youxin Wang,1,2 Manshu Song,1,2 Xingang Li,2 Xinwei Yu,1,2

Hao Wang,1,2 Jing Wang,3 Qiang Zeng,4 and Wei Wang1,2

Abstract

Increased fasting plasma glucose (FPG) is an independent risk factor for type 2 diabetes mellitus (T2DM). The
development of systems biology technologies for integration of multiomics data is crucial for predicting increased
FPG levels. In this case–control study, immunoglobulin (Ig) G glycosylation profiling and genome-wide asso-
ciation analyses were performed on 511 participants, and among them 76 had increased FPG (aged 47.6 – 6.14
years), and 435 had decreased or fluctuant FPG (aged 47.9 – 6.08 years). We identified nine single nucleotide
polymorphisms (SNPs) in five genes (RPL7AP27, SNX30, SLC39A12, BACE2, and IGFL2) that were significantly
associated with increased FPG (odds ratios 1.937–2.393). Moreover, of the 24 glycan peaks (GPs), GPs 3, 8, and
11 presented positive trends with increased FPG levels, whereas GPs 4 and 14 presented negative trends. A
significant improvement of predictive power was observed when adding 24 IgG GPs to 9 SNPs with the area
under the curve increased from 0.75 to 0.81. This report shows that the combination of candidate SNPs with IgG
glycomics offers biomarker potentials for T2DM. The substantial predictive power obtained from integrating
genomics and glycomics biomarkers suggests the feasibility of applying such multiomics strategies to enable
predictive, preventive, and personalized medicine for T2DM.

Keywords: T2DM, multiomics, genome-wide association study, IgG glycosylation, biomarker discovery,
predictive models

Introduction

Type 2 diabetes mellitus (T2DM) has been identified as
a major international health challenge which has a great

worldwide impact on morbidity, premature mortality, and
economic burden (DeFronzo et al., 2015; Ginter and Simko,
2012). It is a multifactorial disease with a strong genetic
component as well as environmental factors contributing to its
pathogenesis (Ding et al., 2015). Studies have shown that el-
evated fasting plasma glucose (FPG) level is an independent
risk factor for T2DM development (Mozaffary et al., 2016).
Moreover, the longitudinal changes of FPG level are stronger
predictors of T2DM development than the measure of cross-
sectional level of FPG (Liu et al., 2014).

In the past decade, genetic association studies and fam-
ily linkage analysis, and genome-wide association studies
(GWASs) have facilitated the identification of genetic sus-
ceptibility for FPG (Manolio, 2010). To date, 39 susceptible
loci associated with the increased level of FPG have been
identified in different populations (Dupuis et al., 2010; Man-

ning et al., 2012). However, the most reported variants capture
only 10% of familial aggregation of the disease susceptibility
(Morris et al., 2012). The unexplained genetic variance of
increased FPG level remains far from clear. Meanwhile, few of
the single nucleotide polymorphisms (SNPs) identified in
GWAS have clear functional implications that are relevant to
pathogenesis of T2DM and its clinical process (Hindorff et al.,
2009; Manolio, 2010).

Therefore, understanding the substantial roles of these can-
didate SNPs and their functions involved in T2DM develop-
ment from the perspectives of posttranscriptional modifications
(such as glycomics) is of vital importance for translational re-
search on T2DM.

Glycosylation of proteins is one of the most common post-
translational modifications (Cummings and Pierce, 2014;
Wang et al., 2016b). Unlike proteins, glycan biosynthesis does
not require a template directly; rather, the structure and func-
tion of glycans could be influenced by changing environmental
conditions, aging, and the presence of disease (Russell et al.,
2017; Wang et al., 2016a; Yu et al., 2016). These features
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provide glycans the potential to serve as dynamic biomarkers in
complex disease such as T2DM (Adua et al., 2017; Russell
et al., 2018). Immunoglobulin (Ig) is a cluster of glycoproteins
with antibody activity (including IgA, IgD, IgE, IgG, and IgM),
accounting for *20% of plasma proteins. IgG is the most
abundant (>80%), the major antibody in the secondary humoral
response of immunity ( Junqueira et al., 1998).

The glycosylation of IgG is particularly interesting, as N-
glycans attached to the fragment crystallizable part of IgG can
modulate and switch its function from pro- to anti-inflammatory
and vice versa (Anthony et al., 2008; Gornik et al., 2012). To
date, the levels and structures of IgG glycosylation have been
found associated with the incidence and development of many
inflammatory diseases and processes, such as aging, hyperten-
sion, inflammatory bowel disease, Parkinson’s disease, and
systemic lupus erythematosus (Russell et al., 2017; Trbojevic
Akmacic et al., 2015; Vuckovic et al., 2015; Wang et al., 2016a;
Yu et al., 2016).

Our previous studies have found that specific N-glycan
structural features were significantly correlated with FPG
level (Lu et al., 2011). Moreover, certain patterns of change
in IgG glycans were found with FPG level, hinting the sig-
nificant role of IgG glycans in T2DM pathophysiology (Ke-
ser et al., 2017; Lemmers et al., 2017). However, these
studies only evidenced the correlations between IgG glycans
and increased FPG levels, and could not reflect whether these
are reactive processes or causative ones.

The combination of different omics is referred to as multiple
omics, multiomics, or integrated omics (Hasin et al., 2017). As
compared with studies of a single omics type, multiomics of-
fers the opportunity to understand the flow of information that
underlies disease, for example, T2DM. Such attempt has been
made by Parks et al. (2013). By examining global gene ex-
pression in multiple tissues and metabolites in plasma, they
were able to identify pathways and genes contributing to diet-
induced obesity and diabetes in mice. In addition, tran-
scriptomics and protein–protein interaction data were used to
identify molecular and tissue-specific biomarker signatures of
T2DM (Calimlioglu et al., 2015). However, these studies have
limited generalization and application potential due to the
limitations of their study designs.

Thus, this study provides a rationale for an integrative anal-
ysis on genetics and glycomics at multiomics level to decipher
the pathogenesis of T2DM and to identify molecular patterns
associated with increased FPG level. We hypothesized that the
adding of glycomic profiling to genetic genotyping would fur-
ther explain the process of T2DM from multiple prospective,
including genetic risk, and environmental conditions. Conse-
quently, the combination of glycomic and genetic biomarkers
will improve the predictive ability for T2DM and the increase of
FPG level. In this study, we combined the IgG glycome with
GWAS, and investigated the potential glycosylation patterns of
IgG and candidate genes that lead to increased FPG levels
among Chinese populations. We also compared the predictive
power of candidate genes and IgG glycans individually and
conjunctively for increased FPG level.

Materials and Methods

Study design and participants

This was a community-based case–control study, performed
on a representative sample of an urban population of Beijing,

China. Participants were recruited from Beijing XuanWu com-
munity, who had completed three health checkups and ques-
tionnaire surveys in years 2012, 2013, and 2014. Adults (aged
>18 years) with negative history of diabetes who had completed
information from health checkups were eligible for inclusion.
We excluded individuals diagnosed with diabetes before or
during health checkups, and those with documented diabetes,
pregnant women, and individuals taking medications during or
3 months before the recruitment.

A total of 511 participants were eligible for this study, with a
mean age of 47.9 (25–73) years, comprising 159 males
(31.1%) and 352 females (68.9%). This study was approved by
the Ethics Committees of Capital Medical University, Beijing,
China and Edith Cowan University, Perth, Australia. Each
participant included in this study signed informed consent.

Key variables

Phenotype grouping. Taking the advantage of the longi-
tudinal design of this study, instead of dividing the participants
into diabetic/nondiabetic groups, we used the changes in FPG
levels as the categorical reference, an independent risk factor
with potential predictive and preventive application for T2DM
(Mozaffary et al., 2016). Consequently, of 511 participants
with longitudinal follow-ups, 76 had increased FPG levels
(increased FPG group), and 435 had decreased or fluctuant
FPG levels (no increased FPG group) over a period of 3 years.

Genome-wide genotyping and quality control. The gen-
otyping procedures were conducted with Illumina Omni
Zhonghua chips (Illumina, Inc., San Diego, CA, USA). The
standard quality check (QC) procedures contained the fol-
lowing criteria: We excluded all the SNPs with an overall call
rate <97%, minor allele frequency <1%, Hardy–Weinberg
equilibrium p-value in control subjects <1.0 · 10-8. Finally,
we selected 69,485 eligible SNPs for further analyses (see
Supplementary Table).

IgG N-glycosylation. Glycan analysis was performed in
Genos Glycoscience Research laboratory in Zagreb. IgG N-
glycosylation analyses were conducted on all 511 participants.
IgG glycan isolation, release, and labeling were executed as
described previously (Yu et al., 2016).

Briefly, IgG was isolated from plasma using 96-well pro-
tein G monolithic plates, eluted with 0.1 M formic acid, and
neutralized with 1 M ammonium bicarbonate. Dried IgG
samples (150–200 lg) were denatured (with 30 lL sodium
dodecyl sulfate (SDS)), incubated at 65�C for 10 min, and
cooled to room temperature, followed by addition of 10 lL of
Igepal-CA630 (u = 4%). N-glycans were released with the
addition of 1.2 U of PNGase F in 10 lL 5 · phosphate-
buffered saline and incubation at 37�C for 18 h. Released N-
glycans were labeled with 2-AB.

The samples were cleaned using hydrophilic interaction
liquid chromatography solid phase extraction and stored at
-20�C until ultra-performance liquid chromatography
(UPLC). Finally, 24 IgG glycan peaks (GPs) were measured
by Waters Acquity UPLC instrument as described previously
(Pucic et al., 2011). All chromatograms were separated in the
same manner into 24 peaks, and the amount of glycans in
each peak was expressed as percentage of total integrated
area (see Supplementary Table).
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Covariates. We selected and measured the known T2DM
risk factors as covariates, including age, gender, systolic (SBP)
and diastolic (DBP) blood pressures, body mass index (BMI),
high-density lipoprotein cholesterol (HDL-C), low-density li-
poprotein cholesterol (LDL-C), and waist-to-hip ratio (WHR;
Wilson et al., 2007).

Statistical analyses

The distribution of the IgG GPs was tested for normality,
then the transformation which performed best normality was
used. Student’s t-tests and chi-square tests were applied to
test differences between two groups (increased FPG group vs.
no increased FPG group) for continuous and categorical
variables, respectively. Pearson’s correlation analyses were
applied to assess the correlations of clinical risk factors with
IgG GPs. A significant reference of p < 0.05 was applied.

Genome-wide associations were performed and adjusted
for age, gender, BMI, SBP, DBP, HDL-C, LDL-C, and WHR.
The mmscore function of the GenABEL package in R statistical
software (Aulchenko et al., 2007) was used for the association
test. An association was considered statistically significant at the
genome-wide level if the p-value for an individual SNP was
<5 · 10-5 (based on Bonferroni correction to account for mul-
tiple testing).

Heat-map analyses were performed using heatmap.2 func-
tion of the gplots package in R statistical software. Heat maps
were used for clustering correlations between significant SNPs
and IgG GPs.

The predictive assessment of SNPs and IgG glycans for
increased FPG level was performed using receiver operator
characteristic (ROC) analyses and the area under the curves
(AUCs) analyses. We fitted logistic regression models with
SPSS 23.0 (IBM Corp., New York, NY, USA) for the evaluation
and comparison of the AUCs between models containing SNPs,
IgG glycans, and both, with adjustment for above-mentioned
clinical covariates. All continuous variables were standardized
before they were included in the models for AUC calculation.

Results

Cohort characteristics

The characteristics of 511 participants, where 76 had in-
creased FPG level (aged 47.6 – 6.14 years), and 435 had
decreased or fluctuant FPG levels (aged 47.9 – 6.08 years), >3
years are shown in Table 1. No significant differences were
shown between these two groups in age, gender, BMI, SBP,
DBP, WHR, HDL-C, and LDL-C ( p > 0.05; Table 1).

FPG level associated with IgG N-glycosylation

In total, 24 IgG GPs were observed (Table 2). Correlations of
24 IgG GPs with increased FPG levels are shown in Table 2.
Five IgG GPs (GPs 3, 4, 8, 11, and 14) showed significant
associations with the increased FPG level. GPs 3, 8, and 11 were
found to present positive trends with increased FPG ( p-values
range from 0.003 to 0.014), whereas GPs 4 and 14 presented
negative trends of associations ( p-values 0.007–0.041).

GWAS analyses for increased FPG level

The distribution of p-values for the association of SNPs
with increased FPG levels is shown in Fig. 1. Consequently,
among the 69,485 eligible SNPs, 199 were found sig-
nificantly associated with increased FPG levels ( p < 0.001).
Nine of these SNPs (rs7686384, rs10739371, rs2153839,
rs10817396, rs2497753, rs9418383, rs4802289, rs2252576,
and rs2837981) located in five respective chromosomal regions
(4q35.2, 9q32, 10p12.33, 19q13.32, and 21q22.3) met the
predefined criteria, and showed strong signals with increased
FPG levels ( p-values 3.35 · 10-6–7.71 · 10-7) (Table 3). After
adjusting for age, gender, BMI, SBP, DBP, HDL-C, LDL-C,
and WHR, 9 SNPs showed significantly increased risk with
odds ratios (ORs) ranging from 1.937 to 2.393.

Heat-map analysis

By applying clustering heat-map analysis, we analyzed the
correlation between the 9 SNPs and 24 IgG GPs, and found
significant associations and explicit clustering patterns within
both SNPs and IgG GPs (Fig. 2).

The risk allele ‘‘A’’ of rs10739371, ‘‘G’’ of rs2153839,
and ‘‘A’’ of rs10817396 presented the same correlation pat-
terns with decreased galactosylated glycan structures (GPs
11, 12, 14, and 15) and increased agalactosylated glycan
structures (GPs 1 and 3–5) (Fig. 2). Rs2497753 and rs9418383
presented significant increased correlation with neutral diga-
lactosylated structure (GPs 14 and 15), and decreased corre-
lation with sialylated digalactosylated structure (Fig. 2). We
also found that two SNPs (rs2252576 and rs2837981) were
correlated with increase in neutral glycan structures (GPs 4
and 8) and decrease in sialylated glycan structures (GPs 16
and 20–22) (Fig. 2).

Area under the ROC curves for increased FPG level

In terms of predictive power for increased FPG level, the
mean AUC for the 9 SNPs without 24 IgG GPs was 0.75, and
the mean AUC for the 9 SNPs with 24 IgG GPs was increased
to 0.81. As shown in Table 4, adding the 24 IgG GPs to 9
SNPs resulted in significant improvement of AUC in all
models. Figure 3 shows the comparisons of ROC curves for

Table 1. Characteristics of Participants

With/Without Increased Fasting Plasma

Glucose Level at Baseline

Clinical factors
Increased FPGa

(n = 76)

Decreased or
fluctuant FPGa

(n = 435) p

Age 47.62 – 6.14 47.93 – 6.08 0.380
Gender

(male/female)
23/53 136/299 0.080

BMI 24.63 – 3.06 24.51 – 3.08 0.948
SBP 119.79 – 14.34 117.62 – 13.95 0.213
DBP 80.30 – 11.09 78.94 – 10.41 0.309
WHR 0.80 – 0.07 0.81 – 0.07 0.670
HDL-C 1.73 – 0.34 1.63 – 0.33 0.288
LDL-C 2.76 – 0.72 2.78 – 0.71 0.494

Unless stated otherwise, mean (–SD) are given.
aIndicating participants with increased FPG levels and partici-

pants with decreased or fluctuant FPG levels.
BMI, body mass index; DBP, diastolic blood pressure; FPG,

fasting plasma glucose; HDL-C, high-density lipoprotein cholester-
ol; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood
pressure; SD, standard deviation; WHR, waist-to-hip ratio.
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Table 2. Correlations of 24 Immunoglobulin G Glycan Peaks with Fasting Plasma Glucose Levels

Glycan Description Structure Increased FPG

GP1 The percentage of FA1 glycan in total IgG glycans NS

GP2 The percentage of A2 glycan in total IgG glycans NS

GP3 The percentage of A2B glycan in total IgG glycans [

GP4 The percentage of FA2 glycan in total IgG glycans Y

GP5 The percentage of M5 glycan in total IgG glycans NS

GP6 The percentage of FA2B glycan in total IgG glycans NS

GP7 The percentage of A2G1 glycan in total IgG glycans NS

GP8 The percentage of FA2[6]G1 glycan in total IgG glycans [

GP9 The percentage of FA2[3]G1 glycan in total IgG glycans NS

GP10 The percentage of FA2[6]BG1 glycan in total IgG glycans NS

GP11 The percentage of FA2[3]BG1 glycan in total IgG glycans [

GP12 The percentage of A2G2 glycan in total IgG glycans NS

GP13 The percentage of A2BG2 glycan in total IgG glycans NS

GP14 The percentage of FA2G2 glycan in total IgG glycans Y

GP15 The percentage of FA2BG2 glycan in total IgG glycans NS

GP16 The percentage of FA2G1S1 glycan in total IgG glycans NS

GP17 The percentage of A2G2S1 glycan in total IgG glycans NS

GP18 The percentage of FA2G2S1 glycan in total IgG glycans NS

GP19 The percentage of FA2BG2S1 glycan in total IgG glycans NS

GP20 The percentage of FA2FG2S1 glycan in total IgG glycans NS

GP21 The percentage of A2G2S2 glycan in total IgG glycans NS

GP22 The percentage of A2BG2S2 glycan in total IgG glycans NS

GP23 The percentage of FA2G2S2 glycan in total IgG glycans NS

GP24 The percentage of FA2BG2S2 glycan in total IgG glycans NS

[ indicated IgG glycan peaks were higher with the increase of FPG level, while Y indicated a negative correlation. NS, not significant.
Structure abbreviations: F, a-1,6-linked core fucose; A, number of antennas; B, bisecting GlcNac b1–4 linked to b1–3 mannose; M, number
of mannose residues; Gx, number of b1–4 linked galactoses; [3]G1, galactose on the antenna of the a1–3 linked mannose; [6]G1, galactose
on the antenna of the a1–6 linked mannose; S, sialic acid linked to galactose. Blue square, GlcNac; green circle, mannose; red triangle,
core fucose; yellow circle, galactose; purple rhomb, sialic acid.
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the predictive ability of the 9 SNPs with or without 24 IgG
GPs for increased FPG level.

Discussion

T2DM is a multifactorial disorder in which genetic, en-
vironmental, and metabolic influences interact at multiple
levels. The increase of FPG level is characterized not only as
one of the symptoms of T2DM but also as an independent risk
factor for T2DM development (Mozaffary et al., 2016). We
conducted GWAS and IgG glycosylation profiling on the 511
Chinese participants to investigate the association and pre-
dictive potential of candidate genes and IgG N-glycans for
increased FPG level.

We identified nine SNPs in five genetic loci (RPL7AP27,
SNX30, SLC39A12, BACE2, and IGFL2), which considerably

affect the increase of FPG level. Of the studied variants, the
SNP at 4q35.2 (rs7686384, with a p-value of 9.41 · 10-6 for
the association with increased FPG level) is located in the
gene of ribosomal protein L7a pseudogene 27 (RPL7AP27),
which has been identified as one of the obesity-related traits
(Comuzzie et al., 2012). The risk allele (A) for rs7686384 has
a prevalence of 24.3% in participants with increased FPG
level and an OR of 1.937, after adjusted for covariates (age,
gender, BMI, SBP, DBP, HDL-C, LDL-C, and WHR).

Elevated FPG and obesity are both recognized as main
features of metabolic syndrome, and the increase in the
prevalence of T2DM is closely linked to the upsurge in
obesity (Hossain et al., 2007). However, although T2DM and
obesity are highly interrelated from both epidemiological and
pathophysiological viewpoints, the shared genetic back-
ground by identifying common variants is limited (Grarup

FIG. 1. Signal-intensity plots showing the association of SNPs with increased FPG levels. The -log p-values are for the
association of each SNP with increase FPG levels. Only SNPs of sufficient quality are shown. FPG, fasting plasma glucose;
SNPs, single nucleotide polymorphisms.

Table 3. Genetic Biomarkers Associated with Increased Fasting Plasma Glucose Level

Chr. SNP rs#
Nonrisk/

risk allele

Frequency of risk allele

Adjusted OR
for risk allele (95% CI)b p Gene

Increased
FPGa (n = 76)

No increased
FPGa (n = 435)

4q35.2 rs7686384 A/G 0.2433 0.1424 1.937 (1.592–2.282) 9.41 · 10-06 RPL7AP27
9q32 rs10739371 G/A 0.2367 0.1365 1.961 (1.54–2.382) 8.05 · 10-06 SNX30
9q32 rs2153839 A/G 0.24 0.1383 1.968 (1.395–2.541) 6.48 · 10-06 SNX30
9q32 rs10817396 G/A 0.2416 0.1367 2.011 (1.234–2.788) 3.35 · 10-06 SNX30
10p12.33 rs2497753 A/G 0.1733 0.08382 2.292 (1.556–3.028) 1.39 · 10-06 SLC39A12
10p12.33 rs9418383 A/C 0.1633 0.07544 2.393 (1.957–2.829) 7.71 · 10-07 SLC39A12
19q13.32 rs4802289 G/A 0.1367 0.06243 2.377 (2.022–2.732) 5.46 · 10-06 CTCF
21q22.3 rs2252576 A/G 0.1667 0.0846 2.164 (1.712–2.616) 9.23 · 10-06 BACE2
21q22.3 rs2837981 G/A 0.1767 0.09043 2.158 (1.824–2.492) 5.96 · 10-06 BACE2

aIncreased FPG indicates participants with increased FPG level; no increased FPG indicates participants with decreased or fluctuant FPG level.
bAdjusted for age, gender, BMI, SBP, DBP, HDL-C, LDL-C, and WHR.
CI, confidence interval; OR, odds ratio; SNP, single nucleotide polymorphism.
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et al., 2014). Here, we found that the risk allele ‘‘A’’ of
rs7686384 is not only related with obesity but also positively
associate with increased FPG level ( p < 0.001), indicating
that gene RPL7AP27 (4q35.2) may have contributions in the
pathogenesis of T2DM and obesity.

Moreover, rs10739371, rs2153839, and rs10817396 were
located in the intron region of gene SNX30 (sorting nexin
family member 30) in 9q32. Gene SNX30 encodes sorting
nexin-30 protein, a member of sorting nexins, which are a
large group of proteins that are localized in the cytoplasm and
have the potential for membrane association through their
phospholipid-binding domain. The ability of these proteins to
bind specific phospholipids, as well as their propensity to form
protein–protein complexes, points to a role of these proteins in
membrane trafficking and protein sorting (Worby and Dixon,
2002). To date, no association has yet been found between
SNX30 and T2DM susceptibility or increased FPG level.

However, SNX30 has been found associated with age-
related hearing impairment and changes in SBP levels (Ed-
wards et al., 2014; Fransen et al., 2015). Our finding dem-
onstrated that the risk allele ‘‘A’’ of rs10739371, ‘‘G’’ of
rs2153839, and ‘‘A’’ of rs10817396 have effect on the in-
creased FPG level. In addition, the combined genetic-
glycomic analyses found that these three SNPs presented
same correlation patterns with decreased galactosylated
glycan structures (GPs 11, 12, 14, and 15) and increased
agalactosylated glycan structures (GPs 1 and 3–5) (Fig. 2).

Two SNPs (rs2497753 and rs9418383) in the intron region
of gene SLC39A12 at 10p12.33 (Solute Carrier Family 39
Member 12, also known as Zinc Transporter Member 12)
showed significant effect on increased FPG level, where the
risk allele ‘‘C’’ of rs9418383 had the highest OR of 2.393
among all SNPs (Table 3). SLC39A12 belongs to a subfamily
of proteins that show structural characteristics of zinc (Zn)
transporters. Zn is an essential cofactor for hundreds of en-
zymes. It is involved in protein, nucleic acid, glycans, and
lipid metabolism (Taylor and Nicholson, 2003). Zn is re-
quired for galactosyltransferase activity, but it has been
demonstrated that excess Zn, on the contrary, decreases ga-
lactosyltransferase activity (Permyakov et al., 1993).

Galactosyltransferase is an enzyme that adds galactose to N-
acetylglucosamine residues, and the posttranslational modifica-
tions of theb4-galactosyltransferase-1 may lead to the decrease of
galactosylation, which is associated with a proinflammatory state
of IgG (Dall’Olio et al., 2013). This overall proinflammatory state
of IgG was found associated with T2DM and biological aging
process (Gornik et al., 2012; Lu et al., 2011). Our results showed
that polymorphisms in SLC39A12 presented significant correla-
tion with both increased FPG level and IgG glycosylation
(Table 3, Fig. 2), indicating that polymorphisms in
SLC39A12 may have potential influences in mediating the
activity of b4-galactosyltransferase-1 through the expres-
sion of Zn transporters, and affect the FPG level eventually.

FIG. 2. Significant correlations between 24 IgG glycans and 9 SNPs. Heat map coding the standardized r-value in dark.
Cells with nonsignificant correlations are displayed in light. In total, 9 SNPs were clustered into 5 groups (A, B, C, D, and
E), while 24 GPs were grouped into 6 categories (a, b, c, d, e, and f). IgG, immunoglobulin G.

Table 4. Comparisons Between Area

Under the Curves for Increased Fasting

Plasma Glucose Level

Model

AUC
without
24 IgG
glycans

AUC
with

24 IgG
glycans p

No adjustment
Nine SNPs alone 0.740 0.805 0.0004*

Adjusted
For age, gender 0.747 0.809 0.0005*
For age, gender, BMI 0.757 0.814 0.0006*
For age, gender,

BMI, SBP, DBP,
WHR, HDL-C, LDL-C

0.763 0.823 0.0004*

*A p-value <0.05 was considered significant.
AUC, area under the curve.
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BACE2 (Beta-Site APP-Cleaving Enzyme 2, 21q22.3)
encodes an integral membrane glycoprotein that functions as
an aspartic protease, and this encoded protein cleaves amy-
loid precursor protein into amyloid beta peptide, which is a
critical step in the etiology of Alzheimer’s disease and Down
syndrome (Lange et al., 2015; Mok et al., 2014). It has been
reported that protein Bace2 is a b cell-enriched protease, and
the intake of Bace2 inhibitor displays augmented b cell mass
and improved control of glucose homeostasis due to in-
creased insulin levels in mice (Esterhazy et al., 2011).

Here, we found that two SNPs (rs2252576 and rs2837981)
in the intron region of BACE2 that had significant effect on
increased FPG level were correlated with increase in neutral
glycan structures (GPs 4 and 8) and decrease in sialylated
glycan structures (GPs 16 and 20–22) (Fig. 2). Sialylation
plays an important role in the inflammatory potential of IgG.
Addition of sialic acid to IgG would decrease its binding to

Fcc receptors, and converts the function from pro- to anti-
inflammatory (Kaneko et al., 2006). Based on the association
with increased FPG level and decreased sialylation in IgG
glycosylation, the polymorphisms in BACE2 may participate
in the inflammatory and immune pathway.

The risk allele ‘‘A’’ of rs4802289, located in the intron
region of gene IGFL2 (Insulin Growth Factor-Like Family
Member 2, 19q13.32), was also significantly associated with
increased FPG level. IGFL2 belongs to the insulin-like
growth factor (IGF) family of signaling molecules that play
critical roles in cellular energy metabolism and in growth and
development, especially prenatal growth (Emtage et al.,
2006). We also found that rs4802289 was correlated with the
decrease of sialylated glycan structures (GPs 21–24), which
would increase IgG binding to Fcc receptors and converts the
function of IgG from pro- to anti-inflammatory (Kaneko
et al., 2006).

FIG. 3. ROC curves for increased FPG level. The AUCs are shown for (A) crude model (no adjustment for covariates);
(B) adjusted for age and gender; (C) adjusted for age, gender, and BMI; and (D) adjusted for age, gender, BMI, SBP, DBP,
HDL-C, LDL-C, and WHR. AUC, area under the curve; BMI, body mass index; DBP, diastolic blood pressure; HDL-C,
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; ROC, receiver operator characteristic;
SBP, systolic blood pressure; WHR, waist-to-hip ratio.
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As expected, several SNPs identified from this study were
located in the introns of the related genes, and mechanisms for
these SNPs to regulate the expression of IgG N-glycosylation
remain unclear. However, in contrast to genomics and pro-
teomics, IgG N-glycosylation is a nontemplate-driven pro-
cess. As we have discussed, all of the identified genes
(RPL7AP27, SNX30, SLC39A12, BACE2, and IGFL2) are not
directly regulating the IgG glycosylation, but somehow in-
volved in the metabolic pathway of galactosylation, fucosy-
lation, or sialylation of IgG. With these biological roles of
glycosylation, these genes are shown to be strongly associated
with the relative proportions of IgG N-glycans. Under these
circumstances, further validation study on protein levels is
needed to reveal the underlying molecular mechanisms.

T2DM is characterized by a proinflammatory state and
elevated levels of inflammatory markers, such as C-reactive
protein and interleukin-6, that have been associated with
risk of developing T2DM (Wang et al., 2013). Evidence has
shown that plasma N-glycan and IgG N-glycan were cor-
related with T2DM in previous studies (Keser et al., 2017;
Lemmers et al., 2017). However, these researches were
based on the prevalence of T2DM or the cross-sectional
study on the level of FPG, which may limit the general-
ization and application of the glycomics markers to be
predictive biomarkers for T2DM or pre-T2DM.

We investigated the differences of 24 IgG GP levels among
the patients with increased FPG levels and patients with no
increased FPG levels. Consequently, GPs 3, 8, and 11 pre-
sented positive trends with increased FPG levels, whereas
GPs 4 and 14 showed negative trends of associations (Ta-
ble 2). Through the clustering heat-map analyses, we found a
clear interacting association between the 9 candidate SNPs
and 24 IgG GPs, with obvious clustering patterns.

Twenty-four IgG GPs were clustered into six groups, and
within each group same correlation patterns with genetic
markers were shown (Fig. 2), indicating the involvement of
genetic factor in the generation and function of IgG glyco-
sylation. Specifically, agalactosylated glycan structures (GPs
1–5), which is associated with a proinflammatory state of IgG
(Dall’Olio et al., 2013), were shown to have positive corre-
lations with most of the SNPs. Among the 24 GPs, GPs 21–24
are the GPs with two sialic acids linked to galactose residues
(Kaneko et al., 2006), which presented most negative asso-
ciative patterns with the SNPs (rs4802289, rs2252576, and
rs2837981).

In this study, we observed a significant improvement in
predicting the increase of FPG level when 24 IgG glycans
were added to the models with 9 SNPs in ROC analysis
(Table 4). Furthermore, significant improvements re-
mained to the same degree after adjusting for clinical
covariates (age, gender, BMI, SBP, DBP, HDL-C, LDL-C,
and WHR) in the ROC analysis (Fig. 3). The combination
of 9 SNPs and 24 IgG GPs provided a remarkable AUC of
0.823 in predicting the increase of FPG level, showing the
potential for the combination of genomics and glycomics
as a predictive biomarker of the complex inflammatory
pathophysiological changes in T2DM and increased FPG
levels.

Genomics is the most matured techniques of the omics
fields, where GWAS is a successful approach that has been
used to identify thousands of genetic variants associated with
complex diseases in multiple populations (GWAS catalog

https://www.ebi.ac.uk/gwas/home). Glycomics reflects the
genetic, environmental, and metabolic influences, and their
interaction at multiple levels, which makes glycans attrac-
tive biomarkers for multifactorial diseases (Hasin et al.,
2017). The strength of this study is the integration of ge-
nomics and glycomics to predict the increased FPG level,
which is considered as an independent risk factor for T2DM.

By combining genomics with glycomics, we obtained a
predictive biomarker for T2DM and FPG level. Moreover,
the addition of glycomic profiling to genetic genotyping re-
sulted in significant improvement of the predictive power for
the changes in FPG level. The integration of genomics and
glycomics could be recognized as a multidimensional inter-
action between internal and external risk factors, including
genetic background, age, gender, and genetic-environmental
interaction.

There are also limitations in this study. The validation is
going on in another independent cohort to further confirm our
predictive model constructed by genomics and glycomics
biomarkers for generic application in general population.

To conclude, we found significant associations of nine
genetic loci located in five genes (RPL7AP27, SNX30,
SLC39A12, BACE2, and IGFL2) with increased FPG level.
We also found that IgG GPs 3, 8, and 11 presented positive
trends with increased FPG level, whereas GPs 4 and 14
showed negative trends with increased FPG levels. The
predictive power of combined genetic and glycomic bio-
markers is substantial with an AUC of 0.823 for increased
FPG level. This study also implied the potential for the in-
tegration of genomics and glycomics as a biomarker of the
complex inflammatory pathophysiological changes in T2DM
development.

Acknowledgments

The authors thank all participants for their enrollment in
the study. This work was supported by Australia–China In-
ternational Collaborative Grant (NH&MRC-APP1112767-
NSFC81561128020) and National Natural Science Founda-
tion of China (Grant Nos. 81773527, 81273170, 81370083,
and 81573215). Y.W. was supported by Beijing Nova Pro-
gram (Grant No. Z141107001814058). S.G., X.Y., and H.W.
were supported by China Scholarship Council (CSC-2015,
CSC-2017).

Author Disclosure Statement

The authors declare that no conflicting financial interests
exist.

References

Adua E, Russell A, Roberts P, Wang Y, Song M, and Wang W.
(2017). Innovation analysis on postgenomic biomarkers:
Glycomics for chronic diseases. OMICS 21, 183–196.

Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN,
Paulson JC, and Ravetch JV. (2008). Recapitulation of IVIG
anti-inflammatory activity with a recombinant IgG Fc. Sci-
ence 320, 373–376.

Aulchenko YS, Ripke S, Isaacs A, and van Duijn CM. (2007).
GenABEL: An R library for genome-wide association anal-
ysis. Bioinformatics 23, 1294–1296.

Calimlioglu B, Karagoz K, Sevimoglu T, Kilic E, Gov E, and Arga
KY. (2015). Tissue-specific molecular biomarker signatures of

MULTIOMICS BIOMARKER DISCOVERY FOR T2DM 521

D
ow

nl
oa

de
d 

by
 E

di
th

 C
ow

an
 U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

23
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



type 2 diabetes: An integrative analysis of transcriptomics and
protein-protein interaction data. OMICS 19, 563–573.

Comuzzie AG, Cole SA, Laston SL, et al. (2012). Novel genetic
loci identified for the pathophysiology of childhood obesity in
the Hispanic population. PLoS One 7, e51954.

Cummings RD, and Pierce JM. (2014). The challenge and
promise of glycomics. Chem Biol 21, 1–15.

Dall’Olio F, Vanhooren V, Chen CC, Slagboom PE, Wuhrer M,
and Franceschi C. (2013). N-glycomic biomarkers of bio-
logical aging and longevity: A link with inflammaging.
Ageing Res Rev 12, 685–698.

DeFronzo RA, Ferrannini E, Groop L, et al. (2015). Type 2
diabetes mellitus. Nat Rev Dis Primers 1, 15019.

Ding D, Chong S, Jalaludin B, Comino E, and Bauman AE.
(2015). Risk factors of incident type 2-diabetes mellitus over
a 3-year follow-up: Results from a large Australian sample.
Diabetes Res Clin Pract 108, 306–315.

Dupuis J, Langenberg C, Prokopenko I, et al. (2010). New
genetic loci implicated in fasting glucose homeostasis and
their impact on type 2 diabetes risk. Nat Genet 42, 105–
116.

Edwards JS, Atlas SR, Wilson SM, Cooper CF, Luo L, and
Stidley CA. (2014). Integrated statistical and pathway ap-
proach to next-generation sequencing analysis: A family-
based study of hypertension. BMC Proc 8, S104.

Emtage P, Vatta P, Arterburn M, et al. (2006). IGFL: A secreted
family with conserved cysteine residues and similarities to the
IGF superfamily. Genomics 88, 513–520.

Esterhazy D, Stutzer I, Wang H, et al. (2011). Bace2 is a beta
cell-enriched protease that regulates pancreatic beta cell
function and mass. Cell Metab 14, 365–377.

Fransen E, Bonneux S, Corneveaux JJ, et al. (2015). Genome-
wide association analysis demonstrates the highly polygenic
character of age-related hearing impairment. Eur J Hum
Genet 23, 110–115.

Ginter E, and Simko V. (2012). Type 2 diabetes mellitus,
pandemic in 21st century. Adv Exp Med Biol 771, 42–50.

Gornik O, Pavic T, and Lauc G. (2012). Alternative glycosyl-
ation modulates function of IgG and other proteins—
Implications on evolution and disease. Biochim Biophys Acta
1820, 1318–1326.

Grarup N, Sandholt CH, Hansen T, and Pedersen O. (2014).
Genetic susceptibility to type 2 diabetes and obesity: From
genome-wide association studies to rare variants and beyond.
Diabetologia 57, 1528–1541.

Hasin Y, Seldin M, and Lusis A. (2017). Multi-omics ap-
proaches to disease. Genome Biol 18, 83.

Hindorff LA, Sethupathy P, Junkins HA, et al. (2009). Potential
etiologic and functional implications of genome-wide asso-
ciation loci for human diseases and traits. PNAS 106, 9362–
9367.

Hossain P, Kawar B, and El Nahas M. (2007). Obesity and
diabetes in the developing world—A growing challenge. N
Engl J Med 356, 213–215.

Junqueira LC, Carneiro J, and Kelley RO. (1998). Basic Histol-
ogy, 9th ed. Stamford, NY: McGraw-Hill/Appleton & Lange.

Kaneko Y, Nimmerjahn F, and Ravetch JV. (2006). Anti-
inflammatory activity of immunoglobulin G resulting from Fc
sialylation. Science 313, 670–673.

Keser T, Gornik I, Vuckovic F, et al. (2017). Increased plasma
N-glycome complexity is associated with higher risk of type 2
diabetes. Diabetologia 60, 2352–2360.

Lange J, Lunde KA, Sletten C, et al. (2015). Association of a
BACE1 gene polymorphism with Parkinson’s disease in a
Norwegian population. Parkinsons Dis 2015, 817–820.

Lemmers RFH, Vilaj M, Urda D, et al. (2017). IgG glycan
patterns are associated with type 2 diabetes in independent
European populations. Biochim Biophys Acta 1861, 2240–
2249.

Liu R, Christoffel KK, Brickman WJ, et al. (2014). Do static
and dynamic insulin resistance indices perform similarly in
predicting pre-diabetes and type 2 diabetes? Diabetes Res
Clin Pract 105, 245–250.

Lu JP, Knezevic A, Wang YX, et al. (2011). Screening novel
biomarkers for metabolic syndrome by profiling human
plasma N-glycans in Chinese Han and Croatian populations. J
Proteome Res 10, 4959–4969.

Manning AK, Hivert MF, Scott RA, et al. (2012). A genome-
wide approach accounting for body mass index identifies
genetic variants influencing fasting glycemic traits and insulin
resistance. Nat Genet 44, 659–669.

Manolio TA. (2010). Genomewide association studies and
assessment of the risk of disease. N Engl J Med 363, 166–
176.

Mok KY, Jones EL, Hanney M, et al. (2014). Polymorphisms in
BACE2 may affect the age of onset Alzheimer’s dementia in
Down syndrome. Neurobiol Aging 35, 1513.e1–1513.e5.

Morris AP, Voight BF, Teslovich TM, et al. (2012). Large-scale
association analysis provides insights into the genetic archi-
tecture and pathophysiology of type 2 diabetes. Nat Genet 44,
981–990.

Mozaffary A, Asgari S, Tohidi M, Kazempour-Ardebili S, Azizi
F, and Hadaegh F. (2016). Change in fasting plasma glucose
and incident type 2 diabetes mellitus: Results from a pro-
spective cohort study. BMJ Open 6, e010889.

Parks BW, Nam E, Org E, et al. (2013). Genetic control of
obesity and gut microbiota composition in response to
high-fat, highsucrose diet in mice. Cell Metab 17, 141–
152.

Permyakov EA, Reyzer IL, and Berliner LJ. (1993). Effects of
Zn(II) on galactosyltransferase activity. J Protein Chem 12,
633–638.

Pucic M, Knezevic A, Vidic J, et al. (2011). High throughput
isolation and glycosylation analysis of IgG-variability and
heritability of the IgG glycome in three isolated human
populations. Mol Cell Proteomics 10, M111010090.

Russell A, Adua E, Ugrina I, Laws S, and Wang W. (2018).
Unravelling immunoglobulin G Fc N-glycosylation: A dy-
namic marker potentiating predictive, preventive and perso-
nalised medicine. Int J Mol Sci 19, E390.

Russell AC, Simurina M, Garcia MT, et al. (2017). The N-
glycosylation of immunoglobulin G as a novel biomarker of
Parkinson’s disease. Glycobiology 27, 501–510.

Taylor KM, and Nicholson RI. (2003). The LZT proteins; the
LIV-1 subfamily of zinc transporters. Biochim Biophys Acta
1611, 16–30.

Trbojevic Akmacic I, Ventham NT, Theodoratou E, et al.
(2015). Inflammatory bowel disease associates with proin-
flammatory potential of the immunoglobulin G glycome. In-
flamm Bowel Dis 21, 1237–1247.

Vuckovic F, Kristic J, Gudelj I, et al. (2015). Association of
systemic lupus erythematosus with decreased immunosup-
pressive potential of the IgG glycome. Arthritis Rheumatol
67, 2978–2989.

522 GE ET AL.

D
ow

nl
oa

de
d 

by
 E

di
th

 C
ow

an
 U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

23
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Wang X, Bao W, Liu J, et al. (2013). Inflammatory markers and
risk of type 2 diabetes: A systematic review and meta-
analysis. Diabetes Care 36, 166–175.

Wang Y, Klaric L, Yu X, et al. (2016a). The association be-
tween glycosylation of immunoglobulin G and hypertension:
A multiple ethnic cross-sectional study. Medicine (Baltimore)
95, e3379.

Wang YX, Adua E, Russell A, et al. (2016b). Glycomics and
its application potential in precision medicine, Science 354,
36–39.

Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, and
D’Agostino RB Sr. (2007). Prediction of incident diabetes
mellitus in middle-aged adults: The Framingham Offspring
Study. Arch Intern Med 167, 1068–1074.

Worby CA, and Dixon JE. (2002). Sorting out the cellu-
lar functions of sorting nexins. Nat Rev Mol Cell Biol 3,
919–931.

Yu XW, Wang YX, Kristic J, et al. (2016). Profiling IgG N-
glycans as potential biomarker of chronological and biological
ages: A community-based study in a Han Chinese population.
Medicine (Baltimore) 95, e4112.

Address correspondence to:
Wei Wang

Department of Public Health
School of Medical and Health Sciences

Edith Cowan University
Perth WA 6027

Australia

E-mail: wei.wang@ecu.edu.au

Qiang Zeng, MD, PhD
Department of International Inpatient

Institute of Health Management
Chinese PLA General Hospital

Beijing 100853
China

E-mail: zq301@126.com

Abbreviations Used

AUC ¼ area under the curve
BMI ¼ body mass index

CI ¼ confidence interval
DBP ¼ diastolic blood pressure
FPG ¼ fasting plasma glucose

GP ¼ glycan peak
GWAS ¼ genome-wide association study
HDL-C ¼ high-density lipoprotein cholesterol

IgG ¼ immunoglobulin G
IGF ¼ insulin-like growth factor

LDL-C ¼ low-density lipoprotein cholesterol
OR ¼ odds ratio

ROC ¼ receiver operator characteristic
SBP ¼ systolic blood pressure
SD ¼ standard deviation

SNP ¼ single nucleotide polymorphism
T2DM ¼ type 2 diabetes mellitus
UPLC ¼ ultra-performance liquid

chromatography
WHR ¼ waist-to-hip ratio

MULTIOMICS BIOMARKER DISCOVERY FOR T2DM 523

D
ow

nl
oa

de
d 

by
 E

di
th

 C
ow

an
 U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

23
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 


	Type 2 diabetes mellitus: Integrative analysis of multiomics data for biomarker discovery
	Authors

	Type 2 Diabetes Mellitus: Integrative Analysis of Multiomics Data for Biomarker Discovery

