Regulation of core body temperature and the immune system determines species longevity

Ian J. Martins
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

Part of the Geriatrics Commons

This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworkspost2013/4855
Regulation of Core Body Temperature and the Immune System Determines Species Longevity

Ian James Martins1,2,3

1Centre of Excellence in Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Australia
2School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Australia
3McCusker Alzheimer’s Research Foundation, Hollywood Medical Centre, Australia

*Corresponding author: Dr. Ian J Martins, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6027, Australia, Tel: +61863042574; Email: i.martins@ecu.edu.au

Copyright: © 2017 Ian James Martins. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source.

Original Submission

Received: June 21, 2017
Accepted: June 28, 2017
Published: June 30, 2017

Open Peer Review Status: Editorials, news items, analysis articles, and features do not undergo external peer review.

How to cite this article: Ian James Martins. Regulation of Core Body Temperature and the Immune System Determines Species Longevity. Curr Updates Gerontol. (2017) 1: 6.1

Acknowledgments: This work was supported by grants from Edith Cowan University, the McCusker Alzheimer’s Research Foundation and the National Health and Medical Research Council.

Abstract

The anti-aging gene Sirtuin 1 has now major relevance to genetics and the fields of pharmacology, toxicology, neuroscience, immunology, biochemistry and cell/molecular biology. Advances in anti-aging therapy are now essential to prevent mitochondrial apoptosis to promote longevity with the prevention of accelerated ageing. Calorie restriction that maintains the anti-aging genes changes the core body temperature and promotes species longevity. Stress and calorie consumption are sensitive to Sirt 1 function with relevance heat shock protein 70 metabolism and mitochondrial biogenesis. Sirt 1 regulation of the circadian rhythm mediates melatonin effects on core body temperature regulation and immune responses. Diet and fat are essential factors that determine species longevity with relevance to heat shock gene regulation and mitochondrial disease in animals and man. Strenuous exercise to activate the cellular heat shock gene in animals and man should be carefully controlled to prevent magnesium deficiency with relevance to immune disorders and mitophagy.

Keywords

Core Body Temperature; Mitochondria; Heat Shock Gene; Transcriptional Dysregulation; Sirtuin 1; Immune System; Anti-Aging; Diet; Longevity; Species; Melatonin; Fat; Magnesium; Circadian Rhythm; Heat Shock Protein
Anti-aging genes have major relevance to genetics and the fields of pharmacology, toxicology, neuroscience, immunology, biochemistry, cell and molecular biology. The gene-environment interaction identifies the low calorie gene Sir2 (Sirt 1) to be disrupted with effects on transcriptional regulation of other anti-aging [1,2] and responsive genes that are sensitive to accelerated mitochondrial apoptosis [3-5]. Sir2 defects lead to defective xenobiotic metabolism with effects on apoptosis [6] and corruption of the nuclear-mitochondria interaction [1] that determines species longevity with relevance to senescence and the universality of aging in man and various species [7]. Advances in anti-aging diets are required to maintain the critical breakthroughs in the fields of pharmacology [8] and immunology [9] that are essential for mitochondrial biogenesis linked to core body temperature and the prevention of Type 3 diabetes, accelerated ageing and neurodegenerative disease (Figure 1).

Research findings have reported that temperature variations in organisms have marked changes in metabolism with higher temperatures associated with increased ageing [10,11]. The observation that diets with calorie restriction change core body temperature has led to explanations for differences in species longevity [12]. In man and animals the circadian rhythm is critical to maintain body temperature and implicates Sir2 in suprachiasmatic nucleus (SCN) regulation [1,13] with relevance to Type 3 diabetes [20,21] in man and premature aging in animals. Sir2 regulates the circadian rhythm and mediates stress protein effects [35] on the SCN and core body temperature regulation [15,38,39]. Melatonin and its effects on the species longevity involves the immune system because of its essential role in the prevention of exacerbated immune responses [40,41] and its effect on Sir1 in immune and autimmunity regulation [9,16].

Diet and fat [42] are essential factors (Figure 2) that may determine species longevity with relevance to heat shock gene regulation and mitochondrial disease in animals and man. Appetite control is critical for mitochondrial biogenesis [43] but heat shock gene dysregulation may inactivate magnesium/Sirt 1 interactions with relevance to melatonin formation essential for mitochondrial biogenesis in mammals [44-46]. Melatonin reacts with peroxynitrite and nitric oxide to reduced toxicity to cells [47,48] and peroxynitrite can be referred to as Sir1 modulator [49] with relevance to Sir1’s involvement in SCN regulation of nitric oxide [50] with relevance to core body temperature and gene expression [51,52]. Strenuous exercise to activate the cellular heat shock gene in animals and man should be carefully controlled to prevent magnesium deficiency with relevance to nitric oxide dysregulation and mitophagy [53-57].

Figure 1: Genetics and genomics now identify the anti-aging gene Sirt 1 to be essential for life to maintain core body temperature and species longevity. Calorie restriction activates Sirt 1 but with the aging process Sirt 1 becomes repressed in animals and man with mitochondrial apoptosis and programmed cell death. Nutritional interventions and lifestyle changes stabilize the immune system with the prevention of global organ disease and neurodegeneration.

Figure 2: The discovery of the heat shock gene Sirt 1 indicates that diet, stress and lifestyle are critical factors that regulate melatonin (pineal gland) levels with relevance to core body temperature and species longevity. Heat/cold stress, intense exercise with high calorie diets inactivate the heat shock gene (Sirt 1) in animals and man with immune system imbalances, elevated HSP 70, nitric oxide dysregulation and magnesium deficiency connected to mitophagy.
Conclusion

In developed and developing world the global epidemic for chronic disease may include many species such as animals and man. Western diets and environmental changes disrupt anti-aging processes that determine species survival and are responsible for malfunction in anti-aging genes with relevance to global non alcoholic fatty liver disease, obesity and diabetes (Type 2 and Type 3) epidemic. Advances in anti-aging therapy identify Sirt 1 as critical to breakthroughs in the fields of genomics, pharmacology and immunology essential for longevity and the prevention of mitochondrial apoptosis linked to accelerated ageing and Type 3 diabetes. Unhealthy diets and lifestyle changes prevent Sirt 1 effects on body temperature regulation with low melatonin levels and immune dysfunction associated with reduced species longevity. Dietary fat and appetite control are essential factors that determine species survival relevant to core body temperature and mitochondrial disease in animals and man. Strenuous exercise to activate cellular anti-aging processes in animals and man should be carefully controlled to prevent magnesium deficiency that induce immune changes related to mitophagy and cell death in various species.

References

34. Dubocovich ML. Melatonin receptors: role on sleep and circadian rhythm regulation, Sleep Med. 2007; 8: 34-42.

42. Martins IJ. Food intake and caffeine determine amyloid beta metabolism with relevance to mitophagy in brain aging and chronic disease. EJFST. 2016; 4: 11-17.

Current Updates in Gerontology

