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A comprehensive review of fruit and vegetable classification techniques

Khurram Hameed1,∗, Douglas Chai2, Alexander Rassau3

School of Engineering, Edith Cowan University

270 Joondalup Drive, Perth, Australia

Abstract

Recent advancements in computer vision have enabled wide-ranging applications in every field of life. One such
application area is fresh produce classification, but the classification of fruit and vegetable has proven to be a
complex problem and needs to be further developed. Fruit and vegetable classification presents significant challenges
due to interclass similarities and irregular intraclass characteristics. Selection of appropriate data acquisition sensors
and feature representation approach is also crucial due to the huge diversity of the field. Fruit and vegetable
classification methods have been developed for quality assessment and robotic harvesting but the current state-of-
the-art has been developed for limited classes and small datasets. The problem is of a multi-dimensional nature and
offers significantly hyperdimensional features, which is one of the major challenges with current machine learning
approaches. Substantial research has been conducted for the design and analysis of classifiers for hyperdimensional
features which require significant computational power to optimise with such features. In recent years numerous
machine learning techniques for example, Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision
Trees, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) have been exploited with many
different feature description methods for fruit and vegetable classification in many real-life applications. This paper
presents a critical comparison of different state-of-the-art computer vision methods proposed by researchers for
classifying fruit and vegetable.

Keywords: Recognition, Classification, Fruit, Vegetable, Produce classification, Machine Learning,
Computer vision.

1. Introduction

Many real-life applications such as face recognition, autonomous vehicles, object recognition and robotics
rely on attempting to mimic the capabilities of the human brain in order to understand images. In the food
industry, fruit and vegetable are a major part of fresh produce and their classification is an extension of
object recognition. Conventionally fruit and vegetable are inspected visually by trained personnel for quality
assessment as a produce or a crop. However, manual classification poses many human-related constraints for
example, an individual needing to be acquainted with the many characteristics of fruit and vegetable. Manual
classification requires a continual and consistent aspect recognition technique to maintain consistency. The
agriculture industry now applies mechanized methods of classification and often relies upon computer vision
for pre and post-harvesting analysis of crops [1]. Computer vision is a field of mathematical analysis of
visual data in terms of images of all kinds and this can be a challenging task when applied to the food
industry. Visual data of fruit and vegetable expands from binary to hyperspectral images [2, 3, 4, 5, 6].
Advances in imaging techniques have resulted in more sophisticated computer vision leading to its use as
an emerging standard for many agricultural applications [7]. In the agriculture industry, one of the most
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important requirements of computer vision is as a non-destructive technique for quality assessment, sorting,
automated grading and robotic harvesting unlike many other techniques [8, 9, 10, 11]. Classification of
fruit and vegetable is a relatively more complex problem due to the huge variety, for example, irregular
intraclass shape, colour and texture, and similar interclass shape, colour and texture. These constraints
have caused a lack of multi-class automated fruit and vegetable classification systems. An automated fruit
and vegetable classification system with more complex information of fruit and vegetable may prove to be
helpful for picking the right fruit and vegetable with the right nutrition. It may also help children and visually
impaired people, and improve supermarket grocery self-checkouts. A summary of recent fruit and vegetable
classification performed in different real-life applications is presented in Table 1. Recent state-of-the-art
for fruit and vegetable classification and recognition are a combination of feature description and machine
learning algorithms on visual data [1, 12, 13, 14, 15]. Significant research has been reported for representation
of different characteristics of fruit and vegetable as feature vectors [6, 16]. Despite much research, many
challenges need to be overcome to build an effective fruit and vegetable classification system. Thus, this
paper provides a comparative survey of associated limitation for classification of fruit and vegetable and the
state-of-the-art computer vision techniques used for this task.

The rest of the paper is organised as follows: major challenges for fruit and vegetable classification
are described in Section 2. Recent significant efforts for fruit and vegetable classification are discussed in
Section 3. Selection of optimal sensors for data acquisition in this task is analysed in Section 4. Considering
the complex applications of fruit and vegetable classification essential pre-processing to avoid noise and
occlusion due to the environment is discussed in Section 5. After significant pre-processing the data is
processed for distinct features extraction and the techniques for this process are discussed in Section 6. A
comparison of the state-of-the-art classification techniques using extracted features is presented in Section 7.
Finally, a more precise discussion on deficiencies of current techniques and future directions is presented in
Section 8.

Table 1: Identified applications of fruit and vegetable classification.

Industry Application Literature

Food industry Quality assessment [1] [2] [6] [7] [13] [17] [18] [19] [20] [21]
[22] [23] [24] [25] [26] [27] [28] [29] [30]
[31] [32] [33] [34] [35] [36] [37] [38] [39]
[40] [41] [42] [43] [44]

Agriculture Robotic harvesting [4] [14] [15] [45] [46] [47] [48] [49] [50]
[51] [52] [53] [54] [55] [56] [57] [58] [59]

Retail Supermarkets, Inventory [12] [16] [60] [61] [62] [63] [64] [65] [66]
[67] [68] [69] [70] [71] [72] [73] [74] [75]
[76] [77] [78] [79] [80] [81]

2. Key challenges

Recognition and classification of fruit and vegetable as a subset of object classification is an inherently
more complex task than other subsets of object classification. Fruit and vegetable present crucial sensory
and feature characteristics which are also dependent upon the wide spread applications of it. The key
challenges involved in fruit and vegetable classification are categorised as:

• Appropriate sensor
The selection of a sensor for data acquisition is a key challenge for classification. Sensors ranging from
black and white (B/W) cameras to non-visual sensors such as acoustic and tactile sensors have been
used for classification of fruit and vegetable, but not all sensors are equally suitable for all applications.
As evident from [9, 10, 11, 17, 18, 19, 82] both acoustic and tactile sensors are less suitable for non-
destructive classification and recognition. These sensors either need physical contact or excitation of
the fruit or vegetable for data acquisition. Additionally, visual sensors are highly sensitive to many
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factors i.e. illumination condition and background environment. These basic factors are a combination
of many complex factors including reflection, refraction, scale, rotation and translation, which need to
be considered in depth.

• Feature selection and representation for classification
Features are the physical characteristics of an object that can distinguish it from other objects. Fruit
and vegetable have many physical characteristics i.e. colour, texture, shape and size, which can be used
as features for effective classification. Fruit and vegetable have numerous inter and intraclass variations
and similarities. The interclass variation are major changes i.e. changes in colour, texture and shape
whereas the intraclass variations are generally much more subtle and hard to differentiate i.e. different
kinds of mangos or apples have only slight variations in features. An ideal selection of features will
allow the system to deal with inter and intraclass classification. The computer-based representation
of feature is the other dimension of this challenge. Significant research has been reported related to
the representation of features. Investigations have indicated that a single feature cannot be considered
sufficient for effective classification of fruit and vegetable, or objects in general [2].

• Machine vision approach
Machine vision approaches are a set of machine learning algorithms used for classification and recogni-
tion of images. Extensive research has been performed since the early 1980s. The algorithms designed
can be categorised in many ways, a usual categorisation is neural network (NN) based and hand-
crafted. The selection of an appropriate algorithm in any machine learning application is always a
critical task but it is even more crucial in the case of fruit and vegetable.

3. The state-of-the-art

Significant evidence of efforts made toward the realisation of an automated fruit and vegetable classifi-
cation system are available [60, 61, 62, 63, 64, 65, 66], but no examples of commercial applications of such
systems are available to date. Approximately, all previous efforts have a core idea of using one or more kind
of the sensor along with a machine learning technique for identification of the features associated with the
produce items for example, shape, colour, texture and size to perform the classification. Identification of
fruit and vegetable has a large number of challenges associated with it due to irregular shape, size and vari-
able colour. Much research has been performed to identify methods to address these challenges. Practically
all physical aspects of fruit and vegetable have been considered as feasible features for effective classification.
Initial efforts were made by using global features i.e. shape and colour for classification and local features
like texture were analysed in more advanced approaches. Sensors ranging from the modest black and white
cameras through to the most advanced hyperspectral camera have been used to capture the features of fruit
and vegetable [3]. Both empirical and Neural Network (NN) based approaches of machine learning have
been studied and are continually being improved for this task [12, 67, 68]. Many factors have been identified
in the case of real-world systems that impose constraints on achieving high performance in terms of time and
accuracy. Variable background environments, illumination inconsistency, specular reflection and recognition
inconsistency are key constraints [66].

Significant challenges have been imposed by fruit and vegetable classification, recognition and detection
as sub-fields of object recognition. The task of classification of fruit and vegetable has also been advanced by
adopting methods in related fields i.e. leaf classification which can be adopted for classification of vegetable
with green leaves [7, 45]. Most of the efforts made in this regard are a combination of image analysis as feature
description and the machine learning algorithms for classification / recognition [4, 7, 20, 46, 69, 83, 84]. These
efforts consider a physical characteristic and represent them in a machine vision based representation called
feature description. These features are then given as an input to the classification algorithm to converge on
a qualitative output. Numerous techniques have been studied for feature description and classification but
there is room for significant redesign and improvement to perform effective classification. An effective fruit
and vegetable classification system requires a complete rethinking of all related issues of features, sensors
and classification algorithms to implement them as a unified system. An example of this rethinking is
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Figure 1: Process distribution of fruit and vegetable classification into sub-processes.

selection of a robust feature descriptor w.r.t. affine transforms. To present a detailed comparison of the
efforts made for fruit and vegetable classification the whole process is divided into sub-processes which are
described in Figure 1. This paper is organised in a sequence of these constituent processes providing a
general introduction of the process and then describing the specific variants used in fruit and vegetable
classification. A comparable description of the state-of-the-art methods adopted in each of these parts is
also presented in their description.

4. Data acquisition

Sampled images, which consist of real-world information are called a dataset and the process of collecting
such images in a digital form is called data acquisition. A variety of sensors have been used for this
purpose, both passive and active sensors have been exploited for their potential usage. These sensors can be
further classified as visual and non-visual sensors. Selection of sensor is highly sensitive to many factor e.g.
environment of the application, features sensed, illumination condition, colour camouflage, and occlusion
with the environment. Early experiments were performed using B/W cameras as a sensor [3, 47]. Light
Detection and Ranging (LiDAR) is also used widely for classification of fruit and vegetable in agricultural
environments [48]. Significant research has been reported upon the utilisation of Light Structured Sensors
(LSS), which exploits the depth data along with colour, shape and texture details [49, 69, 70]. Classification
of fruit and vegetable was initially studied for autonomous harvesting with robots [21]. Numerous research
efforts have been reported and are being performed in this direction [46, 47, 50, 51, 52, 69]. Colour,
thermal, spectral, acoustic, tactile and depth sensors have been used for data acquisition for classification
and recognition in the fields of agriculture and food processing. Each sensor has some limitations for
example, colour (RGB) images are highly sensitive to the lighting condition and background colour [2, 85]. A
detailed investigation of literature illustrates that the reflectance properties of objects can be represented by
wavelength and hyperspectral cameras can be used for this purpose. This technique has an inherent property
of detecting different objects with similar colour or background and is less sensitive to many factors. A recent
research has concluded that hyperspectral information combined with other characteristics of fruit can result
in an improved performance [22]. This technique has been used in many different classification problems
for quality assessment in the food industry [23, 71]. Conversely, it is identified that high dimensionality of
hyperspectral data is itself a limitation of its use in efficient systems, i.e it requires a large computational
power to perform classification with hyperspectral images [23, 24, 71].

Objects which are above 0 K temperature emits some radiations, which are a function of the emissivity
and the surface temperature. This property can also be used for classification of fruit and vegetable.
Fruit and vegetable absorb more heat than leaves and background environment, which can be used as a
characteristic for classification. However, the classification of a green fruit and leafy vegetable is a challenging
task due to approximately similar thermal properties of vegetable and the background [53]. Thermal analysis
has recently been employed in many fields i.e. plant disease detection, chilling damage to the fruit in storage,
crop maturity estimation and crop yield estimation [54]. This technique is also prone to canopy effect and
sensitivity to temperature change [25]. Moreover, no thermal signatures are visible until notable damage has
occurred to fruit in some cases [54]. The basic properties of absorption, reflection and refraction of acoustic
signals have been used for classification of fruit and vegetable. Acoustic signals have been used for quality
assessment of fruit and vegetable by measuring their elasticity as a function of hydration content in their
tissues [19, 26, 27, 82]. In the acoustic analysis a fruit is excited by a physical impact to produce an acoustic
wave used to measure the elastic modulus to confirm the firmness and hence freshness. The other method
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uses an ultrasonic beam targeted on the fruit to measure the co-relation of reference and backscattered
beams as a property for classification. However, acoustic analysis is limited to use in fruit and vegetable
classification due to its limitations of physical excitation and distortion of the acoustic beam from fruit peel.
Acoustic sensors have been used to measure the internal texture of fruit pulp for classification and quality
assessment, which depends upon, juiciness, Solid Soluble Content (SSC) and hardness. Both contact and
non-contact acoustic sensor are highly sensitive to ambient environmental conditions, which make them less
suitable for particular environments i.e. non-destructive, supermarkets and robotic harvesting [17, 18, 28].

Tactile sensors have been used for measuring fine spatial patterns, roughness and surface friction for
classification of fruit and vegetable. These sensors have been used for many intelligent applications i.e.
object recognition, robotic grasp, and pose estimation. Tactile sensors have a capability to identify objects
which are visually similar but consists of different tactile properties e.g. fruit and vegetable at different
levels of maturity [10, 86]. Significant results have been reported by analysing a combination of tactile
properties and visual properties of objects. More emphasis is evident upon the combination of information
from multiple sensors more analogous to the human brain recognition method, which uses a combination of
multiple senses for recognition of objects [8]. The state-of-the-art studies have introduced a combination of
tactile and visual information as visual-tactile object recognition. However, there are inherent limitations
for combining global and local information originated by visual and tactile sensors respectively[87]. A weak
paring based approach has been mentioned in [11, 88] for combining inherently different pieces of information.
Moreover, tactile sensors are contact based and slow as compared to visual sensors. These limitations make
visual-tactile concept less suitable for non-destructive and faster automated classification systems.

The Light Structured Sensors (LSS) has added a new dimension to the machine vision. RGB informa-
tion combined with the depth information has generated a new set of feature descriptors for classification,
segmentation, identification and recognition of objects. The depth is treated as fifth dimension along with
colour, shape, size and texture. The RGB data combined with depth (D) data is collectively denoted as
RGBD data. There are various applications of RGBD data for example classification, object tracking, sur-
face matching, 3D modelling and pose recognition [89, 90]. Numerous commodity sensors are commercially
available for sensing the RGDB data [3, 51, 70] and are being studied. A detailed comparison of sensors in
terms of features exploited for fruit and vegetable classification is presented in Table 2.

Table 2: A comparison of sensors for fruit and vegetable classification.

Sensors Visual/Non-
visual

Sensor
Type

Features Exploited Advantages Disadvantages

B/W

Visual
Passive

Geometry and tex-
ture

Negligible effect of variable
light source

Lack of colour characteristic of
object

RGB Geometry, texture,
and colour

Exploits all basic characteris-
tics of object

Highly sensitive to the lighting
conditions.

Spectral Colour and spec-
tral information

Provides more information
about reflectance

Computationally expensive for
complete spectrum analysis

Thermal Thermal signatures Colour invariant Dependency on minute ther-
mal difference .

RGBD,
LSS

Active RGB image and
depth

Complete scene characteristics Lack of feature descriptors

Acoustic
Non-visual

Both Elasticity, Cross
correlation

Freshness and firmness analy-
sis

Huge distortion at medium
boundaries

Tactile Passive Roughness, tex-
ture, friction, and
spatial curves

Non-visual differences works
well with same colour and
shape

Limited to specific areas and
contact to the object, fusion of
different informations

5. Data pre-processing

The images acquired by visual sensors include some level of noise and distortions. These raw images
are generally unsuitable for extraction of appropriate features for computer vision and image processing
applications. To reduce the distortions and noise a significant pre-processing is essential which is described
in this section.
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5.1. Pre-processing

RGB matrices capture redundant raw information that needs to be processed statistically to cut out
unintended information and determine the missing information due to noise, distortion and variable sensor
sensitivity to the same physical input from the environment. The raw images are processed at either holistic
or elementary level considering the pixel as the lowest level of abstraction for pre-processing. Spatial and
non-spatial constraints apply for pixel estimation where each method have its advantages for example,
non-spatial estimation is used for contrast enhancement. Representation of three-dimensional objects in
two-dimensional images causes geometric distortion which is subject to the relative position of the camera
and the object in the case of still images and the speed, stability and angle of the camera for mobile robotic
applications. A group of two or more pixels can be used for geometric pre-processing. Significant elementary
pre-processing is applied on adjacent pixels to enhance the differences among them common examples of
which are image smoothing and gradient used for edge detection. Many signal processing filters have been
designed for this purpose. A set of filters at sub-holistic level is applied as convolution for estimation of
missing information. The constraint of prior knowledge describes the convolution as statistical or stochastic
function. A detailed description of pre-processing techniques with their applications and constraints has
been presented in Table 3.

5.2. Segmentation

To extract the distinct section of an image as a Region of Interest (ROI) image segmentation is performed.
Image segmentation is a crucial challenge in computer vision systems that determines the overall effectiveness
of higher level image analysis [91]. Many segmentation techniques based on brightness, colour, grey scale
values, texture and edges have been reported in the literature. However, as the computational capabilities
are improving more effective segmentation techniques are evolving [7, 92]. A preliminary segmentation can
be achieved by detecting the edges and subtracting the unwanted objects or background from the image.
Pixel intensity and direction have been used widely for eliminating the local discontinuities at each pixel of
a filtered image [93]. Lower and upper thresholds selection to find a discontinuity is crucial for extraction of
edge pixels in complex images and different edge detection techniques have a tendency to detect a false edge
in pre-processed images. Hence, edge-based segmentation less suitable for images with similar background,
occlusion and mixed edges [91]. Pixel level threshold for generating regions in the images has been used
for threshold based segmentation. Most of the grey scale techniques have been altered for RGB images by
applying threshold on three channels separately. Estimation of the threshold is again crucial where many
methods use hit and trial for this purpose, but computer vision tasks require a fully automated threshold
value convergence for segmentation. An adaptive threshold selection based segmentation has been presented
in [94]. A mean grey scale value has been used for finding the optimal threshold with the iterative convergence
of mean value. Intraclass variance has been converged and used as threshold in the Otsu method, an extension
of this method to the RGB images has been presented in [95]. Thresholding is among the most significantly
used techniques for both binary and multi-segmentation in complex images [96]. Colour histograms have

Table 3: A description of image pre-processing techniques.

Technique Description Applications Constraints
Intensity estimation Missing pixel value estima-

tion by spatial and non-spatial
analysis

Noisy pixel value determi-
nation in grey scale and
RGB images

Prior knowledge, likelihood of
non-uniform object illumina-
tion

Geometric estimation Estimation of geometric distor-
tion by relative motion, angle,
speed and 2D to 3D represen-
tation

Determination of geomet-
ric details in mobile robotic
and remote sensing appli-
cations

Knowledge of angle, position
and relative speed for sensor
and object

Elementary process-
ing

Processing group of neighbour-
ing pixels by signal processing
filters

Smoothing and gradient
analysis for better edge de-
tection

Complex and non-linear signal
processing filters

Holistic processing Set of filters applied as convo-
lution for image restoration

Determining the holistic
image characteristics

Complex stochastic analysis
and priori knowledge
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been used for multilevel segmentation in RGB images while using the Otsu method as an objective function
to be maximised for effective segmentation. Meta-heuristic and swarm algorithms have been used for optimal
intraclass variance convergence [96, 97]. Entropy as RGB histogram function has been used for multilevel
RGB segmentation kapur and minimum cross entropy minimisation has been widely studied for optimal
threshold estimation [98], where better segmentation is reported for higher dimensional RGB histograms.

Pixel intensity and spatial connectivity have been used as similarity measures for grouping pixels in region
based methods. Substantial similarity criteria have been used for instance, pixel intensity differential, running
mean and standard deviation among multiple neighbourhoods of candidate pixels. Larger neighbourhood can
use colour, texture and spatial information for more complex criteria [99]. This method is effective for images
with small numbers of regions, however, more computational power can work with multi-segment images.
Comparable performance of significant variants in terms of time and computational requirements has been
reported in [100]. Pixels with similar features are clustered to form feature based segments . Both hard and
soft clustering are evident from the literature. Fuzzy c-means is among the most widely used soft clustering
techniques i.e. a pixel is associated to multiple clusters based on connectivity weight estimation [91]. Variants
of fuzzy c-mean with improved performance use spatial information of pixels for weight estimation however,
significant performance constraints have been reported while working with the noisy data [101]. The parallel
nature of Neural Networks (NN) has been widely used for image segmentation [102, 103]. A common example
of NN based segmentation is the used of spatial information with Self-Organising Maps (SOM) [104]. An
inherent limitation of this method is the unavailability of prior information of the number of clusters. SOM
has been used to find the optimal number of clusters to perform the segmentation automatically. Significant
fuzzy c-mean based variants of NN segmentation are also evident from the literature [105]. The concept of
multi-feature fusion as a combination of rotation-invariants Local Binary Patterns (LBP), RGB histogram
distribution, weighted histograms, region connection statistics and multi-label k-nearest neighbour fusion
has been analysed with the existing techniques of automated annotation in [106]. This concept has been
used for segmentation of images using Histogram of Oriented Gradients (HOG) and LBP as feature fusion
on RGB and polarised images separately, and improved segmentation results has been presented in [107].
This concept can be used with other significant classifiers for better segmentation.

When considering fruit and vegetable classification, a feature based segmentation has been applied on a
pre-segmented Region of Interest (ROI) of apple images for defect detection in [30]. An experimental setup
with intentional lower background intensity is exploited with a low pass filter to find the ROI along with the
morphological filling to reduce the effect of false russet removal in artificially defected fruit. Average and
standard deviation of intensity has been used to define a global feature on ROI with variable neighbourhood
size. A set of supervised and unsupervised classifiers has been applied and significant segmentation effec-
tiveness is presented with super-pixel and supervised classifiers w.r.t unsupervised classifiers. It is concluded
that more accurate results can be achieved for larger neighbourhoods at the cost of computation time. Tex-
ture as feature HSI and Colour Co-occurrence(CCM) is used for segmentation based quality assessment of
citrus. The texture of citrus leaves with greasy spots, melanose, and scabs is analysed where more effective
results are reported for reduced dependency on intensity in texture features [31]. Distance Transform (DT)
based watershed segmentation is used with statistical features in RGB images in [77]. Euclidean, city-block
and cross-board based DTs are used for segmentation of fruit and vegetable in binary images with significant
effectiveness. A Gabor kernel based global segmentation with eight different orientation of Gabor wavelet is
used with Principal Component Analysis (PCA) for automated classification of apple fruit. It is concluded
that with Gabor based global segmentation of near infra-red (NIR) apple images there is no need of local
feature segmentation. The Gabor filter used can extract specific frequency components that can be used
for segmentation [32, 108]. Recently, Otsu based segmentation has been used for fruit and vegetable defect
detection and a common limitation of holes generation for similar intensity level as background has been
identified [39, 40, 57, 81]. A combination of LBP, HOG, global colour and shape feature has been used with
Otsu thresholding for optimal ROI selection in a multi-class fruit recognition and identified to be improved
for effective results [7]. Damage detection in papaya has been performed by k-means clustering after contrast
enhancement of colour images where classification has been performed with SVM, decision tree and Naive
Bayes with a maximum accuracy of 90.5%. The study reported that the experiments were not performed on
a uniform dataset and the result are not comparable with the state-of-the-art. To detect the green apple a
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graph based manifold saliency was used with k-mean and Fuzzy-C-Mean (FCM) clustering, where the study
reported on imperfect segmentation that needs to be integrated via an area loss function [14]. A more related
research has been presented for quality evaluation of packed lettuce, where a patch based segmentation has
been performed with CNN. The CNN has been trained with both packed and unpacked lettuce datasets and
a 3 × 3 sliding window is used to estimate the likelihood of each patch of 3 × 3. The estimated likelihood is
then used for threshold-based segmentation with significantly high values of the threshold. A comparison of
packed and unpacked lettuce segmentation accuracy has been reported as 83% and 86% respectively [109].
A description of recent segmentation techniques used in various applications of the food industry has been
presented in Table 4.

6. Feature extraction

A piece of information related to some particular dynamic property of object in a digital image with higher
level of perspective i.e. recognition, classification, retrieval and reconstruction is called a feature descriptor.
Fruit and vegetable have several distinct visual characteristics associated with them called features. The
most commonly used features for classification and recognition of fruit and vegetable are colour, shape, size
and texture. A feature descriptor is either global or partial depending upon their comprehensive or partial
representation ability. In particular to the object recognition, a global feature describes the object as a
whole in the form of a generalised descriptor for example shape, and a local feature describes many interest
points in the form of patches of an image. The interest points are not consistent and can vary from sample
to sample in a recognition task [112]. Moreover, usual practices include a combination of local and global
features for superior classification effectiveness [85, 113, 114]. Availability of whole object details is another
inherent limitation in image acquisition due to the poor acquisition, noise, partial information, and data loss
during conversion (e.g. RGB to grey scale). These limitations pose some constraints on the performance of
feature descriptors. Properties of features descriptors for significant representations of features are described
in [115]. A global to global and partial to global recognition based categorisation of feature descriptors is
described in Table 5. A non-exhaustive description of shape, texture and colour feature descriptors has been
described in this section.

Table 4: A description of segmentation techniques used for fruit and vegetable analysis in the food industry.

Year Fruit/Veg Application Segmentation technique Ref.

1996 Mixed Classification Threshold-based pixel level image subtraction [66]

2006 Apple Quality assessment Feature-based with variable neighbourhood size [30]

2006 Citrus Quality assessment Texture based HSI and Colour Co-occurrence (CCM) [31]

2007 Apple Quality assessment Gabor kernel and PCS avoided local features segmentation [32, 108]

2012 Mixed fruit Fruit harvesting Spatial-local adaptive threshold based [52]

2012 Mixed Classification Distance Transform (DT) and watershed [77]

2013 Vege Detection Texture and edge fusion segmentation [78]

2015 Mixed fruit Detection K-mean split and graph-based merge with area threshold [110]

2016 Apple Recognition Dynamic threshold Otsu method [111]

2016 Mixed fruit Classification Square window split and merge segmentation [72]

2016 Tomato Quality assessment Otsu method [39]

2017 Apple Bruise detection HSI based Otsu method [40]

2017 Eggplant Grading Intensity adaptive threshold based Otsu [57]

2018 Apple Detection Graph based k-mean FCM clustering [14]

2018 Litchi Robotic harvesting One dimensional random signal histogram with FCM [59]

2018 Mixed fruit Detection Fusion of LBP, HOG, global colour and shape with Otsu [7]

2018 Packed food Quality assessment 3× 3 patch likelihood threshold with CNN [109]

2018 Papaya Disease detection K-mean clustering based segmentation [44]

2018 Pomegranate Clustering Threshold Otsu [81]

8



Table 5: Properties of feature descriptor.

Property Global / Local Description
Description strength Ability of differentiation among similar and dissimilar

characteristics of an image.
Robustness

Global information to
the global recognition

Resistant to distortion, noise and small changes during
storage and conversion

Resistance Resistant to affine, projective and colour space trans-
formations

Conciseness and in-
dexing

Ability to reduce the memory size and searching com-
plexity.

Partial matching Ability of partial to global,
recognition among above-
mentioned properties.

Ability to recognise and retrieve from partial informa-
tion.

6.1. Shape feature descriptors

The shape of fruit and vegetable has been frequently used for classification. In the food industry shape
and size (morphology) of fruit and vegetable play a critical role in price estimation. This feature is also
significant for automatic sorting in the food industry. Spherical or quasi-spherical shapes are easier to
describe as feature vectors as compared to natural and more complex shapes of fruit and vegetable. The
shape feature vector can be used for quantifying the fruit and vegetable for example, estimating size by
projection area, perimeter, length, width, major, and minor diagonal for size estimation in the food industry.
A shape feature descriptor is a mathematical model that tries to model the shape of an object in a human
intuition based method for example shape described as a set of contours. A preliminary technique of a shape
descriptor considers the important interest points based on the boundary and the interior of the shapes,
various categories of shape interest points are spectral features, curvatures, shape contents, shape matrix,
moments and shape signatures [116].

Table 6: Essential geometric parameters for shape descriptors.

Definition Geometric Parameter

Centre of gravity g =
(
1
n

∑n
i=1 xi,

1
n

∑n
i=1 yi

)
Radial distance ρi =‖ pi − g ‖2
Average bending energy Eb = 1

n

∑n−1
s=0 k(S)2

Circularity area ratio ζA =
Ashape

Acircle
=

4πAshape

Psphere

Circularity perimeter ζP =
Ashape

P2

Circle Variance ζρ =
φp

µp

Rectangularity ζR = Ashape
Abox

Convexity ζC = Phull
Pshape

Solidity ζS =
Ashape

Ahull

Hole area ratio ζH = Ahole
Ashape

Eccentricity ζε = λ1
λ2

Ellipse Variance d =
√
ρTi M

−1ρi

Profile φx(i) = ∀x=i : ymax − ymin

One of the most intuitive categorisations of shape feature descriptors is contour based and region based
considering the inherent geometry of shapes. This categorisation is dependent upon whether the shape fea-
ture vector is extracted by boundary only or from both boundary and interior as well. A more elementary
form of categorisation can be spatial and transform domain, where use of a particular kind of descriptor
is dependent upon the application. Representing shape in one or other form can guarantee performance
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improvement for example, shape description data in the spatial domain can be better handled in the trans-
form domain for lossless conversion and compression [117, 118]. The basic geometrical parameters such as
curvatures, corners, regions, centre of gravity, convexity, circularity ratio, and Eccentricity associated with
the shape of fruit or vegetable can only differentiate the shapes with large differences however, a combination
of them can comprehend more fine details. Basic definitions of essential geometrical parameters for shape
description are described in Table 6.

Chain codes is a complex mathematical model of basic geometric parameters for describing any geometry
in a standardized way. Line segments of a shape geometry are described as a chain of orientation in terms
of connectivity [119]. However, the chain codes are prone to noise and deformations [120]. A histogram of
surrounding details of an identified key point at an object boundary is maintained in shape context, where
a combination of all histograms describes the shape of an object as depicted in Figure 2. However, interest
points may vary from sample to sample in a class and need to be fixed manually. Also, the histogram based
representation has the capability of representing any spatial information however prone it is to noise and
distortion [121]. A point distribution in a shape is represented by moments based descriptors. This statistical
method of shape representation requires less computational power and shows significant robustness against
noise and data redundancy [116] however, it is less efficient for classification of approximately similar shapes
due to loss of redundant information in statistical computation [122, 116]. Fragmented and simplified details
of a shape such as changes in curvatures are called scale space methods. This method can work well with the
small translation, scale and rotation but is not robust for noisy data an analysis w.rt. to rotation and noise is
described in [120]. Numerous variants of this method are evident from literature [123, 124, 125, 126]. Spatial
partitioning uses local properties to represents the shape globally common examples of local properties are
principal axis and axis of least inertia [121, 127, 128]. A detailed categorisation of shape mathematical
models in [116] is depicted in Table 7. A more detail on various shape representation methods can be found
in [120, 129, 130], where most of the methods are based on the low dimension geometric parameter. A more
recent direction in shape description is use of Bag-of-Curvature (BoC) and Bag-of-Shape-Vocabulary (BoSV)
[131] as a variant of Bag-of-Words(BoW) [132]. Different features have been tested for describing the shape
vocabulary for example region based visual vocabulary is defined in [133] based on different local shape
primitives. A detailed discussion on shape matching with local shape primitives is presented in [121, 134].
Currently, Convolutional Neural Networks (CNN) are also being used for shape feature representation.

b1

b2

b3

bk

B = {b1, b2, b3   bk}
Histogram bins

b1

b2

b3

bk

B = {b1, b2, b3   bk}
Histogram bins

Histogram

Histogram

Featu
re V

ecto
r (com

binatio
n of 

histogram
s) 

Figure 2: Shape context feature description vector.

The lower layers of Neural Networks (NN) have been investigated for edge detection due to their capability
of learning convolutional kernels. Deeper and complex edge relations can be identified by the deeper layer
in the CNN [135]. Considering this ability of CNN the tedious task of feature descriptor crafting can
be performed by the CNN. Generation of effective shape features is however limited to the availability of
huge amount of data to train the CNN. Feature descriptor extraction is although an attractive idea but
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Table 7: Categorisation of mathematical models for shape representation.

Models Description Methods Sub Methods

One
dimensional

A perceptual feature of shape
derived from boundaries

Complex Coordinate
Centroid distance
Tangent Angle
Contour curvature
Area function
Triangle area
Chord length

Polynomial
approximation

Neglect discrete pixelisation,
by considering the whole
shape

Polynomial merging
Distance threshold
Tunnelling
Polygon evolution

Polynomial splitting

Multivariate
interpolation /
Spatial
interpolation

Considering relative
orientation i.e. length,
curvature and exploiting
boundary relation for shape
representation

Adaptive grid
Bounding box
Convex Hull

Chain Code

Basic chain code
Differential chain code
Re-sampling chain
Vertex chain
Chain code histogram

Smooth curvature decomposing
ALI Method
Beam Angle

Shape Matrix
Square model shape
Polar model shape

Shape context
Chord distribution
Shock graph

Weighted
averages
(Moments)

The weighted average of
pixels, boundaries and
function of moments

Boundary moment

Region moment

Invariant moment
Algebraic moment
Zernike moment
Radial moment
Homocentric moment
Orthogonal fourier mo-
ment
Pseudo-Zernike mo-
ment

Scale-space
representation

Shape representation as
simplified curvatures

Curvature
Intersection point map

Shape
transforms

Representation by transform
orthogonal or non-orthogonal
constituent function

Fourier descriptor
One dimensional
fourier
Region based fourier

Wavelet transforms
Angular radial transform
Shape signature
R - Transform
Shapelets
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development of such convolutional layers is also a complex task. Approximately, all of the above-described
feature descriptors have been used for classification of fruit and vegetable. An energy function minimisation
has been used with a model based image interpretation using ACM algorithm to classify the defected apple.
It has been identified that using an active contour model (sake) as energy minimisation parameter every
component of the shape contour will take approximately n − 1 iteration which makes it less feasible for
complex images however, significant performance can be achieved in simple images [35]. To reduce the
dependency on segmentation Edge Orientation Autocorrelogram (EOAC) has been used in [136] for produce
classification. EOAC can estimate the edges orientation and the spatial correlation among the pixels which
are used with a combination of classifiers while an accuracy of 99% has been reported. An erosion based
shape representation is used for representing the shape of leafy vegetable and fruit for grading [36]. To
detect the immature peach in the orchard a window based scanning of grey scale images has been used
in [2], where the window size was pre-defined and is dataset dependent. The circular disk radius is then
estimated by dimensions of the fitted window, which make the complete study highly dependent upon the
dataset considered. A Feed-forward Neural Network (FNN) is used in [68] for classification of fruit and
vegetable where the shape is represented as a convex hull covering the complete fruit using graham scan
method. Shape combined with other features has been used and an accuracy of 89.1% is reported while using
FNN with genetic algorithm (GA). A global shape representation has been used for grading the mangoes
in [42]. Initially, the centroid of mango is estimated using first-order geometric moments (green theorem)
and all boundary pixels are then identified with a provision of making this system applicable in a real-world
application. A Fourier transform is then used to convert a mango image to the feature vector using lower
harmonics. However, lower harmonics are usually distinct for spherical and quasi-spherical shape but can
significantly distort the result for complex shapes of fruit and vegetable. A machine vision based fruit
counting systems has been designed in [137] where the mango shape is identified based on the colour and
smoothness of pixels while using blob connecting algorithm for mango shape segmentation. The shape of
green apple has been represented as perimeter, area and centrifugation on texture-based segmented image
of the sample. A maximum area threshold base domain connection has been used for marking the multiple
object areas in the image [138]. A heuristic modelling based arc grouping is used to model elliptical mango
shape. More recently a shape based tomato maturity system is introduced in [13]. An experimental setup
is carefully designed to capture a single tomato at a time with a dark background. The tomato image
is initially centroid and a minimum distance base contour is drawn to describe the tomato shape. The
tomato shape is then measured to estimate the maturity level while a performance of approximately 100%
is reported. The average of red region of the strawberry fruit is used to find out the main diagonal of the
fruit region used to describe the strawberry shape as kite geometry in [80]. Four boundary points on fruit
region are considered to make two sets of equal-length sides selected in a way to make an inscribed rhombus.
The size of the rhombus is used to estimate the ripeness of the fruit. A comparison of recent shape based
fruit and vegetable analysis is presented in Table 8.

6.2. Texture feature descriptors

Digital images always contain some texture in them, examples of which ranges from spatial patterns in
satellite images to arrangement of tissues in microscopic images. The texture is one of the most commonly
used properties of fruit and vegetable among colour and shape for classification. Texture is the spatial
arrangement of primitives called textons which are fundamental structures at the microscopic level that is
pixels in images and the atoms in the human visual perception system. Texture in digital images follows
some statistical property of periodic recursion with some degree of variance. This variance can range
from statistical to stochastic functions. Texture as a property for classification, recognition, segmentation,
synthesis and shape analysis from texture has been studied widely [9]. Significant applications of texture
analysis include medical image analysis [140], analysis of satellite images [141], segmentation, content-based
image retrieval [142], face recognition [143], object recognition [144], image compression, robotic vision
and unmanned aerial vehicles [145], a more broader categorisation is presented in [9]. Texture description
is the core of the texture analysis for any of its application. Much research has been reported in this
field while texture representation methods have been divided into five broad categories i.e. statistical,
geometrical, structural, model-based, filter based and feature descriptors [9]. The progress in the field of
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Table 8: Comparison of shape features for fruit and vegetable analysis.

Year Fruit/Veg Feature description Accuracy Ref.

2011 Apple Model based ACM shape 91.00% [35]

2012 Mixed Edge Orientation Autocorrelogram (EOAC) 98.80% [136]

2013 Mixed Erosion morphology based shape - [36]

2014 Apple Fourier descriptor of shape size and Euler number 88.33% [108]

2014 Peach circular disk radius estimation for shape 85.00% [2]

2014 Tomato Graham scan based convex hull 89.10% [68]

2014 Tomato Texture-based blob size h and w ratio - [4]

2016 Cucumber Ellipse fitted contour and ellipsoid mask 100.00% [23]

2016 Mango Global shape by centroid and boundary 87.80% [42]

2016 Tomato Ratio of equitorial and polar diameter - [139]

2017 Green Apple Perimeter, roundness, centrifugation based shape 90.08% [138]

2017 Mango Intensity based blob connection R2 =.91 [137]

2018 Strawberry Kite geometry based shape 90.00% [80]

2018 Tomato Centroid based circular contour estimation 100.00% [13]

texture analysis is evident from a study of human visual perception according to which the most complex
texture can be modelled as an arbitrary order statistics [146]. Most of the early work in the texture
feature description is based on this concept examples of which is Grey Level Co-occurrence Matrix (GLCM)
[146, 147]. Despite the significant research in this direction, approximately majority of feature descriptors
are less feasible for daily life applications in terms of computational requirements and complexity to be
implemented as computer vision application. Based on these limitations the texture descriptors are divided
into two categories [148] i.e. high-quality based and high-efficiency based described in Table 9 with identified
solutions to the complexities involved. An illustration of complexities of texture in the food images at
different illumination, scale and viewpoint conditions is depicted in Figure 3. The improvements in texture
descriptors described in Figure 4 can be divided in miles stones in a progressive way as filter-based, statistical,
Bag-of-Textons (BOT), invariants and Convolutional Neural Networks (CNN) based descriptors.

A bank of filters is used for image convolution to extract the major frequency components in filter based
methods [149]. Common examples of this method are Gabor filters [150], Gabor wavelet [151], Linear filters
[152], and pyramidal wavelets [153]. However, texture cannot be described always in a deterministic way.
Statistical methods describe the texture as a non-deterministic relationship distribution among the pixels
[154]. Examples of the statistical method are Markov Random Field (MRF) and fractal methods. Renais-
sance of texture as textons is called BOT, which is a new dimension in texture representation [155]. A
comprehensive mathematical model of textons is described in [156, 157] and a detailed description of oper-
ation involved in BOT are described in Figure 5. Moreover, significant techniques used for each subsequent
operation of BOT are listed in Table 10. Although, BOT has shown a significant progress in the semantic
representation of texture, it is significantly sensitive to rotation and scale variation an analysis is presented
in [158]. To reduce the sensitivity of texture descriptors on scale, viewpoint and illumination scale invariant
features were introduced. Scale Invariant Feature Transforms (SIFT) and LBP are groundbreaking examples

Table 9: Categorisation of texture descriptors based on computational constraints for optimal texture representation.

Computational
constraints

Properties of descriptor Complexity involved Identified solutions

High-quality
descriptors

Dealing with significant Intraclass
texture irregularities and interclass
similarity

Rotation, Variable
viewpoint, Variable
illumination, Noise

Development of large
training datasets for
better learning

High-efficiency
descriptors

Hyperdimensional texture represen-
tation on resource limited hardware
i.e. embedded systems

Complex and high dimen-
sional representation of
texture

Development of compact
and less complex feature
descriptor
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(a) (b)

(c) (d)

Figure 3: Illustration of complexities in the texture of food images (a) scale variation in orange peel (b) scale and viewpoint
variation in brown bread (c) scale variation in cracker (d) illumination variation in candy fruit. Images by RawFooT and
KTHTIPS texture datasets.

of this era. Recently, more deep convolution has been performed with the help of CNN to extract more
complex spatial relation among the pixels CNN has shown significant performance in object recognition and
texture analysis [159, 160, 161]. A key to success and excellent survey on CNN based texture representation
is presented in [162].

Considering the case of texture based fruit and vegetable classification significant results have been
reported. Exploiting the capability of filter-based methods of low computational cost and spatial represen-
tation in transform domain a Gabor filter based PCA kernel has been proposed in [32] for apple quality
grading. In this study, the segmentation part has been eliminated by taking advantage of extracting specific
frequency components for texture representation while a classification rate of 90.60% is achieved. Scale
invariant property of fractal has been used for quantifying the food skin morphological changes as an effect
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Figure 4: A time-line of texture representation methods.
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orange peel

Texture Feature Detection
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k Means clustering

Average pooling or ordering

Random pooling

Fully connected
layer

Classification

Softmax layer

Harris corner, 
RIFT, SFIT

Filter Bank

CNN

Figure 5: Generic representation of BOT variants [148].

of storage damage and cooking [175]. An average intensity difference has been used for forming fractal image
and average Fourier spectrum horizontal and vertical power has been used for frequency domain analysis.
It has been identified that fractal changes also correlates to the visual changes. A Spatial Gray-level De-
pendence Matrix (SGDM) based statistical analysis is used to find 13 statistical features defined to describe
the texture of grapefruit peel. The classification has been performed by clustering samples on generalised
square distance, where an accuracy of 98% has been reported in [34]. A co-occurrence matrix based texture
has been defined on grey level for 15 classes of fruit and vegetable and eight statistical features has been
used for describing the features in [74]. It is assumed that the same statistical properties will exist due to

Table 10: The state-of-the-art techniques of BOT as represented in Figure 5.

Steps List of Approaches The State-of-the-art

Texture feature
descriptor

Sparse methods Harris Laplacian (RIFT, SIFT and SPIN) [163, 164]
Fractal methods Multi-Fractal Spectrum [165]

Dense methods

Gabor wavelet
LM filters [155]
Schmid Filters
Maximum response (8 filters) [166]
Local Binary Pattern (LBP)
Basic Image Features (BIF)[167]
Weber Local Descriptor (WLD) [167]

Codebook
generation

Predefined method [167]
k-means clustering [155]
Gaussian Mixture Model (GMM) [168]
Spare code learning [169]

Encoding

Voting based methods
Hard voting [155]
Soft voting [170]

Reconstruction based methods
Sparse coding [171]
Local constraint Linear Coding (LCC) [172]

Fisher Vector (FV) based
Fisher Vector (FV) [173]
Improved Fisher Vector (IFV) [168]
Vector of Locally Aggregated Descriptor (VLAD)[174]

Feature pooling
Average Pooling
Max Pooling
Spatial Pyramid Pooling (SPP)

Classifier
Nearest Neighbour Classifier (NNC) [166]
Kernel Support Vector Machine (Kernel- SVM) [164]
Linear Support Vector Machine (Linear-SVM) [160]
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the iterative nature of texture in fruit and vegetable peel. An accuracy of 89% has been achieved while using
texture as a feature. Correspondingly, texture has been represented as Local Activity Spectrum (LAS) in
horizontal, vertical and diagonal directions for fruit classification in [136]. The LAS has been quantised to
make a histogram based feature vector of 256 bins, where this method as reported an accuracy of 99%.

In the current state-of-the-art methods of texture representation a Local Relative Phase Binary Pattern
(LRPBP) has been used in [176], where the texture is used with the LRPBP and an approximated accuracy
of 96% has been reported. To reduce the burden of computational power on single board computers or
embedded systems a colour and texture based fruit classification approach has been presented in [177]. A
grey level co-occurrence matrix (GLCM) has been used for texture representation where an accuracy of
83% has been achieved however, no specific details have been indicated explicitly to lower computational
cost except running the proposed method on a Field Programmable Gate Array (FPGA). More recently
GLCM has been used with statistical features for classification of diseased papaya fruit [44]. In this research,
statistical feature descriptors have been assumed for better discriminatory power for defect detection. Five
GLCM features have been used for texture description to achieve an accuracy of 90.5% which can be
considered as promising. Similarly, a Texture Homogeneity Measuring Technique (THMT) has developed
for classification of olives. A homogeneity is measured by considering an adaptive threshold based on defect
area pixel intensity variance. Significant accuracy rate has been presented but it can be identified that the
approach has a high class dependency [43]. An ROI based multi-feature fusion has been performed by fusing
HOG, LBP and GaborLBP for texture representation in [7]. SVM is then used for classification among the
multiple classes of fruit, it is identified that the optimal region selection has improved the overall results by
a significant factor. A non-exhaustive comparison of recent research studies has been presented in Table 11.

6.3. Colour feature descriptors

Colour is an important cue for selection or rejection of fruit and vegetable for customers in supermarket
or quality assessment personnel [180, 181]. The colour is most frequently used feature for image retrieval
and recognition. Colour has significant advantages over other features like high frequency ease of extrac-
tion, invariant to size, shape and orientation and independent to background complication. Colours are
represented in different colour spaces which are designed for specific purpose. A commonly known colour
space is RGB, which represents the image in red, green and blue planes. An image generated by the same
pixels in an RGB space can have different RGB values for different devices which need to be transformed for
standardization. This non-linear nature of RGB makes it less suitable for human visual inspection. To over-
come this limitation of RGB space significant other colour spaces have been developed a detailed description
of different colour space and their comparative analysis is presented in [91]. In general, machine learning
based colour representation is used for classification of objects from images or videos [182]. Colour of a

Table 11: Comparison of recent texture feature description methods for fruit and vegetable analysis.

Year Fruit/Veg Application Feature vector Accuracy Ref.

2009 Grapefruit Quality assessment SGDM based 13 statistical 98.30% [34]

2010 Mixed fruit Recognition Five statistical features 94.00% [74]

2012 Pomegranates Quality assessment Statistical features 98.80% [178]

2012 Vegetable Classification kurtosis and skewness 95.00% [77]

2013 Mixed fruit Quality assessment Curvelet-based statistical feature 91.42% [179]

2015 Mixed fruit Classification Wavelet Entropy 89.50% [29]

2016 Mixed fruit Classification Local relative phase binary patterns (LRPBP) 95.83% [176]

2017 Apple Recognition Grey-scale difference with statistical feature 98.08% [138]

2017 Grapevine bud Detection SFIT with BOF 96.50% [56]

2017 Mango Segmentation Dense SIFT-based histogram visual word 88.00% [137]

2017 Mixed fruit Recognition Mean, Standard Deviation, Skewness and Kurtosis 83.30% [177]

2018 Mixed fruit Detection Fused HOG, LBP, and GaborLBP 98.50% [7]

2018 Olive fruit Quality assessment THMT based threshold comparison 100.00% [43]
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(a) (b)

(c)

Figure 6: Illustration of changes in digital images (a) Scale variation in Orange peel (b) Illumination change up to 75% in
Chilli paper (c) Viewpoint change for Acerolas. Images by RawFooT and KTHTIPS food datasets.

fruit or vegetable is governed by physical, biochemical and microbial changes during ripening and growth.
However, the photometric changes i.e. orientation, scale and illumination can cause a significant effect on
the colour of fruit as illustrated in Figure 6. To reduce the photometric effects a colour descriptor must has a
significant invariance property [5]. A diagonal model-based representation and effect of photometric changes
on a digital image is studied in [183]. Based on the diagonal model five different invariance properties of
colour feature descriptor are presented in Table 12.

Table 12: Colour invariance properties of colour feature descriptors w.r.t diagonal model.

Property Diagonal representation Description

Scale-invariant

[
Rr

Gr

Br

]
=

[
x 0 0
0 x 0
0 0 x

][
Ru

Gu

Bu

]
The equivalent change in RGB channels w.r.t. to

intensity change, where x is scaling factor.

Intensity shift
invariant

[
Rr

Gr

Br

]
=

[
Ru

Gu

Bu

]
+

[
o1
o1
o1

]
The equal shift in intensity values in all RGB channels

i.e. (o1 = o2 = o3), where o is shifting factor.

Scale and shift
invariant

[
Rr

Gr

Br

]
=

[
x 0 0
0 x 0
0 0 x

][
Ru

Gu

Bu

]
+

[
o1
o1
o1

]
The descriptor is invariant to the changes of scale and

shift w.r.t light intensity.

Light colour in-
variant

[
Rr

Gr

Br

]
=

[
r 0 0
0 g 0
0 0 b

][
Ru

Gu

Bu

]
The images channels scale independently i.e. (r 6=
g 6= b).

Light colour
and shift invari-
ant

[
Rr

Gr

Br

]
=

[
r 0 0
0 g 0
0 0 b

][
Ru

Gu

Bu

]
+

[
o1
o2
o3

]
The model changes arbitrarily for both shift and

colour i.e. (r 6= g 6= b) and (o1 6= o2 6= o3).

Significant colour descriptors have been used for fruit and vegetable colour representation. Colour of
fruit and vegetable can be described as a whole or in terms of regions of homogeneous colour i.e. globally
or locally. Histograms, moment invariants, SIFT and coherence vectors have been significantly used for the
description of colours in fruit and vegetable classification. Histogram of each colour channel is combined
to make an RGB histogram. However, an RGB image consists of numerous RGB levels which need to
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be normalised after quantisation in particular histogram level [184]. Moreover, pixel level histograms are
invariant w.r.t photometric changes. Also, histograms do not contain semantic information of the image.
Considering the image as a function of RGB triplets colour moments are decried in [185, 186]. Scale Invariant
Feature Transform (SIFT) [187] is invariant to common photometric changes as the gradients of an image are
invariant to photometric changes [188]. Significant variants of SIFT are HSV SIFT, HUE SIFT, opponent
SIFT, C-SIFT, rgSIFT and RGB-SIFT [189, 190, 191]. Colour Coherence Vector (CCV) describes holistic
colour distribution with spatial pixel relevance by dividing the image into connected components. Much
research has been reported using CCV as scene recognition and object recognition with variable viewpoints
[192, 193]. A summary of invariance properties of discussed colour feature descriptors w.r.t to the diagonal
model is presented in Table 13.

An HSI based colour histogram representation in [66] is among the most initial efforts for classification
of produce, where one-dimensional histogram of H, S and I channels are fused to represent the colour.
Similarly, an HSI based CCV has been used for disease detection in citrus peel in [34]. An RGB based
histogram of banana is feed into a neural network for fruit quality assessment where the proposed method is
evaluated manually by measuring the quality of banana with classification [194]. A fusion of CCV, Global
Colour Histogram(GCH) and unser’s descriptor has been compared with SVM and LDA for classification
of fruit in [73]. It is also reported that the colour based approach has out-performed as compared to more
complex appearance-based approaches. Five statistical properties of each colour channel in HSV space
has been extracted for detection of citrus fruit in [180]. Experiments have been performed with different
combination of statistical features, where the fusion of more features results in better detection rate it can
also be identified that the results are significantly better as compare to RGB space. The quantisation of RGB
images in histograms is assumed placement in less bins for more colour levels. A more precise digitisation
of the histogram is performed for estimation and a comparison of different machine learning methods has
been presented in [68]. Visible optical fibre sensor with RGB Light Emitting Diode (LED) has been used for
fruit quality assessment in [195], various ripening stages were recorded to generate a dataset. The optical
instruments used in this study have reported a significant result, while the coefficient of determination R2

was recorded as 0.879. The sRGB conversion to L∗a∗b∗ space is performed to determine the red area share
on the peel of mango for mango ripeness estimation. The experimental setup is designed to capture the
mango images without background and a pixel count based red area share has been estimated. However,
the method is limited to the particular fruit pattern and cannot work with the complex fruit peel properties
[196]. A citrus crop estimation is performed by using water shedding segmentation and distance transform
and marker controller. The colour as HSV feature is used for counting the citrus fruit [197]. More recently

Table 13: Colour descriptor invariance w.r.t diagonal model, where 3 indicates invariance and 5 represents lack of invariance.

Colour feature
Descriptor

Invariances

Scale Intensity
Shift

Scale and
shift

Light
colour

Light colour
and intensity
shift

Histogram (RGB) 5 5 5 5 5

Hue histogram 3 3 3 5 5

rg histogram 3 5 5 5 5

Colour moments 5 3 5 5 5

SIFT 3 3 3 5 5

HSV-SIFT 5 5 5 5 5

Hue-SIFT 3 3 3 5 5

rg-SIFT 3 5 5 5 5

Opponent SIFT 3 3 3 5 5

C-SIFT 3 5 5 5 5

RGB-SIFT 3 3 3 3 3
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different colour models have been analysed for recognition of litchi fruit during day and night time where,
statistical features of YIQ, RGB, HSV and YUV colour space have been used for representation of a litchi
bunch. A CCD camera was fitted with an illumination system on a mobile robot for image acquisition. It
is identified that the overlapping of background and pixel at night time is significantly less as compared to
daytime [59]. A region based division of tomato has been performed to estimate the ripeness, the colour in
terms of RGB is considered from every five regions and are converted to HSI. To estimate the ripeness level
the region based colour variations of different samples have been identified by selecting the most significant
effect [13]. A performance compression of colour based fruit and vegetable analysis is provided in Table 14.

7. Classification

The initial introduction to computer vision traces back to 1960s. It is now an essential part of the state-
of-the-art systems in industrial automation, intelligent security, autonomous vehicles, food industry, robotics
and medical imaging [201]. Fruit and vegetable classification is a problem of assigning a qualitative fruit
or vegetable class ci ∈ {1, 2, . . . C} to an observed input io. RGB images have been studied extensively to
exploit significant characteristics of fruit and vegetable like colour, shape, texture and size for conventional
computer vision systems. Robotic harvesting [50], quality analysis [1], disease identification [44] and damage
analysis [40] are among the leading applications of vision based fruit and vegetable classification. Recent
research has used a variety of machine learning models for example, KNN, SVM, decision trees and Neural
Networks (NN) and their variants [6, 77, 108, 202] for this purpose. Linear and non-linear hyperdimensional
data can be classified with the SVM which is a non-linear mapping of data with the help of kernel functions.
KNN is an instance based non-parametric similarity measure learning for data of infinite dimensions and
a decision tree is a probability based graph for multi-class classification. SVM and KNN have been widely
used for fruit and vegetable classification and a comparable classification effectiveness w.r.t. Multi-layer
Perceptron (MLP) and Radial Bias Functions (RBF) has been reported [51]. However, hyperdimensional
approximation for multi-class fruit and vegetable classification using SVM poses significant performance
constraints which have been addressed by combining the SVM with the meta-heuristic optimisation for
optimal parameter estimation in [7]. The capability of holistic feature extraction of CNN has reported
significant object classification effectiveness. Currently, Neural Networks (NN) has gained a significant
importance in the food industry [2, 13, 29, 45, 72, 180, 203]. One of the constraints of CNN is the scarcity
of substantial dataset for training the CNN. The development of pre-trained networks for general objects
classification is a serious attempt to address this issue [45, 204, 205, 206]. These pre-trained networks

Table 14: Comparison of colour features for fruit and vegetable analysis.

year Fruit/Veg Colour feature vector Colour space Accuracy Ref.

2009 Grapefruit HSI based CCV HSI 98.30% [34]

2009 Banana RGB Histogram RGB - [194]

2009 Pomegranate Threshold on R/G ration and RGDB LDA RGB 90.00% [198]

2010 Strawberry Dominant colour in a∗ channel CIE Lab 88.80% [199]

2012 Mixed Red and green component in HSI domain HSI 95.00% [77]

2013 Citrus LUT based CCI in L∗a∗b∗ L∗a∗b∗ 95.00% [200]

2014 Tomato Colour histogram RGB 89.10% [68]

2014 Mango Optical RGB with fine LED light RGB 87.90% [195]

2015 Olive Histogram of gradients of R, G and B channel RGB 100.00% [79]

2016 Mango R/G ratio by pixel count RGB 94.00% [196]

2016 Tomato Mean, deviation and skewness on R, G and B channel RGB 100.00% [39]

2017 Citrus H channel thresholding in HSV HSV 93.00% [197]

2018 Litchi Statistical features of Y, I and Q YIQ 93.75% [59]

2018 Citrus Watershed on RGB RGB 93.13% [15]

2018 Tomato HSI based colour matching HSI 100.00% [13]
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can also deal with the scarcity of fruit and vegetable datasets as they exploit the more essential features of
images. Significant variants techniques of using pre-trained CNN for object classification have been presented
in Table 15. A more recent comparison of available classification algorithms on different computer vision
datasets has been presented in [207].

Robotic harvesting, quality assessment and the produce classification are among the most evident appli-
cations of fruit and vegetable from literature. A prototype system for the produce classification has been
introduced in [66], where colour and texture is used for classification using KNN as machine learning tech-
nique. Illumination has been considered as a key driving factor for the colour variance, hence lighting and
relative position of produce item have been considered carefully. This experiment is the most initial effort in
the produce classification however significant performance has been reported. Similarly, a mobile platform
has been designed for robotic harvesting using a far vision (FAR) and near (NEAR) vision system developed
in [47]. A four camera integrated image is then analysed for intensity-based roundness and smoothness for
watermelon detection while ignoring too small and big object, a significant performance has been reported.
Recently, much research has been reported for fruit and vegetable classification a non-exhaustive detail of
which is discussed here. A defect segmentation for apple fruit has been performed in [30] by threshold-based
segmentation with multiple supervised classification models to segment the defected area. The comparison
considered all pixel of the image as noise free however, this assumption has led to a significant performance
lack, although larger neighbourhood analysis has reported reasonable performance. A colour and Infra-red
(IR) fusion has been used for counting apple fruit on the tree [53]. A Haar filter based fruit detection
has been used with the Adaboost algorithm on a mobile robot. The analysis has taken an advantage of
colour-IR fusion for dealing with occlusions however, Haar filters are not robust enough w.r.t noise and
distortion in data. Grapefruit peel condition has been analysed in [34] for five diseases by texture analysis.
An LDA based texture features selection has been performed for spatial intensity level comparison, but the
reduction in features size has reported in performance lack. It can be identified that the experiments have
been performed in a constraints environment for better performance, where the colour space chosen has
a limitation of low lighting condition. A supermarket produce classification system has been presented in
[74] for 15 classes and 2633 images. Statistical colour and texture features have been used for classification,
however significant over-fitting is evident from classification results due to a small number of training sam-

Table 15: Significant variants of CNN based approaches.

CNN Vari-
ants

Description Literature Application

Pre-trained
CNN model

Basic filter bank
and feature
encoding and
pooling techniques.

AlexNet [161] Introduction of CNN based feature encoding

for image classification challenge by image net.

VGGM [208] Texture classification performance than
AlexNet at similar complexity.

VGGVD [209] Deeper layer set for better classification per-

formance .

GoogleNet
[204, 206, 205]

Smaller filter banks and deeper convolution

layers for image classification.

ResNet [84] Significantly deeper than previous CNN based

pre-trained models.

Fine-tuned
model

Conversion of the
fully connected layer
to n nodes specific
to classes in the
dataset for
classification.

TCNN [210] Global average pooling the output from mul-

tiple CONV layers.

BCNN [211, 212] Introduction of orderless bilinear pooling
methods for high dimensional feature repre-
sentation.

Compact BCNN
[213]

Dimensionality reduction of features in BCNN

for better performance.

Hand-crafted
CNN model

Using traditional
hand-crafted feature
descriptor methods for
convolution layers.

ScatNet [214] Using Gabor wavelet as a function for convo-
lution layer.

PCANet [215] Using PCA filters as convolution layer along
with LBP and histogram for feature pooling.
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ples moreover introduction to more significant features i.e. morphology can also improve the performance.
Another similar approach of produce classification is presented in [73], where packed fruit and vegetable are
also considered for classification of items. Statistical features of colour and vocabulary based texture have
been used along with the fusion of classifiers in this study. It has been reported that the experiments can
achieve a more better result using more complex features e.g. appearance-based features.

Many examples of vision-based quality grading are also evident from the literature. Colour-based sta-
tistical features have been described for quality assessment of citrus fruit describing colour in HSV space.
A distance-based classification i.e. KNN and CNN have been used for classification of defected citrus [180].
A statistical histogram-based apple quality assessment has been presented in a non-destructive way. A soft
clustering has been performed for classification however, the ACM energy minimisation used for segmenta-
tion of apple shape poses significant performance constraints. Moreover, the invariance of colour space to
illumination has not been considered carefully while performing the experiment in a controlled environment
[35]. More recently olive quality assessment has been performed for oil extraction, olive image histogram
has been used with Fisher discriminant analysis for linear classification. However, the training has been per-
formed with a very small number of samples and more complex feature vector can be used for this purpose
keeping in view the limitations of global histograms used [79]. As the current advancement in computer
vision has presented an emphasis on image representation as its elementary characteristics a BOF based
image representation has been used for this purpose. A machine vision based mango crop estimation is
performed by detecting mango fruit in the canopy of the mango tree, a manual counting is performed on
segmented images for estimation. Dense SIFT has been used for constructing a Bag-of-Visual (BOV) words
for super-pixel classification using KNN [137]. Sweet and bitter almond visual classification with the key
points based BOF is performed in [6], where each almond image can be represented as a frequency his-
togram of BOF in the codebook. Corners, regions and blobs have been used to represent the almonds and
an accuracy of 91% is reported. However, a complete analysis of the invariance of features w.r.t. different
transforms need to be performed and a more large dataset per class should be used for more reliable results.
An accuracy of 99.24% has been reported with an SVM is used with LBP, HOG and CNN based feature
for generating image patches used as an input for classification [7]. These patches are then analysed with
CafeNet for classification the overlapping among the multiple patches detecting windows has been used for
patch selection as final feature vector for decision making. This window based method has been used for
classifying fruit with occlusions however, some instances with occlusion have been detected falsely. It is also
identified that complex background poses significant performance and computation constraints. Morphology
of fruit and vegetable has also been considered for different food industry applications. The approximation
of the elliptical shape of strawberry fruit has been represented with Elliptical Fourier Descriptor (EFD)
while using SVM and decision tree for shape-based classification. Length of contour, area and major axis of
the estimated ellipse has been used for shape representation. Chain codes difference of optimal ellipse area
ration and optimal boundary length ratio has been used for finding the elliptical similarity for classification,
where an accuracy of 91% has been reported [16]. Another morphology based strawberry classification
is performed in [80], shape and size have been estimated by kite analysis for classification of strawberry.
However, morphological analysis is limited to automated sorting only but no quality assessment can be
performed due to lack other features description i.e. colour or texture. A more precise morphological anal-
ysis is performed by combining the morphology and contour based colour information for tomato ripeness
estimation [13]. Dark image background is used to segment and centroid estimation of tomato, where colour
information is considered on equidistant contour regions in the tomato boundary for ripeness estimation.
More considerable utilisation of this technique can be in classification of multiple types of same fruit or
vegetable with a slight visual difference at the global level e.g. classification of different types of apple or
mangoes.

More significant efforts for classification of fruit and vegetable have utilised approximately all possible
feature and have tested machine vision boundaries. A Fitness Scaled Chaotic Artificial Bee Colony (FSCBC)
algorithm has been tested with Feed-forward Neural Network (FNN) as a hybrid classification techniques [68].
Selected windows on the fruit images are used for feature extraction and classification with FNN-FSCBC
where an accuracy of 89.10% has been achieved. Another FNN based on wavelet entropy PCA has been
presented in [29]. The FNN has been trained by FSCBC and biogeography-based optimisation is applied for

21



Table 16: Comparison of machine vision techniques for fruit and vegetable classification.

year Fruit/Veg Dataset size Classifier Accuracy Ref.

2006 Apple 526 KNN, LDC, QDC, LR, SVM, FNN, K-means, SOM, NN 99.30% [30]

2006 Citrus - Specialised 95.00% [31]

2007 Apple 166 Gabor wavelet PCA 90.50% [32]

2008 Apple 46 PCA - [33]

2009 Grapefruit 180 Squared distance 98.30% [34]

2010 Mixed 2633 Hyperdimensional SVM 86.00% [73]

2011 Apple - Histogram based FCM 96.00% [35]

2012 Apple 210 N- neighbouring 96.00% [76]

2012 Mixed 2633 K-mean clustering 98.80% [136]

2012 Pomegranates - Hyperdimensional SVM 99.88% [178]

2012 Vege 296 Decision trees 95.00% [77]

2013 Apple 92 BPNN networks 88.00% [36]

2013 Jatropha - K-means, fuzzy c-means (FCM) 87.20% [216]

2013 Mixed - Network based 96.55% [78]

2014 Apple - K-means fuzzy c-means (FCM) 60.00% [217]

2014 18 fruit 1653 FSCBC+FNN 89.10% [68]

2015 18 fruit 1653 WE, PCA,BBO, FNN 89.50% [29]

2015 Fruit (5 classes) Transfer Learning 50.00% [218]

2015 Olive 77 Fisher Discriminant Analysis (FDA) 100.00% [79]

2016 18 fruit 1653 FNN and Deep Learning(DL) 99.88% [72]

2016 Figs 120 SVM, LDA, LOGLC 100.00% [38]

2016 Tomato 520 Three layer FNN 100.00% [39]

2017 Apple - Artificial Neural Network (NN) 94.94% [40]

2017 Almond 2000 KNN, L-SVM, Chi-SVM 91.00% [6]

2017 Eggplant 50 KNN 88.00% [57]

2017 Grapevine 760 SVM 97.70 [56]

2017 Mango 200 SVM 87.00% [42]

2017 Mango 2464 SVM and dense segmentation 98.00% [137]

2017 Vege (26 classes) KNN, SVM, ABC-FNN, FSCABC-FNN 95.60% [202]

2017 Vege (5 classes) SVM 90.79% [41]

2017 Tomato - ANN 98.50% [203]

2018 Apple 55 K-means, FCM 91.84% [14]

2018 20 cultivars - - 100.00% [81]

2018 Dates 8000 Caffee Net 99.24% [219]

2018 Fruit 1778 SVM 98.50% [7]

2018 Litchi 480 FCM 97.50% [59]

2018 Lettuce 320 CNN 86.00% [109]

2018 Maize 910 PLS-DA 100.00% [220]

2018 Orange 335 Naive Bayes, ANN, Decision Tree 93.45% [15]

2018 Papaya 114 Decision tree 95.98% [58]

2018 Papaya 129 SVM, Decision Tree, Naive bayes 90.15% [44]

2018 Strawberry 337 Histogram Comparison 94.00% [80]

2018 Strawberry 2969 KNN, FCM, K-means 100.00% [43]

2018 Tomato 150 BPNN 100.00% [13]
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classification. SVM and fuzzy algorithm have been used for grading of mangoes in [42] with an accuracy of
87%. An apple bruise detection has been performed for automated quality assessment and disease detection
in [40] using a thermal camera and Artificial Neural Network (ANN). A packed fresh-cut lettuce analysis has
been performed in [109] for supermarket produce. A Deep Learning (DL) based classification of on CIELAB
colour space has been performed with super-pixel segmentation in this study. A more detailed comparison
of the state-of-the-art fruit and vegetable classification methods has been presented in Table 16.

8. Summary

A comprehensive review of the fruit and vegetable classification process has been presented. A detailed
comparative study is presented to consider significant characteristics of sensors, feature description and
classification algorithms. A comparison of the techniques used in the field of fruit and vegetable classification
is established to comprehended the current key challenges in this field. The study explores the major
constraints of utilisation of currently available sensors and the combination of multiple sensors for data
acquisition in different applications of food industry. A brief description of difficulties in multi-sensory
data fusion is also discussed in the paper. Significant points have been made on the importance of pre-
processing and segmentation required for computer vision based analysis in the food industry. The feature
description of pre-processed and segmented images is discussed in detail with an emphasis on fruit and
vegetable characteristics. Finally, an overview of classification techniques used with various features and
their combination in different applications of food industry has been presented.

8.1. Conclusion

Based on the literature an up-to-date review of fruit and vegetable classification and constituent processes
is presented in this paper and the previous efforts made have been recorded well. Significant challenges in
terms of data acquisition devices, feature representation and classification algorithms have been identified
to overcome. The sensors used for the data acquisition in the food industry are found constrained due to
substantial limitations in various applications for example, some of the applications are non-destructive in
nature, have environmental occlusions, presents inter and intraclass similarities and complex features. Other
significant limitation on the use of multiple sensors in the same application of fruit and vegetable analysis
is different nature of data produced by them. This different nature of data is also limited for providing
significant multisensory data fusion. The feature descriptors developed and used in the state-of-the-art are
also insufficient in such a capability. Moreover, no sufficient feature descriptors are available for the most
recent kind of sensors i.e. RGBD sensors. Other significant limitations of feature descriptors are due to
their sensitivity to many natural pheromones of image capturing. These limitations are significantly evident
from the relevant literature and are presented in the paper. The machine vision algorithms evident from
literature are insignificant to cope with multi-feature hyperdimensional information for classification. The
fruit and vegetable have numerous classes and each of them presents a multi-feature nature. The classification
algorithms identified are constrained by the scarcity of substantial datasets available. It has been identified
that most of the experiments performed in the literature are either limited in terms of classes or the size
of the dataset. The current research for the development of pre-trained CNN is a step toward developing
a capability of providing off-the-shelf components for computer vision applications. However, these pre-
trained CNN are data dependent and availability of significantly large dataset of fruit and vegetable is
scarce. Considering the detailed discussion on the fruit and vegetable classification a suggestion can be
raised that a complete rethinking is required for more effective use of computer vision in the food industry.

8.2. Future directions

Significant limitations of the state-of-the-art techniques in different application areas have been identified.
Most of the emerging new sensors have not been exploited for the applications of fruit and vegetable.
The major reasons for their scarce utilisation in fruit and vegetable classification is the unavailability of
substantial datasets. The data needs to be collected and augmented to build new datasets to take advantage
of RGBD sensors for more effective results. Among the numerous applications of this area, some have not
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been studies well e.g. supermarket self-checkout and use of recent RGBD sensors for this task. Significant
evidence of automated self-checkout and utilisation of visual data in intelligent self-checkout are presented as
future technology [60, 61, 62, 63, 64, 65, 66]. The constraints: lighting condition, timeliness, large dataset,
effectiveness and accuracy are there to introduce this new technology in supermarket. Approximately, 150
classes of fruit and vegetable have been identified in a rough internet survey in Australian supermarkets,
none of the previous studies have discussed such a number of classes. Recent advanced commodity RGBD
sensors are being used for object classification [70, 221, 222, 223, 224, 225, 226, 227], which can also be used
for more effective classification of fruit and vegetable.

Detailed survey of the fruit and vegetable classification techniques has been presented to investigate
the intuitive use of recent techniques in computer vision based automated self-checkout. The technologies
explored were specifically chosen to meet the pre-defined goals. Based on the knowledge developed from
this study our future areas of research will be:

• The utilisation of RGBD data for fruit and vegetable classification

• System level design of RGBD sensor based supermarket self-checkout

• Optimal ways of dealing with scarcity of large RGBD datasets

• Optimisation of the state-of-the-art machine learning techniques with RGBD data
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