Reply to OM Shannon et al

Lauren C. Blekkenhorst
Edith Cowan University

Joshua R. Lewis
Edith Cowan University

Richard L. Prince

Amanda Devine
Edith Cowan University

Nicola P. Bondonno

See next page for additional authors

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

Part of the *Dietetics and Clinical Nutrition Commons*

10.1093/ajcn/nqy246
Available here.

This Letter to the Editor is posted at Research Online.
https://ro.ecu.edu.au/ecuworkspost2013/5434
Response to Letter, “No effect of 4 weeks nitrate-rich vegetable consumption on blood pressure: Reflections for future research”

Lauren C Blekkenhorst¹, Joshua R Lewis¹,²,³,⁴, Richard L Prince²,⁵, Amanda Devine¹, Nicola P Bondonno², Catherine P Bondonno¹, Lisa G Wood⁷, Ian B Puddey², Natalie C Ward²,⁸, Kevin D Croft², Richard J Woodman⁹, Lawrence J Beilin², Jonathan M Hodgson¹

¹School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
²Medical School, The University of Western Australia, Perth, WA, Australia
³Centre for Kidney Research, Children's Hospital at Westmead, Westmead, NSW, Australia
⁴School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
⁵Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
⁶School of Biomedical Science and Pharmacy, University of Newcastle, New Lambton Heights, NSW, Australia
⁷School of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
⁸Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, SA, Australia

Address for correspondence and reprint requests:
Lauren C Blekkenhorst

School of Medical and Health Sciences

Edith Cowan University

270 Joondalup Drive JOONDALUP WA 6027

Tel: 61 8 6304 4604

Email: l.blekkenhorst@ecu.edu.au
Response to letter:

We would like to thank Shannon and colleagues for their interest in our recent publication (1). Our approach to increasing nitrate intake was to have participants consume high nitrate vegetables, rather than supplements. The estimated increase in nitrate intake of ~150 mg/d was in addition to an estimated background intake of ~85 mg/d (1). This represents a substantial increase in habitual nitrate intake. With typical median habitual nitrate intakes of ~100 mg/d (2), a nitrate intake of >200 mg/d would represent high nitrate intake within most populations. We believe that an increase in nitrate intake of >100 mg/d is readily achievable for the wider population. Although a very high nitrate intake (>500 mg/d) can be achieved through dietary means, this is unrealistic on a long-term basis for the majority of the general population. Such intakes usually require supplementation with nitrate salts (NaNO₃; KNO₃) or concentrated beetroot juice. The feasibility of translation of findings to shift behaviours of the wider population should be taken into account in designing future studies.

Many trials have now investigated the effects of increased nitrate intake on blood pressure (3-6). Results of acute studies are largely consistent and indicate dose-related blood pressure lowering with increased nitrate intake. The chronic effects following a sustained increase in nitrate intake are less consistent (3-5). Several previous trials indicate that a short-term increase in nitrate intake does not result in lower blood pressure (7-10): results that align with our recent trial (1). However, other short-term trials have demonstrated blood pressure lowering effects following sustained short-term increases in nitrate intake (3-5, 11).

The reasons for the inconsistent results from short-term trials are unclear. We agree that nitrate dose may be a factor, but counterintuitively, a meta-analysis of short-term studies indicated smaller effect sizes for blood pressure among trials with the highest nitrate intakes (3). This contrasts with data from acute studies (4), and suggests that factors other than dose
may account for the inconsistent findings. One explanation may be that sustained higher
nitrate intakes can result in down-regulation of nitric oxide synthase leading to reduced
endogenous nitric oxide production and/or reduced sensitivity of cellular targets to nitric
oxide (12). Another possibility is an interaction between sulphur-containing compounds and
nitrate (13, 14). In a study by Dewhurst-Trigg and others (14), the ingestion of vegetables
with high thiocyanate (a sulphur-containing compound) attenuated the blood pressure
lowering-effects of nitrate-rich vegetables. Several of the high nitrate vegetables consumed
by the participants in our study were also likely to include sulphur-containing compounds.
Furthermore, the age and health status of participants may be important. Older individuals
and those at an increased risk of cardiovascular disease may respond differently to healthy
populations (3-5, 7-9). This is supported by Ashor and colleagues who reported that when
short-term trials that recruited active, healthy individuals were excluded from their meta-
analysis, effects on blood pressure became non-significant (3).

In summary, we agree with Shannon and colleagues that dose of nitrate may be a contributing
factor to the inconsistencies in nitrate intervention trials. However, we believe that factors
other than nitrate dose are more likely to explain the inconsistent findings in this field.
Disclosures: None.

References:

