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CURRENT OPINION Open Access

The Current State of Subjective Training
Load Monitoring—a Practical Perspective
and Call to Action
Joseph O. C. Coyne1*, G. Gregory Haff1, Aaron J. Coutts2, Robert U. Newton1 and Sophia Nimphius1

Abstract

This commentary delivers a practical perspective on the current state of subjective training load (TL) monitoring,
and in particular sessional ratings of perceived exertion, for performance enhancement and injury prevention.
Subjective measures may be able to reflect mental fatigue, effort, stress, and motivation. These factors appear to be
important moderators of the relationship TL has with performance and injury, and they also seem to differ between
open and closed skill sports. As such, mental factors may affect the interaction between TL, performance, and injury
in different sports. Further, modeling these interactions may be limited due to the assumption that an independent
signal can adequately account for the performance or injury outcomes. An independent signal model does not
accurately reflect training environments where multiple stressors (e.g., mechanical, emotional, nutritional) impact
adaptations. Common issues with using subjective TL monitoring, including a lack of differentiation between
biomechanical, physiological, and cognitive load, may be overcome by considering psychometric measurement
best practices, finer graded scales, and differential ratings of perceived exertion. Methods of calculating TL,
including different acute and chronic time periods, may also need to be individualized to different sports and
potentially different individuals within the same sport. As TL monitoring is predominately a “chronic” decision-
making tool, “acute” decision-making tools, e.g., subjective wellness and autonomic nervous system measures,
should be combined in a bespoke multivariate model to aid sports coaches. A call to action is presented for future
research on key issues associated with TL monitoring that will have relevance for practitioners in an applied setting.

Key points

� Subjective measures of training load may be able to
reflect mental load, which appears to be an
important moderator of training load’s relationship
with performance and injury.

� The relationship between training load,
performance, and injury may differ between open
and closed skill sports due to mental load.

� Subjective measures of training load are
recommended in bespoke multi-factorial models
assessing the relationship between training load,
injury, and performance.

� Future developments in training load monitoring
should include quantifying the relationship between
subjective measures, performance, and injury and
establish preferred training load model calculations.

Introduction
Training load monitoring is typically an attempt to
quantify two interrelated relationships: the training
load–performance relationship (TL-P) and training
load–injury relationship (TL-I) [1]. Both of these rela-
tionships appear to be quadratic whereby if too much or
too little training is completed, there is a higher likeli-
hood of not performing well or becoming injured/ill [1,
2]. There are two general TL constructs: internal and ex-
ternal. These constructs, along with their interaction,
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have been described previously [1–4]. In practice,
methods of monitoring TL vary considerably depending
on the type of sport or activity [3]; however, TL models
are commonly analyzed using training impulse, which is
normally a product of an intensity factor and volume/
duration factor [2, 5].
Subjective measures of TL, and in particular, sessional

ratings of perceived exertion (sRPE), are recommended
as a primary measure of TL in systematic reviews of the
literature [6, 7]. Subjective measures may also be more
sensitive and consistent than objective measures [8, 9],
and sRPE has been reported as the most commonly
assessed TL variable in most sports [10]. Besides sRPE,
there are other subjective methods of assessing an ath-
lete’s response to training, e.g., visual analogue scales
[9] and perceived wellness/stress questionnaires [11].
Although these measures will be highlighted later in
the commentary, they are not usually incorporated into
common TL models using training impulse as intensity
factors. Due to the above factors, sRPE will be the prin-
cipal focus of this commentary.
A basic model of an athlete’s response to training can

be estimated from data collected as part of the TL
monitoring process [1, 5]. Specifically, the difference
between “fitness” (positive) and “fatigue” (negative)
functions can be quantified with internal or external TL
variables as training impulse [1, 5]. The genesis of this
basic TL model stems from the work of Bannister [5].
A recent simplified extension of this work has been the
development of the acute to chronic workload ratio
(ACWR) [12–14]. TL monitoring and in particular the
ACWR has been readily adopted (especially in open
skill sports) to inform training practices to minimize
the likelihood of injury [1]. The ACWR has also been
used as a tool to systematically progress injured ath-
letes’ rehabilitation and to quantify acceptable levels of
injury risk prior to an athlete returning to competition
[14, 15]. The research on the ACWR suggests values
above or below ~ 0.8–1.3 are associated with an in-
creased risk of injury [12–14]. However, the level of evi-
dence for this recommendation is not yet well
developed and it is typically not advocated that practi-
tioners completely avoid ranges outside ~ 0.8–1.3.
These ranges may be practically impossible or un-
desired in certain situations like early rehabilitation and
tapering. Practitioners should instead be cognizant that
a higher injury risk may be present and combine this
with other factors to make decisions.
Despite the association with injury risk, TL monitor-

ing and ACWR currently appear to be poor predictors
of injury [2, 16]. This poor predictive power in regard
to future injury has led some practitioners to question
the use of TL monitoring. However, it is important to
understand that the ability of single variables to predict

injuries will be limited considering the multitude of fac-
tors that may influence injury risk, including genetics
[17], previous injury history [18], psycho-social stress
[19–21], different psychological coping strategies [22],
and even coaching style [23]. Additionally, the use of
inconsistent injury reporting methods (e.g., “medical at-
tention injuries” versus “match time loss only”) and the
small number of injuries typically seen in many studies
makes it difficult to compare results between studies [6,
24]. One solution to this issue is to adopt a universal
injury categorization tool like the Subsequent Injury
Classification Model 2.0 [25]. Similar to TL-I, there are
limitations in the ability of single metrics to estimate per-
formance with precision. Many factors including nutri-
tional status [26], percentage of training affected by injury
[27, 28], and coaching style [29, 30] affect training adapta-
tions and subsequent performance. Notwithstanding these
limitations, TL monitoring is still considered an important
part of the athlete monitoring process [1, 3]. To improve
this process, a multi-factorial approach that considers an
athlete’s daily readiness to train and informal variables like
sports coaches’ experience and understanding of athletes
is recommended to enhance the understanding of TL-I
and TL-P [31, 32].
In light of our improved understanding of the impact

psychosocial/cognitive factors have on performance and
injury, recent examinations of periodization theory and
advances in using subjective TL measures, the purpose
of this commentary is to provide a practical perspective
on the current state of subjective training load (TL)
monitoring for performance enhancement and injury
prevention. It would also seem timely to reevaluate the
importance and weighting of subjective TL measures.
Common limitations associated with subjective TL
monitoring will also be addressed as well as possible
evidence-informed solutions to these issues. Further, a
critical examination of common methods of calculation
used in TL monitoring models is also warranted.

The Impact of Psychosocial Factors on Injury and
Performance
Despite appearing to be important moderators of TL-I
and TL-P [19, 20, 33, 34], non-physical mental factors
like mental fatigue, effort, stress, and motivation have
received comparatively little attention to physical fac-
tors. Mental fatigue is a psychobiological state caused
by demanding cognitive activity relative to the mental
effort and motivation required to perform a task [34,
35]. Mental fatigue can be considered a component of
mental stress, which may manifest in different forms
including varied maladaptive coping behaviors (e.g.,
self-blame) and low perceived motivation [21, 36].
It is notable that mental factors and mental load seem

to differ between open and closed skill sports. Open
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skill sports (e.g., basketball, table tennis) require players to
react in an unpredictable and changing externally paced
environment while closed skill sports are performed in an
environment that is relatively predictable, consistent, and
internally paced (e.g., shot put, swimming) [37]. Due to
these differences, open and closed skill sports place very
different mental demands on athletes, and these demands
develop different mental qualities [38–42]. For instance,
athletes in open skill sports may develop better visual at-
tention, action execution, and decision-making skills com-
pared to closed skill sports athletes [40–42]. It is logical to
suggest that the mental fatigue/stress from sports demands
may moderate both TL-I and TL-P [21, 34]. Hypothetically,
open skill sports may have greater incidences of injury at
the same ACWRs and may possess a very different optimal
TL-P relationship (i.e., require a longer taper to allow for
extra mental load to dissipate) when compared to closed
skill sports. This theorised relationship is detailed in Fig. 1.

Updates to Periodization Theory
Coinciding with our increased knowledge of the impact
non-physical factors have on performance and injury, it

is interesting to note theories underpinning training
periodization have recently been questioned [32, 43].
Modeling performance and injury is an associated ex-
tension of periodization theory [43]. A major assump-
tion and limitation related to current TL models is that
mechanical training stress or external TL is an inde-
pendent signal for “fitness”/“fatigue” adaptations. How-
ever, an independent signal model does not accurately
reflect training environments where multiple stressors
(e.g., mechanical, emotional, nutritional) impact athletic
adaptations and performance [26, 29, 33], nor does it
reflect recent consensus definitions of TL [3], advances
in the general adaptation syndrome model that con-
sider non-mechanical training stress [43] and more
contemporary allostatic and cognitive appraisal stress
theories [21, 32, 44]. These contemporary stress theories
suggest there is a complex and collaborative emotional,
physiological, immunological, and psychological response
driven by the brain’s perceptions of stressors [32, 44].
The allostatic stress and cognitive appraisal para-

digms may aid our understanding in effectively evaluat-
ing TL measures. Subjective assessments like sRPE may

Fig. 1 Possible interaction effects of open and closed skill sports on training load variables, performance, and injury risk. Individual London 2012
Olympic pictograms reproduced in complete figure with permission from the International Olympic Committee. CTL, chronic training load; ATL,
acute training load; ACWR, acute to chronic workload ratio
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reflect both the allostatic stress and the cognitive ap-
praisal of the stress as it theoretically encompasses both
the mechanical stress applied and also the (conscious)
perception of that stress [32]. Compared to objective
measures, sRPE may be able to better account for the
allostatic stress athlete experience in mixed training
sessions (e.g., tactical, skill, strength, fitness) [45, 46]
and the mental load (e.g., learning a new skill or tactical
strategy, competing against an unfamiliar opponent)
during these sessions [47, 48]. However, it is currently
unknown exactly how mental load affects sRPE, par-
ticularly in team-based open skill sports.
Although subjective measures may have advantages

as stand-alone measures, practitioners should not dis-
count established valid objective measures when moni-
toring TL. It is accepted that internal and external TL
measures should be used or compared with multiple
variables to better understand TL-I and TL-P [31]. It is
also suggested that both subjective and objective in-
ternal TL measures should be viewed as interrelated
but different constructs [31]. For instance, previous
studies have reported ~ 50% unexplained variance be-
tween objective heart rate (HR)-derived measures and
sRPE measures [31]. This highlights that both objective
and subjective TL measures are not interchangeable
and can give very different information. As such, if sub-
jective measures provide a better illustration of “allo-
static” load, the weighting of and comparisons between
TL variables may need to be reconsidered for best prac-
tice. Currently, it is common in sports science to com-
pare subjective perceptional measures (sRPE) to both
objective internal (e.g., HR) and external (e.g., GPS-de-
rived running measures) TL measures for validity pur-
poses [45, 49]. However, a paradigm shift may be
warranted whereby objective measures are compared to
the subjective as the criterion to determine construct
validity [50]. In regard to determining which TL mea-
sures to implement for practitioners, the authors sug-
gest sRPE would seem to be a logical first choice due to
the aforementioned reasons and low cost [1]. However,
TL measures should be chosen on a case-by-case basis
depending on the nature of the sport (e.g., professional
road cycling may choose sRPE as a secondary measure
behind power output and HR response) and character-
istics of training environment (e.g., logistics, budget). It
also bears repeating practitioners should not expect to
be able to use one sole variable to fully explain internal
or external TL, e.g., sRPE will not fully explain HR re-
sponse to training.
It has been also suggested that a further step to qual-

ify sRPE as a useful TL measure is to compare it against
the changes in injury rates or performance to [31]. This
practice may be misleading at present when considering
the lack of consensus injury classifications [24, 25] and

the difficulty sports science has in adequately defining
performance (especially in open skill team sports) [51,
52]. Despite the inconsistencies in injury classification
in prior research, subjective TL monitoring with sRPE
seems associated with injury risk [16]. However, as
mentioned prior, it is currently a poor predictor of fu-
ture injury as a sole variable [16]. In regard to the diffi-
culties in defining performance, the authors feel it is
important to differentiate prior research examining
subjective TL monitoring with performance in physical
tests (e.g., a countermovement jump) compared to per-
formance in actual sports competition as these may
very well be unrelated [52].
When examining the performance outcomes in com-

petition, there is very little research in this area, but
there does appear to be some relationship with subject-
ive TL monitoring and performance in both open [46,
53, 54] and closed skill [49, 55, 56] sports. However, as
lower injury rates are significantly associated with com-
petitive success in both open and closed skill sports
[27, 57], this relationship with performance outcomes
may simply be due to lower injury rates and not any
boost in performance per se [27]. For instance, effect-
ively applying subjective TL monitoring may lead to a
reduced injury rate through better management of in-
jury risk, which in turn would likely improve perform-
ance. Whether this distinction is meaningful to
practitioners is another question altogether as increased
performance is desired in most cases, regardless of
means. However, at the moment, the level of evidence
to support the effectiveness of using subjective mea-
sures in similar “fitness”/“fatigue” models like the
ACWR to monitor and manipulate training for per-
formance purposes is not yet well established [52].

Subjective Training Load Monitoring: Limitations
and Possible Solutions
Limitations of using sRPE to monitor TL and their pos-
sible solutions should also be acknowledged [58]. The
first potential limitation of using sRPE relates to the
purpose for using TL monitoring. Although sRPE may
give a better representation of overall load on the ath-
lete, it should not be interpreted as a representation of
physiological or biomechanical load. If physiological or
biomechanical load are of paramount importance to
sports’ training practices (e.g., heart rate and power
output in professional road cycling), sRPE may be of
less relevance. Other limitations include practical errors
common in recording sRPE. These include using
non-validated sRPE scales (e.g., linear scales or scales
without verbal anchors) and failing to obtain individual
responses (e.g., peer presence on the rating of sRPE).
Anecdotally, poor education of athletes as to the im-
portance of giving accurate responses and how sRPE
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will be used by practitioners is commonly reported. If
education around sRPE is not adequate, athletes may
answer dishonestly in an attempt to manipulate future
training sessions or team selection. Using a global sRPE
score with the common 10-point category ratio scale
(CR10) may also reduce the measure’s sensitivity to ac-
count for the range of biomechanical and physiological
exertion demands across training [7] and fail to distin-
guish between psychophysiological responses to train-
ing stress [48]. To counter these issues, it is
recommended that practitioners follow the fundamen-
tal rules of psychometrics in administering sRPE or any
subjective measure [11]. To improve sensitivity, a
100-point RPE category ratio scale (CR100) should be
considered due to more verbal anchors and a finer
grading compared to the CR10 scale [59–61]. To exam-
ine different components of training stress, practi-
tioners may also consider differential RPE. Differential
RPE refines how athletes rate different components of
training/performance and requires separate scores for
combinations of breathlessness (bRPE), leg muscle ex-
ertion (lRPE), upper body exertion (uRPE), and tech-
nical/cognitive exertion (tRPE) and in some cases
match exertion (mRPE) [47, 48, 62]. With these compo-
nents, differential RPE seems to encompass perceptions
of separate physiological (bRPE) and biomechanical
load (lRPE) [63] while also accounting for mental load
(tRPE). As an example, tRPE in isolation appears sensi-
tive to the quality of opposition in English Premier
League soccer [47]. Differential RPE may also enhance
measurement precision and sensitivity and improve
within-athlete reliability compared to traditional global
sRPE scores [62, 64]. Practically, separate scores (e.g.,
bRPE, lRPE, tRPE) may be averaged to give a global
RPE score if desired [47]. However, practitioners will
need to weigh these potential benefits against the

increased number of measures and reporting require-
ments with differential RPE. These increased require-
ments are a potential practical limitation and may
affect athlete compliance. Figure 2 provides an example
of how sRPE or differential RPE may be combined with
other well-known measures to create a multivariate TL
model that considers physiological, biomechanical, and
mental load [63].

Training Load Model Calculation Methods
There are also limitations in how various TL metrics,
like the ACWR, are calculated. Specifically, there has
been a debate over the arbitrary length of acute and
chronic periods and deciding what training components
should be included in the models [46, 65, 66]. Addition-
ally, there has also been criticism over appropriate cal-
culation methods. Rolling averages (which is the most
common method used to calculate the 7- and 28-day
periods of the ACWR) may not account for variations
in the way TL is accumulated and the decaying nature
of “fitness” and “fatigue” [1, 67, 68]. As such, it has
been suggested that exponentially weighted moving av-
erages (EWMA) may be a superior alternative [67–69].
However, there are also conceptual issues with EWMA
and other TL models when considering athletes will
likely have individual decay rates of both “fitness” and
“fatigue.” For instance, a recent study on rugby sevens
players used the Bannister impulse response model to
predict heart rate variability (as a substitute for per-
formance measures) from sRPE [70]. The mean “fit-
ness” and “fatigue” decay rates for sRPE were 20 ± 14
and 11 ± 7 days respectively [70]. Despite the method of
determining “fitness” and “fatigue” decay rates being
questionable, the arbitrary 7- and 28-day acute and
chronic period lengths commonly used to determine
the ACWR may not be appropriate for all sports or

Fig. 2 Potential measures to combine with differential RPE or sRPE in a multivariate training load model that considers physiological,
biomechanical, and mental load. Adapted from Vanrenterghem et al. [63]. sRPE, sessional rating of perceived exertion; tRPE, technical rating of
perceived exertion; lRPE, leg muscle rating of perceived exertion; bRPE, breathe rating of perceived exertion (breathlessness); VAS, visual
analogue scale
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individuals [2, 65]. Using different period lengths would
seem relevant to athletes adapted to different micro-
and mesocycle lengths (e.g., microcycles 3–10 days,
mesocycles 2–6 weeks) or who are within uncommon
training periods (e.g., competition periods or returning
from injury). Examinations of different acute and
chronic time frames have resulted in varied relation-
ships with injury risk [2, 65]. For example, 3- or 6-day
acute and 21-day chronic periods best explained injury
risk in one investigation involving Australian football
players [65]. However, when accounting for the inter-
action of absolute chronic TL levels with injury risk,
another investigation in the same sport found no im-
proved predictive capacity above the common 7- and
28-day periods compared with combinations in acute
periods of 7 and 14 days and chronic periods of 21, 28,
35, 42, 49, and 56 days [2]. From this research, practi-
tioners may be able to adjust the length of acute and
chronic periods in the ACWR based on the lengths of
their preferred training micro- and mesocycles [2].
However, as mentioned, it is also worth considering
acute and chronic periods may be both individual and
idiosyncratic to different sports and may require cali-
bration to an objective measure [5]. Further consider-
ation of which training components (e.g., technical,
resistance, recovery) should be included in TL models
for association or prediction purposes is also warranted.
A recent study on Australian football players suggested
a model using only skill training sRPE is better for pre-
dicting performance than a model using total sRPE
[46]. Hence, a possible advancement may be to record
separate technical and non-technical training sRPE
scores and differentiate between each in analyses. How-
ever, the level of evidence for idiosyncratic acute and
chronic periods and distinguishing between technical
and non-technical training sRPE in TL models is not
yet well developed.

“Acute” and “Chronic” Decision-Making Tools
Additional limitations with TL monitoring using train-
ing impulse (e.g., the ACWR) is that they are predom-
inately “chronic” decision-making tools (e.g., how to
structure training from week to week). They also rely
upon post-training analysis. It should be noted that the
ACWR can be calculated and compared daily in an at-
tempt to assess athlete adaptations, e.g., an internal TL
increase at the same external TL may signify maladap-
tation. However, this practice may not be sensitive
enough to inform daily training modifications [71]
which becomes problematic when “acute” decisions,
like modifying training based on day-to-day athlete
readiness, are required. Although dependent on con-
text, it is the authors’ experience that most high-level

coaches (e.g., world record/multiple Olympic games
and professional team sports coaches) prefer tools that
aid in these “acute” decisions (i.e., “Do I need to make a
change today? And if so, by how much?”). “Chronic”
decision-making information may not be as highly val-
ued by such coaches, and explanations of ACWR prin-
ciples are typically well known when given in familiar
language. This preference for “acute” tools may reflect
an attempt by coaches not to become “trapped” in any
non-opportunistic rigidity associated with long-term
planning (a management theory principle) [72, 73], es-
pecially when athletes’ needs/priorities may change
daily. Examples of “acute” tools may include both sub-
jective (e.g., perceived wellness scales [11]) and object-
ive (e.g., heart rate variability [74]). It would then seem
important for practitioners to quantify which “acute”/
“chronic” decision-making tools coaches feel can best
aid their practice and implement them on a bespoke
basis. The authors suggest athlete-monitoring tools can
be divided into four categories: (i) “acute” subjective,
(ii) “acute” objective, (iii) “chronic” subjective, and (iv)
“chronic” objective. A list of possible “acute” and
“chronic” decision-making tools for different types of
sports (e.g., closed versus open) and how practitioners
may combine them with sRPE/differential RPE are pro-
vided in Fig. 3 [3, 74]. Besides coach preference, the
usefulness of these “acute” decision-making tools may
vary from sport to sport. For instance, when compared
to central nervous system measure like direct current
potential, autonomic nervous system measures (e.g.,
heart rate variability) may not be very meaningful for
explosive sports like weightlifting or track and field
jumps and throws. Similar to TL measures, these mea-
sures should be recognized as providing different informa-
tion, e.g., autonomic nervous system status may be
practically unrelated to central nervous system status in
an athlete. Further investigations of the utility of “acute”
decision-making tools in different sports, their relation-
ship with TL measures, and other informal variables like
coach experience and intuition would seem warranted.

Call to Action
Currently, the level of evidence supporting the efficacy
of TL monitoring systems, and in particular, the
ACWR, is not high. As such, there are a number of
considerations presented in this article practitioners
should take into account when implementing TL moni-
toring in their practice. Based on these considerations,
the authors put forward a call to action for further ex-
aminations of the key issues identified in this commen-
tary that would be of use in an applied setting. These
issues include quantifying the ability to assess mental
load with current subjective measures, the contribution
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of mental load to existing subjective measures and es-
tablishing if mental load differs between open and
closed skill sports. From here, examinations into how
the ability to handle mental load may moderate TL-I
and TL-P relationships (similar to previous examina-
tions on physical capabilities) would be of interest. The
relationship between subjective measures, performance,
and injury should also be further investigated in both
open and closed skill sports. These further investiga-
tions should attempt to quantify competition perform-
ance outcomes independent of injury rates to
determine if models like the ACWR are effective in
modeling performance in of itself, i.e., distinct to

benefits of improved training availability due to lower
injury rate. They should also encompass which methods
of TL model calculation (e.g., rolling averages and
EWMA, different acute and chronic periods, varying
“fitness”-“fatigue” decay rates) have stronger relation-
ships with performance and injury. “Acute”
decision-making tools should be also assessed against
TL models and for their suitability in different sports
under common practical conditions athletes face.
Lastly, it seems important for practitioners to identify
which methods of monitoring are most important to
sports coaches in their practice and fit those into a be-
spoke multi-factorial model.

Fig. 3 A potential framework of “acute” and “chronic” decision-making tools for different types of sports. POMS, Profile of Mood States; ARSS,
Acute Recovery and Stress Scale; MSK, musculoskeletal; DC, direct current; LPT, linear position transducer; GPS, Global Positioning System; RPE, rate
of perceived exertion; TRIMP, training impulse. Individual London 2012 Olympic pictograms reproduced in complete figure with permission from
the International Olympic Committee
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