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 31 
Abstract 32 

Study question: Are early signs of metabolic disorder in late adolescence associated with features of 33 

impaired testicular function many years before the majority are seeking parenthood? 34 

Summary answer: Adolescents with features of metabolic disorder, as manifest by ultrasound 35 

evidence of non-alcoholic fatty liver (NAFL) at 17 years or systemic markers of inflammation, and/or 36 

insulin resistance measured by homeostasis model of insulin resistance (HOMA-IR) at 20 years of 37 

age, have reduced testicular volume, total sperm output, serum testosterone (T) and inhibin B (inhB) 38 

concentrations and a higher serum follicle stimulating hormone concentration (FSH), at 20 years of 39 

age, in comparison to their peers without metabolic disorder.  40 

What is known already: Controversial evidence suggests a recent decline in sperm production 41 

potentially linked to environmental influences, but its cause remains unclear. The concomitant 42 

increases in obesity and diabetes suggests that lifestyle factors may contribute to this decline in 43 

testicular function. Although obesity has been associated with adverse testicular function in some 44 

studies, it remains unclear whether poor testicular function reflects, or causes, poor metabolic health. 45 

If metabolic disorder were present in adolescence, prior to the onset of obesity, this may suggest that 46 

metabolic disorder may lead to impaired testicular function 47 

Study design, size, duration: The Western Australian Pregnancy Cohort (Raine) Study is a 48 

longitudinal study of children born in 1989-1991 who have undergone detailed physical assessments 49 

since birth (1454 male infants born). The purpose of this current sub-study was to perform a testicular 50 

assessment at 20 years of age (913 were contactable).  51 

At 17 years of age 490 underwent a hepatic ultrasound examination, serum cytokine assessment 52 

(n=520) and a metabolic assessment (n=544). A further metabolic assessment was performed at 20 53 

years (n=608). Testicular assessment was performed on 20 year participants who consented to 54 

inclusion; 609 had reproductive hormones measured, 404 underwent a testicular ultrasound and 365 55 

produced a semen sample.   56 

Participants/materials, setting, methods: Testicular volume was estimated by ultrasonography, and 57 

semen analysis performed by WHO methods. Serum was analysed to determine concentrations of 58 
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luteinising hormone (LH), FSH, inhB by immunoassays and T by liquid chromatography-mass 59 

spectrometry (LC-MS).  60 

At 17 years of age a liver ultrasound examination was performed to determine the presence of NAFL, 61 

and serum analysed for the following cytokines; interleukin-18 (IL18), soluble tumour necrosis factor 62 

receptor 1 & 2 (sTNFR1, sTNFR2) concentrations. 63 

At 17 and 20 years of age fasting blood samples were analysed for serum liver enzymes, insulin, 64 

glucose, triglycerides (TG), total cholesterol, high density lipoprotein (HDL) and low density lipoprotein 65 

(LDL) cholesterol, high sensitivity (hs) CRP, and uric acid. HOMA was calculated and insulin 66 

resistance (IR) was defined by a HOMA >4, anthropometric data was collected and dual energy X-ray 67 

absorptiometry (DEXA) measurement was performed for lean and total fat mass. As at this young age 68 

the prevalence of metabolic syndrome was expected to be low, a two-step cluster analysis was used 69 

using waist circumference, TGs, insulin, and systolic blood pressure to derive a distinct high-risk 70 

group with features consistent with the metabolic syndrome.  71 

Main results and the role of chance: Men who at age 17 years were at elevated cardiometabolic 72 

risk had lower concentrations of T (medians: 4.0ng/ml vs 4.9ng/ml) and inhB (medians: 193.2pg/ml vs 73 

221.9pg/ml) (p<0.001 for both) compared to those within the low risk metabolic cluster. Furthermore, 74 

men with ultrasound evidence of NAFLD detected at 17 years (n=45, 9.8%)  had reduced total sperm 75 

output (medians: 68.0 million vs 126.00 million, p=0.044), T (4.0ng/ml vs 4.7ng/ml, p=0.005) and inhB 76 

(209.1pg/ml vs 218.4pg/ml, p=0.032) concentrations at 20 years compared to men without NAFLD..  77 

Men with higher concentrations of sTNFR1, at 17 years of age, had a lower sperm output and seminal 78 

volume, and serum concentrations of inhB, with an increase in LH and FSH at 20 years of age (all 79 

p<0.05 after adjustment for age, body mass index [BMI], abstinence and a history of cryptorchidism 80 

and varicocele, cigarette smoking, alcohol and drug use). Similarly, serum T was lower in men with a 81 

higher fasting serum insulin, hsCRP, HOMA and total fat mass, and higher in men with higher fasting 82 

HDL, iron at 20 years of age (all p<0.05). Multivariable regression analysis, adjusting for age and BMI 83 

at 20 years, cryptorchidism and presence of a varicocele examined the associations between NAFLD 84 

(at 17 years), and HOMA-IR >4 and metabolic cluster (at 20 years) with reproductive hormone 85 

concentrations at age 20 years,  demonstrated that men in the high-risk metabolic cluster at 20 years 86 
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had a lower serum T and inhB (both p=0.012), and HOMA-IR >4 was associated with a lower serum T 87 

(p=0.002), . 88 

Limitations, reasons for caution: This study is limited by the sample size and multiple comparisons, 89 

and causality cannot be proven from an observational study. Due to a three year interval between 90 

some metabolic assessments and assessment of testicular function, we cannot exclude an 91 

introduction of a bias into the study, as some of the participants and their testicular function will not 92 

have been fully mature at the 17 year assessment. 93 

Wider implications of the findings: Irrespective of a proven causation, our study findings are 94 

important in that a significant minority of the men, prior to seeking parenthood, presented co-existent 95 

features of metabolic disorder and signs of testicular impairment. Of particular note is that the 96 

presence of NAFLD at 17 years of age, although only present in a minority of men, was associated 97 

with an almost 50% reduction in sperm output at 20 years of age, and that the presence of IR at 20 98 

years was associated with a 20% reduction in testicular volume. 99 

Study funding/competing interest(s) This study was supported by Australian NHMRC Grant 100 

Numbers CE and received support from the Raine Medical Research Foundation, The Telethon Kids 101 

Institute, University of Western Australia, Women and Infants Research Foundation, Curtin University 102 

and Edith Cowan University.  103 
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support from Merck Serono and Ferring Pharmaceuticals. DJH has received institutional grant funding 109 

(but no personal income) for investigator-initiated testosterone pharmacology studies from Lawley and 110 

Besins Healthcare and has provided expert testimony to anti-doping tribunals and for testosterone 111 

litigation.  112 

 113 

Key words: Raine, metabolic, testicular function, semen, reproductive hormones, testicular volume. 114 

115 



5 
 

116 



6 
 

Introduction  117 

There is an on-going debate in reproductive medicine as to whether there has been a general decline 118 

in sperm production in recent times, potentially linked to environmental influences (1-3). The parallel 119 

increase in the rates of lifestyle related disorders, such as obesity and diabetes (4), raises the 120 

possibility that lifestyle factors may contribute to any potential decline in sperm production. In 121 

populations of men seeking fertility treatment, obesity has been associated with adverse testicular 122 

function; such as reduced testicular volume, seminal volume, sperm output, sperm motility, serum 123 

testosterone concentration and sperm DNA damage (5-9), although this has been challenged (10).  124 

 125 

The metabolic syndrome is a cluster of adverse cardiovascular features including central obesity, 126 

atherogenic dyslipidemia, insulin resistance, a prothrombotic state, elevated blood pressure and 127 

increased circulating proinflammatory markers. Some evidence exists for an association between the 128 

metabolic syndrome and impaired testicular function in sub-fertile men (9, 11). However, causality is 129 

unclear whether these disorders have a common origin in early life (12), or whether impaired 130 

testicular function may induce or result from the metabolic disorder.  131 

 132 

With the increase in the prevalence of features of the metabolic syndrome in adolescent populations 133 

(13), many will have ultrasound evidence of a fatty liver (14). Non-alcoholic fatty liver disease 134 

(NAFLD) is the most prevalent chronic liver disorder, affecting almost 1 in 5 adolescents (15), and is a 135 

recognized antecedent of progressive liver disease and cardiometabolic disorder (16). 136 

Hyperinsulinemia, or the presence of a fatty liver (17), is associated with a reduction in hepatic 137 

synthesis of sex hormone binding globulin (SHBG), increasing the metabolic clearance of 138 

testosterone.  139 

 140 

The metabolic syndrome is associated with a low grade inflammatory state, with increased C-reactive 141 

protein (CRP) and production of inflammatory cytokines, such as, Interleukin- 6 (IL-6), tumour 142 

necrosis factor -α (TNF-α), and their receptors 1 and 2 (TNFR1 and TNFR2), and the production of 143 

oxygen free radicals, all of which may impair sperm and testicular function (18, 19). We therefore 144 

proposed that impaired testicular function may reflect or cause poor metabolic health. 145 

 146 
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Our study was driven by the question; whether or not in a young adult population, representative of 147 

the Western Australian population (20), early signs of metabolic disorder are associated with a profile 148 

of impaired testicular function, many years before the majority of men seek paternity. Hence our aim 149 

was to relate antecedent and concurrent markers of adverse cardiometabolic health, in adolescence 150 

and early adulthood, to markers of testicular function within men at 20 years of age from the Western 151 

Australian Pregnancy Cohort (Raine) Study. 152 

 153 

Materials and Methods  154 

The Raine study 155 

The Raine Study (www.rainestudy.org.au) was designed to measure the relationships between early 156 

life events and subsequent health and behaviour. The study recruited 2900 women around 18 weeks 157 

of gestation in 1989-91 (20, 21). 2868 children (including 1454 boys) born to 2804 mothers were 158 

retained to form the Raine Study cohort, and were studied every 2-3 years into early adulthood, 159 

including detailed cardiometabolic assessment at 17 and 20 years of age, and 423 men underwent 160 

testicular assessment by ultrasound and / or semen examinations (20, 22). Ethical approval was 161 

obtained from the University of Western Australia Human Research Ethics Committee, and all 162 

participants provided informed written consent for all aspects of the study. 163 

 164 

Testicular function assessment  165 

Clinical and testicular function assessment at 20 years of age  166 

All male cohort members were invited to attend follow-up, which involved questionnaires, collection of 167 

anthropometric data (n=687), and collection of blood for analysis of serum testosterone, luteinizing 168 

hormone (LH), FSH and inhB concentrations (n=609). A testicular ultrasound examination was 169 

performed (n=404), and a semen sample (n=365) analysed at Fertility Specialists of Western 170 

Australia, as previously reported (22). Semen samples were analysed as per WHO semen manual 171 

guidelines (23) including sperm concentrations (million per ml), total sperm output (million per 172 

ejaculate), motility (%A grade + %B grade) and morphology. The sperm chromatin structural assay 173 

(SCSA) was performed as described (24) with slight modifications. The DNA fragmentation index 174 

represents the percentage of sperm within the sample with fragmented or damaged DNA. Serum inhB 175 

concentration was measured by Gen II ELISA (Beckman Coulter Inc. Brea, CA); LH and FSH were 176 

http://www.rainestudy.org.au/
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measured by ELISA (IBL International, Hamburg, Germany), and testosterone was measured by 177 

liquid chromatography-tandem mass spectrometry (LC-MS/MS) as described (25) (for further details 178 

refer to supplementary methods [sM]). Testicular ultrasonography was performed as described (22), 179 

and the volume of each testis calculated (26). Varicocele was defined as present when the maximal 180 

venous diameter was over 3mm, and increased with the Valsalva manoeuver (27).  181 

 182 

Metabolic assessments 183 

1. Metabolic assessment at 17 years of age 184 

a. Hepatic ultrasound 185 

The methods of hepatic ultrasound examinations conducted among 587 cohort members at age 17 186 

years for diagnosing NAFL have been reported previously, and the data was used in this study (sM)] 187 

(14).  188 

b. Cytokine assessment 189 

The serum from 520 cohort members was stored at -80 C and was analysed for the following 190 

cytokines; interleukin-18 (IL18) by ELISA, soluble tumor necrosis factor receptor 1 & 2 (sTNFR1, 191 

sTNFR2). Plasma IL-18 was quantitated with a commercially available ELISA method. Plasma 192 

sTNFR1 and sTNFR2 were quantified using cytometric Bead Array. Individual cytokine concentrations 193 

were determined using FCAP Array software (BD Biosciences)  (sM). 194 

 195 

c. Cardiometabolic assessment  196 

Data from previous publication (13) was extracted for the fasting blood samples from 549 cohort 197 

members which were analysed at the PathWest Laboratory at Royal Perth Hospital for serum liver 198 

enzymes, insulin, glucose, triglycerides (TG), total cholesterol, HDL and LDL cholesterol, hsCRP, and 199 

uric acid, as previously described (13, 29), excluding serum hsCRP concentrations >10mg/l (13, 29). 200 

Glucose, insulin, total cholesterol and triglycerides were measured by automated analysers (sM). 201 

HOMA was calculated by fasting insulin (microunits per milliliter) × fasting glucose (millimoles per 202 

liter)]/22.5, and insulin resistance (IR) was defined by a HOMA >4 (30). Resting blood pressure (BP) 203 

readings were taken (sM). The cardiometabolic data was used to derive a ‘high risk metabolic cluster’ 204 

phenotyped previously in this cohort (13), and described below. 205 

 206 
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2. Cardiometabolic assessment at 20 years of age 207 

Fasting blood samples from 620 cohort members at 20 years of age were analysed according to the 208 

same protocol for the 17 year cardiometabolic assessment. To assess body fat distribution DEXA 209 

measurement was performed (31, 32). 210 

 211 

 212 

Statistical Considerations 213 

Derivation of metabolic cluster at 20 years of age 214 

The two most frequently used definitions of the metabolic syndrome in adulthood are the National 215 

Cholesterol Education Program expert panel on detection, evaluation, and treatment of high blood 216 

cholesterol in adults (NCEP ATP-III) (33), and the International Diabetes Federation definition (IDF) 217 

(34), which differ significantly on the components of their definition (see details in sM). Hence, as 218 

there is no universally accepted definition, and it was expected that at this young age the prevalence 219 

of metabolic syndrome would be low, an alternative approach, a two-step cluster analysis was used 220 

(13, 35, 36). This is an effective tool used to define groups accounting for variables for where there is 221 

strong evidence of clustering. Within a single cluster, the subjects are relatively homogeneous, 222 

sharing similar traits and being dissimilar to subjects in other clusters. The technique uses a scalable 223 

cluster analysis algorithm (37), designed specifically to handle large data sets and has been used 224 

previously within this cohort (13, 35, 36). It preselects subjects into sub-clusters before further 225 

grouping into the desired number of clusters with use of log-likelihood distance. The cluster groups 226 

were formed with use of; waist circumference, TGs, insulin, and systolic BP measured at 20 years of 227 

age to derive distinct high-risk group with features consistent with the metabolic syndrome. This 228 

approach was used previously to identify those Raine study participants within a high risk metabolic 229 

cluster at 17 years of age (13). 230 

 231 

Data analysis 232 

Continuous data were summarized using medians and inter-quartile ranges (IQR), reported as Q1–233 

Q3, when following a non-Gaussian distribution. Categorical data were summarized using frequency 234 

distributions. Multivariable linear regression analysis was used to examine associations between 235 

metabolic parameters and reproductive outcomes or hormone concentrations. Covariate adjustments 236 
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included abstinence, history of cryptorchidism, varicoceles and BMI. Regression results were 237 

summarized using standardised coefficients (β) and their 95% confidence intervals (CI). Effects of the 238 

metabolic parameters on outcomes were presented without (β1) and with (β2) adjustment for BMI. 239 

Supplementary analyses adjusting for waist circumference instead of BMI were performed with 240 

analogous results (data not shown). Reproductive outcomes had a non-Gaussian distribution, and 241 

were transformed to normality either via logarithmic or power transformations determined using the 242 

Box-Cox analysis.  243 

 244 

Differences in reproductive parameters and hormone concentrations across low and high risk 245 

metabolic clusters, HOMA-IR, NAFLD, insulin and hsCRP were investigated univariately using Mann-246 

Whitney test for two groups. When appropriate univariable analyses were supplemented with 247 

multivariable analyses to control for confounders age and BMI at 20 years, cryptorchidism and 248 

presence of a varicocele. All hypothesis tests were two-sided and p-values of <0.05 were considered 249 

statistically significant. No adjustments for multiple hypothesis testing were made in this exploratory 250 

study (38, 39). SPSS (version 22.0, IBM SPSS) statistical software was used for data analysis.  251 

 252 

Results 253 

Demographics 254 

Of 913 male cohort members who were contactable, 365 (40%) provided a semen sample and 255 

represented 48% of the men who attended any of the assessments at 20 years of age and 404 256 

underwent a testicular ultrasound and 609 had serum available for reproductive hormone assessment 257 

(Table 1). Most (587) had undergone a liver ultrasound at 17 years of age and/or a fasting metabolic 258 

assessment (544), and up to 608 had undergone some aspect of metabolic assessment at age 20 259 

years of age (Table 2). Participants who took part in the testicular assessment (semen sample and/or 260 

testicular ultrasound) were similar clinically to those that declined participation (Table 2). There was 261 

no difference between the participants and the non-participants with respect to markers of socio-262 

economic status (data not shown sM). The prevalence of metabolic syndrome among males within 263 

the participants was 4.1% by the NCEP-ATPIII definition (40) and 5.4% using the IDF definition (34). 264 

 265 
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Associations between markers of metabolic disorder and testicular parameters 266 

 267 

Metabolic indices at 17 years.  268 

Multivariable linear regression analysis adjusting for current age, abstinence, a history of 269 

cryptorchidism, presence of a varicocele, and BMI revealed the association of semen parameters with 270 

markers of systemic inflammation at 17 years of age: total sperm output was reduced in men at 20 271 

years of age who had a higher serum IL18 (p=0.025), or sTNFR1 (p=0.036) and their sperm 272 

concentration was negatively associated with their serum IL18 concentration (p=0.020) measured at 273 

17 years (Table 3A). In addition higher sTNFR1 was negatively associated with inhibin B (p=0.011), 274 

and positively associated with serum LH and FSH (p=0.015, and p=0.001 respectively) three years 275 

later (Table 4).  When adjustment was performed for waist circumference instead of BMI the results 276 

were analogous (data not shown). We have previously shown that alcohol use, cigarette smoking and 277 

recreational drug use in this cohort had no influence on markers of testicular function (22), and that 278 

testicular volume was positively associated with height, and total soft and lean body mass(12)  279 

 280 

Associations between metabolic cluster analysis at 17 years and subsequent testicular function at 20 281 

years of age 282 

At 17 years of age 70 of 439 participants (15.9%) who would subsequently undergo the male 283 

reproductive assessment were clustered within the high metabolic risk group. 284 

 285 

In an unadjusted analysis of the reproductive hormones of men within the high risk metabolic cluster 286 

at 17 years of age, had median T and inhB concentrations significantly lower (p<0.001 for both), in 287 

comparison to the men within the low risk metabolic cluster (Table 5). 288 

 289 

Metabolic indices at 20 years.  290 

After adjustment for age, abstinence, a history of cryptorchidism, varicocele and BMI; diastolic blood 291 

pressure and serum insulin at 20 years of age were negatively associated with testicular volume 292 

(p=0.028 and p=0.004 respectively), although diastolic blood pressure was positively associated with 293 

total sperm output (p=0.020) and seminal volume (p=0.014). ALT and GGT were positively associated 294 

with sperm morphology (p=0.008 and p=0.028 respectively) (Table 3A).  295 
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 296 

Associations between markers of metabolic disorder at 20 years of age and sex hormones 297 

Multivariable regression analyses with adjustment for history of cryptorchidism and presence of a 298 

varicocele shown that serum total testosterone (TT) was reduced in men with a higher fasting serum; 299 

triglycerides, insulin, hsCRP, ferritin, ALT, HOMA score, and DEXA indices of fat when measured 300 

concurrently at 20 years of age (Table 4) (all p<0.05). Serum TT was positively associated with serum 301 

HDL cholesterol, iron and transferrin saturation (all p<0.05). After simultaneous adjustment for BMI 302 

(and waist circumference-data not shown) positive associations with serum HDL, iron, transferrin 303 

saturation and lean mass remained and a negative association with hsCRP and serum insulin 304 

remained (all p<0.05). 305 

  306 

Associations between metabolic cluster analysis at 20 years of age and testicular function  307 

The number of men in the high risk metabolic cluster at 20 years of age, those insulin resistant as 308 

measured by the HOMA score and with NAFL, varied within the analyses due to the varying number 309 

of participants who took part in the various sub-studies (Table 1).  310 

 311 

In an unadjusted analysis of the men within the high risk metabolic cluster at 20 years of age, their 312 

median T and inhB concentrations were lower  than men within the low risk metabolic cluster (Table 313 

5, supplementary figures [sF] 1a and 1b).  314 

 315 

Associations between HOMA as a proxy for IR at 20 years of age and testicular function 316 

IR (as defined by a HOMA>4) was present in 24 out of 616 men (3.9%) at 20 years of age. In an 317 

unadjusted analysis, in comparison to those participants who were not IR, their median testicular 318 

volume was smaller, and median T and inhB concentrations were lower, and their median serum FSH 319 

concentration was higher (Table 6, sF2a-d). Furthermore the 51 men, out of 609 (8.4%), who had a 320 

fasting serum insulin greater than 10 μU/ml (91st centile), at 20 years of age had lower median serum 321 

T and inhB  concentrations, and their FSH concentration was greater (supplementary table [sT]1, 322 

sF3a-c). 323 

 324 

Associations between presence of NAFLD at 17 years of age and subsequent testicular function 325 
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Ultrasound evidence of NAFLD was present in 44 men, out of 458 (9.6%) who subsequently 326 

underwent some assessment of testicular function. Compared to those participants without NAFLD, 327 

there were reductions in their; median total sperm output, serum T and inhB concentrations (sT2 and 328 

sF4a-c).  329 

 330 

Associations between serum hsCRP either; above or below, the 75% percentile at 20 years of age 331 

and testicular function 332 

Men whose serum hsCRP was greater than the 75% centile (1.62mg/l) at 20 years of age (after 333 

exclusion of concentrations >10mg/l), in comparison to those below, had a reduction in their median 334 

seminal volume, serum T, LH and FSH concentrations (sT3, sF5a-d). 335 

 336 

Multivariable analysis 337 

Multivariable analysis demonstrated that being in the high risk metabolic cluster at 20 years of age 338 

was associated with a lower serum testosterone and inhB, and HOMA-IR >4 was associated with a 339 

lower serum testosterone concentration at 20 years (sT4). 340 

 341 

Discussion 342 

The findings of this observational study of adult men at 20 years of age, demonstrated that despite 343 

the majority of men being of normal weight, a small minority already displayed features of metabolic 344 

disturbance which are associated with adverse cardiovascular outcomes at a much older age. Men 345 

with features of the metabolic syndrome, or who were IR at 20 years of age, or had ultrasound 346 

evidence of NAFLD at 17 years of age, displayed a picture consistent with a degree of primary 347 

hypogonadism as they had reductions in testicular volume, sperm output, and serum testosterone and 348 

inhB, with a reciprocal increase in serum FSH at 20 years of age. All of these variables are well 349 

established as adverse markers of reproductive potential (2, 22). Furthermore in considering potential 350 

mechanisms for the observed finding it is possible there are contrasting influences of metabolic 351 

disorder as; higher concentrations of the inflammatory markers sTNFR1 (and IL18 to a lesser 352 

degree), when measured at 17 years were associated with subsequent reductions in sperm output, 353 

seminal volume, sperm concentration, inhB, with reciprocal rises in LH and FSH, at 20 years of age, 354 

suggesting a direct gonadotoxic effect of adolescent inflammation on subsequent testicular function, 355 
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and in contrast higher concentrations of hsCRP at 20 years of age had a potential central negative 356 

influence on serum FSH secretion (and LH to a lesser degree), inducing a central hypogonadal state 357 

with reductions in serum testosterone and seminal volume, however without a concomitant reduction 358 

inhB and testicular volume, these could be chance associations. 359 

 360 

One can speculate that if their cardiometabolic picture deteriorates over time, their testicular function 361 

might further deteriorate, leading to an adverse effect on their reproductive potential. Conversely if 362 

their metabolic picture improves, this may have a positive impact on their reproductive potential, 363 

although. it is interesting to note that already at 20 years of age, irrespective of BMI, the markers of 364 

cardiometabolic disorder; a higher fasting serum insulin, triglycerides, hsCRP, HOMA score and 365 

DEXA fat mass were negatively associated with the testicular hormones; serum testosterone and 366 

inhB, concentrations, while a higher total lean mass, serum HDL cholesterol and iron stores were 367 

positively associated with these hormones. These findings offer a potential link between metabolic 368 

and reproductive health, in that these adverse metabolic features recorded at 17 and 20 years of age 369 

may predispose a man to later impaired testicular function, irrespective of adiposity. Although the 370 

direction of causality will require further investigation, as it is established that a low circulating 371 

testosterone is associated with cardiometabolic disorder (41-43). However, data from one prospective 372 

study suggests that a low serum testosterone may be a risk marker for the development of 373 

cardiometabolic disorder, rather than a causative risk factor (44). Due to a three year interval between 374 

some metabolic assessments and assessment of testicular function, we cannot exclude an 375 

introduction of a bias into the study, as some of the participants and their testicular function will not 376 

have been fully mature at the 17 year assessment, and it is known that pubertal maturation can have 377 

a moderating impact on obesity associated inflammation (45). Irrespective of a proven causation, our 378 

study findings are important in that a significant minority of the men, prior to seeking parenthood, 379 

presented with some features of metabolic disorder and signs of testicular impairment. 380 

 381 

These study findings warrant further study in other cohorts. Of particular note is that the presence of 382 

NAFLD at aged 17 years of age, although only present in a minority of men, was associated with an 383 

almost 50% reduction in sperm output at 20 years of age, and that the presence of IR at 20 years was 384 



15 
 

associated with; a 20% reduction in testicular volume, a 30% reduction in serum testosterone, and a 385 

20% reduction in serum inhB concentrations.  386 

 387 

Conclusion 388 

This study has demonstrated an association of adverse cardiometabolic features with impaired 389 

testicular function at 20 years of age. Furthermore, it is notable that, despite the majority of the young 390 

men having apparently normal metabolic function, a significant minority were already showing some 391 

features of the metabolic syndrome. 392 

 393 
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Supplementary Methods on line 

 Hepatic ultrasound examination 

Ultrasonographers experienced in hepatic ultrasound performed the ultrasound examinations, as 

described (14), according to the protocol described by Hamaguchi (28), which provides 92% 

sensitivity and 100% specificity for the histological diagnosis of fatty liver (14). Boys with sonographic 

fatty liver and a self-reported weekly alcohol intake of less than 140g over the previous 12 months 

were classified as having NAFLD. Testing for hepatitis B or C virus infections was not performed due 

to low notification rates for these infections in local teenagers during the study period (14). 

 

Sex hormone measurement; Serum inhibin B concentrations were measured in duplicate by Inhibin B 

Gen II ELISA from Beckman Coulter Inc. (Brea, CA), which had a limit of detection of 2.6 pg/ml. 

Luteinising hormone (LH), follicular stimulating hormone (FSH) levels were determined in duplicate 

using ELISA kits from IBL International, Hamburg, Germany. The limit of detection of the LH assay 

was 0.4 IU/L (calibrated against WHO IRP 80/552), while for FSH assay it was 0.2 IU/L (calibrated 

against NIBSC 92/510). The intra-assay precision (CV) of the ELISAs ranged from 8-11% based on 

the mean values for low and high value quality control samples from n=16-17 assays. 

 

Measurement of serum inflammatory markers;  

Cytokine assessment 

The serum from 520 cohort members was stored at -80 C and was analysed for the following 

cytokines; interleukin-18 (IL18) by ELISA (Medical Biological Laboratories, Nagoya, Japan), soluble 

tumor necrosis factor receptor 1 & 2 (sTNFR1, sTNFR2). Plasma IL-18 was quantitated with a 

commercially available ELISA method (Medical Biological Laboratories, Nagoya, Japan). Plasma 

sTNFR1 and sTNFR2 were quantified using cytometric Bead Array (CBA) Flex sets (BD PharMingen, 

San Diego, CA) on the BD FACSArrayTM bioanalyser (BD Biosciences, San Jose, California, USA). 

Procedures followed the manufacturer’s recommendations. Individual cytokine concentrations were 

determined using FCAP Array software (BD Biosciences). The IL-18: Intra- and inter-assay 

coefficients of variation (CV) were 5.6% and 7.6%, respectively, with a sensitivity: 12.5 pg/Ml. 

 

c. Cardiometabolic assessment  



Fasting blood samples from 454 cohort members were analysed at the PathWest Laboratory at Royal 

Perth Hospital for serum liver enzymes, insulin, glucose, triglycerides (TG), total cholesterol, high 

density lipoprotein (HDL) and low density lipoprotein (LDL) cholesterol, high sensitivity (hs) CRP, and 

uric acid, as previously described (14, 31), excluding serum hsCRP concentrations >10mg/l (14, 31). 

Glucose was measured by an automated Technicon Axon analyser (Bayer Diagnostics, Sydney, 

Australia) using a hexokinase method. Insulin was measured by automated radioimmunoassay 

(Tosoh, Tokyo, Japan). Total cholesterol and triglycerides were determined enzymatically on the 

Cobas MIRA analyzer (Roche Diagnostics) with reagents from Trace Scientific (Melbourne, Australia) 

(supplementary methods).  

 

The intra-assay CV was 0.87% for total cholesterol, 1.92% for triglycerides, 1.04% for glucose, 

1.78%. The intra- and inter-assay CV for insulin was 2.5%, sensitivity: 0.9 ng/Ml.  For leptin the intra 

and inter-assay CV were 3.3% and 5.4%, respectively, with a sensitivity of 7.8 pg/mL. 

 

Resting blood pressure (BP) readings were taken using an oscillometric sphygmomanometer 

(DINAMAP vital signs monitor 8100, DINAMAP XL vital signs monitor, or DINAMAP ProCare 100), 

Soma Technology Bloomfiled, Connecticut) with the subject seated. The monitor was set to 

automatically record readings every 2 minutes and the mean of the second and third readings was 

calculated. 

 

Sociodemographic assessment 

Family income when children were aged 14 years was obtained by questionnaire from the primary 

caregiver, and the highest maternal education was obtained by questionnaire when children were 

aged 8 years (20). 

 

 

The commonest definitions of metabolic syndrome 

The NCEP ATP III guidelines state that the metabolic syndrome may be diagnosed when a person 

has three or more of five components: central obesity (waist circumference), an elevated TG level, a 

reduced HDL-cholesterol level, an elevated BP or an elevated fasting glucose concentration (35). The 



IDF definition requires a person to have central obesity plus any two of four additional factors: a 

raised TG level: a reduced HDL-cholesterol: a raised BP or a raised fasting plasma glucose (known 

type 2 diabetes) (36). 

 

 



Supplementary tables on-line 

 

Supplementary Table 1. Comparison of testicular volume, semen parameters and serum hormones by serum insulin 
concentration above or below 10μu/ml, all assessments made at 20 years of age. Data are represented as Median (IQR, 
R).  

Variables of interest NHigh Insulin ≥ 10 μu/ml NNormal Insulin < 10 μu/ml p-value 
Testicular volume (ml) 28 14.8 (12.5-16.6, 10.0-23.8) 345 15.1 (12.7-17.3, 7.6-28.4) 0.646 
Semen parameters      
 Volume (ml) 22 2.9 (1.6-4.1, 0.8-7.2) 317 2.8 (2.0-3.7, 0.1-11.0) 0.799 
 Total sperm output (M) 22 134.4 (44.3-239.0, 0-436) 317 110.5 (51.6-206.8, 0.0-

927.5) 
0.578 

 Sperm concentration (M/ml) 22 45.5 (19.1-84.5, 0-160) 317 45.0 (22.5-70.5, 0-220) 0.795 
 SCSA (%) 21 2.9 (1.6-5.0, 1.1-10.8) 311 3.1 (1.8-5.2, 0.2-30.0) 0.658 
 Morphology (N, %) 21 6.0 (3.5-9.0, 2-17) 307 5 (3-7, 0-18) 0.159 
 Motility (a + b, %) 21 54.0 (44.5-69.0, 19-79) 314 58 (43-67, 1-88) 0.907 
Serum hormones      
 Testosterone (ng/mL) 51 3.6 (2.9-4.8, 1.1-7.1) 556 4.7 (3.7-5.9, 1.3-10.3) <0.001 
 LH (IU/l) 51 9.9 (7.5-12.9, 5.6-18.8) 557 10.5 (8.3-13.1, 2.3-28.4) 0.287 
 FSH (IU/l) 51 5.2 (3.3-7.3, 1.1-25.8) 557 4.2 (2.9-6.0, 0.6-39.5) 0.018 
 InhB (pg/ml) 51 174.0 (136.7-222.3, 28.9-389.3) 558 218.6 (176.8-268.9, 4.5-

543.9) 
<0.001 

 



 

Supplementary Table 2. Comparison of testicular volume, semen parameters and serum testicular hormones and 
gonadotrophins, assessed at 20 years of age, by ultrasound evidence of NAFLD, at 17 years of age. Data is represented 
as Median (IQR, R).  

Outcome NNAFLD NAFLD NNormal No NAFLD p-value 
Testicular volume (ml) 28 15.0 (12.6-17.2, 10.5-23.2) 270 14.8 (12.6-17.3, 7.6-28.4) 0.821 
Sperm parameters      
 Semen volume (ml) 25 2.5 (1.6-3.3, 0.7-6.2) 255 2.8 (1.9-3.8, 0.3-11.0) 0.161 
 Total sperm output (M) 25 68.0 (23.2-170.9, 0.0-551.8) 255 126.0 (55.8-213.0, 0.0-

927.5) 
0.044 

 Sperm concentration (M/ml) 25 26 (15-69, 0-113) 255 47 (25-71, 0-220) 0.060 
 SCSA (%) 24 4.0 (1.8-5.9, 0.7-13.6) 249 3.0 (1.9-5.4, 0.2-30.0) 0.428 
 Sperm morphology (N, %) 24 5 (3-7, 1-17) 246 5 (3-7, 0-15) 0.979 
 Sperm motility (a + b, %) 24 56.5 (370-67.8, 6-82) 252 58 (43-67, 1-88) 0.591 
Serum hormone concentrations      
 Testosterone (ng/ml) 44 4.0 (3.2-5.0, 1.1-7.2) 391 4.7 (3.6-5.9, 1.3-9.9) 0.005 
 LH (IU/l) 44 8.8 (7.3-12.8, 5.4-18.9) 393 10.7 (8.6-13.4, 2.3-28.4) 0.054 
 FSH (IU/l) 44 3.6 (2.7-5.6, 1.2-14.3) 393 4.3 (3.1-6.3, 0.6-39.5) 0.428 
 InhB (pg/ml) 44 209.1 (145.85-253.2, 48.7-

389.3) 
393 218.4 (179.7-270.5, 4.5-

543.9) 
0.032 

 
 

 



 

Supplementary Table 3. Comparison of testicular volume, semen parameters and serum hormones by serum hsCRP 
concentration by 75% percentile, all assessments made at 20 years of age. Data are represented as Median (IQR, R). 
Individuals with hsCRP>10 were excluded. 

Variables of interest NHigh hsCRP ≥ 1.615 mg/l NNormal hsCRP < 1.615 mg/l p-value 
Testicular volume (ml) 60 15.4 (12.2-17.1, 8.9-23.5) 299 14.9 (12.9-17.2, 7.6-28.4) 0.955 
Semen parameters      
 Volume (ml) 53 2.5 (1.6-3.1, 0.7-6.8) 275 3.0 (2.0-3.8, 0.1-11.0) 0.043 
 Total sperm output (M) 53 84.8 (49.1-166.9, 0.0-639.2) 275 118.4 (50.4-214.6, 0.0-927.5) 0.127 
 Sperm concentration (M/ml) 53 35 (23-63, 0-180) 275 47.0 (21.5-74.0, 0-220) 0.209 
 SCSA (%) 51 2.9 (1.7-5.1, 0.7-10.8) 271 3.1 (1.9-5.4, 0.2-30.0) 0.606 
 Morphology (N, %) 51 5 (4-8, 2-13) 267 5 (3-7, 0-18) 0.239 
 Motility (a + b, %) 52 52.5 (40.3-65.8, 10.0-86.0) 273 58 (43-67, 1-88) 0.276 
Serum hormones      
 Testosterone (ng/ml) 126 4.0 (3.2-5.2, 1.1-8.1) 456 4.8 (3.8-6.0, 1.7-9.9) <0.001 
 LH (IU/l) 126 9.5 (7.7-12.3, 4.3-19.5) 458 10.7 (8.6-13.2, 2.3-28.4) 0.008 
 FSH (IU/l) 126 3.9 (2.7-5.2, 0.6-14.3) 458 4.4 (3.0-6.4, 0.6-39.5) 0.024 
 InhB (pg/ml) 126 216.3 (156.0-260.2, 48.7-419.1) 458 216.2 (174.2-269.7, 4.5-543.9) 0.201 

 

 

 



 

Supplementary Table 4 Multivariate regression analysis to derive which metabolic risk factor individually remains 
significant, after adjustments for age and BMI at 20 years, cryptorchidism, and presence of a varicocele, on the 
reproductive hormones measured at 20 years of age.  Three separate models, with either; HOMA at 20 years, NAFLD or 
metabolic cluster at 20 years were examined for each outcome. Model summaries include univariable and multivariable 
(adjusted) regression coefficients with their corresponding 95% confidence intervals (95% CI) and p-values; together with 
R2 obtained in univariable models and an increase in R2 (denoted R2 change) in adjusted models are shown. P-value for 
R2 change is reported to indicate whether the simultaneous adjustment for other characteristics improves prediction of 
outcomes. All measurements other than assessment for presence of NAFL (assessed at 17 years of age), were taken at 
20 years of age.   

 

Outcome 
(Total n=260) 

Univariable Multivariable 

 β (95% CI) p-value R2 p-value Adjusted β (95% CI) p-value 
 

R2 change p-value 
for  

Testosterone         
 HOMA-IR -0.54 (-0.85, -0.24) <0.001 0.036 <0.001 -0.48 (-0.78,-0.18) 0.002 0.063 <0.001 
 NAFLD -0.24 (-0.48, 0.009) 0.004 0.014 0.059 -0.12 (-0.37, 0.14) 0.364 0.050 0.010 
 Metabolic 

cluster 
-0.43 (-0.62, -0.25) <0.001 0.060 <0.001 -0.28 (-0.50, -0.06) 0.012 0.026 0.056 

FSH         
 HOMA-IR 0.01 (-0.001, 0.034) 0.061 0.004 0.263 0.013 (-0.007, 0.034) 0.202 0.012 0.375 
 NAFLD 0.002 (-0.01, 0.01) 0.667 0.000 0.998 0.02 (-0.02, 0.01) 0.842 0.013 0.487 
 Metabolic 

cluster 
0.003 (-0.01, 0.01) 0.547 0.002 0.547 0.01 (-0.01, 0.02) 0.546 0.015 0.275 

Inhibin B         
 HOMA-IR -10.5 (-22.9, -6.15) 0.097 0.008 0.097 -8.7 (-20.8, 3.44) 0.160 0.074 <0.001 
 NAFLD -3.0 (-12.7, 6.7) 0.545 0.001 0.545 1.1 (-8.9, 11.1) 0.829 0.075 0.001 
 Metabolic 

cluster 
-11.3 (-22.0, -2.5) <0.001 0.042 <0.001 -11.3 (-22.0, -2.5) 0.012 0.050 0.001 

 

 NAFL = Non-alcoholic fatty liver diagnosed on ultrasound 

HOMA = homeostasis model assessment insulin 
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Table 1. Flow of study participants. Total number of participants with measurements available are shown as 
(n=maximum number of participants) and the maximal number of participants for each outcome out of testicular 
volume, semen sample and blood sample assessment according to measurements taken during the various follow-
ups listed. The presence of non-alcoholic fatty liver (NAFL) was derived from a previous study Ayonirynde et al 
(14) and the data identifying individuals within or without the high cardiometabolic risk cluster, derived using cluster 
analysis in a previous study Huang et al (13) 

 N 
Pregnant women enrolled in the Raine study 2900 
Live births 2868 
 Male infants 1454 
 Female infants 1414 
     
Male participants who had at least one of 
testicular ultrasound, semen or blood 
samples (n=648) 

 Testicular volume 
assessment 
performed 
(n=404) 

Semen sample 
provided 
(n=365) 

Serum available for 
reproductive 
hormones  
(n=609) 

Participants who underwent 16/17 ± 
20/21 follow-up 

Total  
participants 
underwent 
assessment  
(n) 

Testicular 
volume  
measurements 
available 
(n) 

Semen sample 
parameters 
available 
(n) 

Serum sample 
available for 
gonadotrophins and 
testosterone   
(n) 

16/17 year follow up     
 Serum cytokines assessment (n=520) 319 290 478 
 Liver ultrasound for NAFL 

presence(14) 
(n=587) 298 280 437 

 Serum available for full metabolic 
assessment (13) 

(n=544) 289 264 439 

20/21 year follow up     
 Contactable (n=913)    
 Participated (n=705)    
  Anthropometric examination (n=687)    
  Blood pressure measured (n=693) 391 360 603 
  Serum available for biochemistry (n=620) 374 340 609 
  Serum available for full metabolic 

assessment 
(n=608) 367 337 599 

  Serum for HOMA calculation  (n=618) 373 339 609 
  DEXA scan performed (n=634) 362 333 557 
       

 

NAFL = Non-alcoholic fatty liver diagnosed on ultrasound 

HOMA = homeostasis model assessment insulin (fasting insulin [μu/ml] × fasting glucose [mM]/22.5). 

DEXA = Dual energy X-ray absorptiometry 
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Table 2. Participant characteristics at 20 years of age – comparison between those who participated in at least one aspect 
of the testicular assessment and those who did not. Unless otherwise specified, data were collected at 20 years of age.  

 
 

Male participants  
n=648 

Male non-participants 
n=57 

p-value 

N Median (IQR, R) or N (%) N Median (IQR, R) or N (%) 
 Age at 17 year follow-up 487 17.0 (16.9-17.1, 16.3-18.0) 33 17.0 (16.9-17.1, 16.7-17.3) 0.598 
 Age at 20 year follow-up 648 19.9 (19.7-20.3, 19.3-22.1) 57 19.9 (19.6-20.5, 19.4-21.7) 0.786 
Anthropometric      
 Height (cm) 632 180 (170-180, 162-199) 55 180 (180-190, 156-198) 0.550 
 Weight (kg) 632 75.9 (68.3-86.2, 52.2-137.5) 55 75.8 (69.0-86.1, 50.2-176.5) 0.884 
 BMI (kg/m2) 632 23.6 (21.4-26.3, 16.7-48.9) 55 23.9 (21.5-25.5, 18.0-42.9) 0.887 
  under 25  405 (64.1%)  39 (70.9%) 0.543 
  25 - 30  155 (24.5%)  10 (18.2%)  
  30 plus  72 (11.4%)  6 (10.9%)  
 Waist circumference (cm) 632 80.5 (75.1-87.5, 43.8-145.5) 55 80.8 (74.3-88.3, 63.5-131.5) 0.995 
Adiposity (DEXA)      
 Total fat mass (g) 586 14935 (10519-2431, 3413-

105957) 
48 15349 (10604-20633, 6583-

50244) 
0.843 

 Total lean mass (g) 586 56702 (52052-61561, 33747-
83318) 

48 57479 (51526-63403, 38679-
89622) 

0.790 

 Soft tissue percentagea 586 21 (16-28, 6-63) 48 20 (16-28, 10-46) 0.771 
 Total fat percentageb 586 20 (15-27, 5-61) 48 19 (15-27, 10-45) 0.740 
Biochemistry       
 Fasting glucose (mmol/l) 616 5.0 (4.8-5.3, 3.1-8.2) 2  -  
 Triglycerides (mmol/l) 616 1.0 (0.7-1.3, 0.3-17.8) 2 -  
 HDL cholesterol (mmol/l) 616 1.2 (1.0-1.4, 0.6-2.6) 2 -  
 LDL cholesterol (mmol/l) 616 2.4 (1.9-2.8, 0.2-5.3) 2 -  
 Iron (umol/L) 617 16.1 (12.8-20.5, 3.0-40.7) 2 -  
 Transferrin (umol/l) 617 31.6 (29.0-34.0, 21.2-46.5) 2 -  
 Transferrin saturation (%) 617 26.2 (20.7-32.8, 4.7-84.1) 2 -  
 Ferritin (ug/l) 392 87.8 (61.9-127.2, 6.3-326.9) 2 -  
 Insulin (μu/ml) 616 2.0 (2.0-4.7, 2.0-64.3) 2 -  
 High sensitivity CRP (mg/l) c 591 0.6 (0.3-1.4, 0.1-9.8) 2 -  
 ALT (u/l) 616 30 (22-42, 10-372) 2 -  
 GGT (u/l) 616 17 (14-23, 7-83) 2 -  
 AST (u/l) 616 25 (22-31, 11-199) 2 -  
 Adiponectin (mg/l) 616 7.6 (5.1-10.3, 0.6-34.6) 2 -  
 Leptin (μg/l) 616 3.3 (1.7-7.0, 0-162.1) 2 -  
 HOMA 616 0.5 (0.4-1.1, 0.3-16.3) 2 -  
 HOMA>4c 616 24 (3.9%) 2 0  
Metabolic clusters       
 High risk at 20yrs 606 76 (12.5%) 2 0  
 High risk at 17 yrs 439 70 (15.9%) 15 2 (13.3%)  
Blood pressure      
 Systolic (mm/Hg) 636 122 (114-132, 90-160) 57 123 (112-131, 91-152) 0.792 
 Diastolic (mm/Hg) 636 65 (59-71, 46-96) 57 64 (60-69, 47-90) 0.609 
Serum reproductive hormones      
 Testosterone (ng/mL) 607 4.6 (3.6-5.8, 1.1-10.3)    
 LH (iu/l) 608 10.5 (8.3-13.0, 2.3-28.4)    
 FSH (iu/l) 608 4.3 (3.0-6.2, 0.6-39.5)    
 InhB (pg/ml) 609 216.4 (170.4-266.4, 4.5-543.9)    
Cytokines(at 17 yrs)      
 IL18 (pg/ml) 496 288.4 (231.2-373.9, 0-3122) 23 263.6 (236.4-363.1, 153-1109) 0.802 
 sTNFR1 (pg/ml) 497 364.4 (286.1-462.8, 11-3549) 23  362.2 (293.7-420.4, 189-668) 0.874 
 sTNFR2 (pg/ml) 497 3180.4 (2636.3-3930.8, 24-

9150) 
23 3222.3 (2588.0-4057.2, 1930-

5737) 
0.853 

Hepatic ultrasound (at 17 yrs)      
 NAFLD  459 45 (9.8%) 31 4 (12.9%) 0.757 
Tobacco and alcohol use       
Smoking^ 494 78 (15.8%) 38 34 (15.8%) 1.000 
Alcohol consumption^      
 Nil 492 85 (17.3%) 37 6 (16.2%) 0.923 
 Moderate  249 (50.6%)  11 (29.7%)  
 Binge  158 (32.1%)  58 (28.2%)  

a Total soft tissue fat percentage = fat mass x 100 / (fat mass + lean mass), b Total fat percentage = fat mass x 100 / (fat mass + 
lean mass + bone mineral content), c hsCRP>10 has been excluded. ^Smoking has 154 missing in the participants and 19 in the 
non-participants group. Alcohol consumption has 156 missing in the participants and 20 missing in the non-participants group. 

Replaced with Table 3 and Table 3A 
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Replaced with new Table 4 
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Table 3A. Associations between reproductive and metabolic parameters at 20/21 years of age summarised using standardized beta coefficients and their 95% confidence intervals (CI). All 
analyses were adjusted for age at 20 years of age, history of cryptorchidism and varicocele (β1), coefficients also adjusted for BMI at 20 years of age are shown as  (β2Semen parameters were 
also adjusted for abstinence period. Unless otherwise specified, data were collected at 20 years of age.  

 Testis volume Semen volume Sperm output Semen concentration 
 β1 (95% CI) β2 (95% CI) β1 (95% CI) β2 (95% CI) β1 (95% CI) β2 (95% CI) β1 (95% CI) β2 (95% CI) 
Biochemistry         
Glucose  -0.043 (-0.143, 0.057) -0.057 (-0.157, 0.044) 0.066 (-0.034, 0.166) 0.078 (-0.023, 0.179) 0.071 (-0.026, 0.168) 0.085 (-0.013, 0.182) 0.057 (-0.045, 0.159) 0.065 (-0.038, 0.168) 
Triglycerides  -0.047 (-0.147, 0.053) -0.070 (-0.173, 0.032) -0.044 (-0.144, 0.057) -0.029 (-0.132, 0.074) -0.044 (-0.141, 0.053) -0.027 (-0.127, 0.004) -0.012 (-0.114, 0.090) -0.003 (-0.108, 0.102) 
HDL cholesterol  -0.027 (-0.126, 0.073) -0.002 (-0.106, 0.103) 0.030 (-0.070, 0.130) 0.010 (-0.095, 0.115) 0.027 (-0.070, 0.124) 0.003 (-0.098, 0.105) -0.010 (-0.092, 0.111) -0.003 (-0.110, 0.103) 
LDL cholesterol   0.028 (-0.073, 0.128) 0.009 (-0.094, 0.112) -0.023 (-0.123, 0.078) -0.007 (-0.111, 0.096) -0.001 (-0.099, 0.096) 0.018 (-0.082, 0.118) 0.015 (-0.087, 0.118) 0.026 (-0.079, 0.131) 
Iron    -0.019 (-0.119, 0.081) -0.017 (-0.117, 0.083) 0.092 (-0.008, 0.192)  0.090 (-0.010, 0.191) -0.012 (-0.010, 0.086) -0.014 (-0.111, 0.084) -0.059 (-0.161, 0.043) -0.060 (-0.162, 0.042) 
Transferrin  0.081 (-0.019, 0.180) 0.072 (-0.028, 0.172) 0.020 (-0.080, 0.120) 0.029 (-0.072, 0.129) -0.067 (-0.167,  0.033) -0.057 (-0.153, 0.040) -0.075 (-0.177, 0.026) -0.071 (-0.174, 0.031) 
Transferrin saturation %  -0.046 (-0.147, 0.054) -0.041 (-0.141, 0.059) 0.076 (-0.025, 0.177) 0.072 (-0.029, 0.173) -0.001 (-0.098, 0.097) -0.006 (-0.103, 0.092) -0.039 (-0.141, 0.064) -0.042 (-0.145, 0.061) 
Ferritin   -0.040 (-0.141, 0.060) -0.057 (-0.159, 0.045) -0.049 (-0.150, 0.053) -0.037 (-0.140, 0.066) -0.060 (-0.158, 0.037) -0.047 (-0.147, 0.052) -0.031 (-0.133, 0.072) -0.024 (-0.128, 0.081) 
Insulin  -0.116 (-0.215, -0.016) -0.153 (-0.256, -0.049) -0.036 (-0.137, 0.065) -0.017 (-0.122, 0.088) -0.013 (-0.111, 0.084) 0.011 (-0.091, 0.113) 0.001 (-0.101, 0.104) 0.015 (-0.092, 0.122) 
hsCRP†   -0.003 (-0.105, 0.099) -0.029 (-0.135, 0.077) -0.113 (-0.216, -0.010) -0.101 (-0.208, 0.007) -0.065 (-0.164, 0.035) -0.046 (-0.149, 0.057) -0.046 (-0.150, 0.058) -0.037 (-0.146, 0.071) 
ALT  -0.034 (-0.135, 0.066) -0.061 (-0.165, 0.043) -0.106 (-0.207, -0.006) -0.093 (-0.202, 0.016) -0.008 (-0.105, 0.090) 0.015 (-0.086, 0.117) 0.024 (-0.078, 0.127) 0.039 (-0.068, 0.145) 
AST -0.010 (-0.112, 0.092) -0.041 (-0.149, 0.066) -0.031 (-0.133, 0.072) 0.009 (-0.117, 0.098) -0.045 (-0.143, 0.054) -0.021 (-0.125, 0.082) -0.031 (-0.135, 0.073) -0.019 (-0.128, 0.090) 
GGT  0.003 (-0.097, 0.103) -0.003 (-0.103, 0.097) -0.021 (-0.121, 0.080) -0.015 (-0.116, 0.085) -0.017 (-0.115, 0.080) -0.011 (-0.108, 0.086) -0.018 (-0.119, 0.084) -0.014 (-0.117, 0.088) 
Blood pressure        
Systolic 0.005 (-0.097, 0.103) -0.028 (-0.132, 0.076) 0.094 (-0.003, 0.191) 0.135 (0.032, 0.238) 0.006 (-0.089, 0.100) 0.038 (-0.062, 0.139) -0.039 (-0.138, 0.060) -0.028 (-0.134, 0.078) 
Diastolic -0.109 (-0.207, -0.011) -0.124 (-0.223, -0.025) 0.112 (0.014, 0.209) 0.124 (0.026, 0.223) 0.100 (0.005, 0.194) 0.114 (0.018, 0.209) 0.049 (-0.050, 0.149) 0.057 (-0.044, 0.157) 
Cytokines at 16/17 yrs 
years 

        
IL18 0.022 (-0.088, 0.132) 0.026 (-0.084, 0.135) 0.003 (-0.107, 0.112) -0.001 (-0.110, 0.109) -0.116 (-0.222, -0.011) -0.120 (-0.225, -0.015) -0.129 (-0.239, -0.019) -0.131 (-0.242, -0.011) 
sTNFR1 -0.089 (-0.197, 0.020) -0.094 (-0.203, 0.014) -0.123 (-0.232,  -0.015) -0.118 (-0.228, -0.009) -0.119 (-0.224, -0.013) -0.113 (-0.219, -0.007)  -0.045 (-0.157, 0.066) -0.043 (-0.155, 0.068) 
sTNFR2 -0.009 (-0.118, 0.101) -0.013 (-0.122, 0.096) -0.084 (-0.193, 0.026) -0.081 (-0.190, 0.029) -0.079 (-0.185, 0.027) -0.076 (-0.181, 0.030) -0.065 (-0.177, 0.048) -0.063 (-0.176, 0.049) 
DEXA          
Total fat % -0.018 (-0.122, 0.086) -0.129 (-0.266, 0.007) -0.086 (-0.189, 0.018) -0.068 (-0.205, 0.070) -0.096 (-0.199, 0.007) -0.073 (-0.206, 0.059) -0.045 (-0.150, 0.060) -0.029 (-0.169, 0.111) 
Soft tissue fat % -0.035 (-0.139, 0.069) -0.137 (-0.266, -0.008) -0.084 (-0.187, 0.020) -0.064 (-0.201, 0.073) -0.095 (-0.195, 0.005) -0.072 (-0.205, 0.060) -0.046 (-0.151, 0.060) -0.030 (-0.170, 0.109) 
Total fat mass 0.046 (-0.058, 0.149) -0.041 (-0.196, 0.115) -0.071 (-0.174, 0.032) -0.040 (-0.196, 0.116) -0.102 (-0.202, -0.003) -0.094 (-0.245, 0.057) -0.065 (-0.170, 0.039) -0.076 (-0.234, 0.083) 
Total lean mass 0.299 (0.202, 0.397)  0.366 (0.249, 0.433) * 0.096 (-0.005, 0.198) 0.196 (0.076, 0.317) 0.004 (-0.094, 0.103) 0.071 (-0.047, 0.189) -0.055 (-0.159, 0.048) -0.046 (-0.170, 0.079) 
Metabolic syndrome         
HOMA -0.121 (-0.220, -0.021) -0.157 (-0.260, -0.054) -0.032 (-0.133, 0.069)  -0.013 (-0.118, 0.092) -0.004 (-0.101, 0.094) 0.021 (-0.081, 0.122) -0.011 (-0.091, 0.114) 0.026 (-0.081, 0.132) 

† hsCRP>10 are excluded (n=10); effects significant at 0.05 level are shown in bold. *p<0.001   
  

Roger Hart
New tables 3 and 4 below
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Table 3B. (Table 3 continued) Associations between semen parameters and metabolic parameters at 20/21 years of age summarised using standardized beta coefficients and their 95% 
confidence intervals (CI). All analyses were adjusted for age at 20 years of age, history of cryptorchidism and varicocele (β1), coefficients also adjusted for BMI at 20 years of age are shown as  
(β2Semen parameters were also adjusted for abstinence period. Unless otherwise specified, data were collected at 20 years of age. 

 SCSA Morphology Motility 
 β1 (95% CI) β2 (95% CI) β1 (95% CI) β2 (95% CI) β1 (95% CI) β2 (95% CI) 
Biochemistry       
Glucose   0.011 (-0.094, 0.116) 0.006 (-0.100, 0.112) 0.042 (-0.064, 0.149) 0.038 (-0.070, 0.146) 0.080 (-0.023, 0.184) 0.081 (-0.024, 0.185) 
Triglycerides  -0.065 (-0.170, 0.040) -0.078 (-0.186, 0.030) -0.018 (-0.124, 0.089) -0.027 (-0.137, 0.083) 0.051 (-0.053, 0.154) 0.052 (-0.055, 0.159) 
HDL cholesterol  -0.081 (-0.185, 0.024) -0.077 (-0.186, 0.033) 0.031 (-0.076, 0.138) 0.045 (-0.067, 0.157) -0.046 (-0.150, 0.057) -0.048 (-0.157, 0.060) 
LDL cholesterol    0.010 (-0.096, 0.115) 0.002 (-0.107, 0.110) -0.039 (-0.147, 0.068) -0.049 (-0.159, 0.061) 0.117 (0.014, 0.221) 0.122 (0.016, 0.228) 
Iron     -0.011 (-0.117, 0.095) -0.010 (-0.116, 0.095) -0.054 (-0.162, 0.053) -0.054 (-0.161, 0.054) 0.004 (-0.101, 0.108) 0.004 (-0.101, 0.108) 
Transferrin   -0.026 (-0.130, 0.079) -0.030 (-0.136, 0.075) -0.011 (-0.117, 0.096) -0.015 (-0.122, 0.093) -0.055 (-0.159, 0.048) -0.057(-0.161, 0.047) 
Transferrin saturation %   -0.012 (-0.094, 0.118) 0.014 (-0.092, 0.121) -0.055 (-0.162, 0.052) -0.053 (-0.161, 0.055) 0.020 (-0.084, 0.125) 0.021 (-0.084, 0.126) 
Ferritin    0.047 (-0.059, 0.153) 0.041 (-0.066, 0.149) -0.065 (-0.173, 0.042) -0.073 (-0.183, 0.036) 0.065 (-0.040, 0.169) 0.065 (-0.041, 0.172) 
Insulin   -0.006 (-0.112, 0.100) -0.018 (-0.129, 0.092) 0.048 (-0.059, 0.156) 0.042 (-0.070, 0.155) 0.037 (-0.067, 0.141) 0.038 (-0.071, 0.147) 
hsCRP†   -0.027 (-0.134, 0.081) -0.040 (-0.152, 0.072) 0.053 (-0.056, 0.162) 0.048 (-0.066, 0.161)  -0.008 (-0.115, 0.098) -0.011 (-0.122, 0.100) 
ALT   0.006 (-0.100, 0.111) 0.005 (-0.115, 0.105) 0.149 (0.043, 0.255) 0.151 (0.040, 0.262) 0.012 (-0.093, 0.116) 0.010 (-0.098, 0.119) 
AST    -0.030 (-0.137, 0.077) -0.045 (-0.158, 0.067) 0.069 (-0.043, 0.181) 0.067 (-0.051, 0.185) -0.010 (-0.116, 0.096) -0.014 (-0.125, 0.098) 
GGT    -0.044 (-0.149, 0.061) -0.047 (-0.152, 0.058) 0.122 (0.016, 0.228) 0.120 (0.013, 0.226) 0.024 (-0.079, 0.128) 0.024 (-0.080, 0.128) 
Blood pressure      
Systolic -0.001 (-0.103, 0.101) -0.016 (-0.125, 0.093) -0.002 (-0.106, 0.102) -0.015 (-0.126, 0.096) 0.024 (-0.077, 0.124) 0.024 (-0.084, 0.132) 
Diastolic -0.007 (-0.110, 0.096) -0.012 (-0.117, 0.092) -0.049 (-0.154, 0.056) -0.055 (-0.166, 0.057) 0.059 (-0.043, 0.160) 0.059 (-0.044, 0.161) 
Cytokines at 16/17 yrs       
IL18 0.017 (-0.098, 0.132) 0.019 (-0.097, 0.134) -0.009 (-0.126, 0.108) -0.007 (-0.124, 0.110) 0.0003 (-0.113, 0.114) 0.001 (-0.113, 0.115) 
sTNFR1 -0.030 (-0.145, 0.084) -0.033 (-0.148, 0.082) -0.034 (-0.150, 0.083) -0.036 (-0.153, 0.081) -0.093 (-0.206, 0.019) -0.094 (-0.207, 0.019 
sTNFR2 0.071 (-0.044, 0.186) 0.070 (-0.046, 0.185) 0.009 (-0.108, 0.127) 0.008 (-0.110, 0.125) -0.050 (-0.163, 0.064) -0.050 (-0.164, 0.064 
DEXA        
Total fat % -0.012 (-0.121, 0.097) -0.064 (-0.209, 0.080) 0.062 (-0.048, 0.172) 0.070 (-0.077, 0.216) 0.052 (-0.056, 0.159) 0.082 (-0.060, 0.225) 
Soft tissue fat % -0.010 (-0.119, 0.099) -0.061 (-0.205, 0.083) 0.061 (-0.050, 0.171) 0.067 (-0.079, 0.213) 0.051 (-0.057, 0.158) 0.080 (-0.062, 0.222) 
Total fat mass 0.007 (-0.102, 0.115) -0.049 (-0.214, 0.115) 0.045 (-0.065, 0.155) 0.046 (-0.121, 0.213) 0.038 (-0.069, 0.145) 0.074 (-0.088, 0.237) 
Total lean mass 0.043 (-0.064, 0.150) 0.033 (-0.096, 0.161) -0.019 (-0.127, 0.090) -0.054 (-0.184, 0.077) -0.038 (-0.144, 0.067) -0.061 (-0.188, 0.066) 
Metabolic syndrome       
HOMA -0.002 (-0.107, 0.104) -0.013 (-0.123, 0.097) 0.052 (-0.055, 0.160) 0.047 (-0.065, 0.159) 0.046 (-0.058, 0.151) 0.048 (-0.061, 0.157) 

† hsCRP>10 are excluded (n=10); effects significant at 0.05 level are shown in bold.  
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Table 4. Associations between serum testicular hormones and gonadotrophins and metabolic parameters at 20/21 years of age summarised using standardized beta coefficients and their 
95% confidence intervals (CI). All beta coefficients were adjusted for age at 20 years of age, history of cryptorchidism and varicocele were made in all analyses (β1) and separate coefficients 

are shown with additional adjustment for BMI at 20 years of age (β2). Unless otherwise specified, data were collected at 20/21 years of age.  

 Testosterone Inh B LH  FSH 
 β1 (95% CI) β2 (95% CI) β1 (95% CI) β2 (95% CI) β1 (95% CI) β2 (95% CI) β1 (95% CI) β2 (95% CI) 
Biochemistry         
Glucose  -0.038 (-0.119, 0.043) 0.002 (-0.077, 0.081) -0.049 (-0.129, 0.032) -0.014 (-0.093, 0.065) -0.018 (-0.098, 0.063) -0.009 (-0.090, 0.072) 0.003 (-0.077, 0.084) 0.006 (-0.076, 0.087) 
Triglycerides  -0.128 (-0.209, -0.048) -0.068 (-0.148, 0.012) -0.151 (-0.231, -0.072)*  -0.101 (-0.181, -0.021) 0.036 (-0.045, 0.116) 0.053 (-0.030, 0.135) 0.033 (-0.047, 0.114) 0.039 (-0.044, 0.121) 
HDL cholesterol  0.201 (0.122, 0.281) * 0.132 (0.051, 0.213) * 0.095 (0.015, 0.175) 0.027 (-0.054, 0.109) -0.007 (-0.087, 0.073) -0.027 (-0.111, 0.057) -0.024 (-0.104, 0.056) -0.031 (-0.115, 0.053) 
LDL cholesterol   -0.025 (-0.106, 0.057) 0.038 (-0.042, 0.119) -0.055 (-0.136, 0.026) -0.002 (-0.083, 0.078) -0.057 (-0.138, 0.024) -0.046 (-0.129, 0.037) -0.020 (-0.101, 0.061) -0.018 (-0.101, 0.065) 
Iron    0.173 (0.092, 0.253) * 0.166 (0.089, 0.243) * 0.014 (-0.067, 0.094) 0.008 (-0.071, 0.086) -0.045 (-0.126, 0.036) -0.047 (-0.127, 0.034) -0.056 (-0.136, 0.025) -0.056 (0.137, 0.025) 
Transferrin  -0.011 (-0.092, 0.070) 0.021 (-0.058, 0.099) 0.014 (-0.066, 0.095) 0.042 (-0.036, 0.121) -0.031 (-0.111, 0.049) -0.024 (-0.105, 0.057) -0.035 (-0.116, 0.045) -0.034 (-0.115, 0.047) 
Transferrin saturation %  0.167 (0.086, 0.247) * 0.149 (0.071, 0.227) * 0.012 (-0.069, 0.093) -0.004 (-0.083, 0.075) -0.032 (-0.113, 0.049) -0.036 (-0.118, 0.045) -0.039 (-0.120, 0.042) -0.040 (-0.121, 0.041) 
Ferritin   -0.095 (-0.176, -0.013) -0.048 (-0.128, 0.032) -0.011 (-0.093, 0.070) 0.031 (-0.049, 0.111) -0.030 (-0.111, 0.051) -0.020 (-0.103, 0.062) -0.025 (-0.106, 0.056) -0.023 (-0.106, 0.059) 
Insulin  -0.241 (-0.320, -0.162)* -0.177 (-0.258, -0.097)* -0.211(-0.289, -0.132)* -0.155(-0.236, -0.074)* -0.012 (-0.093, 0.069) 0.005 (-0.079, 0.090) 0.072 (-0.009, 0.152) 0.083 (-0.002, 0.167) 
hsCRP†   -0.249 (-0.329, -0.169)* -0.187 (-0.268, -0.106)* -0.024 (-0.106, 0.058) 0.046 (-0.037, 0.129) -0.073 (-0.155, 0.008) -0.061 (-0.146, 0.024) -0.123 (-0.204, -0.042) -0.129 (-0.214, -0.045) 
ALT  -0.116 (-0.197, -0.035) -0.045 (-0.127, 0.036) -0.126 (-0.206, -0.045) -0.067 (-0.148, 0.015) -0.016 (-0.097, 0.065) -0.0001 (-0.084, 0.084) -0.004 (-0.085, 0.077) -0.001 (-0.085, 0.084) 
AST  -0.155 (-0.236, -0.074) -0.076 (-0.159, 0.008) -0.149 (-0.230, -0.068) -0.083 (-0.166, 0.001) -0.017 (-0.099, 0.065) 0.002 (-0.084, 0.088) 0.038 (-0.044, 0.120) 0.047 (-0.039, 0.133) 
GGT   -0.013 (-0.094, 0.068) 0.007 (-0.071, 0.085) -0.006 (-0.087, 0.074) 0.011 (-0.067, 0.090) -0.024 (-0.104, 0.057) -0.028 (-0.135, 0.078) -0.056 (-0.136, 0.024) -0.055 (-0.136, 0.025) 
Blood pressure        
Systolic -0.084 (-0.165, -0.004) 0.012 (-0.071, 0.095) -0.129 (-0.208, -0.049) -0.053 (-0.136, 0.030) 0.002 (-0.079, 0.082) 0.026 (-0.060, 0.111) 0.037 (-0.043, 0.118) 0.048 (-0.038, 0.134) 
Diastolic -0.086 (-0.167, -0.004) -0.047 (-0.127, 0.032) -0.075 (-0.156, 0.006) -0.042 (-0.122, 0.037) 0.050 (-0.032, 0.131) 0.059 (-0.022, 0.141) 0.062 (-0.019, 0.143) 0.065 (-0.017, 0.147) 
Cytokines at 16/17 yrs         
IL18  -0.020 (-0.112, 0.072) -0.033 (-0.121, 0.056) 0.020 (-0.071, 0.111) 0.009 (-0.079, 0.098) 0.066 (-0.025, 0.157) 0.063 (-0.028, 0.154) -0.012 (-0.104, 0.079) -0.013 (-0.104, 0.978) 
sTNFR1 -0.027 (-0.119, 0.064) -0.010 (-0.099, 0.078) -0.128 (-0.218, -0.038) -0.114 (-0.202, -0.026) 0.108 (0.018, 0.198) 0.112 (0.022, 0.202) 0.153 (0.063, 0.242)* 0.154 (0.064, 0.244)* 
sTNFR2   -0.004 (-0.095, 0.088) 0.011 (-0.078, 0.099) -0.011 (-0.102, 0.079) -0.001 (-0.087, 0.090) 0.039 (-0.051, 0.130) 0.043 (-0.048, 0.134) 0.037 (-0.054, 0.128) 0.038 (-0.053, 0.129) 
DEXA          
Total fat % -0.243 (-0.327, -0.159)* -0.105 (-0.214, 0.005) -0.137 (-0.222, -0.052) 0.036 (-0.074, 0.146) -0.120 (-0.205, -0.035) -0.139 (-0.252, -0.027) -0.076 (-0.161, 0.010) -0.115 (-0.228, -0.002) 
Soft tissue fat % -0.241(-0.325, -0.157)* -0.103 (-0.212, 0.006) -0.139 (-0.224, -0.054) 0.031 (-0.079, 0.140) -0.121 (-0.206, -0.036) -0.140 (-0.252, -0.028) -0.074 (-0.159, 0.012) -0.111 (-0.223, 0.001) 
Total fat mass -0.271 (-0.354, -0.188)* -0.143 (-0.268, -0.019) -0.175 (-0.259, -0.091)* 0.010 (-0.114, 0.135) -0.112 (-0.197, -0.027) -0.150 (-0.277, -0.022) -0.058 (-0.143, 0.028) -0.106 (-0.234, 0.022) 
Total lean mass  -0.038 (-0.122, 0.047) 0.167 (0.070, 0.265)* -0.139 (-0.222, -0.055)* -0.009 (-0.108, 0.089) 0.052 (-0.032, 0.136) 0.124 (0.023, 0.224) 0.086 (0.002, 0.170) 0.136 (0.036, 0.237) 
Metabolic syndrome         
HOMA -0.237 (-0.341, -0.133)* -0.172 (-0.278, -0.066) -0.203 (-0.282, -0.124)* -0.149(-0.230, -0.068)* -0.016 (-0.097, 0.065) 0.001 (-0.083, 0.085) 0.069 (-0.011, 0.150) 0.080 (-0.004, 0.164) 

† hsCRP>10 are excluded (n=10); effects significant at 0.05 level are shown in bold. *p = or <0.001 
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Table 5. Comparison of testicular volume, semen parameters and serum hormones by metabolic clusters, all 
assessments made at 20 years of age in the top part of the table, and metabolic cluster analysis and associations 
at 17 years of age are listed in the lower part of the table. Data is represented as Median (IQR, R) and Mean (SD) 
as appropriate.   

Cluster parameters at 20 
years of age 

N
Hig
h 

High risk at 20 years of age 
[Mean (SD)] 

NLow Low risk at 20 years of age 
[Mean (SD)] 

p-value 

Systolic blood pressure 
(mm/Hg) 

43 130.8 (10.6) 342 121.8 (12.2) <0.001 

Insulin (μu/ml) 43 14.2 (12.8) 342 3.2 (2.2) <0.001 
Triglycerides (mmol/l) 43 1.8 (1.1) 342 1.0 (0.4) <0.001 
Waist circumference (cm) 43 100.2 (12.9) 342 80.2 (7.6) <0.001 
      
  Metabolic cluster at 20 years of age 

 
 

Testicular function 
assessment at 20 years  

 High risk at 20 years of age 
[Median (IQR, R)] 

 Low risk at 20 years of age 
[Median (IQR, R)] 

 

Testicular volume (ml) 42 14.7 (12.3-16.9, 9.0-23.8) 325 15.2 (13.0-17.4, 7.6-28.4) 0.574 
Semen parameters      
 Volume (ml) 34 2.7 (1.9-4.0, 0.9-7.2) 303 2.8 (1.9-3.7, 0.1-11.0) 0.979 
 Total sperm output (M) 34 115.3 (51.0-194.0, 0.0-551.8) 303 113.4 (50.6-207.0, 0.0-927.5) 0.738 
 Sperm concentration 

(M/mL) 
34 42.5 (19.4-70.5, 0-142) 303 46 (23-73, 0-220) 0.663 

 SCSA (%) 32 2.5 (1.5-4.7, 0.6-10.8) 298 3.1 (1.9-5.2, 0.2-30.0) 0.106 
 Morphology (N, %) 32 5.5 (3.6-9.0, 3-17) 294 5 (3-7, 0-18) 0.144 
 Motility (a + b, %) 33 58.0 (43.5-70.5, 19-86) 300 58 (44-67, 1-88) 0.773 
Serum hormones      
 Testosterone (ng/ml) 75 3.6 (3.0-4.0, 1.1-6.5) 522 4.8 (3.8-5.9, 1.3-10.3) <0.001 
 LH (IU/l) 76 6.7 (7.6-12.8, 5.2-19.3) 522 10.5 (8.3-13.1, 2.3-28.4) 0.097 
 FSH (IU/l) 76 4.4 (2.9-6.8, 0.8-25.8) 522 4.3 (3.0-6.1, 0.6-39.5) 0.492 
 InhB (pg/ml) 76 167.9 (132.1-217.0, 28.9-389.3) 523 223.7 (180.6-272.9, 4.5-543.9) <0.001 

 

  Metabolic cluster at 17 years of age 
 

 

Testicular function 
assessment at 20 years 

 High risk at 16/17 yrs of age 
[Median (IQR, R)] 

 Low risk at 16/17 yrs of age 
[Median (IQR, R)] 

 

Testicular volume (ml) 39 15.6 (13.3-17.5, 10.1-23.2) 249 14.7 (12.6-17.1, 8.0-28.4) 0.215 
Semen parameters      
 Volume (ml) 37 2.5 (1.6-3.6, 0.3-11.0) 227 2.8 (2.0-3.6, 0.7-7.5) 0.347 
 Total sperm output (M) 37 110.7 (52.2-288.9, 0.0-592.2) 227 122.2 (56.0-217.6, 0.0-927.5) 0.711 
 Sperm concentration 

(M/mL) 
37 50 (26.5-88.5, 0-220) 227 47 (23-71, 0-210) 0.280 

 SCSA (%) 35 3.6 (1.8-6.5, 0.7-30) 222 3.3 (1.9-5.5, 0.2-19.0) 0.416 
 Morphology (N, %) 35 5.0 (3.0-7.0, 0.5-17) 219 4.5 (3.0-7.0, 0.5-18.0) 0.782 
 Motility (a + b, %) 36 51.0 (38.5-65.8, 7.0-88.0) 224 59.0 (43.3-68.0, 7.0-88.0) 0.170 
Serum hormones      
 Testosterone (ng/ml) 67 4.0 (3.2-4.9, 1.6-7.2) 356 4.9 (3.6-6.0, 1.8-9.9) <0.001 
 LH (IU/l) 68 10.1 (7.8-13.9, 5.4-19.8) 357 10.6 (8.6-13.2, 4.3-28.4) 0.425 
 FSH (IU/l) 68 4.4 (3.4-6.8, 1.1-14.3) 357 4.3 (3.0-6.2, 0.8-39.5) 0.285 
 InhB (pg/ml) 68 193.2 (144.8-226.5, 48.7-389.3) 357 221.9 (180.3-269.0, 56.7-

543.9) 
<0.001 
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Table 6. Comparison of testicular volume, semen parameters and serum testicular hormones and gonadotrophins 
by HOMA-IR, all assessments made at 20 years of age. Data is represented as Median (IQR, R).  

Testicular function 
assessment 

NIR IR (HOMA>4) NNormal Normal (HOMA≤4) p-value 

Testicular volume (ml) 14 12.8 (11.1-14.7, 10.0-16.9) 359 15.2 (13.0-17.4, 7.6-28.4) 0.010 
Sperm parameters      
 Semen volume (ml) 13 2.6 (1.5-3.6, 0.9-4.2) 326 2.8 (1.9-3.8, 0.1-11.0) 0.320 
 Total sperm output (M) 13 136.8 (81.0-253.9, 0.0-

383.4) 
326 110.6 (50.6-206.7, 0.0-

927.5) 
0.459 

 Sperm concentration (M/ml) 13 64.0 (30.0-88.5, 0-160) 326 44.5 (22.0-70.3, 0-220) 0.293 
 SCSA (%) 12 2.8 (1.5-5.4, 1.4-10.8) 320 3.1 (1.8-5.2, 0.2-30.0) 0.654 
 Sperm morphology (N, %) 12 5.5 (3.3-10.0, 3-17) 316 5 (3-7, 0-18) 0.402 
 Sperm motility (a + b, %) 12 63 (47.3-75.8, 26-79) 323 58 (43-67, 1-88) 0.330 
Serum hormone concentrations      
 Testosterone (ng/ml) 24 3.2 (2.6-4.0, 1.1-5.3) 583 4.6 (3.7-5.9, 1.3-10.3) <0.001 
 LH (IU/l) 24 10.6 (8.2-13.3, 6.3-17.1) 584 10.5 (8.3-13.0, 2.3-28.4) 0.903 
 FSH (IU/l) 24 6.1 (3.4-7.9, 1.1-14.3) 584 4.3 (3.0-6.1, 0.6-39.5) 0.046 
 InhB (pg/ml) 24 172.4 (130.0-213.4, 54.8-

389.3) 
585 217.8 (174.0-267.6, 4.5-

543.9) 
0.001 

 
HOMA = homeostasis model assessment insulin (Fasting insulin [μu/ml] × Fasting glucose [mM]/22.5). 
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