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 20 

Abstract 21 

Wettability of CO2-brine-mineral systems plays a vital role during geological CO2-storage. 22 

Residual trapping is lower in deep saline aquifers where the CO2 is migrating through quartz 23 

rich reservoirs but CO2 accumulation within a three-way structural closure would have a high 24 

storage volume due to higher CO2 saturation in hydrophobic quartz rich reservoir rock. 25 

However, such wettability is only poorly understood at realistic subsurface conditions, which 26 

https://scieng.curtin.edu.au/schools/wa-school-of-mines/
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are anoxic or reducing. As a consequence of the reducing environment, the geological 27 

formations (i.e. deep saline aquifers) contain appreciable concentrations of various organic 28 

acids. We thus demonstrate here what impact traces of organic acids exposed to storage rock 29 

have on their wettability. Technically, we tested hexanoic acid, lauric acid, stearic acid and 30 

lignoceric acid and measured wettability as a function of organic acid concentration at realistic 31 

storage conditions (i.e. 25 MPa and 323 K (50 °C)). In addition, measurements were also 32 

conducted at ambient conditions in order to quantify the incremental pressure effect on 33 

wettability. Clearly, the quartz surface turned significantly less water-wet with increasing 34 

organic acid concentrations, even at trace concentrations. Importantly, we identified a threshold 35 

concentration at ~10-6 M organic acid, above which quartz wetting behaviour shifts from 36 

strongly water-wet to an intermediate-wet state. This wettability shift may have important 37 

consequences for CO2 residual trapping capacities, which may be significantly lower than for 38 

traditionally assumed water-wet conditions where CO2 is migrating through quartz rich 39 

reservoirs. 40 

 41 

1. Introduction 42 

CO2 geological storage can significantly contribute towards a green environment via permanent 43 

CO2 immobilization in deep underground formations, e.g. deep saline aquifers and depleted 44 

hydrocarbon reservoirs (Blunt et al., 1993, IPCC, 2005, Orr, 2009;). Efficient and safe CO2 45 

geological storage involves a qualitative and quantitative assessment of the contribution of the 46 

different functional trapping mechanisms which prevent the buoyant CO2 from migrating back 47 

to the surface (IPCC, 2005; Juanes et al., 2010). These trapping mechanism include structural 48 

trapping (Iglauer et al., 2015a, Arif et al., 2016a,b, 2017a;), capillary or residual trapping 49 

(Juanes et al., 2010; Iglauer et al., 2011a,b; Pentland et al., 2011; Krevor et al., 2012), mineral 50 

trapping (Gaus 2010; Golding et al., 2011; Pearce et al., 2015,) and dissolution trapping 51 
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(Iglauer 2011c; Agartan et al., 2015). In addition, adsorption trapping has been identified as 52 

another storage mechanism functional in coal seams and organic rich shales (Busch et al., 2008; 53 

Shojai Kaveh et al., 2012, 2016; Arif et al., 2016c, 2017b). 54 

Structural and residual trapping are strongly influenced by the CO2-brine-rock wettability 55 

(Chaudhary et al., 2013; Iglauer et al. 2015a,b; Al-Menhali et al. 2016a,b; Rahman et al., 2016; 56 

Al-Khdheeawi et al., 2017; Arif et al. 2017a; Iglauer 2017; Wan et al., 2018), however, 57 

wettability is a complex parameter which is not well understood, particularly for realistic 58 

subsurface conditions. One key aspect of realistic subsurface conditions is their anoxic or 59 

reducing character, which results in the existence of organic molecules in target storage 60 

formations (Meredith et al., 2000; Watson et al. 2002). 61 

It is shown in previous studies that water receding contact angle on the cap rock (i.e. CO2 62 

displacing water) is related to structural trapping (below an impermeable caprock; Broseta et 63 

al., 2012). Whereas, the advancing water contact angle (water displacing CO2) is related to 64 

capillary trapping in the reservoir rock (Chiquet et al. 2007; and thus the amount of residually 65 

trapped CO2; Chaudhary et al., 2013, Rahman et al. 2016, Al-Menhali et al. 2016a). Note 66 

further that dissolution trapping in the reservoir rock is significantly affected by the wettability 67 

and it is thus necessary to know the wettability for accurate reservoir simulations and storage 68 

capacity predictions (Al-Khdheeawi et al. 2016, 2017). 69 

Although the concentrations of organic molecules in deep aquifers is normally low (Stalker et 70 

al. 2013), their prevailing concentrations are potentially sufficient to significantly influence the 71 

rock’s wettability characteristics (Standnes and Austad, 2003; Gomari et al., 2006; Iglauer et 72 

al., 2014). Indeed, a partial mono-molecular layer adsorbed to the mineral surface would be 73 

sufficient for this (Shafrin et al., 1962; Gaines 1966; Kuhn et al., 1971; Zasadzinski et al., 1994; 74 

Adamson and Gast 1997; Maboudian et al., 1997; Bikkina 2011; Mahadevan 2012).  75 
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These minute organic concentrations can adversely affect the storage capacities and 76 

containment security via their impact on CO2 wettability (Iglauer et al. 2015a,b; Al-Khdheeawi 77 

et al. 2016, 2017). It is therefore important to understand at what organic concentration the 78 

impact on CO2/Water/Mineral wettability becomes significant for trapping capacities. Thus, 79 

this work aims to benchmark the influence of trace concentrations of such organics and the 80 

effect of their carbon chain length on CO2-rock wettability.  81 

 82 

 83 

2. Experimental Methodology 84 

2.1. Materials 85 

Nine pure quartz samples (Quartz (single crystals; testing chips from WARD’S Natural 86 

Science; sample range = 12 mm to 19 mm x 10 mm x 10 mm) were used as a model for 87 

sandstone storage formations. The surface roughnesses of all nine surfaces were provided by 88 

the supplier and the values ranged from 1 nm to 2 nm (root-mean-square (RMS) surface 89 

roughness, which is very smooth (Sarmadivaleh et al. 2015). 90 

CO2 (purity ≥ 99.999 mol%; from BOC, gas code-082), N2 (purity ≥ 99.999 mol%; from BOC, 91 

gas code-234) and 10 wt% NaCl brine (NaCl purity ≥ 99.9mol%; from Scharlab) were used. 92 

The NaCl was dissolved in deionized water (Ultrapure from David Gray; electrical 93 

conductivity = 0.02 mS/cm). Subsequently, the NaCl brine was equilibrated with CO2 at 94 

experimental conditions in a high pressure mixing reactor (according to the procedure 95 

described by El-Maghraby et al. 2012). To represent organic compounds, organic acids were 96 

selected due to their presence in hydrocarbon reservoirs and aquifers; these included hexanoic 97 

acid, lauric acid, stearic acid, and lignoceric or oleic acid (Jardine et al., 1989; Legens et al., 98 

1998; Madsen and Ida, 1998; Hansen et al., 2000; Amaya et al., 2002; Hamouda and Gomari, 99 
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2006; Kharaka et al., 2009; Stalker et al., 2013; Yang et al., 2015), Tabe 1 (purchased from 100 

Sigma Aldrich, purity  98 mol%). 101 

 102 

Table 1: Properties of organic acids used in this study. 103 

Organic 

Acid 

Physical 

state 

Formula Number 

of C 

atoms 

Molar 

mass 

(g/mol) 

Chemical Structure 

Hexanoic 

acid 

Liquid C6H12O2 6 116.158 

 

Lauric acid solid C12H24O2 12 200.318 

 

Stearic 

acid 

solid C18H36O2 18 284.4772 

 

Lignoceric 

acid 

solid C24H48O2 24 368.63 
 

 104 

 105 

Acetone (≥ 99.9 mol%; from Rowe Scientific) was used as surface cleaning agent, and drops 106 

of aqueous hydrochloric acid (ACS reagent, concentration 37 vol%, Sigma Aldrich) were used 107 

to control the pH of the brine (see ageing procedure below for more details).  108 

 109 

2.2. Sample preparation 110 

2.2.1 Quartz surface preparation 111 

Initially the mineral (quartz) substrates were cleaned with DI-water to remove any dust or 112 

surface fragments from the surface. The sample was then dried in an oven at 90°C for 60 mins 113 

and exposed to air plasma (using a DiemerYocto instrument) for 15 mins to remove any organic 114 

contamination (Love et al., 2005; Iglauer et al., 2014). 115 
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2.2.2 Ageing procedure 116 

To mimic a typical storage formation, where the rock pore surfaces were exposed to formation 117 

water over geological times we adopted the following strategy (Davis 1982; Ulrich et al., 1988; 118 

Zullig and Morse, 1988; Ochs et al., 1994; Hoeiland et al., 2001; White et al., 2003; Nordbotten 119 

et al., 2005; Karoussi et al., 2008; Birkholzer et al., 2009; Ji et al., 2015; Kleber et al., 2015): 120 

The quartz samples were immersed for 30 mins in 2 wt% NaCl brine at ambient conditions, 121 

while the acidity was maintained at pH = 4 by adding drops of aqueous hydrochloric acid; this 122 

procedure increases the adsorption rate of organics onto the substrate, and thus simulates 123 

adsorption of organic molecules over geological times (i.e. millions of years’ exposure time) 124 

(Thurman 1985; Jardine et al., 1989; Madsen and Ida, 1998; Kharaka et al., 2009; Stalker et al. 125 

2013; Yang et al., 2015). Ultraclean N2 was then used to mechanically clean (blow away) the 126 

remaining water from the surface to avoid contamination. Subsequently the substrates were 127 

aged in different organic acid/n-decane solutions of prescribed molarity (10-2 M to 10-10 M 128 

organic acid concentration) for seven days to mimic exposure to formation fluid (which 129 

contains organic molecules) over geological time (Thurman 1985; Jardine et al., 1989; Madsen 130 

and Ida, 1998; Kharaka et al., 2009; Stalker et al. 2013; Yang et al., 2015). 131 

Previously, silanes were used to render the wettability of quartz surfaces oil-wet. Typically, 132 

different silanes have different impacts on surfaces hydrophilicity (Dickson et al., 2006, Grate 133 

et al., 2012, Hobeika et al., 2017). However, organic acids including stearic acids represent 134 

more realistically subsurface environments (Al-Anssari et al., 2016, 2018, Paterson et al., 2011, 135 

Hamouda et al., 2006, Gomari et al., 2006); while silanes do not exist in the subsurface (due to 136 

their high reactivity). 137 

It is vital to re-create such mineral surfaces to realistically mimic the subsurface behaviour, 138 

particularly with respect to their wettability characteristics (Davis 1982; Ochs et al., 1994; 139 
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Adamson and Gast 1997; Kleber et al., 2015). Note that it is proven that carboxylic acids and 140 

hydrocarbons both exist in deep saline aquifers (Bennett et al., 1993), as a result of 141 

biodegradation and organic matter diagenesis and subsequent migration into the water zones 142 

(Jones et al., 2008). 143 

Mechanistically, the organic acid esterifies the hydroxyl groups on the quartz surface in a 144 

condensation reaction (Scheme 1). 145 

R = (CH2)4CH3, Hexanoic acid

R = (CH2)10CH3, Lauric acid

R = (CH3)16CH3, Stearic acid

R = (CH3)22CH3, Lignoceric acid

O

C O

R
H2O

H2O
O

H

O

H

C O

R

+

Si
Si

 146 

Scheme 1.  Chemisorption of organic acids on solid quartz surface (   indicates solid bulk). 147 

Thus carboxylic components are chemically (covalently) bonded to the quartz surface, 148 

rendering them strongly hydrophobic (Al-Anssari et al., 2016). 149 

 150 

2.3. Surface characterization of pure and aged quartz surfaces  151 

The surface properties of the quartz samples were analysed via energy dispersive X-ray 152 

spectroscopy (EDS, Oxford X-act SSD X-ray detector with Inca and Aztec software) and 153 

contact angle (θ) measurements. Table 2 lists the EDS results before and after aging; these are 154 

average elemental surface concentrations (these are average over 45 data points: 5 data points 155 
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measured on each sample, on nine different samples) for each acid tested. Surface coverages 156 

with organic acid are also given (determined via the method defined by Dickson et al. 2006). 157 

Table 2. Surface composition of pure and aged quartz samples and associated surface coverage 158 

with all organic acids. 159 

Concentrat

ion 

(Molarity) 

Pure Quartz After ageing Change due to ageing Estimated surface coverage 

(after Dickson et al., 2006) 

wt% 

Si 

wt% 

C 

wt% 

O 

wt% 

Si 

wt% 

C 

wt% 

O 

 

wt% 

Si 

wt% 

C 

wt% 

O 

 

(1 −
𝑤𝑡% 𝐶𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑔𝑖𝑛𝑔

𝑤𝑡% 𝐶𝑎𝑓𝑡𝑒𝑟 𝑎𝑔𝑖𝑛𝑔

)

× 100 

Hexanoic Acid 

10-2 31.9 2.3 65.8 38.1 4.8 57.1 +6.2 +2.5 -8.7 52.1 

10-3 33.3 4.1 62.6 30.3 7.5 62.2 -3.0 +3.4 -0.4 45.3 

10-4 35.4 2.8 61.8 37.0 4.9 58.1 +1.6 +2.1 -3.7 42.9 

10-5 34.7 3.2 62.1 34.2 5.1 60.7 -0.5 +1.9 -1.4 37.3 

10-6 29.0 3.5 67.5 32.9 5.2 61.9 +3.9 +1.7 -5.6 32.7 

10-7 29.5 4.2 66.3 29.0 5.8 65.2 -0.5 +1.6 -1.1 27.6 

10-8 32.8 1.8 65.4 48.0 2.3 49.7 +15.2 +0.5 -15.7 21.7 

10-9 29.9 3.4 66.7 33.1 4.1 62.8 +3.2 +0.7 -3.9 17.1 

10-10 31.8 2.6 65.6 32.0 2.9 65.1 +0.2 +0.3 -0.5 10.3 

0 34.0 1.5 64.5 34.0 1.5 64.5 0 0 0 0 

Lauric Acid 

10-2 38.1 2.4 59.5 27.6 5.3 67.1 -10.5 +2.9 +7.6 54.7 

10-3 33.8 1.8 64.4 31.1 3.5 65.4 -2.7 +1.7 +1.0 48.6 

10-4 33.0 3.4 63.6 28.8 6.1 65.1 -4.2 +2.7 +1.5 44.3 

10-5 38.3 4.3 57.4 35.4 7.1 57.5 -2.9 +2.8 +0.1 39.4 

10-6 32.4 2.6 65.0 34.1 4.0 61.9 +1.7 +1.4 -3.1 35.0 

10-7 34.5 3.6 61.9 33.5 5.2 61.3 -1.0 +1.6 -0.6 30.8 

10-8 32.4 4.1 63.5 32.7 5.4 61.9 +0.3 +1.3 -1.6 24.1 

10-9 32.4 1.4 66.2 36.1 1.7 62.2 +3.7 +0.3 -4.0 17.6 

10-10 32.2 3.5 64.3 32.8 4.1 63.1 +0.6 +0.6 -1.2 14.6 

0 31.6 2.3 66.1 31.6 2.3 66.1 0 0 0 0 

Stearic Acid 

10-2 35.4 1.3 63.3 32.2 3.1 64.7 -3.2 +1.8 +1.4 58.1 

10-3 34.3 3.7 62.0 26.8 7.6 65.6 -7.5 +3.9 +3.6 51.3 

10-4 37.0 4.5 58.5 26.7 8.4 64.9 -10.3 +3.9 +6.4 46.4 

10-5 36.8 1.6 61.6 32.3 2.8 64.9 -4.5 +1.2 +3.3 42.9 

10-6 35.8 2.4 61.8 41.7 3.8 54.5 +5.9 +1.4 -7.3 36.8 

10-7 36.0 4.3 59.7 22.0 6.3 71.7 -14.0 +2.0 +12 31.7 

10-8 38.2 2.9 58.9 23.8 4.0 72.2 -14.4 +1.1 +13.3 27.5 

10-9 34.1 4.2 61.7 23.5 5.2 71.3 -10.6 +1.0 +9.6 19.2 

10-10 36.5 4.1 59.4 45.4 4.9 49.7 +8.9 +0.8 -9.7 16.3 

0 36.5 2.2 61.3 36.5 2.2 61.3 0 0 0 0 

Lignoceric Acid 

10-2 37.3 2.3 60.4 25.0 6.2 68.8 -12.3 +3.9 +8.4 62.9 

10-3 36.3 2.0 61.7 25.4 4.6 70.0 -10.9 +2.6 +8.3 56.5 

10-4 34.1 4.0 61.9 21.9 7.8 70.3 -12.2 +3.8 +8.4 48.7 

10-5 35.6 3.4 61.0 24.8 6.2 69.0 -10.8 +2.8 +8.0 45.2 

10-6 34.7 3.5 61.8 32.3 5.8 61.9 -2.4 +2.3 +0.1 39.7 

10-7 33.9 4.1 62.0 28.9 6.1 65.0 -5.0 +2.0 +3.0 32.8 

10-8 33.7 2.7 63.6 26.0 3.9 70.1 -7.7 +1.2 +6.5 30.8 

10-9 39.6 1.9 58.5 27.7 2.5 69.8 -11.9 +0.6 +11.3 24.0 

10-10 36.5 4.2 59.3 25.0 5.1 69.9 -11.5 +0.9 +10.6 17.6 
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0 34.0 3.6 62.4 34.0 3.6 62.4 0 0 0 0 

 160 

 161 

Table 3. Average Elemental surface analysis of quartz samples before and after ageing.   162 

Organic Acids Before aging After aging 

Si 

(wt%) 

C 

(wt%) 

O 

(wt%) 

Si 

(wt%) 

C 

(wt%) 

O 

(wt%) 

Hexanoic acid 32.2a ± 3.2b 2.9a ± 1.4b 64.8a ± 2.9b 34.9a ± 9.5b 4.4a ± 3.0b 60.7a ± 7.8b 

Lauric acid 33.9a ± 3.4b 2.9a ± 1.5b 63.2a ± 4.4b 32.4a ± 4.3b 4.5a ± 2.7b 63.2a ± 4.8b 

Stearic acid 36.1a ± 2.1b 3.1a ± 1.6b 60.8a ± 2.4b 31.1a ± 11.7b 4.8a ± 3.1b 64.1a ±11.3b 

Lignoceric acid 35.6a ± 3.0b 3.2a ± 1.2b 61.3a ± 2.6b 27.1a ± 6.1b 5.2a ± 2.7b 67.7a ± 4.2b 

 163 
a average surface concentration is based on the arithmetic average of 45 data points measured on five 164 
different sites for each of the nine samples at all concentrations tested. 165 
b ‘±’ values are the standard deviations of these observations.   166 

 167 

Clearly, aging had a significant impact on the atomic surface concentrations irrespective of the 168 

type and concentration of organic acid (Table 3). A significant overall average increase in 169 

surface carbon concentration (+1.6 wt% C for Hexanoic Acid, +1.7 wt% C for Lauric Acid, 170 

+1.9 wt% C for Stearic Acid and +2.2 wt% C for Lignoceric Acid) was measured. These 171 

changes in atomic coverage were caused by the chemisorption of the carboxylic acid on the 172 

quartz surface, consistent with Zullig and Morse (1988); see also 2.2.2 and scheme 1 above.  173 

Moreover, the brine contact angles on the pure quartz samples were 0° (advancing and 174 

receding) at ambient conditions, thus pure quartz was completely water-wet at ambient 175 

conditions. However, higher contact angles (advancing 56° and receding 54° ± 3°) were 176 

measured at reservoirs conditions on these pure quartz samples (323 K (50 °C), 25 MPa), 177 

consistent with literature data (Chiquet et al., 2007; Farokhpoor et al., 2013; Al-Yaseri et al. 178 
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2016a,b; Arif et al., 2016d; ). However, aging of the quartz surfaces caused a significant change 179 

in contact angles and thus CO2-wettability, this is discussed in detail below. 180 

 181 

2.4. Contact angle measurements 182 

Contact angle measurements are a standard technique for assessing the wettability behaviour 183 

of a given rock/fluid/fluid system. Here we used the tilted plate technique, which is regarded 184 

as the most effective contact angle measurement method as it can measure advancing and 185 

receding contact angles simultaneously (Lander et al., 1993).  186 

The schematic of the experimental setup is shown in Figure 1. It consists of a high pressure-187 

high temperature cell, which houses the sample inside on a tilted plate. The cell is connected 188 

to two pumps (Teledyne D-500, pressure accuracy of 0.1%) used for either discharging brine 189 

or CO2. Furthermore, a CO2 gas cylinder and the brine pump are both connected to a mixing 190 

reactor with which CO2 and brine can be thermodynamically equilibrated (El-Maghraby et al. 191 

2012).  192 

Initially, the cell was charged with CO2 at the desired measurement pressure and temperature 193 

(0.1 MPa, 25 MPa and 323 K (50 °C)). Temperature of the pumps was controlled through 194 

heating bath and the cell temperature was controlled through heating tape around it. The brine 195 

pump was initially filled with CO2-equilibrated brine (equilibrated at experimental conditions) 196 

and a droplet of equilibrated brine (average drop volume was 6 µL (± 1 µL) was dispensed 197 

onto the quartz surface through a needle. The advancing (θa) and receding (θr) brine contact 198 

angles were then measured at the leading and trailing edge of the droplet just before the drop 199 

started to move (Lander et al., 1993). This process was recorded by a high performance video 200 

camera (Basler scA 640–70 fm, pixel size = 7.4 μm; frame rate = 71 fps; Fujinon CCTV lens: 201 

HF35HA-1B; 1:1.6/35 mm), which was connected to a computer system to display and analyse 202 
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d 

the results. The standard deviation of the measurements was ± 3° based on replicated 203 

measurements.  204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

Figure 1. Experimental setting used in this study for measuring advancing and receding contact 217 

angles (modified after Arif et al., 2017a). (a) CO2 cylinder (b) high precision syringe pump-218 

CO2, (c) high precision syringe pump-water, (d) High pressure Parr reactor for fluid 219 

equilibration e) high pressure cell with substrate housed on a tilted plate inside, (f) heating unit, 220 

(g) liquid feed/drain system, (h) high resolution video camera, (i) image visualization and 221 

interpretation software, (j) pressure relief valve. 222 

 223 

3. Results and Discussion 224 

Our results show that the quartz surface loses its water-wetness with increasing organic acid 225 

concentration. However, at organic acid concentrations ≤ 10-6 M, contact angles were only 226 

minimally affected, Figure 6, and thus structural trapping is not significantly affected (note: 227 

d 

 

a 
b c 

e 

h 

i 

g 

j

 

f
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even at low concentrations ≤ 10-6 M optimal residual trapping capacities are significantly 228 

affected). However, for concentrations > 10-6 M, quartz wetting behaviour shifts from strongly 229 

water-wet to an intermediate-wet state (Iglauer et al., 2015b). A recent study conducted on 230 

carbonate minerals (Ali et al., 2019) showed that even at low organic concentrations (≤ 10-6 M 231 

organic acid), optimal residual trapping capacities could be affected, which is due to the surface 232 

coverage of the mineral with organic acid and its tendency to alter the formation more CO2-233 

wet. Such wettability alteration changes the primary drainage capillary pressure curve (Morrow 234 

1970, Anderson 1986, Masalmeh 2003), and thus the initial CO2 saturation directly influencing 235 

the residual CO2 saturation (e.g. Pentland et al. 2011; Wang et al., 2015, Heshmati et al., 2014, 236 

Akbarabadi et al., 2015). 237 

 238 

3.1. Effect of acid concentration on quartz wettability 239 

Advancing and receding brine contact angles increased significantly with an increase in organic 240 

acid concentration, as shown in Figures 2-5. 241 

 242 
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 243 

Figure 2. Quartz/CO2/brine contact angles (measured through the water) as a function of 244 

hexanoic acid (C6) concentration; Chexanoic is the hexanoic acid concentration (molarity). Solid 245 

lines: advancing; dotted lines: receding. Red: ambient pressure; green: 25 MPa and 323 K (50 246 

°C). 247 

 248 

The contact angle was significantly higher at high pressure, consistent with literature data (e.g. 249 

Dickson et al. 2006; Espinoza and Santamarina 2010; Broseta et al. 2012; Shojai Kaveh et al., 250 

2012, 2016; Chen et al, 2015; Iglauer et al., 2015a,b; Al-Yaseri et al. 2016a,b; Iglauer 2017). 251 

For example, at 25 MPa and 323 K (50 °C), for the quartz surface aged in 10-10 M hexanoic 252 

acid, θa was 58° and θr was 55° implying that the quartz surface is weakly water-wet under such 253 

conditions. With an increase in hexanoic acid concentration up to 10-6 M, there was an 254 

insignificant change in . However, further organic acid concentration increase resulted in 255 

significant contact angle increase. For instance, when the hexanoic acid concentration 256 

increased to 10-2 M, at the same temperature and pressure (25 MPa, and 323 K (50 °C)), θa and 257 

θr increased to 87° and 82°, implying a wettability transformation from weakly water-wet to 258 
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intermediate-wet. Such a reduction in water wettability of the surface potentially leads to a 259 

reduction in residual trapping capacities where CO2 plume is migrating in storage formation 260 

(Chaudhary et al., 2013; Iglauer et al., 2017; Al-Menhali et al., 2016a; Rahman et al., 2016). 261 

Note for instance that lower residual CO2 saturations have been measured in more hydrophobic 262 

rock by x-ray micro-tomography (Al-Menhali et al., 2016a, Chaudhary et al., 2013, Rahman et 263 

al., 2016). 264 

Lauric acid followed somewhat similar trends. For the quartz surface aged in 10-10 M lauric 265 

acid, quartz/CO2/water contact angles were significantly lower than those measured on surfaces 266 

aged in 10-2 M lauric acid. Thus higher organic concentrations render the surface more non-267 

wetting to water. For example, at 25 MPa and 323 K (50 °C), for the quartz surface aged in 10-268 

10 M lauric acid, θa measured as 61° and θr as 56°, which increased to θa = 89° and θr = 84° 269 

when lauric acid concentration increased to 10-2 M (Figure 3). 270 

 271 
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Figure 3. Quartz/CO2/brine contact angles as a function of lauric acid (C12) concentration; Clauric 273 

is the lauric acid concentration (molarity). Solid lines: advancing; dotted lines: receding. Red: 274 

ambient pressure; green: 25 MPa and 323 K (50 °C). 275 

 276 

 277 

Figure 4. Quartz/CO2/brine contact angles as a function of stearic acid (C18) concentration; 278 

Cstearic is the stearic acid concentration (molarity). Solid lines: advancing; dotted lines: receding. 279 

Red: ambient pressure; green: 25 MPa and 323 K (50 °C). 280 
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 282 

Figure 5. Quartz/CO2/brine contact angles as a function of lignoceric acid (C24) concentration; 283 

Clignoceric is the lignoceric acid concentration (molarity). Solid lines: advancing; dotted lines: 284 

receding. Red: ambient pressure; green: 25 MPa and 323 K (50 °C). 285 

 286 

The results showed the same trend for quartz surfaces aged in stearic acid and lignoceric acid 287 

(Figures 4 and 5). In summary, the higher the organic acid concentration was, the higher were 288 

the values of both the advancing and receding water contact angles irrespective of the type of 289 

organic acid used for aging. Our results are consistent with literature data on wettability of 290 

calcite/oil/brine systems in the presence of organic acids (Hansen et al., 2000; Standness and 291 

Austad, 2003; Gomari et al., 2006). Mechanistically, carboxylic acid adsorbs onto the quartz 292 

surface leading to a wettability modification towards less water-wet surface conditions, see 293 

above. 294 

When compared with CO2-wettability of pure quartz surfaces, we find that higher contact 295 

angles are found, even at the lowest organic acid concentration (10-10 M, which is very low). 296 

For instance, for pure quartz/CO2/brine system, at 20 MPa and 323 K (50 °C), θa was reported 297 

to be approximately 40° (Sarmadivaleh et al., 2015), whereas the lowest θa in the presence of 298 
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lowest chain organic acid (Hexanoic acid, C6) was 57° (Figure 6). It is thus clear that even 299 

minute amounts of organic acid significantly increase the CO2-wettability of mineral surfaces. 300 

As such minute concentrations always exist in the subsurface, even in aquifers (Bennett et al., 301 

1993; Jones et al., 2008; Stalker et al. 2013), lower residual trapping capacities than previously 302 

thought are expected (Ali et al., 2019).  303 

 304 

3.2  Influence of organic acid alkyl chain length on quartz wettability  305 

It is clear that all organic acids influence the quartz wettability in a similar fashion i.e. both 306 

water advancing and receding contact angles increase with an increase in organic acid 307 

concentration and quartz rapidly loses its water-wetness, Figure 6. However, at a fixed organic 308 

acid concentration, the absolute values of contact angles were different for different acids 309 

(which differ in their alkyl chain length and their coverage on the quartz surface, as showed in 310 

Figure 6); surfaces aged in hexanoic acid (C6) exhibited the lowest contact angles values, while 311 

surfaces aged in lignoceric acid (C24) exhibited the highest contact angles values. Lauric acid 312 

and stearic acid fell in between. For instance, at 25 MPa and 323 K (50 °C), and a fixed organic 313 

concentration 10-2 M of hexanoic, lauric , stearic and lignoceric acid, θr = 81°, θr = 84°, θr = 314 

85° and θr = 105°, respectively. Such a wettability transformation from intermediate-wet to 315 

CO2-wet is attributed to the number of carbon atoms present in the acid, Table 1. Clearly, longer 316 

alkyl chains in the organic acid renders the surface more hydrophobic. 317 

These effects have dramatic impact on the optimal residual trapping limit, which we consider 318 

here as the point where primary drainage is unaffected by wettability, i.e. at θa = 50° (Morrow 319 

1970, Morrow 1976). For example, at 25 MPa and 323 K (50 °C) and a fixed trace organic 320 

concentration of 10-10 M, θa > 50° for all acids (note that this is a very minute concentration, 321 

and much higher organic concentrations were measured in deep saline aquifers (e.g. Thurman 322 
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1985; Jardine et al., 1989; Madsen and Ida, 1998; Kharaka et al., 2009; Stalker et al. 2013; 323 

Yang et al., 2015)); Figure 6. 324 

Overall it is clear that a detailed knowledge of organic acids and its relative concentrations in 325 

storage formations is very important for assessing the feasibility of long-term geological 326 

storage projects. 327 

 328 

 329 

 330 

 331 

Figure 6. Quartz/CO2/brine contact angles as a function of organic acid concentration and alkyl 332 

chain length at 25 MPa and 323 K (50 °C); Corganic is the organic acid concentration (molarity). 333 

Dotted blue horizontal lines in the graph define the capillary trapping threshold (θ = 50°), and 334 

dotted green horizontal lines in graph define the structural trapping (θ > 90°) threshold. 335 
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4. Conclusions 339 

Deep saline aquifers contain organic acids, which have a direct impact on the interfacial 340 

phenomena at the fluid/rock interface due to chemisorption. These effects are, however, only 341 

poorly understood; thus we measured the wettability of quartz/CO2/brine systems in the 342 

presence of various organic acids. Four acids (hexanoic acid, lauric acid, stearic acid, lignoceric 343 

acid) were considered for a wide range of concentrations (10-9 M to 10-2 M), and advancing 344 

and receding contact angles were measured at typical storage conditions (25 MPa and 323 K 345 

(50 °C), as well as at ambient pressure) in order to mimic a realistic subsurface behaviour. We 346 

found that both advancing and receding contact angles increased with an increase in organic 347 

acid concentration throughout the tested experimental matrix. In addition, at a fixed organic 348 

acid concentration, the highest contact angles values were measured for lignoceric acid (C24), 349 

while relatively least values were recorded for hexanoic acid (C6). This behaviour is attributed 350 

to the number of carbon atoms in the organic acids alkyl chain, and hence a higher number of 351 

C atoms, resulting in more CO2-wet/hydrophobic surfaces, which causes a reduction in residual 352 

trapping capacities.  353 

We thus conclude that CO2 geological storage capacities in certain geological scenarios 354 

(aquifers as an example) may be lower than previously thought. Reservoir-scale models thus 355 

need to take these effects into account so that accurate storage predictions are obtained thus de-356 

risking carbon geological storage (CGS) projects. 357 

 358 

 359 

 360 

 361 

 362 

 363 
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