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A B S T R A C T

Accurate crop and weed discrimination plays a critical role in addressing the challenges of

weed management in agriculture. The use of herbicides is currently the most common

approach to weed control. However, herbicide resistant plants have long been recognised

as a major concern due to the excessive use of herbicides. Effective weed detection tech-

niques can reduce the cost of weed management and improve crop quality and yield. A

computationally efficient and robust plant classification algorithm is developed and

applied to the classification of three crops: Brassica napus (canola), Zea mays (maize/corn),

and radish. The developed algorithm is based on the combination of Local Binary Pattern

(LBP) operators, for the extraction of crop leaf textural features and Support vector machine

(SVM) method, for multiclass plant classification. This paper presents the first investigation

of the accuracy of the combined LBP algorithms, trained using a large dataset of canola,

radish and barley leaf images captured by a testing facility under simulated field condi-

tions. The dataset has four subclasses, background, canola, corn, and radish, with 24,000

images used for training and 6000 images, for validation. The dataset is referred herein

as ‘‘bccr-segset” and published online. In each subclass, plant images are collected at four

crop growth stages. Experimentally, the algorithm demonstrates plant classification accu-

racy as high as 91.85%, for the four classes.

� 2018 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of

KeAi. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

1. Introduction

Weed infestation has always been a critical issue that limits

the productivity of farms and the yield of crops. The ability

to accurately discriminate weeds from crops in real-time will

advance precision crop and weed management, whereby

weeds in a field are prevented from competing for light water

and nutrients required by the crops. Blanket herbicide spray-

ing is currently themost common practice used for weed con-

trol. The worthwhile objective of precision weed control is to

bring down the cost of weed management. To enhance the

longevity of the current range of agricultural chemicals, it is

important to deter the increase in herbicide resistant weeds.

Cereal crops such as wheat, rice, maize (corn), oats, barley,

rye and sorghum, represent a large portion of the crops grown

worldwide [1]. Hence, detecting dominant weeds in cereal
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crop fields and controlling them in real-timewill enable effec-

tive site-specific weed management, resulting in substantial

economic benefits [2]. A variety of weed detection approaches

based on feature extraction have been proposed, these

include shape-based analysis [3,4], colour-based analysis [5],

texture-based image analysis [6,7] and spectral analysis

[8–10]. However, the accuracy of the above mentioned

approaches has been limited due to the complexity of the

field environment, the wide variety of species and the

morphological variation of plants at various growth stages.

Numerous approaches to the discrimination of crops and

weeds have been reported. Over the last two decades, spectral

techniques based on the calculation of the Normalised Differ-

ence Vegetation Indices (NDVIs) [11,12] have been proposed

for distinguishing between plant species. However, these

spectral techniques have some limitations, especially when

the spectral characteristics of weeds and crops are similar

over the operational wavelengths. In addition, in typical farm-

ing field conditions, the wind, shadowing, and background

illumination may change the spectral features of plants, thus

reducing the discrimination accuracy of NDVI-based weed

sensors [13,14]. The limitations of such spectral-reflectance

sensors have triggered research on the development of spatial

sensors, based on the use of image processing techniques, for

the classification of plant species and detection of weeds in

real time.

A variety of feature extraction operators have been pro-

posed for detecting robust features in images, based on the

Scale Invariant Feature Transform (SIFT) [15], Speeded Up

Robust Features (SURF) [16], the Histogram of Oriented Gradi-

ents (HOG) [17], LBP, Gabor filters [18] to name a few. In this

paper, we adopt the LBP technique for plant feature extraction

for several reasons. Firstly, LBP method is very flexible and

robust to monotonic grey-level transformation, illumination,

scaling, viewpoint, and rotation variance [6]. Secondly, the

LBP method enables image analysis in challenging real-time

settings, due to computational simplicity [19]. In fact, the

LPB is computationally less complex than its SIFT or SURF

counterparts, exhibiting high discrimination capability [20].

Finally, the LBP has exhibited superior performance in several

applications, such as face recognition [21–23], face expression

analysis [24,25], texture classification [6,26,27], and motion

analysis [28,29].

The optimization of LBP methods for discriminating crops

and weeds has proved difficult in special scenarios [30,31]. In

particular, Ahmed et al. used 400 colour images (taken at an

angle of 45� with respect to the ground) in natural lighting

conditions, 200 samples were of broadleaves and 200 of grass

weeds [31]. From observation the number of images and the

types of plants collected in the dataset is limited. Reduced

accuracy was attained in the field due to the relatively small

number of plant images and viewpoints, variable lighting

conditions and change in plant aspect ratios for each growth

stage. Furthermore, several extended LBP methods have used

common and published texture databases including Outex

[32], Brodatz [33], UIUC [34], UMD [35] and CUReT [36] to vali-

date, evaluate or compare classification results [37]. However,

databases for the detection and classification of plant tex-

tures have not been commonly published.

Typically, after extracting good features from plant images,

the next process is to classify plant species. Previous research

has mainly focused on the use of artificial neural networks

(ANN) [38,39], Bayesian classifiers [40–42], k-nearest neigh-

bour (KNN) classifiers [43], discriminant analysis [44,45] and

SVM classifiers [46–49] for weed identification and discrimina-

tion. According to [50–52], SVM has been regarded as a robust

technique for difficult classification tasks. This paper focuses

on applying the LBP method in conjunction with SVM for

plant feature extraction and classification of various plants

images.

The main contributions of the work in this paper are sum-

marized as follows:

� A large plant dataset was captured by using a Testbed with

around 30,000 plant images. This large dataset contains

four classes, a variety of plant images at four defined

growth stages, with rotation, scale and viewpoint variance

in order to evaluate the robustness and performance of the

method.

� Due to the low dimensionality of the plant representation

and the low tolerance to illumination changes, LBP was

especially investigated with different parameters for plant

detection, and combined with SVM-based classification to

investigate its capability to operate in real-time.

The paper consists of four sections and is structured as

follows. Section 1 explains why weed detection plays a cru-

cial role in agricultural precision. It also introduces the

selected method and presents a brief review of LBP analysis,

together with the advantages and disadvantages of the pro-

posed weed detection and classification approach. Section 2

describes the principles of the LBP technique and the ratio-

nale of combining LBP operators with SVM for the extraction

of key features from plant images and the classification of

different types of plants in a large dataset. Performance

measures for classification, data collection, and a detailed

flowchart for training and validating the dataset are also

covered in Section 2. In Section 3, an initial comparison of

greyscale unsegmented and segmented images used in plant

discrimination is provided. Results are presented in Sec-

tion 3, indicating that performance is best achieved by using

segmented images (i.e. working with the green plant mate-

rial extracted from images and converting it to greyscale).

Based on these initial results, the data set ‘‘bccr-segset” is

collected in the form of greyscale segmented images. Then,

the classification accuracy and F1 scores of groups with dif-

ferent plant classes are discussed in detail, illustrating the

effectiveness of the methodology in regard to plant detection

and classification. Finally, conclusions and future work are

discussed in Section 4.

2. Materials and methods

This section describes the methodology and performance

metrics that lead to the generation of the results shown in

Section 3. The theoretical concept and principle of the

selected methods in segmentation, feature extraction and
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classification processes are detailed in Sections 2.1–2.3. Clas-

sification accuracy and F1 scores measures are presented in

Section 2.4. Data collection is explained in detail in

Section 2.5.

2.1. Segmentation

Image segmentation refers to the process of partitioning an

image into multiple segments or regions. In terms of weed

detection, this process is based on the segmentation of green

plant material (crops and weeds) and non-green background

areas (i.e. soil and residues). Removing the background areas

of the images enables better plant feature extraction and

classification.

In this paper, the ExG-ExR (Excess Green minus Excess Red

Indices) method is used to segment green plant regions. This

colour index-based method has exhibited adequate robust-

ness and high accuracy compared to other methods, such

as ExG (Excess Green Index)+Otsu and NDI (Normalised Dif-

ference vegetation Index)+Otsu under greenhouse field light-

ing conditions and natural field lighting conditions [53].

Typically, the ExG component extracts green information,

while the ExR component eliminates the background noise

[54]. An example of image segmentation is illustrated in

Fig. 1, which shows canola, corn and radish plants that were

randomly arranged along the testing trays of a test bed. The

vegetation indices of the RGB plant image were first extracted

by applying the ExG-ExR approach, then, the image was con-

verted to a greyscale image before applying feature extraction

and classification.

2.2. Local binary pattern operators

To better understand how LBP is applied for weed detection, a

brief background on LBP is presented. The LBP method has

been regarded as a powerful tool for extracting robust fea-

tures from texture-based image analysis and classifying

objects based on local image texture properties. The first

LBP algorithm was reported in 1996 [55], since then, various

LBP algorithms have been developed to primarily detect tex-

tures or objects in images. A very small local neighbourhood

of a pixel is used to calculate a feature vector. Basically, the

LBP operator labels the pixels of an image by thresholding

the local structure around each pixel and considering the

result as a binary number. Fig. 2 illustrates an example of

computing LBP in a 3 � 3 neighbourhood by comparing the

intensities of the eight neighbours around each pixel with

the intensity of the centre pixel. When the intensity of the

centre pixel is greater than that of a neighbour, it is consid-

ered to be ‘0’, otherwise ‘1’. A binary chain is obtained by

combining every single binary code in a clockwise direction.

For Fig. 2, the binary code is 11110001, or 241 in decimal

[55]. The binary number is used to build a histogram, which

can be regarded as representing the texture of an image.

The main limitation of the LBP operator presented above is

that it only covers a small area of the neighbourhood. For a

small 3 � 3 neighbourhood the LBP fails to capture dominant

textural features in an image. As a result, the LBP operator

was improved upon by increasing the number of pixels and

the radius in the circular neighbourhood [6]. Note that it is

typically more flexible and effective to improve LBP operators

Fig. 1 – Images of canola, corn and radish: (a) full RGB image, (b) imagewith extracted greenmaterial (plants), and (c) greyscale

image of (b).
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using textures of different scales. Generally, the value of the

LBP code of a pixel ðxc;ycÞ can be calculated as follows [6]:

LBPP;R ¼
XP�1

p¼0

sðgp � gcÞ2p where s xð Þ ¼ 1; x � 0

0; x < 0

�
ð1Þ

where

gc: is the grey value of the centre pixel.

gp: represent the grey values of the circularly symmetric

neighbourhood from p ¼ 0 to P� 1 and gp ¼ xP;R;p.

P: is the number of surrounding pixels in the circular

neighbourhood with the radius R.

s xð Þ: is the thresholding step function which helps the LBP

algorithm to gain illumination invariance against any

monotonic transformation.

According to Eq. (1), the LBPP;R operator produces 2P differ-

ent output values. If the image is rotated, the grey values, gp,

of the circularly symmetric neighbourhood will move corre-

spondingly along the perimeter of the circle. This generates

a different LBP value, except for patterns with only the value

‘0’ or ‘1’. In order to eliminate rotation effects, a rotation-

invariant LBP is defined as follows [6]:

LBPri
P;R ¼ min ROR LBPP;R; ið Þ j i ¼ 0; 1; � � � ;P� 1

� � ð2Þ

where RORðx; iÞ performs an i-step circular bit-wise right shift

on the P-bit number x.

To choose good and quality features, feature space dimen-

sionality needs to be reduced by keeping only the

rotationally-unique patterns. Accordingly, Ojala et al. named

these patterns uniform patterns. The patterns denoted as

LBPu2
P;R stand for the number of spatial transitions in the pat-

terns meaning that the uniform patterns need to have two

bitwise transitions from 0 to 1 or vice versa. For instance, uni-

form patterns with eight pixels in the circular neighbourhood,

00000000 (0 transitions), 11111111 (0 transitions), or 01110000

(2 transitions) are uniform because the parameter U that

measures the uniformity has at most 2 transitions. Examples

of non-uniform patterns are: 00000101 (4 transitions) and

01000101 (6 transitions). Consequently the rotation invariant

uniform descriptor LBPriu2
P;R can be defined as follows [6]:

LBPriu2
P;R ¼

PP�1
p¼0s xP;R;p � xc

� �
; if UðLBPP;RÞ � 2

Pþ 1; if UðLBPP;RÞ > 2

(
ð3Þ

The uniform descriptor has PðP� 1Þ þ 3 patterns including

PðP� 1Þ þ 2 distinct uniform patterns and all non-uniform

patterns assigned to a groupðPþ 1Þ. According to Ojala et al.,

the rotation invariant uniform descriptor has ðPþ 2Þ distinct
output patterns [6]. This reduces the feature space and helps

increase the speed of LBP. For example, if the number of pixels

in the circular neighbourhood is 8, the number of uniform

patterns is 58 and the number of rotation invariant uniform

patterns is 10.

2.3. Support vector machine

The final stage in the image processing is classification. There

are different machine learning methods such as decision

trees, SVM, neural networks, k-nearest neighbour method,

and the Bayesian classifier. For a classifier to achieve good

performance, sufficient data needs to be acquired and the

training performance analysed. The SVM can deal with pat-

tern classification and eliminate over-fitting, and it is robust

to noise [47,56]. SVM was first introduced in 1992 [57]. SVM

performs classification more accurately than other algo-

rithms in many applications, especially those applications

involving very high dimensional data [42,46,47,58,59]. This

high performancemakes the SVM classifier a preferred option

for many applications, such as face recognition, weed identi-

fication and disease detection in plant leaves. Therefore, the

optimal combination of the LBP descriptors and SVM classifi-

cation can result in high plant discrimination accuracy. In

particular, SVM generates an optimal hyper-plane that maxi-

mizes the margin between the classes.

To be a good discriminative classifier, SVM needs to use an

appropriate kernel function. Due to the separation of the

learning algorithm and kernel functions, kernels can be stud-

ied independently of the learning algorithm. One can design

and experiment with different kernel functions without

Fig. 2 – An example of computing LBP codes. A binary code is obtained by comparing the intensity of the centre pixel with

those of the eight neighbours in a 3�3 neighbourhood.
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touching the underlying learning algorithm. Commonly,

polynomial or Gaussian RBF (Radial Basis Function) kernels

are used in most applications, depending on the types of

data. In this paper, 2nd order polynomials and 5-fold cross

validation are used. Specifically, the training set is firstly

divided into five subsets of equal size, and four parts of

the data are iteratively used for training, with the remaining

part of data used for testing. This cross-validation procedure

helps to prevent data overfitting and subsequent loss of

generalization.

2.4. Performance metrics for plant classification

The common way of assessing a classification algorithm is to

calculate its classification accuracy, which is defined as

Classification Accuracy %ð Þ

¼ Number of correct classifications
Total number of samples

� 100% ð4Þ

However, in order to assess the performance of the SVM

classifier for each class, confusion matrices are evaluated by

computing main metrics, namely: precision, recall and F1

score, from the measured true positives, false positives, true

negatives and false negatives. This method has been applied

in many studied to evaluate the performance of classification

models [60–62]. All parameters differentiate the correct classi-

fication of labels within different classes [63,64]. A basic con-

fusion matrix comprises 4 entries: True Positive (TP), False

Negative (FN), False Positive (FP) and True Negative (TN).

According to [64], we can calculate the average of precision,

recall and F1 score for multi-class classification by firstly com-

puting these parameters based on TP, TN, FN, and FP in each

class as follows:

Recall ðclassÞ ¼ TPðclassÞ
TPðclassÞ þ FNðclassÞ ð5Þ

Precision ðclassÞ ¼ TPðclassÞ
TPðclassÞ þ FPðclassÞ ð6Þ

F1score ðclassÞ ¼ 2� PrecisionðclassÞ � RecallðclassÞ
PrecisionðclassÞ þ RecallðclassÞ

¼ 2TPðclassÞ
2TPðclassÞ þ FNðclassÞ þ FPðclassÞ ð7Þ

Precision in each class is defined as the number of cor-

rectly classified positive plant images divided by the total

number of plant images in the data. Recall in each class is

the ratio of the number of correctly classified positive plant

images to the number of positive plant images in the data.

F1 score in each class is a composite measure of precision

and recall in each class.

2.5. Data collection

In this study all the data was captured on a custom-built test-

ing facility at ESRI (Electron Science Research Institute), Edith

Cowan University, Australia, which is shown in Figs. 3 and 4.

The hardware comprises a Xilinx Zynq ZC702 development

platform [65] that captures HD images (1920 � 1080 pixels)

at 60 frames per second using an On-Semi VITA 2000 camera

sensor. The Zynq development board and camera are

mounted on a moveable trolley with the camera optical axis

perpendicular to the ground andmove on a linear drive across

the frame of the Testbed. The captured images have a spatial

resolution of �1mm/pixel and a size of 228 � 228 pixels,

which is down-sampled by a factor of 2 from a size of 456 �
456 pixels. In addition, the vertical height of the camera above

the surface of the plant pots is 980 mm and 9 mm is the cam-

era focal length.

As can be seen in Fig. 3, individual trays are capable of

holding 11 potted plants, with each tray filled with soil to pro-

vide a uniform background that can be used to simulate a

West Australian wheat belt farming environment. For experi-

mental purposes, only the outer pot plant holders of the mid-

dle tray were used.

The maximum allowable speed of the trolley is 5 m/s, with

the system capable of capturing images in real-time. The

Testbed is also equipped with two fluorescent tube lamps as

Plant pots

Lighting

Trolley Unit: Sliding along the frame of 
the Testbed to capture plant images 

Fig. 3 – High-speed testbed used for controlled data capture.
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illustrated in Fig. 3. The artificial lighting is there to provide

uniform illumination for the purposes of data capture. For

the purposes of the experimental work presented herein, all

data was captured at a speed of 1 m/s (3.6 km/h) to capture

high quality images.

Data capture runs comprised collecting multiple images of

the individual test plants placed in the centre Testbed tray,

Fig. 3, with image variation obtained through manual plant

rotation. The segmented greyscale images collectively formed

the large data set used in the experimental work. This data

set is referred to herein as ‘‘bccr-segset” and published online.

2.5.1. Data labelling
Data labelling was conducted by providing the ground truth in

regard to which types of plants were identified in images. In

the context of continuous runs on the Testbed, images com-

prised just back ground, partial plant with background or full

plant with background, making the detection and classifica-

tion processes challenging. Whilst the partial plant images

could be removed from the dataset altogether, this would

introduce a dataset bias. On the other hand, the human label-

ling error was quite high when attempts were made to decide

among the labels that contained little plant information (i.e.

‘‘is this background or plant?”). Therefore, a semi-automatic

way was adopted to solve this problem by thresholding the

amount of green plant material according to their growth

stages. If an image did not contain enough green plant mate-

rial, then it was labelled as background.

First of all, as a pre-processing stage, images were filtered

by using open and close morphological operations in order to

remove the background noise. Then, binary images were seg-

mented and thresholded according to the amount of corre-

sponding plant area found. Initial experiments showed that

it was not sufficient to do a green threshold on the entire

image, therefore images were divided into 7 equal areas

(Top left, Top right, Bottom left and Bottom Right, Centre left,

Centre and Centre right) as shown in Fig. 5.

The thresholding test was applied for each of the square

areas shown in Fig. 5. The image was labelled as a plant class

if the thresholding test passed for any of the areas. Lastly, an

edge area threshold was also defined in order to allow for par-

tial plants to have enough green material for identification.

All the thresholds were experimentally derived and are

shown in Table 1.

As can be seen in Fig. 6, partial plants in some growth

stages with insufficient information were considered as a

background class in the dataset. This allowed a more reliable

labelling process without removing images from the dataset.

In turn, this assured that the input sample distribution did

not change.

2.6. Methodology

All of the plant images went through the following processing

steps: pre-processing, segmentation, feature extraction and

classification. The extracted LBP features were stored in a

database. Pre-processing was the same for both training and

Fig. 4 – Zynq board with integrated VITA 2000 camera mounted on a moveable trolley.

Fig. 5 – Thresholding areas used in collected images to filter

partial plants with insufficient information for

classification.
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validation phases. The training dataset was trained by using

the SVM and then the prediction model was exported to com-

pare with textural features in the validation set for recognis-

ing and classifying different types of plants.

Steps in the process of the training, testing and validation

of the dataset through the combination of LBP operators

and SVM for three-plant classification are summarised as

follows:

1. The dataset with greyscale segmented images is provided

to start the process.

2. To read all plant images, the location of the dataset is

input.

3. The dataset is divided into the training and validation

phases.

4. The LBP hyper-parameters are set, including the number

of neighbours (P) and the radius (R), and a rotation invari-

ant uniform (riu2) descriptor. In the preliminary results,

LBPriu2
8;1 , LBPriu2

16;2, LBPriu2
24;3 and combined LBP operators

LBPriu2
8;1 þLBPriu2

16;2 þ LBPriu2
24;3

� �
are applied to extract robust fea-

tures from plant images.

5. The LBP method is initialised by inputting hyper-

parameters then run to extract features from plant

images.

6. Canola, Corn, Radish and Background are labelled by using

the Testbed system in the data collection stage. For this

step, a table of features and labels is generated to input

into Matlab to train the dataset by using the LBP algorithm

and SVM classifier.

7. The table of robust features and labels is regarded as an

input dataset for training.

8. Apply the SVM approach with 5-fold cross validation to

classify different types of plants. After training the data-

set, a model is exported to make predictions for the plant

images in a validation dataset.

Table 1 – Default thresholds for canola, corn and radish plants.

Thresholds for plants (cm2) Stage 1 Stage 2 Stage 3 Stage 4

Threshold (Inner, Edge) – Canola (1.4, 3.3) (3.0, 6.7) (7.0, 10.0) (8.0, 12.2)
Threshold (Inner, Edge) – Corn (2.2, 5.7) (3.0, 6.7) (4.2, 9.2) (7.5, 13.9)
Threshold (Inner, Edge) – Radish (2.5, 4.0) (3.2, 6.7) (7.0, 10.0) (8.0, 13.8)

Corn-Stage 2 Corn-Stage 4 

Radish-Stage 2 Radish-Stage 4

3egatS-alonaC1egatS-alonaC

Fig. 6 – Examples of filtered and segmented images of 3 different partial plants (Canola, Corn and Radish) removed from the

dataset at three different growth stages.
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9. The classification accuracy and F1 score are calculated.

When other hyper-parameters are to be tested, this model

is restarted at step 4.

3. Results and discussion

The results are divided into two sections: (i) the accuracies of

classification models are evaluated based on comparing an

unsegmented validation dataset with a validation segmented

dataset, and (ii) the classification accuracy of the LBP opera-

tors and the SVM in the large dataset is reported. As noted

in the data collection section, plant images were captured at

the same height from the camera to the plant pots. Therefore,

the scales of the images of the plants taken during the four

growth stages corresponded to the actual sizes of the plants.

The computer used in these experiments had a 3.4 GHz pro-

cessor, 16 GB RAM and ran MATLAB 2016b.

3.1. Initial results of the comparison between
classification accuracies of an unsegmented dataset and a
segmented dataset

In this section, an initial performance comparison is made

between segmented and unsegmented greyscale images.

With regard the current experimental setup, the effort

required to capture and label the unsegmented greyscale

images is greater than that of capturing segmented images.

Experiments are conducted by selecting unsegmented and

segmented datasets with 4032 images in each dataset. The

detailed parameters of the two datasets are listed in Table 2.

All plant samples consisted of canola and corn species taken,

as previously mentioned, at three growth stages. The number

of canola samples was equal to the number of corn samples

in the training sets and the validation sets. Typical plant

images in the unsegmented and segmented dataset for three

different growth stages are shown in Fig. 7.

The results of the classification accuracy were assessed

against the percentages of correct classified plants. It can be

observed from Table 3 that the combination of LBP operators

significantly improves the classification accuracies in the val-

idation sets. According to Ojala et al., the performance of the

combined LBP operators outperformed that of single LBP

operators [6]. In this experiment, it was obviously true that

the classification accuracies achieved using the combination

of LBPriu2
8;1 , LBPriu2

16;2 and LBPriu2
24;3 was also higher than those

attained using single LBP operators. This demonstrates that

robust features extracted through the combined-LBP opera-

tors can increase the classification accuracy and F1 scores.

In comparison with using the greyscale unsegmented dataset,

the accuracy of classification models using the validation seg-

mented dataset is generally higher.

The experimental results shown in Table 3 show that con-

verting RGB plant images into greyscale without segmenta-

tion does not increase the classification accuracy. Whereas,

by segmenting RGB images using the ExG-ExR method and

then converting them to greyscale results in higher classifica-

tion accuracy. Furthermore, experimental results show that

by applying the above-mentioned pre-segmentation steps

an increase of 2–4% in accuracy is attained, for the detection

and discrimination of plant species.

Principal Component Analysis (PCA) is a useful tool for

reducing the dimensionality of data. Typically, PCA produces

the principal components of an image and extracts the rele-

vant features from the datamatrix of the image by calculating

the eigenvalues. Note, however, in some cases, many signifi-

cant features could be eliminated when PCA is applied,

thereby reducing plant discrimination accuracy [66,67].

Therefore, optimising the number of retained principal com-

ponents is important for increasing plant discrimination

accuracy. In our experiments, PCA was used in conjunction

with the combined-LBP operators and SVM, and the optimum

number of principal components for our algorithms was

Table 2 – Parameters of unsegmented and segmented
datasets.

Parameters Greyscale unsegmented and
segmented images

Total images 4032 images in each dataset
Train set 3360 images in each dataset
Validation set 672 images in each dataset
Number of classes 2 classes (canola and corn plants)
Image size 228 � 228 pixels

Fig. 7 – Greyscale unsegmented (a) and segmented (b) plant images at three different growth stages of canola and corn plants.
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found to be 16. This optimum number was deduced experi-

mentally and is offered herein for completion.

Note that classification accuracy is not a sufficient indica-

tor to claim that the model is acceptable for plant classifica-

tion [63]. In fact, three other indicators (Precision, Recall,

and F1 score) are typical to validate the suitability of the

model for plant classification. Table 4 shows the F1 scores of

the classification models for the validation unsegmented

and validation segmented datasets, for canola and corn

plants. As seen from Table 4, the F1 scores for canola and corn

plants are relatively similar. It is obvious from Table 4 that the

highest F1 scores (>99%) are attained with segmented data

and the combination of LBPriu2
8;1 and LBPriu2

24;3.

3.2. Classification accuracies and F1 scores of a multi-
class dataset

Having investigated the performance of the greyscale seg-

mented images (in Section 3.1), we discuss in this section

the performance of the method based on the combination

of the LBP operators and SVM for a larger dataset, using only

greyscale segmented images.

In these experiments canola, corn and radish plants were

collected at four different growth stages, Fig. 8, using the

custom-built testbed. Images were segmented and converted

to greyscale with the size of 228 � 228 pixels. The datasets

were divided into training and validation, as illustrated in

Fig. 9.

The training dataset was used to train the SVM classifier

with 5-fold cross validation to generate a prediction model

for the validation dataset. Kernel functions were introduced

to enhance efficient non-linear classification. Note that poly-

nomial kernels and radial basis functions are widely used

with SVM [68]. Different kernels were trialled in the experi-

ments with the quadratic kernel was found to be more effec-

tive for SVM and LBP combination, the quadratic kernel

generating the best and most consistent results. The ‘‘one

against one” SVM strategy was selected in this scenario due

to the large number of training images [69]. This obtained

the optimum compromise between training time and accu-

racy performance. MATLABwas used to visualize the distribu-

tion of the LBP textural features.

Fig. 10 shows the distribution of the training dataset for

canola, corn, radish and background, using LBP operators

LBPriu2
8;1 ; LBPriu2

16;2; LBPriu2
24;3

� �
and the SVM classifier. The scatter

plot shown in Fig. 10 illustrates the distribution of two

selected features out of a total of 54 features. From the plant

images, it is obvious that the texture of the corn leaves is

completely different to that of the leaves of canola and radish.

Corn is categorised as a narrow leaf plant, whilst canola and

radish are broad leaf plants. The distributions of canola and

radish plant features overlap, mainly because their measured

textural features are similar, making their discrimination

challenging. Intuitively, these plants have the same botanical

family (Brassicaceae or Cruciferae) and corn belongs to grass

family (Poaceae). However, this plot is limited by the distribu-

tion of 2 selected features.

In order to visualize the structure of the ‘‘bccr-segset” large

dataset in a two-dimensional map, we used t-SNE technique

[70] for the train dataset (24,000 plant images) and test dataset

(6000 plant images). According to [70], as well as the user’s

guide for t-SNE, we implemented this technique in Matlab,

Table 3 – Classification accuracies attained by using LBP operators with SVM for two different validation datasets.

LBP operators with 5-fold cross validation Number of bins Unsegmented dataset accuracy Segmented dataset accuracy

(8,1) 10 79.91% 75.45%
(16,2) 18 91.52% 95.98%
(24,3) 26 93.01% 97.02%
(8,1) + (16,2) 28 94.20% 98.07%
(8,1) + (24,3) 36 96.28% 99.40%
(16,2) + (24,3) 44 95.83% 98.51%
(8,1) + (16,2) + (24,3) 54 97.32% 99.26%
(8,1) + (16,2) + (24,3) + PCA 16 95.24% 98.07%

Table 4 – F1 scores of the classification models for the validation unsegmented and validation segmented datasets.

LBP operators with 5-fold cross validation F1 scores of unsegmented dataset F1 scores of segmented dataset

Canola Corn Canola Corn

(8,1) 79.88% 79.94% 74.67% 74.44%
(16,2) 91.45% 91.58% 95.96% 96.00%
(24,3) 92.97% 93.04% 97.07% 96.98%
(8,1) + (16,2) 94.24% 94.15% 98.07% 98.06%
(8,1) + (24,3) 96.26% 96.30% 99.41% 99.40%
(16,2) + (24,3) 95.77% 95.89% 98.52% 98.51%
(8,1) + (16,2) + (24,3) 97.28% 97.36% 99.26% 99.25%
(8,1) + (16,2) + (24,3) + PCA 95.18% 95.30% 98.01% 98.12%
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and used the main parameters, such as two-dimensional

visualization, dimensionality reduction of the data (the value

was 50), perplexity of the Gaussian distributions (the value

was 30). Fig. 11 shows (a) the train dataset (24000 plant

images) and (b) the test dataset (6000 plant images) with 4

classes (background, canola, corn and radish). As can be seen

from Fig. 11, the distribution of background class is totally

separated from other classes. Meanwhile, the distributions

of corn, canola and radish images were classified into many

small groups and had some overlapping patterns, leading to

higher misclassification rates among canola, corn and radish

images.

For the validation set, the generated prediction model was

applied to evaluate the robustness of this model by evaluating

the classification accuracies for scenarios of two classes,

three classes and four classes. To evaluate the quality of clas-

sification of the model, we applied performance measures to

calculate the confusion matrices described in Section 2.4.

Performance metrics for multi-class classification were

computed by applying the general formulas from Sokolova

and Lapalme [64]. After training the 24000-plant-image data-

set, Table 5 shows the average classification accuracy results

obtained on the test dataset (6000 plant images) by using

the combination LBP operators LBPriu2
8;1 ; LBPriu2

16;2; LBPriu2
24;3

� �
with

PCA (16 principle components) and without PCA. The classifi-

cation accuracy of LBP operatorswithout PCA shown in Table 5

was relatively higher than the one with PCA. However, a slight

improvement in execution time was obtained by applying

PCA, due to reduction of features considered to 16 dominant

features.

To have a better understanding of classification for classes,

Table 6 shows the confusionmatrix of the test dataset for four

classes which was obtained by using SVM (polynomial kernel,

order 2) without PCA. After calculating the number of cor-

rectly and falsely classified images in the confusion matrix,

Fig. 8 – Segmented greyscale images of canola, corn and radish, at four different growth stages.

Fig. 9 – Illustration of the partitioning of the big dataset into training and validation datasets for canola, corn, radish and

background.
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TP, FP and FN parameters in each class were calculated. We

applied performance measures to calculate the confusion

matrix, precision, recall and F1-score of the test dataset

described in Section 2.4 by using the SVM classifier (polyno-

mial kernel, order 2) were computed as shown in Table 7.

The evaluation of the performance of different SVM ker-

nels is presented in Table 7. According to a comparison of

the F1 scores for multi-class classification, the classification

performance of SVM (polynomial kernel, order 2, box con-

straint level: 1) with 91.83% was higher than SVM (polynomial

kernel, order 3, box constraint level: 1) and SVM (RBF

kernel, box constraint level: 1, and kernel scale:p
number of featuresð Þ) with 90.66% and 90.78% respectively.

Furthermore, corn and background classes were classified

with high accuracy. In contrast, for groups with many similar

features (canola and radish), the algorithm displayed reduced

discrimination capability.

The distinctions in the leaf texture of plants and the num-

ber of green pixels in images provided significant information

for the reliability of classification results. In particular, the dif-

ferences between narrow-leaf and broadleaf plants enhanced

the classification rates. Therefore, background and corn

images were classified with higher accuracy compared to

canola and radish images. As for the similarity between

canola and radish plants, the F1 scores of differentiating

between them in Table 7 were considerably lower. These

plants with round shaped leaves can be discriminated by sim-

ply recognizing the edges of canola plants, which generally

look like outward-pointing teeth. In addition, one of the main

obstacles for the relatively high misclassification rates is that

Table 5 – Classification accuracies of an algorithm combining LBP operators LBPriu2
8;1 ; LBPriu2

16;2; LBPriu2
24;3

� �
and SVM for different

scenarios. Execution time and PCA is shown herein for completion.

LBP operators with
5-fold cross validation

Average classification
accuracy of LBP
operators (8,1) +
(16,2) + (24,3)

Execution time
(milliseconds/Image)

Average classification accuracy
of LBP operators (8,1) + (16,2) +
(24,3) with PCA (16 principle
components)

Execution time
(milliseconds/
Image)

Four classes (Canola,
Corn, Radish &
Background)

91.85% 47.898 91.08% 45.418

Fig. 11 – Visualization of (a) the train dataset (24,000 plant images) and (b) the test dataset (6000 plant images) with 4 classes

(background, canola, corn and radish).

Fig. 10 – Typical textural feature distribution of the training

dataset for canola, corn, radish and background. Based on

the LBP operators LBPriu2
8;1 ; LBPriu2

16;2; LBPriu2
24;3

� �
and the SVM

classifier. Textural feature distribution is shown for two

selected features out of a total of 54 features.
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plant leaves may look unexpectedly deformed and twisted

after imaging, since these plants are not always perpendicu-

lar to the camera lens. Overall, the algorithm combining LBP

operators with SVM produced consistently robust classifica-

tion, scale and rotation invariance.

To investigate the performance of SVM kernels, we con-

ducted a comparative study of the F1 scores for SVM classifier

and K-Nearest Neighbour (KNN) classifier. KNN is an algo-

rithm for classifying classes based on a similarity measure

(distance functions) [71]. This method has two types of dis-

tance functions including distance metric and distance

weight [72]. Particularly, three distance metrics including

Euclidean, Minkowski and Cosine were used in this experi-

ment and the results were computed by using Matlab. Table 8

shows the Precision, Recall and F1-score of the test dataset for

different types of KNN. It is obvious from Table 8 that the

average F1 score in the case of using weight KNN (86.73%)

was higher than other KNN techniques such as Coarse KNN

(82.67%), Cosine KNN (83.79%), Fine KNN (85.78%), Cubic

KNN (86.26%) and Medium KNN (86.50%). Based on the results

shown in Tables 7 and 8, the SVM classifier outperformed the

KNN classifier for the test dataset (6000 images).

We used the dataset with four-growth stages, where leaves

in each stage were captured with the difference of size and

morphology. However, the number of collected images as

mentioned in Fig. 9 was not equal in each stage. In order to

evaluate the performance of the classification of 4 different

plant classes in each stage, we divided and equalised the train

dataset (3200 plant images with 800 images in each class) and

the test dataset (320 images with 80 images in each class). In

addition, the effectiveness of the classified plant images was

evaluated by the F1-scores in the case of three different SVM

kernels. As can be observed in Table 9, the F1 score at stage 1

was higher than those at other stages. The morphology of

canola and radish in stage 1 is distinctly different. Specifically,

the two-heart shape of radish leaves in stage 1 has a distinc-

tive appearance compared to the shape of canola leaves. As

for the stage 2 and 3, the classification performance of SVM

(RBF kernel) was higher than of SVM (polynomial kernel,

order 2 and 3). However, the number of correctly classified

plant images based on the F1 score was higher for the SVM

(polynomial kernel, order 2) in comparison with the SVM

(RBF kernel).

The capability of discriminating between canola and rad-

ish images in Table 9 was always lower than for background

and corn images. Consequently, improving the LBP method

is crucial to discriminate plant species with relatively similar

features. A possible way to achieve this is to combine the uni-

form rotation invariant LBP features with significant non-

uniform LBP features. Another potential approach is to take

Table 7 – Precision, Recall and F1-score of the test dataset with different SVM kernels.

SVM kernels Train the dataset Classes Precision Recall F1-score

Quadratic SVM 95.20% ± 0.25 Background 96.23% 98.60% 97.40%
Canola 89.05% 83.53% 86.21%
Corn 98.39% 98.07% 98.23%
Radish 83.79% 87.20% 85.46%

The average of parameters 91.87% 91.85% 91.83%

Cubic SVM 96.00% ± 1.11 Background 96.41% 98.33% 97.36%
Canola 86.59% 82.20% 84.34%
Corn 98.04% 96.93% 97.49%
Radish 81.77% 85.20% 83.45%

The average of parameters 90.70% 90.67% 90.66%

RBF kernel 94.90% ± 0.37 Background 96.17% 98.87% 97.50%
Canola 83.64% 85.20% 84.41%
Corn 98.64% 96.87% 97.75%
Radish 84.69% 82.27% 83.46%

The average of parameters 90.79% 90.80% 90.78%

Table 6 – The number of plant images in the test dataset correctly and incorrectly recognized using
the confusion matrix, for a group of three plants (canola, corn and radish) and background.
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Table 8 – Precision, Recall and F1-score of the test dataset with different types of KNN.

KNN Classes Precision Recall F1-score

Fine KNN Background 95.75% 96.20% 95.98%
Number of neighbours:1 Canola 77.37% 76.80% 77.08%
Distance metric: Euclidean Corn 96.98% 91.93% 94.39%
Distance metric: Equal Radish 73.70% 77.73% 75.67%

The average of parameters 85.95% 85.67% 85.78%

Medium KNN Background 96.11% 98.87% 97.47%
Number of neighbours:10 Canola 74.10% 83.93% 78.71%
Distance metric: Euclidean Corn 96.65% 92.40% 94.48%
Distance metric: Equal Radish 80.36% 70.93% 75.35%

The average of parameters 86.81% 86.53% 86.50%

Coarse KNN Background 95.55% 98.80% 97.15%
Number of neighbours:100 Canola 66.56% 81.33% 73.21%
Distance metric: Euclidean Corn 95.50% 89.20% 92.24%
Distance metric: Equal Radish 76.05% 61.60% 68.07%

The average of parameters 83.42% 82.73% 82.67%

Cosine KNN Background 85.31% 99.13% 91.71%
Number of neighbours:10 Canola 77.69% 72.67% 75.09%
Distance metric: Cosine Corn 95.80% 88.13% 91.81%
Distance metric: Equal Radish 77.20% 75.87% 76.53%

The average of parameters 84.00% 83.95% 83.79%

Cubic KNN Background 96.05% 98.80% 97.40%
Number of neighbours:10 Canola 73.52% 83.87% 78.36%
Distance metric: Minkowski Corn 96.58% 92.13% 94.30%
Distance metric: Equal Radish 80.23% 70.33% 74.96%

The average of parameters 86.60% 86.28% 86.26%

Weighted KNN Background 96.11% 98.87% 97.47%
Number of neighbours:10 Canola 76.05% 80.67% 78.29%
Distance metric: Euclidean Corn 96.54% 93.07% 94.77%
Distance metric: Squared inverse Radish 78.52% 74.33% 76.37%

The average of parameters 86.81% 86.74% 86.73%

Table 9 – Precision, Recall and F1-score of the test dataset at four-growth stages with different SVM kernels.

SVM (Polynomial, order 2) SVM (Polynomial, order 3) SVM (RBF kernel)
Stages Plant Categories F1-score F1-score F1-score

Stage 1 Background 98.73% 98.73% 98.73%
Canola 98.16% 97.53% 98.77%
Corn 100.00% 100.00% 100.00%
Radish 98.11% 97.50% 97.50%

Average F1-score in Stage 1 98.75% 98.44% 98.75%

Stage 2 Background 99.37% 99.37% 99.37%
Canola 68.15% 85.71% 86.75%
Corn 90.91% 98.77% 97.53%
Radish 80.00% 86.08% 86.27%

Average F1-score in Stage 2 84.61% 92.48% 92.48%

Stage 3 Background 96.10% 84.89% 99.37%
Canola 85.71% 92.50% 88.05%
Corn 98.14% 99.37% 99.37%
Radish 83.04% 82.42% 88.34%

Average F1-score in Stage 3 90.75% 89.80% 93.78%

Stage 4 Background 98.14% 98.73% 98.09%
Canola 92.22% 87.43% 86.96%
Corn 98.73% 98.75% 98.11%
Radish 93.51% 84.89% 84.29%

Average F1-score in Stage 4 95.65% 92.45% 91.86%
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all features of the LBP method to acquire vital information of

microscopic images of the plant species [73]. These are

promising approaches that enable the development of LBP

algorithms for the discrimination of plant species of similar

features.

4. Conclusions & future work

An algorithm based on the combination of LBP operators and

an SVM classifier has been investigated, and its performance

experimentally evaluated for the discrimination of different

types of plants. An initial comparison of unsegmented and

segmented dataset types has been carried out in order to

identify the type that yields higher classification accuracy.

This comparison has shown that the green segmentation

pre-processing step is beneficial for feature extraction and

classification. A large segmented dataset has been collected

using a high-speed Testbed that enabled the methods to be

assessed and validated. A dataset has been made available

(published online), which can be flexibly used by other

researchers for information and comparison. Particularly,

eight cases have been created using the large dataset and

the experimental results have demonstrated that the com-

bined LBP algorithm can attain a discrimination accuracy

greater than 91% for corn, canola and radish plants and back-

ground. Results have also shown that if the shapes of canola

and radish leaves are similar, the classification accuracy of

the LBP algorithm decreases significantly. Furthermore,

results have shown that the current execution time of plant

classification is short, making the combined LBP algorithm a

promising candidate for real-time weed detection.

Future work is focusing on the extension of the LBP

method using colour images (instead of grey-level) and the

introduction of identification techniques based on the use

of non-uniform patterns in order to increase the weed detec-

tion accuracy. In addition, further investigations are required

for improving the classification of broad leaves (e.g., radish

and canola) and assessing the LBP algorithm in scenarios in

which weeds and crops are partially occluded.
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