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Recursive Residuals for Linear Mixed Models 

Abstract 

This paper presents and extends the concept of recursive residuals and their 

estimation to an important class of statistical models, Linear Mixed Models 

(LMM). Recurrence formulae are developed and recursive residuals are defined. 

Recursive computable expressions are also developed for the model’s likelihood, 

together with its derivative and information matrix. The theoretical framework for 

developing recursive residuals and their estimation for LMM varies with the 

estimation method used, such as the fitting-of-constants or the Best Linear 

Unbiased Predictor (BLUP) method. These methods are illustrated through 

application to an LMM example drawn from a published study. Model fit is 

assessed through a graphical display of the developed recursive residuals and their 

Cumulative Sums (CUSUM).  

Keywords:  BLUP; Fitting-of-Constant; Linear Mixed Model; Recursive 

Estimation; Recursive Residuals.  

1. Introduction  

Recursive residuals are useful and powerful analysis tools for a wide variety of 
fixed effect models, particularly in providing diagnostic tests for detecting serial 
correlation, heteroscedasticity, functional misspecifications and structural change in 
regression models. Together with estimation of the model parameters they have the best 
statistical properties (including independency) and provide intuitive graphical tools for 
investigating changes of model parameters overtime using the Cumulative Sum 
(CUSUM) test. Therefore, recursive residuals and estimates have been used in many areas 
of application and have proved useful diagnostic tools in regression model checking.[1-
5] 

Recursive residuals and estimation for linear regression models with independent 
errors were first introduced by Plackett [6] and included into a set of diagnostic tests by 
Brown et al. [7]. Since then, the concepts have been applied to dependent error models 
by McGilchrist et al. [8] and to repeated measures analysis by McGilchrist and Cullis [9]. 
Tobing and McGilchrist [10] derived formulae for recursive estimation of unknown 
parameters and the vector of recursive residuals for multivariate models. McGilchrist and 
Matawie [11] introduced an extension of recursive residuals and estimation to 
Generalised Linear Models (GLM). Although, General and GLM diagnostic tools and the 
process of checking their components have been discussed using recursive residuals and 
estimates, these approaches have not yet been applied to model with both fixed and 
random effects.  

The theory of Linear Mixed Models (LMM), which includes both fixed and 
random effects, is widely used when modeling correlated outcomes. This class of 
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statistical models is not only used directly in many application fields but is also used as 
the basis of iterative steps when fitting other types of mixed-effects models, such as 
Generalised Linear Mixed Models (GLMM).[12]  

Despite the widespread popularity of LMM, diagnostic methodology for 
addressing model adequacy and validity are relatively underdeveloped and the 
consequences of misspecifying assumptions of the LMM are not well known.[13] 
Verbeke & Molenberghs [14] noted that the choice of the diagnostic method for LMM is 
not obvious, and Agresti [15] argued that there is a lack of adequate research regarding 
model checking and diagnostics for mixed models in general. Lin et al. [16] proposed 
graphical techniques for assessing the adequacy of the deterministic portion of GLMM, 
but their methods do not address the random component of model fit. Recently, 
Houseman et al. [17] used Cholesky Residuals for assessing normal errors in LMM by 
supplying appropriate bounds to normal QQ plots facilitated by asymptotic error 
independence. Several other authors have proposed goodness-of-fit tests for application 
in the mixed model setting, [18,19] but their approaches are complex and do not readily 
lend themselves well to graphical displays.  

For models with subject-specific random effects, Pinheiro & Bates [20] advocated 
the use of standardized residuals formed when using predictions of subject-specific means 
and an estimate of residual error. However, comparison of only fitted and observed values 
can be misleading, as such comparisons reflect intended shrinkage of estimates towards 
the overall mean. Hilden-Minton [21] proposed the least confounded residuals, which 
depend only on fixed components and on the error that it is supposed to predict. Nobre & 
Singer [22] presented formulae for calculating studentized subject-specific residuals for 
linear mixed and suggested to use of the normal quantile graph plots with simulated 
envelops to check the assumption of normality. 
 

Given the above limitations and gaps in the published literature, there is a need to 
develop recursive residuals that facilitate independency for LMM as a new important and 
powerful diagnostic tool to the LMM. Such tools (based on the recursive residuals) would 
have the best properties in checking the model components and validity, since the 
recursive residuals behave exactly as under the null hypothesis, until change in the model 
occurs.[7] 

The approaches we consider in this paper for the development of recursive 
residuals and their estimates for LMM are based on well-known LMM estimation 
methods, such as Henderson's fitting-of-constants method and the Best Linear Unbiased 
Predictor (BLUP) method. Henderson’s [24] fitting-of-constants method, which is also 
known as the Ordinary Least Squares (OLS) method, is used extensively in Analysis of 
Variance (ANOVA). This approach replaces the Sum of Squares in a balanced ANOVA 
by quadratic forms involving Least Squares solutions of effects from which parameters 
and variances are to be estimated. In section 2, we will define and derive computation 
formulae for the recursive residuals and estimates using the fitting-of-constants method.  

Because the derivation of recursive residuals and estimates for LMM using the 
BLUP estimation method is not as tranquil as the derivation of recursive residuals for  
OLS, the formulation of Lee & Nelder [25] for the fixed and the random design matrices 
of the LMM are used instead. In section 3, we will introduce and discuss the LMM 
recursive estimations and residuals formulation. 

Most of the relevant literature presents two methods for calculating recursive 
residuals and recursive estimates. The first method is based on setting the initial estimates 
and the corresponding matrices to null (Natural Order). The data are then entered 
progressively to estimate and update the already estimated parameters and to calculate 
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the recursive residuals when they become available. This method of calculation has been 
used by various researchers including McGilchrist and colleagues, in developing 
recursive procedures for different models.[8,11,25,26] 

The second method of calculating recursive residuals is based on fitting an initial 
number of observations, considered as a base, which are needed to estimate all the model 
parameters. When the base is fitted, the remaining observations are entered progressively. 
The estimates are then updated and recursive residuals are produced. Entering the 
remaining observations progressively can be done either in ascending order, which is 
called forward recursive residuals, or in descending order, leading to backward recursive 
residuals. [1,27,28]  

In this paper, both methods will be used for calculating the recursive residuals and 
updating the parameter estimates for LMM. Our development and presentation of the 
recursive residuals and estimates will be therefore largely based on McGilchrist et al. [8] 
notations and formulations. Recursive computable expressions for the likelihood function 
and its derivative and information matrix will be obtained and given in sections 2 and 3. 
Finally, recursive residuals and estimation for both methods, OLS and BLUP, are applied 
to the same example in section 4.  

 

2. OLS Recursive Residuals for LMM’s  

Recursive estimation is a technique for updating parameter estimates where the 
resulting change in the estimates is proportional to the recursive residuals. The recursive 
residual corresponding to an observation 𝑌" at time 𝑡, is the scaled difference between 𝑌" 
and its best predictor using observations recorded prior to time 𝑡. Thus, current and 
successive predictors of 𝑌" are computed recursively based on parameter estimates from 
observations prior to 𝑡.  In this section, the approach used for developing recursive 
residuals and estimates of LMM is based on Henderson's [24] fitting-of-constants method 
and McGilchrist et al. [8] notations and formulations. 

Let 𝑌" be the continuous observation on the dependent variable at time 𝑡 
corresponds to vectors of regression variables 𝒙" and 𝒔". The LMM we consider at time 
𝑡 can be expressed as  

𝑌" 	= 	𝒙"𝜷 +	𝒔"𝒖 + 𝐸", 𝑡	 = 	1, 2, … , 𝑛 (1) 

where at time 𝑡 there are 𝑡 observations (the first 𝑡 observations) in the following matrices 
and vectors and the remaining observations 𝑛 − 𝑡 are considered zeros (i.e., 𝑡 + 1, 𝑡 +
2,… , 𝑛) 

𝒚𝒏4 = [𝑌6, 𝑌7, … , 𝑌8	]: 
𝒚 is the response vector 𝑛 × 1, 

𝑿𝒏4 = [𝒙6, 𝒙7, … , 𝒙8	]: 
𝑿 is the observed design matrix for the fixed effect 𝑛 × 𝑝 
matrix, 

𝜷4 = =𝛽6, 𝛽7, … , 𝛽?	@: 
𝜷 is the unobserved parameter vector of fixed effects 
𝑝 × 1, 

𝑺𝒏4 = [𝒔6, 𝒔7, … , 𝒔8	]: 
𝑺 is the observed design matrix for the random effect 
𝑛 × 𝑟, 

𝒖4 = [𝑢6, 𝑢7, … , 𝑢D	]: 
𝒖 is the vector of unobserved random effect 𝑟 × 1, with 
𝐸(𝒖) = 𝟎 and 𝑉𝑎𝑟(𝒖) = 𝜎𝒖7𝑰 = 𝑮 
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𝜺4𝒕 = [𝐸6, 𝐸7, … , 𝐸8	]: 
𝜺 is the error term vector 𝑛 × 1, assumed to be 
independent and normally distributed with 𝐸(𝜺) = 𝟎 and 
𝑉𝑎𝑟(𝜺) = 𝜎𝜺7𝑰 = 𝑹. 

Assume that all levels of 𝒖 pertain to the same source of variation, such that 𝑉𝑎𝑟(𝒖) =
𝜎P7𝑰 = 𝑮 and  𝐶𝑜𝑣(𝒖; 𝜺) = 𝟎. 

The recursive estimates for 𝜷 and 𝒖 (𝜷U, 𝒖V) is the solution of Henderson's 
equations (2) or the OLS equations for the model in (1) which is based on treating 𝒖 and 
𝜷 as fixed effects at any time 𝑡.  

W𝑿"
4𝑿" 𝑿"4𝑺"
𝑺"4𝑿" 𝑺"4𝑺"

X W𝜷
U"
𝒖V"
X = W𝑿"

4𝒚"
𝑺"4𝒚"

X (2) 

Where the 𝑿", 𝑺", 𝒚" are the design matrices at time 𝑡.  

The recursive residual 𝑊" and recursive estimates for 𝜷 and 𝒖 can be written as (see the 
full derivation in [29]) 

𝑊" = Z𝑐"
∗]6/7 W𝑌" − 𝒛"4 `

𝜷U"]6
𝒖V"]6

aX   rank stays same

0																																						 rank increases.
 (3) 

 

W𝜷
U"
𝒖V"
X =

⎩
⎪
⎨

⎪
⎧W𝜷
U"]6
𝒖V"]6

X + 𝑐"
∗]6/7𝑊"𝒈"∗																								 rank stays same

W𝜷
U"]6
𝒖V"]6

X + 𝑐"
i]6 W𝑌" − 𝑧"4 `

𝜷U"]6
𝒖V"]6

aX𝒈"
i, rank increases.

 (4) 

As data becomes more available and observations are added recursively, the design 
matrices 𝑿"]6, 𝑺"]6, 𝒚"]6 are replaced by 𝑿", 𝑺", 𝒚" and the rank of 𝑯" may increase by 
one or remains the same. A test for the rank change is to consider using the following 
vector  

𝒒" = 𝒛"4 (𝑰 − 𝑯"]6
]6 𝑯"]6	). 

 
The test vector may result with a zero vector (rank stays the same) or contain at least 
one non-zero element which is used to choose the corresponding component of the 
vector of independent variables 𝒙" and 𝒔" and accordingly estimate its recursive 
regression coefficient. 
So if the rank stays the same then the following equations are used in calculating the 
recursive estimates in equation (4) and the recursive residual will be 0. 

𝑐"∗ = 1 + 𝒛"4 	𝑯"]6
]6 𝒛" 𝒛𝒕 = m

𝒙"
𝒔"n 

𝒈"∗ = 𝑯"]6
]6 𝒛" 𝑯"

]6 = 𝑯"]6
]6 − 𝑐"∗]6𝒈"∗𝒈"∗4 



5 
 

In the same way, the following equations are used to calculate the recursive residuals in 
(3) and the recursive estimates in (4) if the rank increases by one  

𝑐"
i = 𝒛"𝒈"

i 𝒈"
i = (𝑰 − 𝑯"]6

]6 𝑯"]6) 

𝒗" = 𝒈"
i − 𝑐"

i𝑐"∗]6𝒈"∗ 𝑯"
]6 = 𝑯"]6

]6 + 𝑐"∗]6𝒈"∗𝒈"∗4 + 𝑐"
i]7𝑐"∗𝒗"𝒗"4  

There are two methods to calculate the recursive residuals and estimates. First, the Natural 
Order (NO) method and fitting initial base. NO method starts at time	𝑡 = 0  with a zero 
vector as an initial estimates of 𝜷 and 𝒖, for, 𝑯" = 𝟎, its inverse 𝑯"

]6 and their product 
𝑯"
]6𝑯" are taken to (𝑝 + 𝑟) × (𝑝 + 𝑟) matrices of zeros. As observations are added 

recursively, the design matrices (𝑿"]6, 𝑺"]6, 𝒚"]6) are updated with the new observation 
(𝑿", 𝑺", 𝒚") and the rank of 𝑯" may remain the same or increase by one. 

The second method of calculating the recursive residuals starts with estimating 
the model parameters using initial base of (𝑝 + 𝑟 − 1) observations. This initial base 
should be selected in a way to provide a non-singular information matrix in which all 
parameters are estimable. After estimating the model parameters observations are entered 
progressively and update (fine tune) the parameters and estimate (𝑛 − 𝑝 − 𝑟 + 1) 
recursive residuals. [1,27] 

3. BLUP Recursive Residuals  

In this section the recursive residuals and estimates for LMM are developed 
based on the BLUP method. The BLUP estimation method is based on maximising the 
sum of the log-likelihood function, which is a penalised likelihood function. The 
likelihood estimators of 𝜷 is the solution of the Mixed Model Equations (MME); which 
is given in the following form [31]: 

W𝑿
4𝑹]6𝑿 𝑿4𝑹]6𝑺
𝑺4𝑹]6𝑿 𝑺4𝑹]6𝑺 + 𝑮]6

X m𝜷𝒖n = W𝑿
4𝑹]6𝒚
𝑺4𝑹]6𝒚

X,  

where 𝑹 = 𝜎𝜺7𝑰 and 𝑮 = 𝜎𝒖7𝑰. This solution can be simplified to: 

m𝑿
4𝑿 𝑿4𝑺
𝑺4𝑿 𝑺4𝑺 + 𝜆𝑰n m

𝜷
𝒖n = W𝑿

4𝒚
𝑺4𝒚X,  

where 𝜆 = 𝜎𝜺7/𝜎𝒖7 is the precision ratio. 
The MME equations are slightly different to the OLS equations. MME includes 

the term 𝜆𝑰 resulting from the random component. The resulting MME cannot be solved 
in the same way used for OLS equations. So Lee and Nelder [25] formulation for the 
fixed and random design matrices, 𝑿 and 𝑺 are used to formulated the MME. 
Formulated MME can be written as   

m𝑿
4∗𝑿∗ 𝑿4∗	𝑺∗
𝑺4∗𝑿∗ 𝑺4∗𝑺∗ n m

𝜷
𝒖n = W𝑿

4∗𝒚
𝑺4∗𝒚X, (5) 

where 
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𝑿∗ = q	𝑿𝟎	r , 𝑺∗ = ` 𝑺
√𝜆𝑰

a,								𝒚∗ = q
𝒚

𝐸(𝒖)r,  

where 𝟎 is the 𝑟 × 𝑝 zero matrix and 𝑰 is the 𝑟 × 𝑟 identity matrix. Formulating the 
design matrices is also called a pseudo data approach [20].   

It can be shown that the BLUP recursive residuals and estimates for MME 
equations in (5) are 

W𝜷
U𝒕
𝒖V𝒕
X = W𝜷

U"]6
𝒖V"]6

X + 𝑐"
∗]6/7𝑊"𝒈𝒕∗,									𝑡 = 𝑝 + 𝑟,… , 𝑛 (6) 

and the individual recursive residual is 

𝑊" = 𝑐"
∗]6/7 W𝑌" − 𝒛"4 `

𝜷U"]6
𝒖V"]6

aX. (7) 

For more details for the recursive estimation derivation see [29]. 
In the same way illustrated in Section 2, both methods of recursive estimation 

can be used Natural Order (NO) and initial base using the new design matrices 
𝑿"∗, 𝑺"∗, 𝒚"∗.   

4. Example  

To illustrate the application and computation of these developed formula for 
recursive residuals and estimates for LMM we used Nobre & Singer [22] data. The data 
relates to a comparison of the capacity to remove bacterial plaque with continuous daily 
use with a low cost monoblock toothbrush against a conventional toothbrush. Indices of 
plaque in 32 children (aged 4 – 6 years) were measured before and after tooth brushing at 
four evaluation sessions.  The data is an example of repeated measurements, taken on the 
same experimental units over four evaluation sessions, adjusting for pretreatment 
bacterial plaque indices. 
Nobre & Singer [22] fitted the following LMM: 

ln𝑦wxy = 𝛼x + 𝛽ln𝑥wxy + 𝑏w + 𝜀wxy,  

where 𝑦wxy(𝑥wxy) is the post-treatment (pre-treatment) bacterial plaque index for the 𝑖"� 
subject evaluated in the 𝑑"� session with the 𝑗"� type of toothbrush, 𝛼x is the fixed effects 
associated with the two types of toothbrush, 𝛽 is a pretreatment bacterial plaque index 
coefficient. The 𝑏w~𝑁(0, 𝜏7) are the subject random effects, ε���~𝑁(0, σ7) are the 
random measurement errors and 𝑐𝑜𝑣(𝒃, 𝜺) = 𝟎. 

Our reframing of this LMM in a matrix form at time 𝑡 as: 

𝒚" 	= 	𝑿"𝜷 +	𝑺"𝒖 + 𝜺", 𝑡	 = 	1, 2, … ,128 (9) 

where matrices and vectors at time 𝑡 has only the first 𝑡 observations and the remaining 
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observations (𝑛 − 𝑡) are zeros with the same dimensions defined in (1). 𝒚 is a 128 × 1 
response vector of post-treatment bacterial plaque indices (𝑦wxy), 𝑿 is a 128 × 3 fixed 
effects design matrix (intercept, two types of toothbrush and log(pre-treatment)) and 𝑺 is 
a 128 × 32 random effects design matrix (subject effect), 𝜺 is a 128 × 1 errors vector 
normally distributed with zero mean and 𝜎𝜺7𝑰 variance. The vector 𝜷 is a 3 × 1 vector of 
fixed effects that are unknown and 𝒖 is a 32 × 1 vector of random effects normally 
distributed with zero mean and 𝜎𝒖7𝑰 variance and 𝒖 ⊥ 𝜺. 

The LMM obtained (using the S-plus lme package) was significant, with t-
values of (−10.027, 16.087, 2.98)	 for the intercept, pretreatment and treatment effects 
respectively. The LMM appeared to be satisfactory. A plot of the standardized residuals 
(𝜺�/𝜎��) versus the fitted values, shown in Figure 1(a), was satisfactory except for an 
indication of a possible two outliers. Hilden-Minton [21] proposed the least confounded 
residuals, which depends only on fixed components and on the error that it is supposed to 
predict. Nobre & Singer [22] presented formulae for calculating studentized subject-
specific residuals for linear mixed and suggested to use of the normal quantile graph plots 
with simulated envelops to check the assumption of normality. The approach has been 
developed further developed further by Schützenmeister and Piepho (2010) [23]. Both 
graphs are given in Figure 1. The normal quantile plot for the residuals (Figure 1(b)) did 
not identify any observation outside the simulated envelope without any trend, suggesting 
normality of the residuals. These results are similar to those given by Nobre & Singer 
[22] who investigated three techniques of residuals analysis for LMM using the same 
data. 

Figure 1.  Standardized residuals (a) and simulated 95% confidence envelope for 

the standardized least confounded residuals (b) for model (5.1) 
 

(a) (b) 

  
 
Calculating the parameters of the above model involves the solution of a set of 

𝑝 + 𝑟 simultaneous linear equations. Often in practice, we do not have access to all the 
data required to give an estimate of 𝑌. One advantage of the recursive estimation is to 
provide a way of getting the estimate of 𝑌 which is constantly updated by data arriving. 
Parameters of the above model can be calculated using the first (𝑝 + 𝑟 − 1) observations 
that corresponds to each fixed and random effects, then fine-tuned as more observations 
become available. Recursive estimation allows for tracking of the value of the parameters 
over time and to check for structural breaks. It should be apparent that the overall result 
of these successive iterations agrees with the one obtained if we process all data after they 
have been collected. The advantage of the recursive estimation is that at each stage we 
have the best representation of what we know about the parameters despite the size of 
data. 
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The recursive residuals and their corresponding CUSUM are useful and powerful 
tools for detecting and checking the functional misspecifications, model validity and 
stability. In a well–specified model, the recursive residuals would have a mean of zero 
(∑ 𝑊"

8
"�6 = 0). If all regression assumptions are satisfied, the CUSUM plot should show 

a random walk within a parabolic envelope about the origin, since the expectation of these 
recursive residuals is zero.[1] 

Furthermore, it is preferable to use recursive residuals rather than ordinary 
residuals to detect a change in the model, since the recursive residuals behave exactly as 
under the null hypothesis (the cumulative sum of RR will have a sum of zero), until a 
change in the model occurs.[7]  

In the case where a model misspecification arises, under common circumstances 
the recursive residuals will have a mean non-zero difference and it is possible to detect 
changes over times that are sustained beyond some specific point of time. Recursive 
residuals may also be used to depict the pattern of variation of the proposed model. Note 
that recursive residuals are not used to model variation over time, but rather to depict the 
type of variation from a stationary model that is generated from the data.  

The purpose of this paper is not to discuss the use of recursive residuals for model 
improvement; rather it shows how they may be defined and provides an illustration of 
their use. The major benefit of using recursive residuals and their corresponding CUSUM, 
is the power in detecting change over time that is sustained beyond some specific time 
point. The precise method of using recursive residuals depends on what change is 
suspected to have occurred and hence varies with the application. Such model 
improvements may be suggested by the recursive residuals. For more details on model 
improvement using recursive residuals, see [1,27,32,33]. 

4.1. OLS Recursive Residuals 

The OLS recursive estimation procedures developed in the previous sections were 
programmed in S-plus. The recursive residuals for the LMM in (9) were calculated 
starting with zero as initial estimates of 𝜷U�, 𝒖V� and related matrices such as 𝑯� and 𝑯�

]6. 
This method of calculation is adopted as it is more general and practical than fitting an 
Initial Base. With the addition of each new observation, updated estimates of 𝜷 and 𝒖 are 
obtained by using the recursive algorithm summary given in the previous section. As 
mentioned above, recursive residuals occur whenever the rank of the information matrix 
does not increase. Therefore, the number of recursive residuals calculated here will be 
(𝑛 − 𝑟𝑎𝑛𝑘(𝑿) + 1 − 𝑟𝑎𝑛𝑘(𝑺) + 1 = 95) after estimating two fixed effects (𝑟𝑎𝑛𝑘(𝑿)) 
and predicting 31 mixed effects factors (𝑟𝑎𝑛𝑘(𝑺) − 1) random effects, since 𝐸(𝒖) = 0)). 
The recursive residuals and their CUSUM and normal quartile plots appear in Figures 
2(a-d). The CUSUM at observation 𝑖 is 𝐶w = ∑ 𝑊"

w
"�6  where 𝑊" is the recursive residual 

at observation 𝑡. 
The recursive residuals Figure (2a) is very close to the standardized residuals plot 

(Figure 1(a)), and is considered satisfactory with a potential of two outliers. The normal 
probability plot (Figure (2c)) shows an approximately straight line with the data points at 
the two ends of the line indicating possible low values and/or outliers. However, the 
CUSUM plot (Figure (2d)) shows an initial upward trend followed by a downward trend 
indicating some sort of model misfit with a negative CUSUM (∑𝑊" = 	−0.231). Model 
misfit such as this may be due to various reasons including outliers, an omitted variable, 
incorrect model specification or incorrect model underlying distributional assumptions. 
For more details see [1,27,32]. Dealing with model misfit may improve the above model, 
but this is not the aim of this example.  
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It should pointed out that in their initial data paper, Nobre & Singer [22], also 
identified the same two outliers, which were  identified by standardized residuals  and 
recursive residuals plots shown above. Removing these two outliers did not improve the 
fit of the model or CUSUM plot.   

Figure 2.  OLS recursive residuals  (a), Histogram (b), Normal Quantile-Quantile plot 

(c) and CUSUM graph (d) for fitting-of-constants Recursive Residuals 

 

4.2. BLUP Recursive Residuals 

The BLUP recursive estimates and residuals were obtained for the same model 
(5.1) with adjustments for this data case. The initial estimates of 𝜷U�, 𝒖V� and related 
matrices such as 𝑯� and 𝑯�

]6 were set to null. The data were then entered progressively 
to estimate and update the already estimated parameters and the recursive residuals 
calculated when they became available. The number of recursive residuals calculated here 
will be (𝑛 − 𝑟𝑎𝑛𝑘(𝑿) = 125) after estimating three fixed effects (𝑟𝑎𝑛𝑘(𝑿)). The 
recursive residuals and their CUSUM and normal quartile plots appear in Figures 3(a-d).  

The recursive residuals Figure 3(a) is satisfactory. However, it is slightly different 
from the OLS recursive residuals and standardized residuals in that it shows the potential 
for three outliers. The normal probability plot (Figure 3(c)) shows an approximately 
straight line with a potential for outliers with the data points at the two ends of the line 
indicate low values and/or outliers. Importantly, the CUSUM plot shows an initial upward 
trend followed by a downward trend followed by a random segment before an upward 
trend again. This is an indicator of model misfit with a positive CUSUM (∑𝑊" = 	0.572). 
The BLUP recursive residuals show less variability than the OLS recursive residuals 
around the zero line and the CUSUM plot also becomes more stable at the end. The reason 
for this might be that the contribution of the random effect in the model using BLUP 
recursive method is more than the contribution of the random effect in the OLS recursive 
method, i.e., in the BLUP method the random effects explains more variation in the model 
than what can be achieved by OLS recursive method.  
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Figure 3.  BLUP Recursive Residuals  (a), Histogram (b), Normal Quantile-

Quantile plot (c) and CUSUM graph (d) for BLUP Recursive Residuals 

 

4.3. OLS and BLUP Recursive Residuals 

The main purpose of using this particular example is to demonstrate and elaborate 
on how the recursive procedures for LMM are developed and applied. Thereafter, these 
recursive residuals can be incorporated into a set of diagnostic tests such as the CUSUM, 
signed residuals and their CUSUM, normal probability plots, cumulative sums of the 
square roots of the absolute value of the standardized recursive residuals and cumulative 
sums of squares (CUSUMSQ) of recursive residuals.[11]  

In this example, both OLS and BLUP recursive residuals analyses showed a slight  
model misfit and also identified the outliers found by Nobre & Singer [22] in their initial 
analysis of data. Our example shows that, in this case, the OLS residuals undervalue the 
data (∑𝑊" = 	−0.231) and BLUP recursive residuals overvalue the data (∑𝑊" =
	0.572). One might try to remedy this problem by stepwise selection from higher order 
polynomial terms, including more relevant variables in the model or replacing the 
normality assumption for the random effects distribution by a more robust heavy tails 
distribution such as t-distribution.  

Despite the model misfit, the BLUP recursive residuals showed less variability 
than the OLS recursive residuals. This highlights the importance of the random effects 
for the model in this instance in explaining the variation in the data. Random effects were 
found to be significant using Akaike information criterion (AIC) in S-plus. This also 
explains how the OLS recursive residuals can be used to demonstrate the importance of 
including the random effects to a fixed effect model. The BLUP recursive residuals 
showed a potential third outlier which was not detected by the OLS recursive residuals or 
by Nobre & Singer [22]. 
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5. Discussion  

In summary, this article has newly defined and derived recursive residuals and 
estimates using two estimation techniques for LMM: the OLS and BLUP estimation 
methods. Previously, LMM diagnostic tools have been relatively underdeveloped and as 
a result, the consequence of misspecifying assumptions of LMM not well known. We 
have presented and illustrated that recursive residuals can be usefully incorporated into a 
set of diagnostic tests as they behave exactly as under the null hypothesis, until a change 
in the model occurs. The resultant diagnostic and graphical tests (based on recursive 
residuals), along with their behavior and properties, can be investigated for the LMM 
under different functional misspecification.  

The BLUP recursive residuals treat random effects as random, while the OLS 
method treats them as fixed. The reason for including the OLS recursive residuals and 
estimation are the extensive use of this estimation technique in ANOVA. The OLS 
recursive residuals and estimates could be incorporated into a set of diagnostic tests to 
detect the importance of the random effects (LMM) in modeling the data. The BLUP 
showed more stable recursive residuals than those generated by OLS, supporting the 
significance of the random effects in the model.  

In conclusion, recursive residuals perform well in model fit diagnostics and 
provide more information about model misspecification than using ordinary residuals. It 
should now be possible to extend the development of recursive residuals and estimates 
technique for a more general and Generalised Linear Mixed Models. 

All calculations are implemented in the S-plus (lme) and R (nlme and 
lmer) packages with  modification. The codes employed for calculating Recursive 
Residuals are developed in S-plus and R and can be obtained directly from the authors. 
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