
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2014 to 2021 

2019 

Noninvasive diagnosis of irritable bowel syndrome via bowel Noninvasive diagnosis of irritable bowel syndrome via bowel 

sound features: Proof of concept sound features: Proof of concept 

Xuhao Du 

Gary Allwood 

K. Mary Webberley 

Andrisha-Jade Inderjeeth 

Adam Osseiran 
Edith Cowan University 

See next page for additional authors 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013 

 Part of the Engineering Commons 

10.14309/ctg.0000000000000017 
Du, X., Allwood, G., Webberley, K. M., Inderjeeth, A.-J., Osseiran, A., & Marshall, B. J. (2019). Noninvasive diagnosis 
of irritable bowel syndrome via bowel sound features: Proof of concept. Clinical and Translational 
Gastroenterology, 10(3), Article e00017. Available here 
This Journal Article is posted at Research Online. 
https://ro.ecu.edu.au/ecuworkspost2013/6103 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworkspost2013
https://ro.ecu.edu.au/ecuworkspost2013?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F6103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F6103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.14309/ctg.0000000000000017
https://doi.org/10.14309/ctg.0000000000000017


Authors Authors 
Xuhao Du, Gary Allwood, K. Mary Webberley, Andrisha-Jade Inderjeeth, Adam Osseiran, and Barry James 
Marshall 

This journal article is available at Research Online: https://ro.ecu.edu.au/ecuworkspost2013/6103 

https://ro.ecu.edu.au/ecuworkspost2013/6103


Noninvasive Diagnosis of Irritable Bowel Syndrome via
Bowel Sound Features: Proof of Concept
Xuhao Du, BSc1, Gary Allwood, BSc, PhD1, K. Mary Webberley, BA, MA, PhD1, Andrisha-Jade Inderjeeth, MBBS2,
Adam Osseiran, BSc, MSc, PhD3 and Barry James Marshall, MBBS1,2

INTRODUCTION: Irritable bowel syndrome (IBS) is a common and debilitating disorder estimated to affect approximately

11% of the world’s population. Typically, IBS is a diagnosis of exclusion after patients undergo a costly

and invasive colonoscopy to exclude organic disease. Clinician’s and researchers have identified a need

for a new cost-effective, accurate, and noninvasive diagnostic test for IBS.

METHODS: Using a diagnostic case-control study, we explored the use of bowel sounds to characterize IBS with

a view to diagnostic use. We recruited participants with an existing clinical diagnosis of IBS or healthy

(asymptomatic) digestive systems. We recorded bowel sounds for 2 hours after fasting and then for 40

minutes after a standard meal.

RESULTS: We here report our results including our accuracy in characterizing IBS-related bowel sounds and

differentiation between participants with IBS and healthy participants. Leave-one-out cross-validation

of our model developed using the first 31 IBS and 37 healthy participants gave 90% sensitivity and

92% specificity for IBS diagnosis. Independent testing using the next 15 IBS and 15 healthy

participants demonstrated 87% sensitivity and 87% specificity for IBS diagnosis.

CONCLUSIONS: These preliminary results provide proof of concept for the use of bowel sound analysis to identify IBS. A

prospective study is needed to confirm these findings.

TRANSLATIONAL
IMPACT:

Our belt and model offer hope of a new approach for IBS diagnosis in primary practice. Combined with

screening tests for organic disease, it would offer greater confidence to patients and could reduce the

burden of unnecessary colonoscopies for health care systems and patients.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A14

Clinical and Translational Gastroenterology 2019;10:e-00017. https://doi.org/10.14309/ctg.0000000000000017

INTRODUCTION
Irritable bowel syndrome (IBS) is a debilitating functional gas-
trointestinal (GI) disorder with symptoms including altered
bowel habits, abdominal pain, and bloating. IBS is extremely
common, affecting approximately 11% of the world’s population
(1), and is responsible for 50% of gastroenterology clinic visits in
the United States (2). In addition to direct medical costs, IBS also
leads to indirect costs through lost productivity and can severely
impact on an individual’s quality of life (3,4).

The current gold standard for IBS diagnosis is through the
Rome IV symptom-based diagnostic criteria (5). While offering
positive diagnosis, these criteria are unwieldy (6) and do not have
high reliability (7). In addition, a number of organic diseases
share symptoms with IBS, including Crohn’s disease, ulcerative

colitis, and celiac disease (5). Because of similarities in clinical
presentation, many physicians proceed with invasive testing to
rule out organic disease before confirming a diagnosis of IBS (3,8).
Initial screening would usually include baseline blood tests (in-
cluding C-reactive protein) and stool tests (including fecal cal-
protectin and culture) for exclusion of infections, celiac disease,
and inflammatory bowel disease (IBD) (5). Typically, primary
care physicians also refer patients for colonoscopy and biopsy (3),
although colonoscopy has been found to reveal inflammatory
bowel disease in only a small percentage of patients with IBS
symptoms (9).

These invasive tests are a burden to health systems, contrib-
uting to lengthy waiting lists for gastroenterological review and
adding to the financial costs associated with IBS. Colonoscopies
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are not only unpleasant for patients but carry significant risks. A
Dutch study found that colonoscopies carry a small but relevant
risk (affecting approximately 3% of patients) of major events
requiring hospitalization such as perforation, bleeding, or angina
pectoris. They carry a higher rate (approximately 41%) of minor
adverse events such as rectal blood loss and a change in bowel
habits (10). In addition to these risks, the burden on patients is
multifaceted including physical discomfort, psychological dis-
tress, and financial costs due to time off-work. Although the
processmay provide confidence to physicians, it rarely does so for
patients. Instead, a diagnosis of exclusion can leave patients
confused and reluctant to engage in IBS management (11).

Clearly, there is a need for a new, cost-effective, noninvasive
diagnostic test that provides reliable and reproducible positive
diagnosis of IBS (7). This could be in combinationwith blood and
stool tests to screen for organic disease for a comprehensive ap-
proach. Novel tests on various blood and fecal biomarkers have
been trialed (7). However, none alone offer IBS diagnosis with
a suitably high positive likelihood ratio and sufficiently low
negative likelihood value. So far, amultifaceted approachwith the
use of symptoms, biomarkers, and psychological markers has
been most successful, but it is too complex and time consuming
for the primary care setting (7).

Perhaps forgotten in discussions of IBS diagnosis is the work
conducted around the millennium by Craine and colleagues
(12–14) exploring the use of computerized bowel sound analysis.
Craine’s team used only short recordings, and relatively simple
processing techniques, but had some success in differentiating
between IBS and healthy study participants. Their results were
less promising with respect to differential diagnosis between IBS
and Crohn’s disease (13). More recently, Spiegel, Kaneshiro, and
colleagues have developed a tool for analysis of bowel sounds for
the diagnosis and prognosis of postoperative ileus (15,16). They
found a negative predictive value of 81% (16). Their promising
results and advances in computing technology prompted us to
revisit the use of bowel sound analysis for diagnosing IBS. Our
hypothesis was that we could use new signal processing and
machine learning–based techniques to develop a positive test for
IBS based on bowel sound analysis.

We conducted a preliminary case-control study to both gather
data to enable us to characterize IBS through bowel sound fea-
tures and test the resultant model. The bowel sounds were col-
lected using a belt with an array of vibration sensors. Two periods
of recording were made, one when the participants were fasting
and one during and after food consumption. We developed and
cross-validated a model for characterization of IBS and healthy
bowel sounds using the first 31 IBS participants and 37 healthy
participants. We went on to test the model on independent data
gathered from the next 15 participants in each of the 2 groups.
The findings will need to be replicated in a prospective study to
confirm their clinical utility; however, this is an important first
step.

The intended use of the test is in primary care settings. By
offering a positive diagnosis of IBS, we anticipate that it will
greatly reduce the number of colonoscopies and replace the
process of diagnosis by exclusion. It may be used alongside or
instead of Rome IV diagnostic criteria. As with the use of Rome
IV, clinicians may also choose to conduct concurrent screening
tests for IBD and celiac disease. However, in time, we hope to
expand the approach to cover differentiation from organic
diseases.

METHODS

Study design

We used a diagnostic case-control design for our study. Partic-
ipants with IBS and those with healthy digestive systems were
identified during the recruitment process. Sound recordings for
the index test were gathered subsequently as part of the study.

Participants

Recruitment.Weused advertising andmedia interviews to attract
participants, who were recruited consecutively as they responded
via phone, e-mail, or online survey andmet the eligibility criteria,
between May and September 2017. The study was approved by
the UWA Human Research Ethics Committee (study RA/4/1/
8893—January 25, 2017), and all participants provided informed
consent.
Eligibility criteria and reference standards. Eligibility was de-
termined by the use of a short online survey, followed by a more
detailed phone survey. Inclusion criteria common to both groups
were age 18–65 years, body mass index (BMI) above 18.5, and
a good understanding of English.

Inclusion criteria specific to the IBS group were a formal di-
agnosis of IBS by a general practitioner or gastroenterologist, IBS
symptoms for at least 6 months and ongoing IBS symptoms, and
the absence of any organic explanation for their IBS symptoms
after colonoscopy within the past 10 years (typically in the past 5
years). This was the reference standard for IBS andwas confirmed
by contacting each patient’s doctor. The reference standard did
not specify any particular diagnostic symptom criteria, given that
some participants may have been diagnosed many years pre-
viously, but did include negative colonoscopy results, so as to be
highly effective at ruling out organic disease. Anecdotally, we
know that a diagnosis of exclusion, such as this, is common in
Australia.

Inclusion criteria specific to the healthy group were being
asymptomatic at the time of referral and self-reported “generally
healthy guts.” This was verified through negative answers to the
questions in Supplementary Table 1 (see Supplementary Digital
Content 1, http://links.lww.com/CTG/A14).

Exclusion criteria common to both groups were a history of
diabetes, eating disorder, kidney disease, neurological disease or
damage, current use of opiates or heavy use of nonsteroidal anti-
inflammatory drugs, a history of surgery of theGI tract (except for
appendectomy or cholecystectomy), a history of organic GI dis-
ease includingHelicobacter pylori infection, stomach or duodenal
ulcers (not ulcers due to ulcerative colitis), microscopic colitis,
Crohn’s disease, ulcerative colitis, cancer anywhere in the GI
tract, known intra-abdominal adhesions, and diverticular disease,
celiac disease, diagnosed lactose intolerance, or current GI
infection.

Once recruited, the participants visited theMarshall Centre at
their convenience between June and October 2017 to take part in
the study. All were offered a 30 Australian dollars reimbursement
to cover travel expenses.

Index test development and methods

Development of the belt. Abdominal sounds were recorded using
a Zoom H6 Handy recorder (Zoom, Tokyo, Japan) attached to 4
piezo-based sensors placed on the 4 quadrants of the abdomen and
held in place with stretchy Tubigrip, together referred to as the
“belt.” Software was developed for the initial preprocessing that
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identified bowel sounds for extraction. This system has previously
been described following use for recordings of bowel sounds and
detection of the migrating motor complex (MMC) (17).

Two clinicians blindly and independently listened to a library
of recordings made from the belt. This consisted of 18 putative
bowel sounds as identified by our system and 8 sounds catego-
rized as nonbowel sounds (non-GI origin or environmental
noise). The clinicians each made a judgment as to whether they
were bowel sounds or not based on their clinical experience.
There was 100% concordance between both clinicians and the
extraction software.

Recordings for model development and validation. Participants
fasted from 9 PM the night before recordings and did not consume
water from midnight, except to take their regular medications.
Recordings took place in a nonclinical setting at the Marshall
Centre on theQEIIMedical Centre site. Participants sat quietly in
armchairs and had access to the internet and reading material. If
a participant failed to fast, or complete the full recording session,
they were excluded.

Two-hour recordings of bowel sounds began between 9 AM

and 9.30 AM. The participants then had a short break. At the start
of the second recording period of 40 minutes, participants re-
ceived a standardmeal: 2 slices of whole meal toast with a portion
of butter (or a single banana if unable to tolerate toast) and a glass
of water. No adverse events occurred.
Signal processing and feature extraction. The 160 minutes of
recordings, from all 4 channels of each participant, were sampled
at 44.1 kHz, equating to approximately 1.6 billion data points.
It is impractical to input this amount of data directly into
a machine learning model for training. Hence, signal pro-
cessing was performed to extract features from the data set and
reduce the sample’s dimensions. The signal processing pro-
cedure began with identification of bowel sounds (17). Sub-
sequently, frequency-domain and time-domain features were
extracted from each bowel sound, and the approximate loca-
tion of origin of each bowel sound was determined. The fea-
tures included many previously identified in the medical (18)
and biomedical engineering literature (19) and novel features
we developed through our modeling of bowel sound genera-
tion (20). The basic process flow of the methodology for
gathering the data and creating a machine learning model is
presented in Figure 1.

Figure 1 Process flow diagram for gathering data, creation of a machine
learning–based classification model, and the 2 stages of testing.

Figure 2 Participant flow for the study.

American College of Gastroenterology Clinical and Translational Gastroenterology
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Feature analysis, model development, and cross-validation.
Recordings from the first 31 IBS and 37 healthy participants were
used to build a model for dichotomous categorization.

The sample sizes selected were limited by time and recruiting
constraints. However, similar numbers have been used success-
fully in the past for proof-of-concept studies (21,22).

Logistical regression analysis was used to identify the optimal
array of features most strongly associated with the 2 classes. The
model provided an IBS Acoustic Index, with values 0.5 and above
predicting IBS, and values below 0.5 predicting healthy, with no
indeterminate results. This was compared with the previous
clinical diagnosis (reference standard) for each participant to
assess accuracy. The model was further fine-tuned using test
results from leave-one-out cross-validation (LOOCV). This it-
erative process was repeated until accuracy plateaued. Internal
evaluation of the optimal model’s performance was provided by
the final LOOCV analysis. The optimal model was subsequently
subjected to other k-fold cross-validation techniques and boot-
strapping to allow additional evaluation.

Independent testing

The diagnostic accuracy of the optimal model of the IBS Acoustic
Index (the index test) was subsequently tested independently.
This independent test was undertaken using the next 15 IBS
participants and 15 healthy participants, with performers of the
index test blinded to the clinical condition of participants (ref-
erence standard). The output of the model (allocation to the IBS
or healthy group) for each participant was subsequently com-
pared with the previous clinical diagnosis (reference standard) by
another researcher. The reference standard had been undertaken
before the study and hence was also performed blinded to the
index test results.

Further validation of the cross-validation testing is provided if
the independent test results lie inside the confidence interval of
the LOOCV results.

Measures of accuracy

The belt provides a dichotomous output based on the IBS
Acoustic Index: a prediction of either IBS or healthy. The results

of both the cross-validation and the independent testing were
recorded in 23 2 contingency tables.We subsequently calculated
sensitivity, specificity, negative predictive value, positive pre-
dictive value, likelihood ratio for positive test results, and likeli-
hood ratio for negative test results for the index test on each
data set.

We investigated whether the accuracy of the test differed for
older participants (over 55 years) vs younger participants, dif-
ferent sexes, healthy range vs high BMI, and for the different
subtypes of IBS using Fisher exact tests and a significance level of
0.05. Analysis was performed in R (23).

Impact of food consumption on sounds

We assessed the effect of food consumption on bowel sounds.We
investigated changes in the number of bowel sounds per second
and the summed amplitude of bowel sounds and looked for sig-
nificant differences (alpha 5 0.05) related to the timing of re-
cording relative to food consumption (fasted or fed) and the
presence or absence of IBS and an interaction using a linearmixed
model performed using the lme4 package (24) and analyzed with
the car package (25) using R (23). For these analyses, individuals
were coded as a random variable, and IBS status and food con-
sumption were fixed effects.

RESULTS

Participants

We received 268 enquiries from potential participants. The
longer phone survey and subsequent enquiries to physicians
revealed that many did not meet our inclusion criteria. Ulti-
mately, 68 participants undertook the index test for model
building, and 30 participants were included in the independent
testing. The flow of participants through the study, including
reasons for lack of inclusion, exclusion, or lack of index test (IBS
Acoustic Index), and the index test results for the 2 groups are
provided in Figure 2.

Demographics

The demographic and clinical characteristics of the healthy and
IBS groups are given in Tables 1 and 2, respectively. There were

Table 1 Demographics of healthy participants

Male Female Total Age range Mean age BMI range Mean BMI

Model 14 23 37 20–63 43.9 18.6–28.4 24.3

Test 5 10 15 18–62 26.7 18.9–31.9 22.5

Overall 19 33 52 18–63 38.9 18.6–31.9 23.8

BMI, body mass index.

Table 2 Demographics of IBS participants

Transgender Male Female Total Age range Mean age BMI range Mean BMI IBS-M IBS-D IBS-C

Model 0 5 26 31 22–65 39 18.8–36.7 24.9 18 8 5

Test 1 0 14 15 25–55 41.7 20.3–39.4 25.5 11 4 0

Overall 1 5 40 46 22–65 40.8 18.8–39.7 25.1 29 12 5

BMI, body mass index; IBS, irritable bowel syndrome.

Clinical and Translational Gastroenterology VOLUME 10 | MARCH 2019 www.clintranslgastro.com
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more female participants than males in both groups reflecting
their willingness to participate and the fact that women are more
likely to report IBS symptoms (1). We had 1 transgender par-
ticipant, who was in the process of transitioning from female to
male. The mean age and mean BMI were similar in the 2 groups.
IBS-M was the most common IBS subtype. The subtype was
generally based on patient-reported preponderance of symptoms,
rather than a clinical diagnosis.

Model and test results

Model building and cross-validation. The optimal model in-
corporated both time-domain and frequency-domain features
and their statistical distributions. The features were derived from
both the first recording during the fasted state and the second
recording after food consumption and from recordings at all 4
quadrants (26). Two key features were related to the rate of
contraction and the motility of the gut, the component interval
time, and the burst number. These have been described pre-
viously in our mathematical model of bowel sound generation
(20). Amplitude during the fasting recording was also an im-
portant feature. Amplitude (or more precisely, a sound index
describing the summed amplitude) has previously proved useful
in determining the cycles of the MMC (17), and it is known that
the MMC changes with IBS (27). Other features were derived
from the frequency-domain and relate to the spectrum shape and

bandwidth, waveform shape, and the subband energy ratios of the
bowel sounds.

The LOOCV analysis demonstrated both high sensitivity
and specificity for the optimal model (Tables 3 and 4). The
overall accuracy, positive likelihood, and negative likelihood of
the trained model were 91%, 11.0, and 0.11, respectively
(Table 4).

Other k-fold cross-validation methods provided overall ac-
curacy values ranging from 0.82 to 0.91 (Tables 5 and 6). The
bootstrapping results from 300 repetitions were also similar
(Tables 6 and 7).
Independent test.The IBSAcoustics Indexmodel performedwell
on the independent test, demonstrating 87% sensitivity and
specificity (Figure 3, Tables 8 and 9). The 2 groups were generally
separated by a large margin under the model (Figure 3). All the
accuracy measures were located inside the 95% confidence
intervals for the corresponding LOOCV results (Tables 4 and 9).

There was no significant association between sex (male or
female), IBS subtype (IBS-D or IBS-M), age (.55 years or not),
and BMI (healthy range or 25 and over) and the accuracy rate of
the test determined in the independent testing group (Fisher exact
test P values were 1, 1, 0.25, and 1, respectively). However, it
should be noted that the power was extremely low because of
small samples of male, IBS-D subtype, and older participants
(Tables 1 and 2).

Table 3 Performance of the IBS Acoustic Index model in

predicting IBS, as assessed by leave-one-out cross-validation of

the optimal model

Condition

TotalIBS Healthy

IBS Acoustic Index prediction

IBS 28 3 31

Healthy 3 34 37

Total 31 37 68

IBS, inflammatory bowel syndrome.

Table 4 Evaluation measures of the leave-one-out cross-

validation for the irritable bowel syndrome Acoustic Index model

Evaluation measure Value 95% CI

Sensitivity 90% 75.1–96.7

Specificity 92% 78.7–97.2

PPV 90% 75.1–96.7

NPV 92% 78.7–97.2

Accuracy 91% 81.8–96.7

LR1 11.14 3.74–33.16

LR2 0.11 0.04–0.31

CI, confidence interval; LR1, likelihood ratio for positive test results; LR2,
likelihood ratio for negative test results; NPV, negative predictive value; PPV,
positive predictive value.

Table 5 Evaluation measures of the irritable bowel syndrome

Acoustic Index model derived from 7 different k-fold cross-

validation methods

k Accuracy, % Sensitivity, % Specificity, % LR1 LR2

3 82.4 87.1 78.4 6.5 0.153

5 83.8 80.6 86.5 6.0 0.223

10 83.8 80.6 86.5 6.0 0.223

15 89.3 90.3 89.2 8.4 0.109

20 90.8 90.3 91.9 11.1 0.105

30 90.5 90.3 91.9 11.1 0.105

68 91.2 90.3 91.9 11.14 0.105

LR1, likelihood ratio for positive test results; LR2, likelihood ratio for negative
test results.

Table 6 Performance of the IBS Acoustic Index model in

predicting IBS, as assessed by bootstrapping (300 repetitions) of

the optimal model

Condition

TotalIBS Healthy

IBS Acoustic Index

IBS 8234 1,059 9,293

Prediction

Healthy 1,066 10,041 11,107

Total 9,300 11,100 20,400

IBS, inflammatory bowel syndrome.

American College of Gastroenterology Clinical and Translational Gastroenterology
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Impact of food consumption on sounds

Bowel sound density was significantly higher for the healthy
individuals than the IBS participants (x2 5 4.04, P 5 0.045;
Figure 4) and after food consumption (x2 5 56.6, P , 0.001;
Figure 4), but there was no significant interaction between IBS
status and the effect of food (x2 5 0.23, P 5 0.629).

Similarly, more higher amplitude sounds were recorded from
study participants after eating (Figure 5). There was a significant
difference in the summed amplitude between the 2 recording
periods (x2 5 22.17, P, 0.001) and in IBS individuals relative to
the healthy group (x2 5 8.02, P5 0.005). Again, we did not find
a significant interaction between IBS status and the effect of food
(x2 5 3.68, P 5 0.055).

DISCUSSION

A new model

We successfully developed a logistic regression machine learn-
ing model that characterized healthy and IBS conditions based

on a calculated IBS Acoustic Index derived from 26 bowel
sounds features. Both internal validation using the data set used
to build the model (LOOCV, other k-fold cross-validation
methods and bootstrapping) and external validation (in-
dependent testing on new participants) showed high levels of
accuracy for the model.

Our approach was innovative with regard to the methods of
bowel sound analysis used. Previously, Craine’s research group
had used short recordings of 2 minutes and only simple sound
features. They used the sound-to-sound interval and the pro-
portion of lower frequency sounds for characterization of IBS
(12,14). LikeCraine et al. (12), we found that therewas an increase
in bowel sounds after feeding. We also found that there were
generally more louder sounds immediately after food consump-
tion. However, our recordings were much longer, and we used
a much broader range of features (8 time-domain and 18
frequency-domain features) in the final model (26). Sounds are
generated as the contents move through the entire length of the
digestive system, especially by the movement of gases through
valves (20,28). Given that IBS corresponds with changes in gut
motility, the amount of water, and the gases in the contents, it is
unsurprising that a variety of sound features characterize this
condition. We discovered that 3 key features, the amplitude,
burst, and the component interval time, which relate to theMMC

Table 7 Evaluation measures of the irritable bowel syndrome

Acoustic Index model derived from bootstrapping (300

repetitions)

Evaluation measure Value 95% CI

Sensitivity 89% 87.9–89.2

Specificity 90% 89.9–91.0

PPV 88.6% 87.9–89.2

NPV 90.4% 89.8–90.9

Accuracy 90% 89.2–90.0

LR1 9.28 8.759–9.832

LR2 0.13 0.12–0.134

CI, confidence interval; NPV, negative predictive value; PPV, positive predictive
value; LR1, likelihood ratio for positive test results; LR2, likelihood ratio for
negative test results.

Figure 3 Irritable bowel syndrome Acoustic Index results for the 30 consecutive independent test participants.

Table 8 Performance of the IBS Acoustic Index model in

diagnosing IBS in the independent test

Condition

TotalIBS Healthy

IBS Acoustic Index

IBS 13 2 15

Prediction

Healthy 2 13 15

Total 15 15 30

IBS, inflammatory bowel syndrome.

Clinical and Translational Gastroenterology VOLUME 10 | MARCH 2019 www.clintranslgastro.com
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and motility, contributed greatly to the model (17,20). Further
work is needed to elucidate exactly how all the features relate to
the IBS condition.

We also used amethod of machine learning, which has been
applied widely in other fields, but has not previously been used
to build models enabling bowel sound analysis for diagnosis.
We used logistic regression–based machine learning (a simple
artificial neural network). Other researchers have used other
neural networks and wavelets (29), autogressive moving
average (AMRA)-based machine learning (30), a hybrid ex-
pert system (31), a fuzzy logic system (32), a back propagation
neural network (33), and a Bayesian classification method (15)
to either identify bowel sounds or for diagnosis of GI
conditions.

Implications for clinical practice

The current gold standard for diagnosis of IBS is a positive di-
agnosis arrived at using the Rome IV criteria. A positive diagnosis
builds confidence in the diagnosis for the patients, improves the
clinician-patient relationship, and, hence, sets the groundwork

for better management (11). Furthermore, the criteria are less
invasive and costly than using colonoscopy to diagnose IBS
through exclusion.

However, it has been suggested that although symptom-based
diagnostic criteria may be useful for participant recruitment to
clinical trials, they are less relevant to clinical practice. The criteria
are seen as unwieldy, and validation studies suggest that they only
perform modestly well in identification of IBS, especially sensi-
tivity (34).

Researchers have investigated other options, but none are yet
considered practical for or have been adopted in widespread
clinical practice. In the most recent systematic review of IBS di-
agnosis, Sood et al. (7) reviewed the accuracy of diagnosing IBS
with symptoms, biomarkers, and/or psychological markers. Us-
ing any single method provided only modest performance.
Approaches combining symptoms and markers, while complex,
showed best performance. However, no one combinationmethod
met best standards for accuracy of both positive and negative test
results.

Our results indicate that sound analysis may offer a new
and accurate method for positive diagnosis of IBS. Our belt
andmodel offered both high sensitivity and high specificity for
IBS in both internal cross-validation analysis and for in-
dependent test cases when differentiating between healthy
and IBS individuals. Furthermore, the belt is noninvasive and
easy to use.

The intended use of the test is in primary care. It may offer an
alternative to the Rome IV diagnostic criteria, but may also be
used in combination with them. As with Rome IV, many clini-
cianswould also choose to conduct baseline blood tests (including
C-reactive protein) and stool tests (including fecal calprotectin
and culture) for exclusion of infections, celiac disease, and in-
flammatory bowel disease (5). Such an approach provides an
alternative to colonoscopy and the process of diagnosis by ex-
clusion for IBS for patients without any red flags. Future work
may also allow expansion of the sound analysis approach to di-
agnosis of organic diseases, such as celiac disease and in-
flammatory bowel disease.

Table 9 Accuracy measures for the irritable bowel syndrome

Acoustic Index in the independent test using 15 irritable bowel

syndrome participants and 15 healthy participants

Accuracy measure Estimate 95% CI

Sensitivity 87% 62.1–96.3

Specificity 87% 62.1–96.3

PPV 87% 62.1–96.3

NPV 87% 62.1–96.3

Accuracy 87% 69.3–96.2

LR1 6.5 1.762–23.979

LR2 0.15 0.042–0.568

CI, confidence interval; LR1, likelihood ratio for positive test results; LR2,
likelihood ratio for negative test results; NPV, negative predictive value; PPV,
positive predictive value.

Figure 4Quantity density distribution. The distribution of 46 irritable bowel
syndrome participants and 52 healthy participants across bowel sound
quantity density (bowel sounds per second) for the 2 recordings (120
minutes fasting and 40 minutes fed) from the upper right quadrant. The
distributions were smoothed to a normal distribution.

Figure 5 Summed amplitude distribution. The distribition of 46 irritable
bowel syndrome and 52 healthy study participants across summed
amplitude values for all bowel sounds recorded at the lower right quadrant,
during the fed and fasted periods. Summed amplitude values were scaled
to compensate for the longer duration of the recording made during the
fasting period. The distributions were smoothed to a normal distribution.
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Study limitations

Ours was a preliminary study. We used a case-control design
including healthy participants. Such studies are generally
regarded as less reliable than cross-sectional prospective studies
because of spectrum bias. However, it is a good starting point
and offers proof of concept that a machine learning approach
can provide a new method to characterize GI conditions, such
as IBS.

The sample sizes were limited by time and recruiting con-
straints. However, similar numbers have been used successfully in
the past in other proof-of-concept studies to characterize path-
ological conditions using a machine learning approach (21,22).
Our results (especially for external validation) exhibited large
confidence intervals indicating statistical uncertainty. However,
the fact that we found consistent results withmultiple methods of
internal validation (multiple k-fold cross-validation analyses and
bootstrapping), and independent testing offers increased confi-
dence in the accuracy of our results. These methods included
LOOCV, which is a particularly rigorous approach for internal
validation.

We included study participants with a range of IBS subtypes
and from a wide of ages (18–65 years) and BMI values
(18.5–40.5). These are broad, but we cannot currently generalize
beyond these ranges. Certainly, bowel motility is known to de-
crease with age, and this could impact on the utility of the belt for
IBS diagnosis in the elderly. In addition, the majority of our
participants were younger than 55 years (with only 2 aged 55
years or older in the independent testing group).We had also had
limited numbers of male participants (5 in the independent
testing group). It would be valuable to reassess the effect of age,
sex, and BMI on the accuracy through a larger study with in-
creased power.

Similarly, we had relatively few study participants with self-
reported constipation-predominant IBS. We were unable to as-
sess the effect of subtype with a high level of power. In addition,
our assessment of subtype was based on self-report of pre-
dominant symptoms. Use of the Rome IV criteria for this as-
sessment would be preferable, as would be direct comparison to
the Rome IV criteria generally.

We had a wide range of exclusion criteria including comor-
bidities that may affect bowel motility and GI conditions. Addi-
tional research is needed before we can generalize to these groups.

Our belt and model offer hope of a new, more accurate al-
ternative for positive and noninvasive diagnosis of IBS in primary
practice. Further cross-sectional prospective studies in the pri-
mary care setting with a field prototype are needed for validation,
but the sensitivity and specificity demonstrated in this pre-
liminary study are excellent. Expanding the capabilities of the belt
to allow differentiation between IBS and other diseases would
offer even greater impact.

CONFLICTS OF INTEREST

Guarantor of the article: K. Mary Webberley, BA, MA, PhD.
Specific author contributions:X.D.: conducting the study including
the signal processing andmachine learning components and drafting
the manuscript. He has approved the final draft submitted. G.A.:
conducting the study, especially hardware development, and editing
the manuscript. He has approved the final draft submitted. K.M.W.:
planning and conducting the study including coordinating
recruitment, interpreting the findings, and drafting the manuscript.
She has approved the final draft submitted. A.-J.I.: planning the

study, interpreting the findings, and drafting themanuscript. She has
approved the final draft submitted. A.O.: planning the study, in-
cluding providing engineering expertise, and editing the manuscript.
He has approved the final draft submitted. B.J.M.: planning the study,
interpreting the findings, and editing the manuscript. He has ap-
proved the final draft submitted.
Financial support: The study was funded by the McCusker
Charitable Foundation, but the work was completely independent.
The Foundation played no role in the study design, collection,
analysis, and interpretation of the data and in the writing of the
report.
Potential competing interests: B.J.M. received research funding
for the project. A.O. received research funding via an agreement
between UWA and ECU. X.D., G.A., and K.M.W. were employed
by UWA to work on the research project. All the authors are
signatories to an intellectual property inventor and contributor
agreement with UWA and would benefit from any revenues
arising from future successful development and
commercialization of the belt.

ACKNOWLEDGMENTS
The authors are grateful to the McCusker Charitable Foundation
for funding, to the study participants for their time, to Dr. Jason
Kennington for help with statistical analysis, and toDr. Josephine
Muir and reviewers for providing helpful comments on the
manuscript.

Study Highlights

WHAT IS KNOWN

3 IBS is typically a diagnosis of exclusion after patients undergo
colonoscopy to exclude organic disease.

3 There is a need for a new cost-effective and noninvasive test
for positive diagnosis of IBS.

WHAT IS NEW HERE

3 We developed a machine learning–based model to
characterize IBS and healthy participants based on bowel
sound features.

3 We achieved proof of concept. Our independent testing
demonstrated 87% sensitivity and specificity in identifying
IBS.

TRANSLATIONAL IMPACT

3 The results indicate real promise in the use of bowel sound
analysis for the positive diagnosis of IBS. The approach could
be used in combination with existing screening tests for
organic disease.

3 Apositive test result would improve the confidence of patients
in the diagnosis, thereby creating a better foundation for
management.

3 The results also bring potential to reduce the burden of
unnecessary colonoscopies.

3 We hope in the future to expand the use of sound analysis to
identification of organic disease for even greater clinical
impact.
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