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Application of the CLAYFF and the DREIDING Force Fields for 

Modelling of Alkylated Quartz Surfaces 
Aleksandr Abramov*, Stefan Iglauer, School of Engineering, Edith Cowan University, 270 Joondalup 

Drive, Joondalup, WA 6027, Western Australia, Australia 
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Abstract 
To extend applicability and to overcome limitations of combining rules for non-bond potential 

parameters, in this study CLAYFF and DREIDING force fields are coupled at the level of atomic site 

charges to model quartz surfaces with chemisorpt hydrocarbons. Density functional theory and Bader 

charge analysis are applied to calculate charges of atoms of the OC bond connecting quartz crystal and 

an alkyl group. The study demonstrates that the hydrogen atom of the quartz surface hydroxyl group 

can be removed and its charge can be redistributed among the oxygen and carbon atoms of the OC bond 

in a manner consistent with results calculated at the density functional level of theory. Augmented with 

modified charges of the OC bond, force fields can then be applied to a practical problem of evaluation 

of the contact angle of a water droplet on alkylated quartz surfaces in a carbon dioxide environment, 

which is relevant for carbon geo-sequestration and in a broader context of oil and gas recovery. 

Alkylated quartz surfaces have been shown to be extremely hydrophobic even when the surface density 

of hydroxyl groups is close to the highest naturally observed density of 6.2 OH groups per square 

nanometre. 
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Introduction 
In realistic implementations of carbon capture and storage technology, coal beds and depleted oil or gas 

reservoirs are considered possible storage mediums 1-2. Within these formations mineral surfaces aged 

in oil, alkylated surfaces with chemisorpt hydrocarbons, and composed of organic matter coal are 

interfaces encountered by stored CO2. Experimental studies indicate that in these structures surfaces of 

minerals are in the best case intermediate wet and can be strongly CO2-wet 3-4. Recent experiments have 

shown that even minute concentrations of organics adsorbed on crystal surfaces can change their 

wetting behaviour 5. To understand the wetting of minerals in CO2 atmosphere at the atomistic level, 

molecular dynamics and force fields are widely used 6-18. Some force fields are specifically designed to 

reproduce properties of crystals and minerals, like the BKS (van Beest, Kramer, van Santen) potential 
19, the INTERFACE force field 20 or the CLAYFF force field 21. Others are well suited to reproduce 

properties of organic molecules or hydrocarbons, for example the MM3 22, the MM4 23 and the 

DREIDING 24 force fields. However, it is not always possible to couple these force fields using the 

combining rules for parameters of non-bond potentials only, e.g. the Lorentz-Berthelot rules 25-26. The 

most obvious case where this coupling is not straightforward is when organic molecules are chemisorpt 

on the mineral surface. When the mineral is quartz, the second most abundant mineral in the Earth's 

continental crust 27-28, the formation of the OC bond linking the crystal and the organic molecule creates 

a problem. Charges on both atomic sites of the bond may not be supplied by either of the force fields 

or may not correspond to the required chemical environment. 

In computational chemistry in general and classical molecular dynamics in particular, charge is the first 

order parameter that affects and defines interactions between atomic sites. Electrostatic interactions are 

long range 29 and have significant impact on calculated properties and molecular geometries. Further to 

this, partial charges are sometimes derived to reproduce known thermodynamic data 30-32. Therefore, it 

follows that assignment of correct partial charges to atomic sites is of primary importance for obtaining 

physically meaningful results from molecular dynamics simulations. 
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In this work the researchers utilize the predictive capabilities of DREIDING and CLAYFF force fields 

in realms of organic molecules and minerals, respectively, and further enhance the domain of their 

applicability by augmenting them with charges on atomic sites of the polar OC bond connecting the 

quartz crystal to an alkyl group. Modified using density functional theory, force fields are then applied 

to predicting the contact angle of a water droplet on alkylated quartz surfaces in carbon dioxide 

atmosphere. These force fields have been selected because of their versatility in their corresponding 

areas, covered range of organic molecules and minerals, and because of their compatibility in the 

approach in handling electrostatics (interactions between partial charges versus interactions between 

dipoles of polar bonds). 

Computational Methodology 
A variety of computational methods ranging from approaches to compute the electronic structure of 

periodic systems to classical molecular dynamics have been applied in this research. Density Functional 

Theory (DFT) calculations were performed with version 6.3 of the Quantum ESPRESSO suite of 

computer codes. From the suite the PWscf and PostProc programs 33-34 were used. The Bader charge 

analysis 35 was performed with version 1.03 of "Code: Bader Charge Analysis" 36-39. The DL_POLY 

4.08 package for general purpose parallel molecular dynamics simulations was applied to perform 

classical molecular mechanics computations 40-41. The DL_POLY Graphical User Interface was used to 

prepare a model of C5H11 group. Visualizations of the simulation results were created with VMD 42 and 

VESTA 43 software. The VESTA program was also used for manipulations with periodic and molecular 

structures. 

In all classical molecular dynamics simulations the velocity Verlet algorithm 44 was used to integrate 

the equations of motion. The time step in all simulations was set to 2 fs. The Nose-Hoover thermostat 

and barostat 45-46 with the relaxation constants 0.05 and 0.5 ps, respectively, were used in the NPT 

simulations. The Nose-Hoover thermostat with the relaxation constant 0.05 ps was used in the NVT 

simulations. Electrostatic interactions were calculated using the smoothed particle mesh Ewald 

summation 47-48. Distance for the interactions cutoff was fixed to 17 A in all simulations. The force field 

for molecular dynamics simulations was constructed as a combination of several potential models. 

Quartz crystal, the hydroxylated quartz surface and the Simple Point-Charge (SPC) water 49 were 

modelled with parameters of the CLAYFF force field 21. Carbon dioxide was represented by the 

Elementary Physical Model (EPM2) 50. Chemisorpt pentyl groups were simulated with the DREIDING 

force field 24. Transferable ab-initio DFT calculations, where the constraints on the exchange-

correlation hole are used to derive the energy functional 51, were used to rationalize parameters applied 

for coupling the CLAYFF and the DREIDING force fields, specifically the charges on atoms of the OC 

bond connecting alkyl groups to quartz. Detailed specifications of used force fields and computational 

parameters are provided in the Supporting Information. 

Results and Discussion 

Coupling of the CLAYFF and the DREIDING Force Fields 

We consider the fully hydroxylated quartz surface 52-54 as the starting point to construct alkylated 

systems. The surface is described in a consistent way by the CLAYFF force field with all atomic species 

having certain charges and at the same time providing overall charge neutrality. To model an alkylated 

quartz surface we populate it with pentyl groups which are described by the DREIDING force field 

where all atomic species are neutral. To integrate a pentyl group on top of the surface a hydrogen atom 

of the silanol group has to be removed to create the OC bond where the oxygen atom belongs to the 

surface and the carbon atom belongs to the pentyl rest, see Figure 1. Note that one hydrogen atom of 

the pentane molecule has to be removed, to form the C5H11 group. These manipulations create alkylated 

quartz surfaces with chemisorpt pentyl groups and frustrate overall charge neutrality. 
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Figure 1. Conceptual illustration of the force fields coupling problem. White balls - hydrogen atoms, red balls - 

oxygen atoms, light blue balls - carbon atoms, yellow balls - silicon atoms. Top and side views of the quartz 

surface/crystal are shown on the left, a side view of the alkylated quartz is shown on the right. The polar OC 

bond is highlighted with dashed ellipses. FF stands for Force Field. 

The charge neutrality is violated by the removal of the hydrogen atom from a silanol group which in 

the CLAYFF force field has a positive charge of 0.425 e. Accompanying this modification, the creation 

of a polar OC bond should compensate for the charge imbalance. To make physically meaningful 

corrections to combined CLAYFF and DREIDING force fields we use DFT to calculate how much of 

the removed positive charge should be assigned to the carbon atom and how much of it should remain 

with the oxygen atom of the OC bond. 

Modelling of the OC bond is performed within a sufficiently large but scaled down system studied here 

with classical molecular dynamics. This representative model is built as follows. Out of the 

orthorhombic quartz crystal cell 55 a super cell 2x1x1 is constructed (overall 36 atoms, 12 silicon atoms 

and 24 oxygen atoms). Using this supercell the following DFT calculations are then executed in three 

stages. In the first stage the lattice vectors of the crystal are allowed to be changed and optimized during 

accurate relaxation of ionic positions of the cell. In the second stage a three-layer slab is constructed 

with fully hydroxylated surface and integrated pentyl group, 30 A of vacuum space is provided above 

the surface, see Figure S1 in the Supporting Information. Only ions of this system are then relaxed using 

less demanding computational parameters (see the next paragraph for details) with atoms of the bottom 

layer (one height of the primitive unit cell) of the slab being fixed. In the third stage the charge density 

distribution of the relaxed slab is determined with an accurate single point energy calculation. 

This single point energy calculation results in the most important output for the purpose of this study, 

the distribution of the charge density. Thus, in the third and in the first (to get accurate lattice constants) 

Alkylated quartz: the DREIDING FF + the CLAYFF

Hydroxylated alpha-quartz: the CLAYFF

Pentane molecule: the DREIDING FF

5 A
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computational stages kinetic energy cutoffs for plane waves and for charge density were set to high 

values of 40 and 1500 Ry, respectively. In the second stage these parameters were set to 20 and 700 Ry, 

respectively. To sample the first Brillouin zones in reciprocal space we used Monkhorst-Pack meshes 
56 5x5x7, 3x3x1 and 5x5x1, for the first through the third stages of calculations, respectively. We used 

the projector augmented wave method (PAW) 57 potentials H.pbe-kjpaw_psl.0.1.UPF, C.pbe-n-

kjpaw_psl.0.1.UPF, O.pbe-n-kjpaw_psl.0.1.UPF and Si.pbe-n-kjpaw_psl.0.1.UPF from 58. In all DFT 

calculations the electron exchange and correlation energy was approximated by the Perdew-Burke-

Ernzerhof functional 51. 

 

Figure 2. Charge density distribution of the three-layer quartz slab computed at the DFT level of theory, views 

along x (left) and y (right) axises. White balls - hydrogen atoms, light blue balls - carbon atoms, red balls - 

oxygen atoms, yellow balls - silicon atoms. Grey halo shows the iso-surface of the charge density, the iso-value 

was chosen such that the charge clouds around the oxygen and silicon atoms just start to overlap. 

Computed lattice constants of the unit cell of the quartz crystal amounted to 9.8389x8.5175x5.4209 A. 

These lattice constants are in perfect agreement with the crystallographic lattice constants obtained from 
59, they are only by 0.03 to 0.3% larger. The calculated charge density distribution of the model system 

is shown in Figure 2. Within the crystal, the electron charge density is predominantly localized around 

oxygen atoms. Hydroxyl oxygen atoms are the main attractors of electron density as well. The Bader 

analysis reveals a quantitative picture of charge distribution around the OC bond connecting the quartz 

crystal and the C5H11 group, thus the charge of the oxygen atom is -1.311489 e, and charge of the carbon 

atom is 0.338301 e. This positive carbon charge corresponds to 0.796 of the charge on the hydroxyl 

hydrogen of the CLAYFF force field. We assign this fraction of the CLAYFF hydroxyl hydrogen charge 

to the carbon of the OC bond for two reasons. The first is that this figure is the only physically 

substantiated number which minimizes absolute charge difference between our modified force field and 

the DFT results for two atoms of the OC bond, see Figure 3. The second reason is that the rest of the 

hydroxyl hydrogen charge assigned to the oxygen of the OC bond renders the atom approximately 90% 

as negative (-0.863301 e) as the other hydroxyl oxygen of the geminal silanol group (-0.95 e) of the 

5 A
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CLAYFF force field. This 90% proportion agrees well with results of the Bader charge analysis where 

the charges on these two oxygen atoms of the same geminal silanol group are -1.311489 

and -1.477656 e, respectively. With these operations we resolved two problems related to the coupling 

of the CLAYFF and the DREIDING force fields. We replaced the hydroxyl hydrogen with carbon of 

the pentyl group, and redistributed the charge of the replaced hydrogen atom between the carbon and 

the oxygen atoms of the OC bond in a manner consistent with the DFT results. 

 

Figure 3. Absolute charge difference between modified force field and DFT results for the two atoms of the OC 

bond. FF stands for Force Field. 

In addition, for comparison we report charges on some other atoms and geometrical characteristics of 

some bonds obtained at the DFT level of theory. Excluding carbon of the OC bond, the average charges 

on carbon and hydrogen atoms of the C5H11 group were found to be -0.0298 and 0.0311 e, respectively. 

This is in alignment with the DREIDING force field where these charges are set to zero. Average CH 

and CC bond lengths of the C5H11 group amounted to 1.1637 and 1.52998 A, respectively. OC and SiO 

bond lengths were calculated to be 1.5024 and 1.6689 A, respectively. The DREIDING force field 

demonstrates good agreement with these values as well, reproducing from 89 to 100% of the bond 

lengths. 

Summing up the results of this DFT study we conclude that the obtained charge distribution for the OC 

bond connecting quartz crystal and the alkyl rest can be applied to investigate properties of quartz 

surfaces with chemisorpt hydrocarbons. The charge of the replaced hydroxyl hydrogen of the CLAYFF 

force field is distributed among the oxygen and carbon atoms of the created OC bond in proportion 

0.204 to 0.796, which results in charges on the oxygen and the carbon atoms of -0.863301 and 

0.338301 e, respectively. Such charge distribution stems from the electronic structure calculations, and 

couples the CLAYFF and the DREIDING force fields, thus preserving overall system neutrality without 

a need to introduce arbitrary ions. 

Application of Modified Force Fields to Alkylated Quartz Surfaces 

As an example of the application of coupled in described above manner the CLAYFF and DREIDING 

force fields, we examine two hydroxylated quartz surfaces with pentyl group concentrations 1.45 and 

2.89 C5H11/nm2, see Figure 4. The alkylated surfaces were constructed using fully hydroxylated (001) 

-quartz surface previously reconstructed in 52-54. Using the primitive unit cell of α-quartz 59 its 

orthorhombic cell was produced according to 55. Out of this cell a large enough super cell was created 
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to equilibrate the quartz crystal at 1 atm pressure and 300 K temperature over 105 steps in the NPT 

ensemble. Obtained crystal structure and lattice constants were then used to create four-layer (four 

primitive unit cell heights) quartz slab which was relaxed at 10 K for 105 steps in the NVT ensemble to 

obtain the initial ordered surface structure. Atoms of the basal layer (one primitive unit cell height) of 

the slab were fixed to emulate the bulk crystal in all calculations (the slab and the fully assembled 

systems). 

 

Figure 4. Top layers of the surface unit cells of hydroxylated quartz with a pentyl surface group concentration 

of 1.45 (left) and 2.89 C5H11/nm2 (right). White balls - hydrogen atoms, light blue balls - carbon atoms, red 

balls - oxygen atoms, yellow balls - silicon atoms. 

Two models containing a water droplet, CO2 gas and quartz with integrated surface pentyl groups were 

prepared next. Simulations were performed at 300 K and 10 MPa of CO2 pressure. The number of CO2 

molecules corresponding to this PT-conditions for every model was determined according to 60 and 

amounted to 6984 and 6677 for surfaces with a C5H11 density of 1.45 and 2.89 pentyl groups per square 

nanometre, respectively. Water density 1000 kg/m3 was used. Uniformly distributed carbon dioxide and 

water molecules were pre-equilibrated at 300 K in 100x104x60 and in 50x50x50 A boxes, respectively. 

Dynamics of these two systems were modelled in the NVT ensembles, with 5  105 steps performed for 

CO2 and 105 steps for H2O. Then, a half sphere of radius 26 A atop of C5H11 groups was filled with 

water molecules from the above described pre-equilibration box. 946 H2O molecules fit into the "water 

droplets", which were placed in the centre of the slabs. The rest of the space up to 60 A above C5H11 

groups was filled with pre-equilibrated carbon dioxide. Vacuum space of 70 A was provided on top of 

60 A above the C5H11 groups. All simulations were performed with periodic boundary conditions in x 

and y directions, and in z direction a repulsive force was applied at 60 A above the tip level of C5H11 

groups: 

𝐹 = 𝑘(𝑧0 − 𝑧), 𝑧 > 𝑧0, 

where k=1 kcal/mol - is the force constant, and z0 is the position of the repulsive potential. 

The distance to the repulsive potential of 60 A atop of C5H11 groups ensures that the contact angle at 

the surface is not affected by perturbations in the CO2 density caused by the wall. 

Dynamics of the prepared quartz-C5H11-H2O-CO2 systems were simulated in NVT ensemble. Overall 

1.5  106 production steps (3 ns simulation time) were performed for every system preceded by 3  105 

equilibration steps. Duration of the production run for the surface with high alkyl surface density was 

chosen to provided sufficient time for the water droplet to detach from the surface and form a sphere 

floating in carbon dioxide. For the sake of fair comparison, simulations for the system with low alkyl 
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surface concentration were of the same length. Dimensions of the simulation boxes were 

99.89x103.81x159.17 A. Figure S2 in the Supporting Information shows the initial simulation setups 

for two surfaces with pentyl surface densities of 1.45 and 2.89 C5H12/nm2. 

After the production runs an additional 5  104 simulation steps were performed at the same conditions. 

Five simulation snapshots separated by 104 steps were taken from these final runs for the analysis. The 

contact angle was calculated using the water iso-density charts constructed in coordinates height versus 

radius. Every data point of the iso-density chart represents a position in space where the water density 

is half of its normal density (0.033/2 water molecules per cubic angstrom). By varying the radius and 

the position of the centre, circles were fitted to the iso-density contours in such a way that a sum of 

absolute differences between the data points and the circle's profile is minimized, see Figure 5. The 

BFGS algorithm 61-64 was used for the minimization. The contact angle was next calculated as the angle 

of the tangential line to the circle's contour at its interception point with the surface. The surface was 

set at the tip level of pentyl groups which was found as the average position of the top three hydrogen 

atoms of all C5H11 groups in the snapshot. 

In contrast to an extremely hydrophilic fully hydroxylated quartz surface, the surface with a low 

concentration of surface pentyl groups (1.45 C5H11/nm2) was found to be intermediate wet and the 

surface with a high concentration of surface pentyl groups (2.89 C5H11/nm2) was found to be extremely 

hydrophobic. The contact angles at the tip level of pentyl groups are 118.6 (+/- 2.7) and 180.0 for 

the surfaces with low and high pentyl surface density, respectively, see Figure 5; corresponding 

simulation snapshots are shown in Figure 6 and Figure 7. These results qualitatively agree with 5, where 

a calcite surface aged in a weak steric acid solution changed its wettability regime from hydrophilic 

(contact angle less than 90) to hydrophobic (contact angle more than 90) at 323 K and 10 MPa of CO2 

pressure. 

 

Figure 5. Circles fitted to the water iso-density for the hydroxylated quartz surfaces with a pentyl concentration 

of 1.45 (left) and 2.89 C5H11/nm2 (right). Dashed line shows the tip level of pentyl groups. 
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Figure 6. Simulation snapshot of the quartz surface with a pentyl concentration of 1.45 groups per square nm. 

View along x axis (left) and along y axis (right). The sphere fitted to the iso-density chart is illustrated in light 

purple color. Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. Atoms of the CO2 molecules and of the quartz 

slab are removed for clarity. 

 

Figure 7. Simulation snapshot of the quartz surface with a pentyl concentration of 2.89 groups per square nm. 

View along x axis (left) and along y axis (right). The sphere fitted to the iso-density chart is illustrated in light 

purple color. Water molecules and pentyl groups are shown in VDW representation, white balls - hydrogen 

atoms, red balls - oxygen atoms, light blue balls - carbon atoms. Atoms of the CO2 molecules and of the quartz 

slab are removed for clarity. 

Interestingly, at a high pentyl surface density of 2.89 C5H11/nm2, the water droplet loses contact with 

the surface and floats in the CO2 phase. At this pentyl concentration the hydroxyl density is two times 

higher, 6.36 OH/nm2. Note that similar hydroxyl concentration has been measured on real hydroxylated 

quartz surfaces under ambient conditions: 4.5-6.2 OH groups per nm2 65, 4.6-4.9 OH groups per nm2 66. 

In contrast to these latter hydrophilic surfaces with almost the same OH density, the alkylated surface 

is completely hydrophobic. It is thus clear that pentyl groups, even at low concentration, have a dramatic 

effect on the contact angle. 

Summary and Conclusions 
To model quartz surfaces with chemisorpt hydrocarbons the CLAYFF 21 and DREIDING 24 force fields 

were coupled at atomic site charge level using the DFT and the Bader charge analysis. The charge of 

the hydroxyl hydrogen substituted with a pentyl group was reallocated to the newly formed oxygen-

carbon bond connecting the C5H11 group and quartz surface. Redistribution of the charge in proportion 

0.796 to 0.204 for the carbon and the oxygen atoms, respectively, is shown to be consistent with the 

DFT results in terms of the absolute charge difference between the DFT charges and the force field 

charges on atoms of the OC bond, and in terms of the relative charges on both oxygen atoms of the 
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geminal silanol group. Our force field charges on the oxygen and the carbon atoms are computed to be 

-0.863301 and 0.338301 e. 

Augmented with modified charges of the OC bond, the CLAYFF and the DREIDING force fields were 

applied to solve a practical problem of calculating the contact angle of a water droplet on alkylated 

quartz surfaces in a CO2 environment. Alkylated quartz surfaces are shown to be hydrophobic despite 

their high surface concentration of hydroxyl groups. For pentyl surface density of 1.45 C5H11/nm2 the 

contact angle at the tip level of pentyl groups was found to be 118.6, and for the pentyl surface density 

of 2.89 C5H11/nm2, the contact angle amounted to 180 (thus the water drop was floating in CO2). 

With the OC bond parameters obtained here, a systematic computational study of the influence of the 

surface density of chemisorpt hydrocarbons on the wettability of hydroxylated quartz is now possible 

and indeed technically required. In addition to this, taking into account a wide range of organic 

molecules sufficiently accurately modelled by the DREIDING force field, studies of quartz surfaces 

with chemisorpt via the OC bond species can also be performed with atomic site charges reported in 

this paper, not only in the context of surfaces' wettability. 

Supporting Information 
Parameters of the force fields, figures of alkylated quartz slab optimized at the DFT level of theory, 

figures of the initial simulation setups. 
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Force Fields 6 

In all simulations water and carbon dioxide molecules were treated as rigid bodies. In the initial 7 

preparation of the hydroxylated quartz surface the OH groups were also modelled as rigid bodies. 8 

Geometries of the rigid bodies were reproduced according to corresponding molecular models and force 9 

fields: CO distance (EPM2 CO2) 1.149 A; OH distance (SPC H2O) 1 A; HOH angle (SPC H2O) 10 

109.47; OH distance (hydroxyl) 1 A. To get convenient for pentyl groups integration onto the surface 11 

orientation of the OH groups involved in the weak hydrogen bonds (pointing slightly upwards, see 1-2), 12 

and to highlight and isolate the weak hydrogen bonds - the place of attachment of the pentyl groups, 13 

only non-bond CLAYFF force field terms were used in the initial preparation of the hydroxylated quartz 14 

surface. All OH bond and Si-O-H angular potentials of the silanol groups were accounted for in the 15 

equilibration and the production runs of the fully assembled systems (alkylated quartz surface, water 16 

droplet, molecules of the CO2 phase). 17 

Parameters of potentials used to model the van der Waals interactions between all atomic species of 18 

studied in this work systems are listed in Table S1. 19 

Table S1. Non-bond potential parameters used in the simulations 3-4. 20 

Atomic species A, A12kcal/mol B, A6kcal/mol q, e m, amu 

C (CO2) 4.31282  104 9.82063  101 0.6512 12.0107 

O (CO2) 3.87857  105 4.98236  102 -0.3256 15.9994 

O (H2O) 6.29342  105 6.25459  102 -0.82 15.9994 

H (H2O) 0 0 0.41 1.0079 

Si (SiO2)) 1.23698  101 9.54288  10-3 2.1 28.0855 

O (SiO2 bridging) 6.293422  105 6.254591  102 -1.05 15.9994 

O (SiO2 

hydroxyl) 
6.293422  105 6.254591  102 -0.95 15.9994 

H (SiO2 

hydroxyl) 

0 0 0.425 1.0079 

C (O-C5H11) 1171341.71 667.516584 0 (0.338301)* 12.0107 

H (O-C5H11) 17198.6333 32.3369279 0 1.0079 

O (O-C5H11) 232115.998 298.083888 -0.863301** 15.9994 

*charge on carbon of the OC bond is shown in brackets (estimated on basis of DFT calculations); 21 

**estimated on basis of DFT calculations. 22 

Parameters in Table S1 correspond to the following analytical expression for the non-bond potential 23 

(U): 24 

𝑈(𝑟) =
𝐴

𝑟12
−

𝐵

𝑟6
, 25 

where r is the interatomic distance. 26 

To convert original CLAYFF parameters (D0, R0) to parameters of provided representation of the 12-6 27 

potential the following formulae were used: 28 
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𝐴 = 𝐷0𝑅0
12, 1 

𝐵 = 2𝐷0𝑅0
6. 2 

The EPM2 potential parameters were converted to parameters of the 12-6 potential using formulae: 3 

𝐴 = 4𝜀𝜎12, 4 

𝐵 = 4𝜀𝜎6. 5 

The interaction parameters between the unlike atoms were obtained as the geometric mean for both A 6 

and B: 7 

𝐴𝑖𝑗 = √𝐴𝑖𝐴𝑗,  8 

𝐵𝑖𝑗 = √𝐵𝑖𝐵𝑗, 9 

where i and j are indices of the unlike atoms. 10 

In fully assembled systems, apart from the rigid bodies (water and carbon dioxide molecules), all bonds 11 

and angles were treated explicitly using bond and angle potentials. Energy of every bond stretch was 12 

described by a harmonic relationship: 13 

𝑈(𝑟𝑖𝑗) =
𝑘1

2
(𝑟𝑖𝑗 − 𝑟0)

2
, 14 

where k1 is the force constant, and r0 represents the equilibrium bond length, see Table S2. 15 

Table S2. Bond stretch parameters used in the simulations 3-4. 16 

Species i Species j k1, kcal/mol/A2 r0, A 

O (SiO2 hydroxyl) H (SiO2 hydroxyl) 1108.2698 1.0 

C (O-C5H11) H (O-C5H11) 700.0 1.09 

C (O-C5H11) C (O-C5H11) 700.0 1.53 

C (O-C5H11) O (O-C5H11) 700.0 1.33 

Si (SiO2) O (O-C5H11) 700.0 1.497 

The Si-O-H angles () of attached to the quartz surface hydroxyl groups were restrained by the harmonic 17 

potential: 18 

𝑈(𝜃) =
𝑘2

2
(𝜃 − 𝜃0)2, 19 

where k2 = 60.0 kcal/mol/rad2 is the force constant, and 0 = 109.47 is the equilibrium bond angle 3. 20 

Bending of the Si-O-C5H11 angles of attached to the quartz surface O-C5H11 groups were modelled and 21 

parametrized according to the harmonic cosine potential: 22 

𝑈(𝜃) =
𝑘3

2
(cos 𝜃 − cos 𝜃0)2, 23 

where k3 = 133.333333 kcal/mol is the force constant, and 0 = 120.0 is the equilibrium bond angle 4. 24 

Bending of all intramolecular angles of the O-C5H11 groups were modelled and parametrized using the 25 

harmonic cosine potential: 26 

𝑈(𝜃) =
𝑘4

2
(cos 𝜃 − cos 𝜃0)2, 27 
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where k4 = 112.499693 kcal/mol is the force constant, and 0 = 109.471 is the equilibrium bond angle 1 
4. 2 

Torsion of all intramolecular dihedral angles () of the O-C5H11 groups were modelled and parametrized 3 

according to the cosine potential: 4 

𝑈(𝜑) = 𝐴2(1 + cos 3𝜑), 5 

where A2 = 0.11111111 kcal/mol 4. 6 

Figures 7 

 8 

Figure S1. Optimized at the DFT level of theory quartz slab, side view and views along the x and y axis. White 9 
balls - hydrogen atoms, light blue balls - carbon atoms, red balls - oxygen atoms, yellow balls - silicon atoms. 10 
Blue lines demark the unit cell of the simulated system, images of the unit cell are shown with lines instead of 11 

the balls. 12 

5 A
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 1 

Figure S2. Side views of the initial simulation setups for quartz surfaces with C5H11 density 1.45 (left) and 2.89 2 
(right) groups per square nanometre. White balls - hydrogen atoms, red balls - oxygen atoms, light blue balls - 3 

carbon atoms, yellow balls - silicon atoms. CO2 molecules are shown with lines to improve visibility of the 4 
water droplet. 5 
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