Workloads of competitive surfing: Work-to-relief ratios, surf-break demands, and updated analysis

Oliver R. Farley
Edith Cowan University, o.farley@ecu.edu.au

Josh L. Secomb
Edith Cowan University, j.secomb@ecu.edu.au

Ellen R. Raymond

Lina E. Lundgren
Edith Cowan University, l.lundgren@ecu.edu.au

Brendon K. Ferrier
Edith Cowan University, bferrier@our.ecu.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

Part of the [Sports Sciences Commons](https://ro.ecu.edu.au/ecuworkspost2013)

Recommended Citation

[10.1519/JSC.0000000000002659](https://doi.org/10.1519/JSC.0000000000002659)

This Journal Article is posted at Research Online.
WORKLOADS OF COMPETITIVE SURFING: WORK-TO-RELIEF RATIOS, SURF-BREAK DEMANDS, AND UPDATED ANALYSIS

OLIVER R.L. FARLEY,1,2,3 JOSH L. SECOMB,1,2,4 ELLEN R. RAYMOND,2,5 LINA E. LUNDGREN,1,2,6 BRENDON K. FERRIER,1,7 CHRIS R. ABBISS,1 AND JEREMY M. SHEPPARD1,2,8

1School of Exercise and Health Science, Edith Cowan University, Joondalup, Western Australia, Australia; 2Hurley Surfing Australia High Performance Center, Casuarina Beach, New South Wales, Australia; 3SPRINZ, Auckland University of Technology, Auckland, New Zealand; 4Queensland Academy of Sport, Brisbane, Queensland, Australia; 5Department for Health, University of Bath, Bath, United Kingdom; 6School of Business, Engineering and Science, Halmstad University, Halmstad, Sweden; 7England School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, United Kingdom; and 8Canadian Sport Institute, Pacific Region, Richmond, British Columbia, Canada

ABSTRACT

Farley, ORL, Secomb, JL, Raymond, ER, Lundgren, LE, Ferrier, BK, Abbiss, CR, and Sheppard, JM. Workloads of competitive surfing: work-to-relief ratios, surf-break demands, and updated analysis. J Strength Cond Res 32(10): 2939–2948, 2018—The study provides an in-depth descriptive and quantitative time-motion analysis of competitive surfing, using Global Positioning System (GPS) units and video synchronization, which serves to extend upon the results of Farley, Harris, and Kilding (Journal of Strength and Conditioning Research, 26, 7 [2012]). In addition, comparisons between locations and surfers competing in the same heats were performed. Global Positioning System and video data were collected from 41 male competitive surfers (23.2 ± 6.1 years, 71 ± 10.3 kg, 177.2 ± 6.4 cm) participating in 3 professional domestic surfing events, with competitive heats of 20-minute duration. Fifty data sets were analyzed across the 3 competitions, with velocities and distances covered, proportion of time spent performing various surfing activities, and total work-to-relief ratio determined. Results revealed surfers paddled 44% of the total time, followed by stationary periods (42%). Surfers performed at a significantly (p ≤ 0.05) higher work-to-relief ratio (1.7:1) at the beach-break (an exposed beach) compared with point-break 1 and 2 (waves breaking around a rocky point). Point-breaks 1 and 2 had longer continuous durations of paddling, with significantly longer rides at point-break 1 over the beach-break (p ≤ 0.01) and point-break 2 (p ≤ 0.01). The average maximal speed (24.8 km·h⁻¹) from point-break 2 was significantly faster than point-break 1 (p ≤ 0.01) and beach-break (p ≤ 0.05). This information should influence surfing drills and conditioning methods to prepare these athletes for the disparate demands, such as training for a point-break competition involving longer durations of continuous paddling and short, high-intensity workloads for a beach-break.

KEY WORDS exercise durations, GPS, time-motion analysis, performance analysis

INTRODUCTION

Competitive surfing has undergone substantial growth, and as a result, there has been a rapid increase in the examination of methods to enhance abilities and fitness qualities of surfers (8,11,22,24). To improve our understanding of the physical and technical activity profile of sports, various methods of systematic performance analysis have been established (14,19,26). Coaches are able to make objective decisions by evaluating athletes’ workloads, movement patterns, distances, and activity profiles using Global Positioning System (GPS) tracking (5,17,19,29) and by analyzing athletes’ activity durations through time-motion analysis (TMA) (1,7,15,20). Such analyses can shape testing protocols and support the development of sport-specific predictive models, from which appropriate conditioning training programs can be created (8,14,16,19,26,28). However, the utilization of such methods to record valid data is limited within surfing literature, with only a few published research articles (9). To date, research analyzing surfing performance has been limited to examining male surfers’ heart rates (11,21,22), activity durations with TMA (11,21,23,27), and GPS data (3,11,27). These studies have been implemented during competitive surfing events (11,24), training (27), and recreational surfing (3,21). See Farley et al. (9) for an in-depth literature review on performance analysis in surfing.
Competitive surfing consists of judges evaluating a surfers’ performance during wave riding, in reference to the specified criteria. The scoring system is based on the performance of maneuvers (i.e., turns, airs, and rotations) the surfer completes with commitment, difficulty, and in combination of other major maneuvers (2). Surf locations and their associated environmental variables vary at each competition. This includes variables such as surf break type, ocean floor topography, weather, swell, and tides to name a few. The competitive format requires surfers (2–4 per heat) to compete in a maximum of 5 heats per day, with each heat lasting between 20 and 40 minutes, which is dependent on the competition format, level of competition, and surf conditions. In addition, surfers encounter intermittent paddling bouts, varying in intensity and duration (11,21,22,27) with short periods of recovery (32–64% of total paddle bouts performed between 1 and 10 seconds). Surfing also includes a short (4–5 seconds), powerful burst of paddling for the wave takeoff and prolonged periods of endurance paddling (11,18), accumulating to approximately 50% of the total surfing time (3,11,21,22,27). This equates to approximately 1 km of paddling in a 20-minute heat (11) or 1,538–1,600 m of paddling during 30 minutes of training (27).

Detailed performance analysis data are lacking within competitive surfing; therefore, the purpose of this study is to establish surfers’ workloads, distances covered, and activity durations during surfing competitions through performance analysis using GPS and TMA methods. In conjunction with video recording for TMA, the addition of GPS tracking will broaden our understanding of surfing and provide an extension to the results of Farley et al. (11). The aims of the study were to determine the workloads (i.e., exercise durations, distances, velocity of movements, and work-to-relief ratios) experienced during competitive surfing and determine whether the demands differ between locations offering different surfing conditions and surfers competing in the same heats. This information may provide a better understanding of the activity profiles associated with competitive surfing, thus greatly benefiting the training and preparation of elite surfers.

Methods

Experimental Approach to the Problem

Competition data, including GPS and video recordings, were obtained from nationally ranked surfers to determine the activity profile of surfing competition. Descriptive statistics were subsequently determined to capture durations of surfing specific TMA activities, maximum and average wave riding velocity, and distances covered for each heat and participant. In addition, beach location and environmental/surfing conditions (i.e., wave size, type of surf break, and surf conditions) were noted when determining differences between events. It should be noted that there are other types of surf break (i.e., reef break) that warrant investigation into workloads; however, because of competition logistics only 2 types of surf break (point-break and beach-break) were used for analysis in this study.

Surf conditions were observed during filming and analysis, and swell heights were noted from surf reports. Point-break 1 generated calm surf conditions with small, clean, 1- to 1.2-m (3–4 ft faces, approximately) waves during data collection. The right-hand point-break (waves broke from the right to the left) provided long, high quality waves that enabled surfers to ride for long periods at times (subject to wave). Point-break 2 also produced a right-hand point break; however, the wave quality changed with the tide and swell, altering the prominent point-break wave to a beach-break. The wave conditions at point-break 2 were clean and small, ranging from 1.2 to 1.5 m (4–5 ft faces, approximately). Point-break 2 was less consistent, and surfers had to position themselves effectively for quality waves. In comparison, beach-break data were collected from an exposed beach-break (range of waves breaking from left to right and right to left), with swell ranging between 1.2 and 2.5 m (4–8 ft faces). Wave quality was inconsistent on day 1 but improved on day 2.

Subjects

A total of 41 nationally ranked competitive level male surfers (23.2 ± 6.1 years, 71 ± 10.3 kg, 1.77 ± 0.06 m, ± SD) volunteered to participate in this study. The surfers were monitored individually, and 18 of the 41 surfers were monitored while competing against each other in one of 9 heats. All participants involved were competing in the 2014 state professional competition series. The first data set was recorded at the Currumbin Alley Pro (point-break 1), (n = 21, 16–30 years) where 8 pairs of surfers competed against each other in different heats. The second data set was recorded at the Sunshine Coast Pro, Coolum beach (beach-break) (n = 18, 17–24 years) including 4 pairs of surfers in 2 heats. The third and final data set was recorded at the Burleigh Heads Pro (point-break 2) (n = 11, 17–24 years) where 6 surfers paired up in 3 heats. Before data collection, all participants were informed of the experimental procedure and provided signed informed consent before participation (including parent/guardian written informed consent for those subjects under the age of 18) in accordance with the Declaration of Helsinki. The project was approved by the Human Research Ethics Committee at Edith Cowan University.

Procedures

Global Position System. The GPS unit (SurfTraX, Southport, Australia), specifically developed for surfing analysis, was used to record the position coordinates of the participants. The recording frequency was 10 Hz, from which velocity of movement, speed, and distance was derived. Five minutes before the surfer preparing to enter the water for their heat, GPS units were turned on to locate satellites and positioned. The GPS unit was placed in a sealed arm strap and tightened around the bicep, (goofy stance = left arm and natural stance = right arm) with the unit positioned on the triceps, or if the surfer wore a chest-zip wetsuit, the unit was positioned on the upper vertebrae and held in position in the back pouch.
of the suit. Pilot testing revealed that GPS measurements were not affected by placement of the unit.

Although movements occur during arm paddling, this range is small and the precision of the satellite tracking for these GPS units does contain small (≤0.6) to moderate (0.7) effect size differences for all GPS measurements. A combined horizontal dilution of position for the GPS units was 0.95 ± 3.7 for the 10-Hz devices. The rash shirt color and unit number were noted for filming and data synchronization purposes. After collection, data were downloaded using the manufacturer-supplied software (SurfTraX Motion-Studio, Southport, Australia) and synchronized with the heat video. The GPS units were previously established to be reliable and valid (10).

Video Analysis. During the competitive heats, surfers were filmed using a high-definition Sony camera (HXR-NX100; Sony, Tokyo, Japan) mounted on a tripod. The video footage was recorded to an SD memory card and subsequently synchronized to the GPS data using data analysis software (SurfTraX Motion-Studio). The data from the GPS unit were downloaded to a laptop for subsequent analysis.

Filming coincided with the start and finish of heats, which was signaled by an air horn. Data recorded during this period were used for data analysis and synchronization. Heats were filmed to determine the TMA of activities associated with the sport. The video cameras were positioned for best possible viewing at the competition locations. At point-break 1, two video cameras were positioned on a rocky point, side on to the breaking waves. At the beach-break, the cameras were positioned on a hill facing out to sea from a height to capture all movements behind the waves. Similarly, the cameras at point-break 2 were positioned on a hill but instead faced side on to the breaking waves.

A review of camera footage allowed for documentation of the total time for each heat, and the time spent performing each activity was recorded for paddling, paddling for a wave, remaining stationary, wave riding, and miscellaneous (Table 1) (11). The time surfers spent during each TMA activity (average and total), frequency (n) of occurrences of each activity, and the percentage of the total time spent on each activity were then calculated. In addition, bouts of paddling, remaining stationary, and paddling for a wave were recorded and subdivided into separate time zones for analysis. Global Positioning System variables were used to investigate differences between the variables such as speeds and distances covered at each event, and differences between surfers competing within the same heat.

Activity Analysis. The videos of each surfer were synchronized with the GPS data and played simultaneously, with the times recorded for each activity in a Microsoft Excel spreadsheet. Videos were paused and played frame by frame to determine exact durations and provide accurate time allocation for each activity. One investigator was responsible for all coding of activity from video replay. Global Positioning System variables were reported from the synchronization of the video recording to ensure accurate analysis.

Statistical Analyses

Descriptive statistics are presented as mean values, SDs, and ranges in tables, figures, and the results section. A 1-way analysis of variance was performed on the TMA variables of interest, including differences between the GPS recordings from 18 paired surfers competing in heats. In addition, an least significant difference post hoc was performed on the variables from the TMA analysis and the work-to-relief ratios. The Cohen’s d was calculated to determine the effect sizes of work-to-relief ratio, GPS wave differences between heat winners and losers (within same heat), average wave speeds, and the distances covered per wave at each event. The criteria for interpreting effect size were ≤0.2 = trivial, 0.2–0.6 = small, 0.6–1.2 = moderate,
Figure 1. A) Percentage of total time spent stationary, paddling, paddling for a wave, wave riding, and performing miscellaneous activity; (B) average TMA time spent performing the activity; (C) frequency of times each action was performed during the 20-minute competitive surfing heat. *p < 0.05 to point-break 1, #p < 0.05 to beach-break, ^p < 0.05 to point-break 2. TMA = time-motion analysis.
Figure 2. A) Percentage of time spent paddling within the various time zones; (B) percentage of time spent stationary within the various time zones; (C) percentage of time spent sprint paddling for a wave within the various time zones during a competitive surfing heat. *$p < 0.05$ to point-break 1, #$p < 0.05$ to beach-break, ^$p < 0.05$ to point-break 2.
1.2–2.0 = large, and >2.0 = very large (13,25). All statistical analyses (except Cohen’s d) were performed using a statistical analysis package (version 22; IBM SPSS, Chicago, IL, USA), with statistical significance defined as $p \leq 0.05$ and data reported as mean and SD.

RESULTS

Activity Durations

Time-Motion Analysis Activity. The results from 50 videos are reported below. Figure 1A displays the percentage (%) of total time spent performing activities at each location, Figure 1B details the average time (seconds) a surfer performed each activity at the 3 locations, and Figure 1C identifies the number (n) of times each activity was performed. Paddling was the most frequently performed activity ($n = 39$) at all locations and consumed the greatest percentage of total time (44%), followed closely by stationary periods (42%). The average stationary time (18 seconds) was identified as the greatest consumption of time. There were significant differences between each location. The paddling count and percentage of time spent paddling at beach-break were significantly greater (48%, $n = 45$, $p \leq 0.05$) than point-break 1 and point-break 2, and respectively, percentage of time spent stationary at the beach-break was significantly less (34%, $p \leq 0.05$) than at the other 2 locations. The percentage and time spent paddling for a wave at point-break 2 (5%, 5 seconds) was significantly greater ($p \leq 0.05$) than the other 2 locations, with the count significantly greater ($n = 11$, $p \leq 0.05$) than point-break 1. The percentage of total time spent on wave riding at point-break 2 was significantly less (3%, $p \leq 0.05$) than at the other 2 locations compared with point-break 1 where time spent on wave riding was greater (14 seconds) but also performed less often ($n = 4$); the percentage of time and count of miscellaneous activities was significantly greater ($p \leq 0.05$) at the beach-break (6%, $n = 23$); however, the time it was performed for was significantly greater at point-break 2 (5 seconds).

The paddling zones in Figure 2A display percentage differences between the events and identify paddling durations between 1 and 10 seconds as the largest consumption of total paddling time. Paddling time performed within the 1- to 10-second zone at point-break 1 was significantly greater (65%, $p \leq 0.05$) than at the 2 other locations. Point-break 2 had a significant higher percentage of paddling (21%, $p \leq 0.05$) than point-break 1 in the 11- to 20-second time zone. Following on, beach-break had a significantly greater amount of paddling in the 31- to 45-second time zone (7%, $p \leq 0.05$), compared with the other locations. Finally, 3% of time was spent paddling within the 61- to 90-second time zone at point-break 1, which was significantly greater than at the 2 other locations. Figure 2B displays stationary percentage differences between the events and identifies stationary periods between 1 and 10 seconds as the largest consumption of total stationary time. The beach-break reported a significantly greater amount of time (21%, $p \leq 0.05$) spent stationary within time zone 11–20 seconds. Compared with point-break 1, the beach-break percentage of time stationary was significantly less (5%, $p \leq 0.05$) than both point

<table>
<thead>
<tr>
<th>Table 2. Average total workloads-to-relief ratio per 20-minute heat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total work (s)</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Point-break 1</td>
</tr>
<tr>
<td>Stationary</td>
</tr>
<tr>
<td>Paddling</td>
</tr>
<tr>
<td>Paddling for wave</td>
</tr>
<tr>
<td>Wave riding</td>
</tr>
<tr>
<td>Work-to-relief ratio</td>
</tr>
<tr>
<td>Beach-break</td>
</tr>
<tr>
<td>Stationary</td>
</tr>
<tr>
<td>Paddling</td>
</tr>
<tr>
<td>Paddling for wave</td>
</tr>
<tr>
<td>Wave riding</td>
</tr>
<tr>
<td>Work-to-relief ratio</td>
</tr>
<tr>
<td>Point-break 2</td>
</tr>
<tr>
<td>Stationary</td>
</tr>
<tr>
<td>Paddling</td>
</tr>
<tr>
<td>Paddling for wave</td>
</tr>
<tr>
<td>Wave riding</td>
</tr>
<tr>
<td>Work-to-relief ratio</td>
</tr>
</tbody>
</table>

*Sig.diff to beach-break.†Sig.diff to point-break 2.††Sig.diff to point-break 1.
breaks within time zone 31–45 seconds and was significantly less (2%, \(p < 0.05 \)) than point-break 1 within time zone 61–90 seconds. Finally, Figure 2C displays the percentage of time spent paddling for a wave. The largest percentage spent within a time zone was paddling at 5 seconds from all events, with 4 seconds the second largest. Point-break 1 reported 92% of paddling percentage spent <6 seconds, which was significantly different to the other 2 locations between zones 2–4 seconds. By contrast, point-break 2 reported 77% of paddling for a wave >4 seconds. Significant differences were reported between point-break 1 for 5 seconds and both events for the times of 6 and 7 seconds.

The work-to-relief ratio displayed in Table 2 identifies the amount of work surfers perform in comparison with stationary relief time. Significant differences and the effect sizes \((d) \) between the events and activities are also displayed. The beach-break had the highest work-to-relief ratio with an average 1.7 seconds of work to every second of relief. The total workload of the beach-break resulted in a moderate \((1.14 \text{ and } 0.90 \ d) \) significant difference \((p \leq 0.05) \) to point-break 1 and 2, respectively. The relief ratio of the beach-break resulted in a moderate \((-0.98 \ d) \) significant difference to point-break 1 \((p \leq 0.01) \) and a large \((-1.30 \ d) \) difference to point-break 2 \((p = 0.02) \).

Global Positioning System Data. From 50 GPS samples, point-break 1 maximum speed and average speed were significantly lower than beach-break and point-break 2 \((p \leq 0.01) \), with beach-break maximum speed significantly lower than point-break 2 \((p = 0.04) \) (Table 3). The total wave distance from both beach-break and point-break 2 was significantly lower than point-break 1 \((p \approx 0.01) \).

The total (combining wave riding) distance covered per heat in point-break 1 and point-break 2 was 808.5 ± 190.9 m and 775.1 ± 101.2 m, respectively. The total average distance covered per heat at the beach-break reported a moderate and large \((1.18 \text{ and } 2.09 \ d) \) significant difference \((p \leq 0.01) \) compared with point-break 1 and point-break 2, respectively, representing 990.2 ± 104.1 m.

Surfers who placed higher in the heats at point-break 1 had a small \((0.50 \ d) \) difference in maximal speed and a small \((0.53 \ d) \) difference in total wave distance, whereas surfers who placed higher in the heats at beach-break had a moderate \((0.73 \ d) \) difference in maximal speed and a large \((1.64 \ d) \) difference in total wave distance. These findings, however, were not significant but warrant further investigation.

DISCUSSION

The purpose of the study was to determine the workloads (i.e., exercise durations, distances, velocity of movements, and work to rest ratios) experienced during competitive surfing and to ascertain whether activity profiles differ between locations or between surfers competing in the same heats. The article also provided a much-needed update on the analysis of competitive surfing. Data from this study reported differences from location to location with greater paddling bouts, paddling percentage, and work-to-relief ratio at the exposed beach break (beach-break), with longer wave rides and longer continuous paddling bouts at the first point break (point-break 1). Surfers who placed higher (1st–2nd) also

Table 3. Average GPS wave speeds and distances covered per wave at each event and the wave differences between heat winners and losers within the same heat.

<table>
<thead>
<tr>
<th></th>
<th>Wave count</th>
<th>Maximum speed (km•h⁻¹)</th>
<th>Average speed (km•h⁻¹)</th>
<th>Total wave distance (m)</th>
<th>Between waves distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point-break 1</td>
<td>4.4 ± 2.2</td>
<td>21.8 ± 3.3*†</td>
<td>17.5 ± 1.9*†</td>
<td>73.3 ± 44.6</td>
<td>735.1 ± 146.3*</td>
</tr>
<tr>
<td>Effect size ((d))</td>
<td>-0.60, -0.88</td>
<td>-0.95, -1.06</td>
<td>0.70</td>
<td>0.53</td>
<td>-1.72</td>
</tr>
<tr>
<td>Heat winner</td>
<td>5.3 ± 1.3</td>
<td>22.1 ± 1.3</td>
<td>17.8 ± 0.9</td>
<td>68.2 ± 11.4</td>
<td></td>
</tr>
<tr>
<td>Heat loser</td>
<td>3.3 ± 1.9</td>
<td>21.1 ± 2.5</td>
<td>17.1 ± 1.1</td>
<td>54.9 ± 33.6</td>
<td></td>
</tr>
<tr>
<td>Effect size ((d))</td>
<td>1.22</td>
<td>0.50</td>
<td>0.70</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Beach-break</td>
<td>6.2 ± 1.5</td>
<td>23.6 ± 2.7†</td>
<td>19.3 ± 1.9</td>
<td>55.4 ± 29.4†</td>
<td>934.8 ± 74.7</td>
</tr>
<tr>
<td>Effect size ((d))</td>
<td>-0.38</td>
<td>-0.38</td>
<td>-0.47</td>
<td>-0.47</td>
<td></td>
</tr>
<tr>
<td>Heat winner</td>
<td>4.5 ± 0.7</td>
<td>24.7 ± 2</td>
<td>19.4 ± 0.2</td>
<td>80.6 ± 24</td>
<td></td>
</tr>
<tr>
<td>Heat loser</td>
<td>6 ± 1.4</td>
<td>23.6 ± 0.7</td>
<td>19.6 ± 0.0</td>
<td>52.5 ± 3.3</td>
<td></td>
</tr>
<tr>
<td>Effect size ((d))</td>
<td>-1.35</td>
<td>0.73</td>
<td>-0.20</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>Point-break 2</td>
<td>4.9 ± 0.6</td>
<td>24.8 ± 3.5</td>
<td>19.8 ± 2.4</td>
<td>44.8 ± 20.8†</td>
<td>730.3 ± 80.4*</td>
</tr>
<tr>
<td>Effect size ((d))</td>
<td>0.13</td>
<td>-0.20</td>
<td>1.64</td>
<td>-0.82</td>
<td>-2.63</td>
</tr>
<tr>
<td>Heat winner</td>
<td>4.3 ± 1.5</td>
<td>25.1 ± 3.5</td>
<td>19.2 ± 1.4</td>
<td>54.1 ± 13.5</td>
<td></td>
</tr>
<tr>
<td>Heat loser</td>
<td>5.7 ± 3.5</td>
<td>24.5 ± 3.2</td>
<td>19.4 ± 1.6</td>
<td>49.8 ± 29.1</td>
<td></td>
</tr>
<tr>
<td>Effect size ((d))</td>
<td>-0.52</td>
<td>0.18</td>
<td>-0.13</td>
<td>0.19</td>
<td></td>
</tr>
</tbody>
</table>

*Sig. diff to beach-break.†Sig. diff to point-break 2.‡Sig. diff to point-break 1.
appeared to surf waves for longer and at faster speeds than those placed lower (3rd–4th). Riding waves for longer and at faster speeds present greater opportunity to perform scoring maneuvers. Faster velocities may also suggest the selection of larger waves because wave height will influence maximal velocity (3,6). Therefore, the wave selection process from the heat winners seems to have an influence on surfing performance.

From the current study, it was reported that surfers spent, on average, the most time paddling (44%), followed closely by stationary periods (42%). These results are similar to previous literature (3,21,23,27); however, stationary periods were vastly different to previous data (23%) (11). Furthermore, the time spent paddling for a wave was the same as previous studies (11,27), and the wave riding percent was also similar to previous studies (21,23,27). However, wave riding percent, percentage of time spent performing each TMA activity, and the stationary percent were also noticeably different to previous literature using similar caliber surfers (11,27). Such differences may be due to the influence of surfing conditions on performance. These differences between the studies would be expected, given each location of surfing has its own set of unique variables associated with the surf break and surf conditions vary throughout the day. Indeed, in this study, it was found that differences exist between the 3 events, notably between the beach-break and the 2 point breaks. Paddling (not including paddling for wave) percent only ranged from 41 to 44% at point-break 1 and point-break 2, respectively, to 48% at beach-break. The paddling percent at beach-break was significantly greater than at point-break 1, which was to be expected given the nature of the surf break. Interestingly, point-break 1 and 2 had the same count of paddling action (36), but beach-break had significantly more (45) ($p < 0.05$), which can be attributed to the conditions and type of surf break.

The beach-break had surfers paddling for shorter periods between the sets of waves; this meant a high count of short paddle bouts (82% <21 seconds), as well as miscellaneous bouts (23), compared with just 12 and 15 at point-break 2 and point-break 1, respectively. Consequently, a significantly higher work-to-rest-relief ratio was achieved at beach-break (1.7:1) ($p < 0.05$). On the other hand, the point breaks dictated longer continuous durations of paddling back to the takeoff zone. This was due to the significantly ($p < 0.05$) longer rides at point-break 1 and the lack of surf at point-break 2 that had surfers paddling to different positions to locate better waves. Point-break 1 and point-break 2 reported 6% and 7% of total paddling times >46 seconds, whereas beach-break only reported 4% of total paddling time. A point-break with smaller and inconsistent conditions means longer continuous stationary periods waiting for waves, as seen at point-break 1 and point-break 2. This meant that point-break 1 and point-break 2 reported a higher stationary percent (48 and 43%, respectively), average stationary time (21 and 19 seconds, respectively), and percent of time spent continuously stationary for longer durations (13 and 12% of total paddling times >46 seconds, respectively), whereas beach-break only reported 34% of total heat time stationary, averaging just 15 seconds per bout, which was significantly different ($p < 0.05$) to point-break 1, and only 7% of time >46 seconds.

The percent of time spent paddling for a wave, counts, and average time spent performing the action were surprisingly similar, with point-break 2 reporting a minor difference in percentage of total heat time and time performing it. Interestingly, point-break 1 and point-break 2 had contrasting sprint paddle durations with point-break 1 reporting 92% of paddling percentage spent <6 seconds, whereas point-break 2 had 77% >4 seconds, which was significantly different ($p < 0.05$). These results are likely due to the power/momentum of the waves and the ways in which they were breaking. This was observed at point-break 2 where surfers had to generate as much speed as possible and paddling for a longer duration. On day 2, the swell was lacking at point-break 2, this affected the wave breaking and the location became a combination of a beach-break and a point break, depending on the swell, tide, and the best wave options. In addition, several waves at point-break 2 took longer to break once reaching the breaking zone, whereas point-break 1 waves broke in a consistent location.

Finally, point-break 1 reported the longest average wave riding time (14 seconds), which was significantly greater than that of the beach-break (10 seconds) and point-break 2 (8 seconds). This was due to longer, quality waves featuring at the location. Furthermore, the beach-break sustained a higher average wave count with 6 per heat, as opposed to 4 at point-break 1 and 5 at point-break 2. These results are also supported by previous data for difference in surf break type (11).

The speeds recorded from the current study (21.8, 23.6, and 24.8 km·h$^{-1}$) are somewhat similar to that of previous studies (21.9 km·h$^{-1}$) (3), (25.2 km·h$^{-1}$) (10), for the average maximal speed surfers reach; however, they are much slower than that of Farley et al. (11) who reported speeds of 33.4 km·h$^{-1}$. The lower speeds reported in the current study are likely due to the size of the waves. The decreased wave quality and size likely contributed to the moderately significant ($p \leq 0.01$) differences between point-break 1 maximum speed (-0.60 and -0.88), and average speed (-0.95 and -1.06), compared with beach-break and point-break 2, respectively, with beach-break maximum speed reporting a small (-0.38), significant ($p = 0.04$) difference to point-break 2. Because of the quality of the waves at point-break 1, total wave riding distances were longer than the small (-0.47) and moderate (-0.82) significant ($p \leq 0.01$) wave riding distances reported at beach-break and point-break 2. This reiterates the differences between locations, surf breaks, and surf conditions on the day.
Data between the surfer’s heat placing, speeds obtained, and distances traveled warrant further investigation because of the small (0.50 \(d \)) and moderate (0.73 \(d \)) differences in maximal speed, and small (0.53 \(d \)) and large (1.64 \(d \)) differences in total wave distance at point-break 1 and beach-break, respectively. Although not significantly verified, it is an interesting finding nonetheless. Potentially, those who win/place higher in their respected heats are able to generate more speed, equating to increased power and spray generation during turns on the wave. Spray generated is a judging cue and would therefore result in higher points being awarded.

It should be noted that GPS recording alone is not a reliable source to quantify wave riding times and distances. Although the units had a software algorithm installed determining when a surfer started and finished a wave, GPS data at times suggested that the surfer was still riding a wave, when in fact they had fallen off. The momentum of that fall was also found to be recorded as surfers’ speed on a wave. Therefore, the authors suggest that GPS data recorded per session should not be interpreted alone and instead be synchronized with video data to ascertain correct durations of time and distance.

The results of this study provide a much-needed update of surfing performance and information regarding comparisons between surf locations and conditions, workloads, and surfers competing in the same heats. The differences found between the 3 locations were likely due to environmental variables such as the swell and how the waves were breaking, as well as the skill level of participants, particularly when riding the waves. The majority of time, however, is spent performing moderate- to high-intensity activity, with surfers covering distances of approximately 770–990 m in a 20-minute heat. This is in contrast to previously reported data. Point-break 1 and point-break 2 had longer continuous periods of paddling than beach-break because of their geographical locations as point breaks. In comparison, beach-break consisted of more consistent short periods of paddling and duck diving under breaking waves to get beyond the waves to the takeoff zones. This resulted in a significantly higher work-to-relief ratio and distance covered. In addition, within these events, it seemed that there may be a relationship between the surfers’ heat placing, speeds obtained, and distance traveled. However, the associations between these variables were not statistically verified within the study. Ultimately, the activity profiles and demands experienced during competitive surfing differ between locations and types of surf break.

PRACTICAL APPLICATIONS

This study provides a greater in-depth analysis determining the workloads (i.e., exercise durations, distances, velocity of movements, and work-to-relief ratios) experienced during competitive surfing. Point breaks seem to have longer continuous periods of paddling and longer wave rides, whereas the beach-break exhibited significantly higher work-to-relief ratio. The monitoring of the activities from this study can be used to develop specific training drills based on the TMA results. Such information would benefit coaches and competitive surfers alike, through aiding in the design of training programs and monitoring of surfers’ workloads (i.e., paddling durations, distances, and intensities). From a training perspective, surfers expecting to surf at a point break should work on longer durations of continuous paddling, whereas for a beach-break scenario, they should work on short maximal sprint paddle bouts and repeated long-sprint paddling for waves.

See Farley et al. (12) on high intensity interval training and sprint interval training and Coyne et al. (4) on the benefits of strength training to maximize paddling performance. However, given the differences noted between the 2 point breaks from to the environmental conditions, it can be suggested that planning and preparation must be further tailored to a specific location because of differences within similar surf breaks. Consequently, one method of training does not necessarily suit specific locations because of changes that can occur; therefore, a crossover of training styles is recommended. To enhance their competitive potential, surfers should aim to generate higher maximal speeds and ride waves for as long as possible by improving speed generation and other athletic competencies that improve strength, power, and balance coordination. This could be particularly useful during longer waves (i.e., excess over 120 m), where surfers are likely to encounter muscular fatigue, consequently limiting the execution of maneuvers. A strength and conditioning routine focusing on upper-body power and lower-body strength is strongly recommended. For future research and performance analysis application with athletes, it is highly recommended that TMA and GPS must be synchronized for accurate analysis.

ACKNOWLEDGMENTS

The authors acknowledge the involvement and gratitude toward the surfers involved during the research and Olivia Baudinet for her input. No funding was received for this study, and there were no conflicts of interest.

REFERENCES

