
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2014 to 2021 

2019 

Australian vegetated coastal ecosystems as global hotspots for Australian vegetated coastal ecosystems as global hotspots for 

climate change mitigation climate change mitigation 

Oscar Serrano 
Edith Cowan University 

Catherine E. Lovelock 

Trisha B. Atwood 

Peter I. Macreadie 

Robert Canto 

See next page for additional authors 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013 

 Part of the Life Sciences Commons, and the Physical Sciences and Mathematics Commons 

10.1038/s41467-019-12176-8 
Serrano, O., Lovelock, C. E., Atwood, T. B., Macreadie, P. I., Canto, R., Phinn, S., ... & Duarte, C. M. (2019). Australian 
vegetated coastal ecosystems as global hotspots for climate change mitigation. Nature Communications, 10(1), 
4313. 
Available here. 
This Journal Article is posted at Research Online. 
https://ro.ecu.edu.au/ecuworkspost2013/6802 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworkspost2013
https://ro.ecu.edu.au/ecuworkspost2013?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F6802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1016?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F6802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F6802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1038/s41467-019-12176-8
https://doi.org/10.1038/s41467-019-12176-8


Authors Authors 
Oscar Serrano, Catherine E. Lovelock, Trisha B. Atwood, Peter I. Macreadie, Robert Canto, Stuart Phinn, 
Ariane Arias-Ortiz, Le Bai, Jeff Baldock, Camila Bedulli, Paul Carnell, Rod M. Connolly, Paul Donaldson, 
Alba Esteban, Carolyn J. Ewers Lewis, Bradley D. Eyre, Matthew A. Hayes, Pierre Horwitz, Lindsay B. 
Hutley, Christopher R. J. Kavazos, Jeffrey J. Kelleway, Gary A. Kendrick, Kieryn Kilminster, Anna Lafratta, 
Shing Lee, Paul S. Lavery, Damien T. Maher, Núria Marbà, Pere Masque, Miguel A. Mateo, Richard Mount, 
Peter J. Ralph, Chris Roelfsema, Mohammad Rozaimi, Radhiyah Ruhon, Cristian Salinas, Jimena Samper-
Villarreal, Jonathan Sanderman, Christian J. Sanders, Isaac Santos, Chris Sharples, Andrew D. L. Steven, 
Toni Cannard, Stacey M. Trevathan-Tackett, and Carlos M. Duarte 

This journal article is available at Research Online: https://ro.ecu.edu.au/ecuworkspost2013/6802 

https://ro.ecu.edu.au/ecuworkspost2013/6802


ARTICLE

Australian vegetated coastal ecosystems as global
hotspots for climate change mitigation
Oscar Serrano et al.#

Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves

and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue

carbon resources. Here, we present organic carbon (C) storage in VCE across Australian

climate regions and estimate potential annual CO2 emission benefits of VCE conservation

and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in

aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2

emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual

CO2 emissions from land use change in Australia by 12–21%. This assessment, the most

comprehensive for any nation to-date, demonstrates the potential of conservation and

restoration of VCE to underpin national policy development for reducing greenhouse gas

emissions.
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Destruction and degradation of natural ecosystems
accounts for 12–20% of the CO2 released into the atmo-
sphere globally1. Despite their relatively small global

extent (between 0.5 and 1 × 106 km2, equivalent to 0.2% of the
ocean surface), vegetated coastal ecosystems (VCE), tidal mar-
shes, mangroves and seagrasses, contribute ~50% of C seques-
tered in marine sediments2 (i.e., blue carbon), with their organic
carbon (C) sequestration rates exceeding those of terrestrial for-
ests, per unit area, by 1–2 orders of magnitude3. Hence, con-
servation and restoration of VCE has an important potential to
contribute to climate change mitigation4,5.

Blue carbon ecosystems are among the most threatened eco-
systems on Earth. The global area occupied by VCE is being
globally reduced at rates ranging from 0.03 to >1% per year, twice
as high as those reported for tropical forests3,5. These losses led to
the development of blue carbon strategies to prevent and mitigate
greenhouse gas (GHG) emissions through the conservation and
restoration of VCE. The development of programs like REDD+,
the payments for ecosystem services6 and the inclusion of VCE
within Nationally Appropriate Mitigation Actions7 aim to
maintain the benefits these ecosystems provide to climate change
mitigation and adaptation, fisheries, and other ecosystem services
that support coastal communities and their livelihoods5,8. Blue
carbon strategies are now being included within Nationally
Determined Contribution to mitigate and adapt to climate
change. However, this requires strong scientific evidence, and
whereas reports of C stocks and sequestration rates in VCE have
recently increased exponentially5,9–11, comprehensive estimates
of blue carbon storage at national and continental scales are
lacking, particularly for tidal marshes and seagrass. Uncertainties
on the extent of these ecosystems, their C stocks and sequestra-
tion rates, as well as limited available data on the loss and fate of
C after disturbance, hinder adoption of VCE into carbon trading
and national inventories5–7.

Here, we pioneer the estimation of C stocks in aboveground
biomass and soils, as well as soil C sequestration rates, in VCE at
the national level, and do so for the Australian continent, one of
the major reservoirs of VCE in the planet. We estimate the
potential for VCE conservation and restoration to mitigate GHG
emissions in Australia and demonstrate, therefore, the potential
of blue carbon strategies to support policies contributing to cli-
mate change mitigation at the national level.

Results
Australian blue carbon. Total C stocks in aboveground biomass
and the upper 1-m of VCE soils in Australia were 67–183 Tg C
and 1053–1542 Tg C, respectively, with annual soil C seques-
tration rates of 3.5–5.5 Tg C year−1 (Fig. 1, Table 1).

The extent, geographic distribution and type of VCE determine
the distribution of C stocks and sequestration rates over the
continent (Fig. 1). Mangroves contain ~80% of total C in living
aboveground biomass of Australian VCE, while seagrasses
accounted for ~70% of total soil C stocks and sequestration
rates. Most C stocks in seagrass and tidal marsh ecosystems are
found in their soils (98% and 99%, respectively), while C stocks in
mangrove ecosystems are distributed in both soil (62%) and
aboveground biomass (38%) pools (Table 1). Australian man-
groves have up to 17-fold and 65-fold higher C stocks in
aboveground biomass per unit area compared to tidal marshes
and seagrasses, respectively (P < 0.001; Fig. 1), while mangrove
soil C stocks and sequestration rates are 2-times and 3-times
higher than tidal marshes and seagrasses, respectively (P < 0.001;
Fig. 1, Supplementary Table 1). The soil C stocks per unit area in
tidal marshes are 1.5-fold higher than in seagrass meadows (P <
0.01; Fig. 1). These values are consistent with global estimates,

with higher C storage capacity of mangroves and tidal marshes
compared to seagrasses on an areal basis3,5.

Most tidal marsh and mangrove ecosystems in Australia occur
in tropical regions (62% and 73%, respectively), while seagrasses
are distributed across subtropical (38%), tropical (32%), and arid
(16%) climate regions (Supplementary Table 2). Tidal marsh and
mangrove soil C stocks and sequestration rates are 3-fold to
13-fold higher in tropical Australia than in other climate regions,
mainly due to their extensive coverage over broad intertidal
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saltflats in tropical regions (Supplementary Table 2). Similarly,
mangrove soil C stocks and sequestration rates are up to 60-fold
higher in tropical compared to other climate regions, owing to
their larger extent in the tropics12. Subtropical seagrasses within
Australia hold 2-fold to 6-fold higher C stocks than seagrasses
from other Australian climate regions. However, knowledge of
Australian seagrass extent is incomplete due to challenges in
mapping this ecosystem, as recently illustrated by the recent
discovery of 35,000 km2 of tropical seagrass in the intensively
studied Great Barrier Reef13. Similarly, the spatial extent of
tropical tidal marshes (including high intertidal saltflats) is likely

large, but poorly mapped. Hence, the extent of seagrasses and
tidal marshes may be significantly larger than currently estimated,
so their blue carbon contribution estimated here is a
conservative one.

Combined, the Australian VCE soil C stocks and sequestration
rates per unit area are up to 3-fold higher in tropical regions
compared to other regions (P < 0.001; Fig. 2, Supplementary
Table 3), while C stocks in aboveground biomass are significantly
higher in both subtropical and tropical regions (P < 0.05;
Supplementary Table 1). The C stocks and sequestration rates
per unit area also differ, though not consistently, among the three
ecosystem types (Fig. 2, Supplementary Table 3). For tidal
marshes, the C stocks in aboveground biomass per unit area
are up to 6-fold higher in in temperate regions compared to semi-
arid and subtropical regions (P < 0.05), while soil C stocks and
sequestration rates per unit area are not significantly different
among climate regions (P > 0.05; Supplementary Table 1). This
likely reflects the influence of higher biomass species (e.g., Juncus
spp. rushes) in many temperate marshes, compared to the lower
biomass species (e.g., Sporobolus virginicus and Sarcocornia
quinqueflora) typically found in tropical, arid and subtropical
climates. Variability in tidal marsh soil accretion rates and C
stocks is often associated with differences in the position within
the intertidal zone14, porewater salinity, sediment inputs, and
plant productivity15.

Tropical mangroves contain up to 2-fold higher C stocks in
aboveground biomass per unit area compared to temperate
mangroves (P < 0.001), and soil C stocks and sequestration rates
are up to 2-fold higher in subtropical mangroves compared to
other climate regions (P < 0.05; Fig. 2, Supplementary Tables 1
and 3), which is in agreement with previous studies16,17.

Fig. 1 . Distribution of climate regions, vegetated coastal ecosystems (tidal
marshes, mangroves and seagrasses) and organic carbon (C) storage in
Australia. a Climate regions used to classify vegetated coastal ecosystems
and scale blue carbon storage across Australia. Climate regions for
Australia were modified from the Australian Bureau of Meteorology’s
“Koppen–Major Classess” climate classification for Australia based on
temperature/humidity, vegetation and seasonal rainfall61. The original
climate classification scheme was comprised of six classes: Equatorial,
Tropical, Subtropical, Desert, Grassland and Temperate, but the number of
climate regions was reduced into five categories: Tropical (includes
Equatorial), Subtropical, Arid (instead of Desert), Semi-arid (instead of
Grassland) and Temperate. b Spatial distribution of tidal marsh25,
mangrove26, and seagrass28 ecosystems within Australia. c Organic carbon
stocks in living aboveground biomass and soils (in the top meter), and C
sequestration rates per unit area (Mg C ha−1) and across Australia (Tg C).
The stacked bars represent the maximum and minimum estimates (s.d.).
Source data are provided as a Source Data file

Table 1 Organic carbon (C) storage in Australian vegetated coastal ecosystems (i.e., tidal marshes, mangroves and seagrasses),
per unit area (in Mg C ha−1 and Mg C ha−1 year-1) and Australia-wide (in Tg C)

a

Ecosystem Stock-aboveground biomass per unit area (Mg C ha−1) Total area (Mha) Stock-aboveground
biomass (Tg C)

N plots Mean Median SD Min Max Min Max

Tidal marsh 52 7.5 6.4 6.1 1.4 1.5 2.3 2.6
Mangrove 37 125 94 90 0.3 1.1 50 158
Seagrass 52 1.9 1.5 2.0 9.3 12.8 16 22
Total 141 11.0 15.4 67 183

b

Ecosystem Stock-soil (Mg C ha−1 in 1 m-thick) Total area (Mha) Stock-soil (Tg C)

N cores Mean Median SD Min Max Min Max

Tidal marsh 292 168 140 127 1.4 1.5 210 234
Mangrove 262 251 238 155 0.3 1.1 81 257
Seagrass 549 112 85 88 9.3 12.8 762 1051
Total 1103 11.0 15.4 1053 1542

c

Ecosystem Sequestration rates-Soil (Mg C ha−1 year−1) Total area (Mha) Sequestration rates
(Tg C year−1)

N cores Mean Median SD Min Max Min Max

Tidal marsh 292 0.39 0.3 0.3 1.4 1.5 0.48 0.54
Mangrove 24 1.26 0.9 0.9 0.3 1.1 0.4 1.4
Seagrass 36 0.36 0.3 0.3 9.3 12.8 2.5 3.5
Total 352 11.0 15.4 3.5 5.5

Mean and median ± SD C stock in (a) living aboveground biomass and (b) in the top meter of soil
c: Soil C sequestration rates. Mha= 106 ha
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Subtropical and temperate mangroves in Australia are mainly
comprised of a single species, Avicennia marina, while tropical
Australian mangroves comprise more than 40 species18. The
species richness, together with climatic and environmental drivers
associated with variations in coastal geomorphology (i.e.,
temperature, rainfall, tides, sediments and nutrients) govern the
structure and function of mangroves and tidal marshes, and
thereby their C storage capacity, with relatively high plant
productivity and biomass in tropical, subtropical and some
temperate regions compared to arid regions9,19,20-22.

Seagrasses inhabiting arid climate regions have 5-fold to 9-fold
higher C stocks in aboveground biomass per unit area than those
in other climate regions (P < 0.001; Fig. 2, Supplementary Table 3).
Seagrasses in arid regions also exhibit the highest soil C stocks per

unit area among climate regions (P < 0.001), while tropical
seagrasses have the lowest soil C stocks (P < 0.001). However,
seagrass soil C sequestration rates are similar among climate
regions (P > 0.05), suggesting higher remineralization rates of soil
C in tropical regions4. The relatively low C stocks of tropical
seagrasses may be due to the predominance of small, ephemeral
and fast-growing species in the tropics (e.g., Halophila spp. and
Halodule spp.), which also support intensive grazing by sea turtles
and dugongs, compared to the persistent meadows with large
biomass found in arid and temperate regions (e.g., Posidonia spp.
and Amphibolis spp.), where herbivory rates are much lower10,23.
Meadows formed by these larger temperate seagrass species
contain relatively high amounts of degradation-resistant organic
compounds in their tissues (e.g., lignin and cellulose) compared
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Fig. 2 Scaled up estimates of organic carbon (C) storage in vegetated coastal ecosystems (tidal marshes, mangroves and seagrasses) across Australian
climate regions. a Soil C storage (Mg C ha−1) in the top meter. b Living aboveground biomass C stock (Mg C ha−1). c Soil C sequestration rates (Mg C ha−1

year−1). The four ranges of data (indicated by different colors) are based on the lower quartile, median quartile, and upper quartile. Source data are
provided as a Source Data file
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to small tropical seagrass species, which have readily decom-
posable tissues24. In addition, the scarcity of riverine inputs in
arid regions likely results in higher irradiance reaching the
seafloor compared to other climate regions with higher run-off,
thereby enhancing aboveground and belowground seagrass
productivity13,23 and soil C stocks in arid regions.

Biomass and soil C stocks and sequestration rates for VCE vary
among administrative jurisdictions (Supplementary Table 4).
Queensland, Northern Territory and Western Australia hold the
largest area of tidal marshes (39%, 28%, and 25%, respectively)
and mangroves (39%, 37%, and 20%, respectively) within
Australia, while Queensland and Western Australia have the vast
majority of seagrass ecosystems (65% and 20%, respectively). This
information is an essential foundation for the implementation of
blue carbon accounting processes and climate change mitigation
strategies (i.e., C policies, abatement and trading schemes) in
Australia.

Australia as a global blue carbon hotspot. Australia is among
the countries that hold the largest area of VCE (11–15Mha,
9–32% of VCE worldwide), including 3–37% of global tidal
marshes (1.4–1.5 Mha3,11,25), ~2–8% of mangroves (0.3–1.1
Mha3,17,25,26) and ~15–43% of global seagrass meadows
(9.3–12.8 Mha5,13,25,27,28; Table 2). Accordingly, Australia has
some of the world’s largest blue carbon storage capacity, with
5–11% of global blue carbon soil stocks and 2–7% of annual soil C
sequestration, based on available global estimates3–5,10,11,17,29,30

(Table 2). Soil C stocks per unit area in Australian VCE are
similar to global estimates, but their C sequestration rates per unit
area are lower than global mean estimates3,5, particularly for tidal
marshes and seagrasses (Table 2). This difference can be partially
explained by the relative sea-level stability of Australian coastlines
compared to other regions (i.e., North America and Europe) that
have experienced rapid sea-level rise over the last millennia,
hence, enhanced soil C accumulation31. In addition, differences in
carbon accumulation rates among climate regions may arise from
differences in methods used for estimating soil accumulation
rates (i.e., surface elevation tables, 210Pb, 239+240Pu, and 14C) and
the periods of accumulation encompassed by the estimates32.
Nevertheless, the extent of VCE in Australia makes it a global
blue carbon hotspot, and the loss of VCE extent since European
arrival provides unique opportunities for Australia to mitigate
emissions through blue carbon strategies. Indeed, Australia, along
with Indonesia, Malaysia, USA and Brazil rank among the

nations with greatest potential to benefit from developing blue
carbon schemes4,9,33. Yet, Australia is, through the estimates
provided here, the only nation with a robust estimate of existing
blue carbon resources at the national scale.

Soil C stocks in Australian terrestrial ecosystems have been
estimated at 29.7 Mg C ha−1 (in 30 cm-thick soils34), while
Australian VCE contain on average ~4-fold higher C stocks
(123 Mg C ha−1 in 1 m-thick soils) than in terrestrial counter-
parts. Note that this estimate is conservative since terrestrial and
VCE soil C stocks can reach thicknesses >1 m and >6m depth,
respectively10,12,34. Furthermore, VCE can accrete vertically over
millennia without becoming saturated in C, and soil C stocks are
generally protected from fires. As a result, C turnover rates in
VCE are an order of magnitude slower than most terrestrial
soils5,35. Our estimate of the soil CO2 sequestration capacity of
Australian VCE (13–20 Tg CO2-e year−1) is equivalent to ~4–6%
of the CO2 emissions from fossil-fuel burning, cement production
and gas flaring in Australia (361 Tg CO2-e year−1 at 2014
rates36). In addition, the CO2 sequestration capacity of Australian
VCE equates to 70–140% of CO2 emissions from land use change
in Australia (estimated in 14.4–18.4 Tg CO2-e year−1 37,38).
Hence, VCE are a significant component of Australia’s C budget
and provide effective opportunities for C sequestration and
climate change mitigation strategies based on VCE conservation
and restoration.

Potential of Australian VCE for greenhouse gas mitigation.
Historic losses of VCE extent after European settlement in the
19th century in Australia have been estimated at 13,800 km2 for
tidal marsh14 (47–50% loss of original extent), 11,500 km2 for
mangroves33,39 (52–78% loss of original extent) and 32,000 km2

for seagrass40 (20–26% loss of original extent). In addition to the
loss of important ecosystems services (e.g., coastal protection,
fisheries and biodiversity5), losses of Australian VCE result in a
loss of their CO2 sequestration potential, remineralization of C
stocks in aboveground biomass as CO2, and the risk that erosion
and remineralization of soil C accumulated over millennia con-
tributes to GHG emissions4. Management activities, which fall
outside business-as-usual scenarios, aiming to restore VCE can
enhance soil C sequestration and/or avoid GHG emissions fol-
lowing disturbance, as demonstrated for Australian seagrass
meadows41, and thus have the potential to be eligible for C
crediting under financial mechanisms. The Australian Govern-
ment Emission Reduction Fund is a policy mechanism that

Table 2 Extent, soil organic carbon (C) sequestration rates and stocks (in the top meter of soil) in vegetated coastal ecosystems

a Global extension (km2) Global soil C sequestration rate
(Tg C year−1)

Global C stock in soil (Pg C)

Ecosystem Min Max Min Max Min Max

Tidal marsh 41,65711 400,0003 4.83 87.33 0.674,11 6.55

Mangrove 137,7603 166,00017 2329 2529 5.030 6.417

Seagrass 300,0005 600,0005 483 1123 4.210 8.410

Total 479,417 1,166,000 75 224 14.2 21.3

b Australian extension (km2) Australian soil C sequestration
rate (Tg C year-1)

Australian C stock in soil (Tg C)

Ecosystem Min Max Min Max Min Max

Tidal marsh 13,765 (3%) 15,329 (37%) 0.5 (0.5%) 0.5 (11%) 210 (3.2%) 234 (35%)
Mangrove 3315 (2%) 10,509 (8%) 0.4 (1.8%) 1.4 (6%) 81 (1.3%) 257 (5%)
Seagrass 92,569 (15%) 127,720 (43%) 2.5 (2.3%) 3.5 (7%) 762 (9%) 1,051 (25%)
Total 109,649 (9%) 153,558 (32%) 3.5 (1.6%) 5.5 (7%) 1053 (5%) 1542 (11%)

a: Global estimates based on studies providing data (mean or median values) based on global datasets
b: estimates for Australia. The proportion (maximum and minimum) of Australian ecosystems compared to global estimates is presented in brackets
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attempts to promote GHG abatement through the conservation,
restoration or creation of VCE42. For example, restoring tidal
flows to drained coastal areas has been identified as a feasible
activity for restoring VCE42. Evidence of the effectiveness of VCE
restoration for enhancing biomass and soil C sequestration is
available43–45, although Australian case studies are limited41.

The potential of VCE conservation for climate change
mitigation relies on the preservation of their millenary soil C
stocks. Following disturbance or conversion of VCE, a portion of
the soil C becomes exposed to oxic conditions and decays at a
relatively fast rate (estimated at 0.183 year−1), resulting in the
remineralization of 85% of the soil C stock exposed to oxic
conditions within a decade46. Since major historic losses of VCE
extent in Australia occurred more than two decades ago,
restoration of these areas may have little benefit in terms of
avoided GHG emissions.

Assuming a recovery of soil C sequestration after VCE
rehabilitation, we estimate that the restoration of an area
equivalent to 10% of historic losses of VCE extent in Australia
(5730 km2) would enhance soil C sequestration by 1.15 ± 0.91 Tg
CO2-e year−1 (mean ± SD; Table 3), reducing annual emissions
from land use change in Australia by 6–8%. This can also result in
a benefit of US$ 11.5 ± 9.1 million per annum (assuming a
conservative C trading price of US$10 t CO2-e−1, the approx-
imate value paid in Australia’s Emissions Reduction Fund
auctions). The benefits of restoration vary among VCE and
climate regions, averaging 1.4 ± 1.1 Mg CO2 ha year−1 for tidal
marsh (13–16 US$ ha year−1), 4.6 ± 3.3 Mg CO2 ha year−1 for
mangroves (15–145 US$ ha year−1), and 1.3 ± 1.2 Mg CO2 ha
year−1 for seagrass (10–18 US$ ha year−1). These estimates are
conservative since potential avoided GHG emissions from soil C
following the restoration of historic losses of VCE extent were not
accounted for, while the restoration of mangroves would also
entail enhanced CO2 sequestration in aboveground biomass.

Targeting blue carbon hotspots for restoration can provide
larger benefits per unit area. Mangroves, in particular those
occupying tropical regions where there is potential for reversing
large, historic losses in coastal wetland extent42, are hotspots for
C sequestration. For example, the restoration of an area
equivalent to 10% of historic losses in tropical mangrove extent

in Australia (1150 km2) would enhance soil C sequestration by
0.65 ± 0.46 Tg CO2-e year−1, reducing annual emissions from
land use change in Australia by 4–5%. It is therefore imperative to
develop policies that preserve and restore VCE to mitigate GHG
emissions in Australia, where recovery of historic losses offers a
vast potential for C sequestration. Importantly, conservation and
restoration of VCE also provide enhanced adaptation to climate
change through coastal protection and regulation of flooding, as
well as biodiversity and fisheries benefits5,47.

Recent coastal development in Australia continues to result
in a net decline in VCE extent, estimated at a minimum 0.03%
year−1 for Australian mangroves (100–315 ha year−1; Table 3)38.
The decline of tidal marsh extent in Australia remains unknown,
but it is likely similar or higher than in mangroves (415–460 ha
year−1)14. Similarly, current decline in seagrass extent in
Australia has not been estimated, and here we assume a loss of
0.1% year−1 (i.e., 9300–12,800 ha year-1) largely resulting from
dredging, water quality deterioration and shoreline modification,
to estimate potential CO2 emissions resulting from habitat loss48.
This assumption is conservative relative to global estimates,
which are one order of magnitude higher40. Assuming that 50%
of the aboveground biomass and soil C in the top meter are
remineralized after disturbance4,49, we estimate emissions of
2.1–3.1 Tg CO2-e year−1 as a result of current losses of Australian
VCE (Table 3), increasing emissions from land use change in
Australia by 12–21% per annum. The loss of VCE would also
result in a loss of future soil C sequestration of 13–19 Gg CO2-e
year−1. Thus, conservation actions resulting in avoided losses of
VCE in Australia, falling outside business-as-usual scenarios,
could result in avoided CO2 emissions and sustained C
sequestration valued at 22–31 million US$ per annum
(3000–4000 US$ ha year−1 for tidal marsh, 2000–22,000 US$
ha year−1 for mangroves, or 1500–3000 US$ ha year−1 for
seagrass).

Implementation of blue carbon strategies in Australia. Sus-
tainable management of VCE requires an informed under-
standing of the ecological and economic significance of changes
in natural resources due to threats such as human activities and

Table 3 Potential annual CO2 emissions from loss of Australian vegetated coastal ecosystems and economic valuation

a

Ecosystem Total stock (Soil+
Biomass) (Tg C)

Habitat loss per
year (ha year−1)

C at risk of
remineralization
(Tg C year−1)

Potential CO2

emissions
(Tg CO2-e year−1)

Economic value of CO2

emissions per year
($10 t CO2

−1) (106 US$)

Tidal marsh 212–237 413–460 0.036–0.040 0.13–0.15 1.3–1.5
Mangrove 131–415 99–315 0.019–0.059 0.07–0.22 0.7–2.2
Seagrass 778–1,073 9,257–12,772 0.53–0.73 1.9–2.7 19–27
Total 1121–1725 9769–13,547 0.58–0.83 2.1–3.1 21–30

b

Ecosystem Sequestration rates in
Australia (Tg C year−1)

Habitat loss per
year (ha year−1)

Lack of C
sequestration
(Gg C year−1)

Potential lack of CO2

sequestration
(Gg CO2-e year−1)

Economic value of lack of CO2

sequestration per year
($10 t CO2

−1) (106 US$)

Tidal marsh 0.48–0.53 413–460 0.16–0.18 0.58–0.65 0.0058–0.0065
Mangrove 0.4–1.4 99–315 0.13–0.40 0.46–1.46 0.0046–0.015
Seagrass 2.5–3.5 9,257–12,772 3.3–4.6 12.2–16.9 0.12–0.17
Total 3.5–5.5 9,769–13,547 3.6–5.2 13.3–19.0 0.13–0.19

a: Potential gross annual emissions (Tg CO2-e year-1) from aboveground biomass and soils as a result of the decline in vegetated coastal ecosystems extent in Australia (0.03% year-1 for tidal marshes
and mangroves, and 0.1% year-1 for seagrasses). Emission estimates assume that 50% of organic carbon (C) stocks in aboveground biomass and in the top meter of soil deposits are remineralized after
ecosystem loss (at a rate of 0.183 year−1 46)
b: Potential annual loss of CO2 sequestration capacity in blue carbon soils as a result of current losses in the extent of vegetated coastal ecosystems in Australia, assuming that soil C accretion does not
occur after ecosystem loss. Carbon trading price of US$ 10 per ton of CO2. Economic value is expressed in 106 US$
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climate change. Current assessments of CO2 emissions from VCE
due to land use change in Australia have focused on emissions
due to conversion of mangroves and tidal marshes to settlements
(Tier 1 estimates), and have not accounted for emissions asso-
ciated with losses of seagrass nor for conversion of mangrove and
tidal marsh to pasture37. The Australian Government established
the International Partnership for Blue Carbon after the Con-
ference of the Parties to the United Nations Framework on Cli-
mate Change conference in Paris 2016. The Australian
Government also commissioned a technical review of the inclu-
sion of blue carbon projects in its domestic carbon abatement
scheme (the Emissions Reduction Fund), through management of
ecosystems towards the enhancement of C storage and/or avoided
GHG emissions42. Our assessment of Australian national blue
carbon storage, accounting for the various climate regions and
administrative jurisdictions, provides a basis to estimate potential
CO2 abatement through restoration and conservation of VCE.

Our results show that Australia is a hotspot for VCE holding
large quantities of blue carbon storage equivalent to 5–11% of
blue carbon soil stocks worldwide, despite losses amounting to
47–78% of tidal marsh and mangrove extents, and 20–26% of
seagrass extent since European arrival. Therefore, Australia
stands to benefit from developing blue carbon-focused climate
change mitigation schemes. Restoration of historic losses of VCE
together with enhanced conservation of threatened VCE could
constitute a mechanism to mitigate Australian CO2 emissions
while enhancing ecosystem services and climate adaptation
capacity. The estimates reported here provide a pioneer
demonstration of the approach required to deliver estimates that
can be incorporated into national carbon accounting and
underpinning the incorporation of robust blue carbon strategies
within Nationally Determined Contribution to mitigate climate
change. The baseline map of blue carbon in Australia provides an
essential underpinning to assess the impact of land use changes
and climate change on blue carbon fluxes and stocks. The pioneer
assessment at a national, and continental, level reported here
provides a methodology beyond the use of Tier 1 approaches
currently available in the IPCC Wetland Supplement50 that
provides an exemplar of an approach toward estimating national
blue carbon resources elsewhere.

Methods
Data acquisition. Data on C stocks and sequestration rates in Australian tidal
marshes, mangrove forests and seagrass meadows were compiled from published
data. In addition, unpublished studies from the CSIRO Marine and Coastal Carbon
Biogeochemistry Cluster project and other studies by the co-authors were included.
The study sites included mono-specific and/or mixed tidal marsh, mangrove and
seagrass ecosystems within a variety of depositional environments (from estuarine
to exposed coastal areas, and supra-tidal to sub-tidal habitats) across five climate
regions (arid, semi-arid, temperate, subtropical and tropical) in Australia. Data
from 1553 study sites (593 from tidal marshes, 323 from mangrove forests and 637
from seagrass meadows) on soil C stocks (1103 cores in total), soil C sequestration
rates (352 cores in total) and standing C stocks in aboveground biomass (141
measurements in total) were used in this study.

Soil cores were sampled using different coring mechanisms, such as manual
percussion and rotation of PVC pipes, vibracoring or using a Russian corer. The
cores were sliced at regular intervals, each slice/sample was weighed before and
after oven drying to constant weight at 60–70 °C (i.e., dry weight, DW).

The organic C content of the soil organic matter was measured in milled
subsamples from multiple slices along cores. The ‘Champagne test’ was used to
determine whether soil samples contained inorganic carbon51. The soil core sub-
samples containing carbonates were acidified with 1M HCl, centrifuged (3500
RPM; 5 min) and the supernatant with acid residues was removed using a pipette,
then washed in deionized water, centrifuged again and the supernatant removed.
These residual samples were re-dried (60–70 °C) before C elemental analyses. The
method used to remove inorganic C prior to organic C analyses may lead to the
loss of part of the organic C (soluble fraction), thereby potentially leading to an
underestimation of sediment C content52. Where carbonates were absent (all living
plant samples and most tidal marsh and mangrove soil samples), bulk soil samples
were milled and encapsulated without acid pre-treatment before C analyses. The C
content was obtained using a dry combustion elemental analyzer or mass

spectrometer. Percentage soil C on a mass basis was calculated for the bulk (pre-
acidified) samples.

Data on soil accumulation rates from 315 cores derived by means of 210Pb (last
century) and/or radiocarbon (last millennia) was compiled. Concentration profiles
of 210Pb along the upper part of the sediment cores were determined by alpha
spectrometry through the measurement of 210Po using Passivated Implanted
Planar Silicon (PIPS) detectors (CANBERRA, Mod. PD-450.18 A.M) after acid
digestion of the samples, assuming radioactive equilibrium between the 210Pb and
210Po radionuclides. After alpha spectrometry, selected samples from each core
were analyzed for 226Ra by ultra-low background liquid scintillation counting
(LSC, Quantulus 1220) or gamma spectrometry through the emission lines of its
daughter radionuclides 214Pb and 214Bi (295.2, 351.9, and 609.3 KeV). The
concentration profiles of excess 210Pb were determined by subtraction of 226Ra
from total 210Pb concentrations along each core. Gamma spectrometry
measurements were conducted in some cores using semi-planar intrinsic
germanium high purity coaxial detectors with 40% efficiency, housed in a lead
shield, coupled to a multichannel analyzer. 210Pb activity was determined by the
direct measurement of 46.5 KeV gamma peak. Sediment accumulation rates were
obtained by applying the Constant Rate of Supply (CRS53) or the Constant Flux:
Constant Sedimentation models (CF:CS54). The 239+240Pu activities were measured
in a sector ICPMS55.

Samples of bulk soil, plant debris and shells along the cores were radiocarbon
dated following standard procedures56. The 14C dates from seagrass cores were
calibrated using the marine13 calibration curve57 considering a local Delta R
ranging from 3 to 71 years as a function of study site58. The corrected ages were
used to produce an age-depth model (linear regression) to estimate sediment
accumulation rates.

Data analyses. To allow direct comparison among study sites, the C storage per
unit area (cumulative stocks, mass C m−2) was standardized to 1 m-thick deposits
(i.e., length of the soil cores sampled). When necessary, we inferred C stocks below
the limits of the reported data to 1 m, extrapolating linearly integrated values of C
content (cumulative C stock per unit area) with depth. Correlation between
extrapolated C stocks and measured C stocks in sediment cores ≥1 m was r2= 0.87
(P < 0.001). The C sequestration rates (mass C m−2 year−1) were calculated by
multiplying average C concentration by the sediment accumulation rate (mass m−2

year−1) in each core (where quantified). Estimates of aboveground biomass per
unit area were obtained by drying and weighing aboveground materials for tidal
marshes and seagrasses, and using field measurements and allometric equations
(specific to the region and species) for mangroves59,60.

All analyses were performed using Generalized Linear Model procedures in
SPSS v. 14.0. A Generalized Linear Model was used to consider the potential non-
independence of samples taken within habitats. All response variables (C stocks in
aboveground biomass and soil C stocks and sequestration rates) were square-root
transformed prior to analyses and had homogenous variances. Climate region
(arid, semi-arid, temperate, subtropical, and tropical) and ecosystem type (tidal
marsh, mangrove and seagrass) were treated as fixed factors in all statistical models
(probability distribution: normal; link function: identity).

Potential C stock losses (mass C) and CO2 emissions (mass CO2-e year−1) were
estimated based on 0.03% annual ecosystem area loss for tidal marshes and
mangroves, and 0.1% year−1 for seagrass, and accounted for the sum of C stocks in
aboveground biomass and the top meter of soils, assuming that 50% of total C
stocks are lost and remineralized to CO2 after disturbance4,49.

The upscaling of each habitat polygon was performed by multiplying the
average ± SD soil C stocks, sequestration rates, and standing C stocks in the
aboveground biomass for each ecosystem within each climate region by the specific
ecosystem area to obtain blue carbon estimates at climate region scale (arid, semi-
arid, temperate, subtropical and tropical, adapted from61; Fig. 1) and
administrative jurisdictions within Australia (Northern Territory, Queensland,
New South Wales, Victoria, Tasmania, South Australia and Western Australia).
The datasets on biomass C stocks (N= 37 for mangroves and N= 52 for both tidal
marshes and seagrasses) and on soil C sequestration rates for mangroves (N= 24)
and seagrasses (N= 36) were limited, which resulted in data gaps within climate
regions (Supplementary Fig. 1 and Supplementary Table 3). For example, estimates
of biomass C stocks in tidal marsh are lacking for arid and tropical regions
(Supplementary Table 3). In order to estimate C storage in VCE around Australia,
C data from the nearest climate region was used when data was not available. The
extents of each ecosystem considered to scale up Australia-wide estimates of C
stocks and sequestration (based on climate regions) are presented in Table 2 and
Supplementary Table 2.

Substantial data gaps for blue carbon stocks and sequestration rates exists in
parts of the country (Supplementary Fig. 1 and Supplementary Table 3). Most
notably, there are limited data over much of northern Australia, where ecosystem
extent is greatest for all three VCE. Stocks, sequestration rates, and losses of C are
also poorly quantified in converted or modified systems and there are few studies of
C sequestration capacity in restored ecosystems49. The robustness of the global
assessments presented here relies on a number of estimates, including the extent of
Australian VCE, annual loss rates, degree and fate of soil C loss after disturbance,
differences in the impact of different types of disturbances or management
activities, and the type of C trading methodology used. Therefore, the potential C
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abatement and its economic value may vary across VCE, and with management
and political scenarios.

Data availability
A Source Data File, containing the raw data underlying the research and all figures and
tables presented in our paper, is available in the Supplementary Information. The spatial
datasets that support the findings of this study have been deposited in the
Commonwealth Scientific and Industrial Research Organisation portal with the identifier
https://doi.org/10.25919/5d3a8acc9b598.
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